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Quantifying portable genetic effects and
improving cross-ancestry genetic prediction
with GWAS summary statistics

Jiacheng Miao1,6, Hanmin Guo 2,6, Gefei Song1, Zijie Zhao1, Lin Hou 2,3,7 &
Qiongshi Lu 1,4,5,7

Polygenic risk scores (PRS) calculated from genome-wide association studies
(GWAS) of Europeans are known to have substantially reduced predictive
accuracy in non-European populations, limiting their clinical utility and raising
concerns about health disparities across ancestral populations. Here, we
introduce a statistical framework named X-Wing to improve predictive per-
formance in ancestrally diverse populations. X-Wing quantifies local genetic
correlations for complex traits between populations, employs an annotation-
dependent estimation procedure to amplify correlated genetic effects
between populations, and combines multiple population-specific PRS into a
unified score with GWAS summary statistics alone as input. Through extensive
benchmarking,wedemonstrate that X-Wingpinpoints portable genetic effects
and substantially improves PRS performance in non-European populations,
showing 14.1%–119.1% relative gain in predictive R2 compared to state-of-the-
art methods based on GWAS summary statistics. Overall, X-Wing addresses
critical limitations in existing approaches and may have broad applications in
cross-population polygenic risk prediction.

Genome-wide association studies (GWAS) have identified tens of
thousands of genotype-phenotype associations for human complex
traits1,2. Polygenic risk score (PRS) based onGWAS, typically calculated
as a weighted sum of trait-associated allele counts across numerous
loci in the genome, is an effective tool to quantify the aggregated
genetic propensity for a trait or disease3–8. With rapid advances in
GWAS sample size and statisticalmethodology formodeling summary-
level data, PRS has shown substantially improved prediction accuracy
andgreatpotential in disease risk screening andprecisionmedicine9–11.
However, since the vastmajority of GWASparticipants areof European
descent, current PRS models are more effective in Europeans but are
known to have substantially reduced accuracy in other populations,
which severely limits their clinical utility12–16. There is an urgent need to

improve the effectiveness of PRS in diverse human populations and
provide equitable access to genomic advances in precision
medicine14,17–20.

There have been three types of approaches to improve cross-
ancestry genetic prediction in the literature. First, prioritizing causal
variants using functional genomic annotations can improve the port-
ability of PRS based on European GWAS21–23. Second, several studies
combine multiple PRS trained in various populations using linear
regression to optimize the predictive performance in the target (non-
European) population16,23,24. The third type of approach parametrizes
the degree to which genetic effects are correlated across populations,
and integrates GWAS summary statistics frommultiple populations in
a multivariate model to improve effect size estimation and prediction
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accuracy in each respective population16,25–27. These models have
achieved moderately improved predictive performance compared to
conventional single-population approaches, but several critical lim-
itations and challenges remain. First, previous studies used epigenetic
regulatory annotations to prioritize variants for PRS21–23. While these
annotations improved PRS portability for some traits, they are not
designed to quantify the correlated genetic effects between
populations28, and there is no guarantee that the same set of annota-
tionswill improvePRSperformance for all complex traits. Additionally,
existing statistical frameworks that leverage functional annotation
data to improve PRS29–33 do not apply to multi-ancestry predictive
modeling. Finally, in order to combine multiple population-specific
PRS, the current practice requires additional data from the target (non-
European) population. This includes individual-level genotype and
phenotype samples that are independent of the GWAS used to train
single-population PRS. In practice, this type of data can be nearly
impossible to obtain34. In order to have broad applications, PRS
models need to use the increasingly accessible GWAS summary sta-
tistics from global populations35–37 as input.

In this work, we introduce a cross-population weighting (X-Wing)
framework for genetic prediction. There are three main innovations in
our approach. First, we introduce an annotation framework based on

cross-population local genetic correlation. This annotation extends
our previous work38 to directly quantify correlated (portable) genetic
effects between multiple ancestral populations. Second, we introduce
a Bayesian method to incorporate functional annotation data into
multi-population PRS modeling, where annotation-dependent statis-
tical shrinkage amplifies the effects of annotated variants (i.e., variants
with correlated effects between populations). Finally, we resolve a
long-standing challenge in the field and introduce a method to com-
binemultiple PRS trained in various populations usingGWAS summary
data alone as input. We demonstrate the superior performance of
X-Wing PRS through extensive benchmarking using numerous GWAS
datasets, including UK Biobank (UKB)39, Biobank Japan (BBJ)40, and
Population Architecture using Genomics and Epidemiology Con-
sortium (PAGE) study41.

Results
Methods overview
The X-Wing workflow is illustrated in Fig. 1. We have previously
developed a scan statistic approach38 for identifying genomic
regions with correlated effects on two complex traits. In this paper,
we first extend this approach to identify correlated genetic effects
on the same trait between two populations. Once identified, these

Fig. 1 | X-Wing workflow. X-Wing uses GWAS summary statistics and population-
matched LD references as input. It first employs a scan statistic approach to detect
genome segments showing local genetic correlation between populations. Next, it
incorporates the local genetic correlation annotation into a Bayesian PRS model,

amplifying SNP effects that are correlated between populations. Finally, it uses
summary statistics-based repeated learning to combine multiple population-
specific PRS and produce the final PRS with improved accuracy.
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genomic regions explain the shared genetic basis of the phenotype
between populations and could be an informative annotation for
prioritizing single-nucleotide polymorphisms (SNPs) in PRS mod-
els. Next, to quantitatively incorporate this annotation in multi-
population PRS modeling, we introduce a Bayesian framework in
which annotation-dependent shrinkage parameters allow variable
degrees of statistical shrinkage between annotated and non-
annotated SNPs. Coupled with other shrinkage parameters that
do not depend on functional annotations, this framework amplifies
SNP predictors that show correlated effects between populations
while ensuring robustness to diverse types of genetic
architecture42–45. Although we only explore its performance using
the annotation derived from local genetic correlation in this paper,
we note that this is a general framework that allows an arbitrary
collection of annotation variables as input and also accounts for
population-specific linkage disequilibrium (LD) and allele fre-
quencies. Finally, we introduce an innovative strategy to linearly
combine multiple PRS trained in different populations using sum-
mary association data alone. We employ a summary statistics-
based repeated learning approach motivated from our recent
work8 and its extension33 to estimate the regression weights for
combining multiple PRS. The entire X-Wing procedure only
requires GWAS summary data and LD references as input, which is a
major advance compared to existing approaches. We present the
statistical details and technical discussions in Methods and Sup-
plementary Methods.

X-Wing pinpoints local genetic correlation between ancestral
populations
We first carried out simulations to assess the performance of our
approach in identifying cross-population local genetic correlations.
Using European and East Asian samples in 1000 Genomes Project
phase III data46, we simulated chromosome 22 genotypes of 50,000
individuals, and simulated quantitative traits in two populations under
an infinitesimalmodel with varying heritability levels (Methods).When
the traits in two populations are independent, X-Wing showed well-
controlled type-I error rates (Supplementary Data 1). Since no existing
method can estimate local genetic correlation between two distinct
ancestral populations, we compared our results with PESCA47, a
recently developed approach for estimating the risk SNP proportion
shared by two populations, to gain some perspective on the statistical
property of our inference results. PESCA also showed well-controlled
type-I error across simulation settings, but X-Wing consistently
achieved higher statistical power, especially when heritability is
large (Fig. 2a).

To assess the robustness of our method to model mis-specifica-
tion, we considered additional data-generating models in which SNP
heritability is enriched in certain genomic regions38 or is dependent on
LD and minor allele frequency (MAF)48. We also investigated binary
phenotypes using a liability threshold model. We obtained consistent
results in these analyses, with our method showing well-controlled
type-I error (Supplementary Data 2–4) and superior statistical power
(Fig. 2b and Supplementary Fig. 1).

Fig. 2 | X-Wing achieves superior statistical power in identifying cross-
population local genetic correlation. a, b Statistical power in simulations under a
heritability enrichment framework. Power is defined as the proportion of simula-
tion repeats that the true signal region is identified. Panels (a) and (b) illustrate
results for continuous and binary trait outcomes, respectively. cNumber of regions
with significant cross-population genetic correlations identified by X-Wing and

PESCA for 31 complex traits. d Proportion of total genetic covariance explained by
significant local regions for 31 complex traits. Genetic covariance measures cov-
ariance of additive genetic component between two populations. In both panels (c)
and (d), GWAS sample sizes are indicated by the color of each data point, and the
diagonal line is highlighted in red.
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As a robustness check, we also performed simulations based on
genome-wide data. X-Wing showed well-calibrated type-I error rates
(Supplementary Data 5) and identifiedmore signal regions than PESCA
when two populations shared local genetic correlations (Supplemen-
tary Fig. 2). Notably, PESCA suffered substantial type-I error inflation
when two simulated traits are independent (Supplementary Data 5)
and showed high false positive rates when two populations are cor-
related (Supplementary Data 6).

Local genetic correlationbetweenEuropeans andEastAsians for
31 traits
We estimated local genetic correlations for 31 complex traits
(Supplementary Data 7) between Europeans and East Asians using
GWAS summary statistics from UKB (N = 314,921~360,388)39 and
BBJ (N = 42,790~159,095)40. In total, we identified 4160 regions with
significant cross-population local genetic correlations across 31
traits (FDR < 0.05; Supplementary Data 8). Of these, the vast
majority (4,008 regions) showed positive correlations. 958 identi-
fied regions have genome-wide significant SNPs in both popula-
tions and 2,119 have significant SNPs in only one population
(Supplementary Fig. 3). The number of significantly correlated
regions identified for each trait pair is proportional to the global
genetic correlations estimated from genome-wide data25 (Supple-
mentary Fig. 4; correlation r = 0.49). As a comparison, we also
applied PESCA to these data, and identified 1,968 risk regions
shared by two populations (Supplementary Data 8). Our approach
identified more significant regions in 30 out of 31 traits (Fig. 2c).
The regions identified by our approach also explained larger pro-
portions of cumulative genetic covariance in all 31 traits (Fig. 2d).
Further, all conclusions remained similar when only HapMap3 SNPs
were included in the analysis (Supplementary Fig. 5).

Overall, regions with significant local genetic correlations cover
0.06% (basophil) to 1.73% (height) of the genome, but explain 13.22%
(diastolic blood pressure) to 60.17% (mean corpuscular volume) of the
total genetic covariance between Europeans and East Asians (Fig. 3a
and Supplementary Data 9), showing fold enrichments ranging from
28.09 to 546.83. Cross-population genetic correlations inside X-Wing-
identified regions are substantially higher than the genome-wide
genetic correlation estimates, while correlations in the remaining
genome are consistently lower (Fig. 3b). Notably, among the traits we
analyzed, basophil count has the lowest cross-population genetic
correlation (rg =0.23)which is consistentwithprevious reports49,50. But
even for basophil count, we observed a substantial genetic correlation
in regions identified by our approach (rg =0.83). To guard against
statistical artifacts, we performed falsification tests by simulating a
trait that is uncorrelated between populations (Methods). We did not
identify significant global or local correlations for this simulated
trait (Fig. 3b).

We also sought to replicate local correlations between Europeans
and East Asians for four lipid traits (HDL cholesterol, LDL cholesterol,
total cholesterol, and triglycerides) in independent data. We used
European GWAS from the Global Lipids Genetics Consortium (GLGC,
N = 95,454~100,184)51 and East Asian GWAS from the Asian Genetic
Epidemiology Network (AGEN, N = 27,657~34,374)52 as the replication
datasets (Supplementary Data 10). In total, we identified 124 significant
regions for four lipid traits in the replication analysis. 102 of them
overlapped with significant regions identified in the discovery stage
(Fig. 3c). Regions identified in the discovery stage showed substantial
enrichment for genetic covariance in the replication data (greater than
100-fold for all four traits; Supplementary Data 11). Further, we ranked
the regions identified in the discovery stage by their p-values. The
cumulative proportion of genetic covariance explained by these
regions were nearly identical between discovery and replication ana-
lyses (Fig. 3d and Supplementary Fig. 6).

Local genetic correlation annotation improves PRS prediction
accuracy across populations
Next, we investigated whether incorporating the annotation based on
local genetic correlation can improve the cross-ancestry prediction
accuracy of PRS. We used European GWAS from UKB and East Asian
GWAS from BBJ to train PRS for 31 complex traits, and evaluated PRS
performance using independent East Asian samples in UKB (N = 2683).
In this analysis, our approach jointly models GWAS in two populations
and outputs separate SNP weights for Europeans and East Asians
(Methods). Here, we used annotation-informed PRS based on poster-
ior SNP effects estimated for Europeans, and report its performance in
the East Asian target sample (thus, quantifying the portability of Eur-
opean scores in the East Asian population). PRS performance is
quantified using partial R2 adjusting for covariates (Methods). Our
annotation-informed PRS showed a 4.6% (Pwilcoxon = 7.0e-6) and 35.2%
(Pwilcoxon = 1.0e-7) median relative improvement in R2 compared to
PRS-CSx14 and XPASS20 (Fig. 4a; Supplementary Fig. 7; Supplementary
Data 12), demonstrating the effectiveness of incorporating local
genetic correlation annotation. In fact, we found both higher overall R2

and larger increase of R2 in annotated genomic regions (i.e., regions
with correlated effects between populations) using our approach. PRS
using only SNPs outside annotated regions did not show any
improvement (Fig. 4b, c and Supplementary Data 13). We also com-
pared our results with PolyFun-pred18, an approach that uses func-
tional fine-mapping to improve PRS performance. Our PRS showed a
substantial 78.1% (Pwilcoxon = 5.8e-4) relative gain in R2, suggesting that
fine-mapping in European population alone is a sub-optimal approach
compared to multi-population joint modeling (Supplementary Fig. 8
and Supplementary Data 12).

X-Wing combines multiple population-specific PRS using GWAS
summary statistics
Next, we investigated the benefit of combining multiple PRS trained
for different populations into a single score. We evenly split the East
Asian target sample in UKB into a validation set in which we fit a
regressionmodel to combine the European and East Asian scores, and
a testing set in which we evaluate the performance of combined PRS.
We compared the prediction accuracy of X-Wing PRS with PRS-CSx,
XPASS, and PolyPred+ using the same regression approach to combine
scores. X-Wing showed an median R2 relative increase of 3.9%
(Pwilcoxon = 1.0e-6), 46.1% (Pwilcoxon = 1.9e-9), and 24.7% (Pwilcoxon = 0.02)
compared to PRS-CSx, XPASS, and PolyPred+ in East Asian target
samples, respectively (Fig. 5a, Supplementary Fig. 7, and Supplemen-
tary Data 12). We also assessed the combined scores based on UKB,
BBJ, and PAGE in admixed Americans and Africans. Our method
showed a 3.2% (Pwilcoxon = 0.01) and 1.9% (Pwilcoxon = 0.01) median
relative increase in R2 compared to PRS-CSx in admixedAmericans and
Africans, respectively (Supplementary Figs. 9, 10 and Supplementary
Data 14, 15). XPASS was excluded since it cannot take more than two
GWAS datasets as input and PolyPred+ was also excluded since it did
not release PRS coefficients estimated using PAGE. We also performed
sensitivity analyses by varying the size of genetic correlation annota-
tion, upper bound of region size, and merge distance in identifying
local genetic correlations. We also examined PRS performance after
excluding the MHC region and explored estimating the global
shrinkage parameter using amodel tuning approach instead of the full
Bayesian procedure (Supplementary Methods). We obtained con-
sistent results in these analyses, demonstrating the robustness of
X-Wing to these choices (Supplementary Figs. 11–18, Supplementary
Data 16–22). We also performed simulations to benchmark the pre-
dictive performance of PRS using X-Wing, PRS-CSx and XPASS (Sup-
plementary Methods). X-Wing shows consistent improvement over
PRS-CSx and XPASS in the presence of local genetic correlation across
two populations (Supplementary Fig. 19).
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Finally, we demonstrated that population-specific PRS can be
combined using GWAS summary data alone. We used summary-
statistics-based repeated learning (Methods), instead of regressions
trained on reserved samples, to linearly combine multiple PRS. This
analytic strategy showed almost identical results compared to the
gold-standard regression approach in both East Asian, admixed
American, and African target samples (regression slope =0.983, 1.007,
and 0.971) (Fig. 5b, Supplementary Figs. 10, 20, and Supplementary
Data 23). Notably, if no external individual-level data are available for
regressionmodel training, the current best PRS approach in practice is
to use posterior SNP effects estimated for one population (Methods).
Compared to the best-performing population-specific scores, X-Wing
PRS can be trained using the same input data but showed a substantial
improvement in prediction accuracy, with themedian relative increase
of R2 ranging from 25.4 to 58.5% (Pwilcoxon = 1.3e-8 to 1.9e-9) in East
Asians, 14.1–74.2% (Pwilcoxon = 4.8e-4 to 2.4e-4) in admixed Americans,
and 30.2–119.1% (Pwilcoxon = 0.01–2.4e-4) in Africans (Fig. 5c and

Supplementary Figs. 10, 20, 21). We further compared X-Wing perfor-
mance with the “-meta” option in PRS-CSx that requires no additional
validation cohort. X-Wing showed a median R2 relative increase of
10.2% (Pwilcoxon = 3.6e-3), 9.6% (Pwilcoxon = 0.02), and 20.2% (Pwilcoxon =
2.4e-4) for traits in East Asians, Africans, and admixed Americans,
respectively (Supplementary Fig. 22). We also evaluated X-Wing per-
formance using a binary trait, type-2 diabetes, in East Asians. X-Wing
PRS showed both higher liability R2 and AUC over PRS-CSx and XPASS
(Supplementary Fig. 23)53,54. Overall, X-Wing PRS shows better pre-
dictive performance over alternative methods tested (Supplemen-
tary Fig. 24).

Discussion
In this paper, we introduced X-Wing, a sophisticated statistical fra-
mework for improving PRS performance in ancestrally diverse popu-
lations. X-Wing quantifies cross-population local genetic correlation,
and incorporates it as an annotation into a Bayesian framework which

Fig. 3 | X-Wing identifies genomic regions strongly enriched for correlated
genetic effects between Europeans and East Asians. a Scatter plot shows the
proportion of SNPs in regions identified by X-Wing and the proportion of cross-
population genetic covariance explained by these SNPs. All data points are above
the diagonal line highlighted in red, showing substantial enrichment. b Cross-
population genetic correlation for 31 complex traits. Three bars denote the global
genetic correlation estimated from genome-wide data (light green), genetic cor-
relation in regions identified by X-Wing (brown), and genetic correlation outside
regions identifiedbyX-Wing (dark green). Results for a simulateduncorrelated trait
are labeled as ‘Control’. All traits are ordered according to the global genetic cor-
relation estimates. Error bars indicate 95% confidence interval. The centre for the

error bars represents the point estimates for genetic correlation. A list of trait
acronyms can be found in Supplementary Data 7. c Bar plot shows the number of
significant regions identified only in discovery stage (purple), only in replication
stage (orange), and inboth stages (blue) for four lipid traits. HDL, LDL, TC, TGstand
for HDL cholesterol, LDL cholesterol, total cholesterol, and triglycerides, respec-
tively. d Cumulative proportion of genetic covariance explained by regions iden-
tified in thediscovery stage for triglycerides. Analogous results forHDLcholesterol,
LDL cholesterol, and total cholesterol are shown in Supplementary Fig. 6. Pink
dashed line indicates FDR cutoff of 0.05. Red line represents the diagonal line of
y = x. Genetic correlation and genetic covariance were calculated using XPASS.
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amplifies correlated SNP effects between populations through
annotation-dependent statistical shrinkage. It also combines multiple
population-specific PRS to further improve prediction accuracy while
using GWAS summary data alone as input. Applied to numerous GWAS
traits, we demonstrated that local genetic correlations help pinpoint
portable genetic effects and the annotation-informed PRS shows
consistently and substantially improved performance across
populations.

Our study presents several methodological innovations that will
likely be generalizable and impactful. First, we introduced the concept
of cross-population local genetic correlation and developed a scan
statistic method to map correlated regions. Complementary to global
genetic correlation, local genetic correlation refines the resolution in
identifying shared genetic components between populations and
provides critical insights into the genetic architecture of complex traits
in diverse human populations. Second, we developed a new Bayesian
framework that allows the integrative analysis of functional annotation
data in multi-population PRSmodeling. In this work, we showcased its
effectiveness in cross-population risk prediction using an annotation
derived from local genetic correlations. But we note that it is a general
framework that can incorporate arbitrary sets of annotation data, such
as the epigenetic annotations used in the PRS literature, in silico var-
iant annotations based onmachine learning exercises, or LD and allele

frequencies which have been shown to improve heritability
estimation21,23,33,55–57 (Supplementary Methods). It may also be applied
to improve PRS portability across other non-ancestry-related demo-
graphic groups58. Finally, we introduced a strategy to combine multi-
ple population-specific PRS into one improved score using summary
statistics alone. This is innovative since fitting a regressionmodel in an
independent sample has long been considered the standard (and only)
approach for combining multiple scores. This represents a significant
advance in the field since obtaining additional individual-level samples
that are independent from input GWAS can be a major challenge in
practice. This is also generalizable since the same technique could be
used to improve any PRS by creating an “omnibus” score over a
number of methods, and the application is not limited to trans-
ancestry risk prediction.

In addition to thesemethodological innovations, our local genetic
correlation analysis identified many regions that are of biological
interest.Wehave demonstrated that genomic regions identifiedbyour
approach show a substantial effect correlation on basophil count
between two populations despite the low genetic correlation esti-
mated from genome-wide data. More specifically, a region spanning
219 KBon chromosome3 shows correlated effects between Europeans
and East Asians for basophil count (Supplementary Fig. 25). Candidate
gene GATA2 at this locus encodes a zinc-finger transcription factor

Fig. 4 | Local genetic correlation annotation improves PRS prediction accuracy
for 31 traits in East Asians. a The percentage relative increase in R2 for prediction
accuracy of annotation-informed European PRS over PRS-CSx European PRS. A list
of trait acronyms can be found in Supplementary Data 7. b The percentage relative
increase in R2 for prediction accuracy of annotation-informed over PRS-CSx Eur-
opean PRS using only annotated and non-annotated SNPs (n = 31 traits). In the

boxplot, the center line, box limits and whiskers denote the median, upper and
lower quartiles, and 1.5 × interquartile range, respectively. c Comparison of R2

between annotation-informed European PRS using only annotated and non-
annotated SNPs. Eachpoint represents a trait. X-axis is the R2 for PRS based onnon-
annotated SNPs. Y-axis is the R2 for PRS based on annotated SNPs.
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which plays an essential role in proliferation, differentiation, and sur-
vival of hematopoietic cells59. In particular, expression of GATA2,
coupled with CCAAT enhancer-binding protein α (C/EBPα) and tran-
scription factor STAT5, directs the differentiation of granulocyte/
monocyte progenitors (GMPs) into basophils60,61. Another correlated
region for basophil count is a locus spanning 51 KB on chromosome 3
(Supplementary Fig. 26). Gene IL5RA, which encodes a subunit of a
heterodimeric cytokine receptor that specifically binds to interleukin-5
(IL-5), lies 13 KB away from the identified region. Binding of the
receptor to its ligand IL-5 is required for the biological activity of IL-5.
Notably, IL-5 is a humanbasophilopoietin that promotes the formation
and differentiation of human basophils62,63. Many other traits have
interesting findings too. For example, a region spanning 48 KB on
chromosome 1 is associatedwith C-reactive protein in two populations
(Supplementary Fig. 27). The locus covers the gene NLRP3, which was
identified as a risk gene associated with C-reactive protein levels in an
independent GWAS64. NLRP3 encodes a pyrin-like protein that con-
stitutes the NLRP3 inflammasome complex65. It was suggested that the
NALP3 inflammasome can activate nuclear factor-κB signaling66 which
affects C-reactive protein levels in Hep3B cells64,67. These results pro-
vide insights into the shared genetic basis of complex traits across
ancestrally diverse populations. The local genetic correlation estima-
tionprocedure implemented inX-Wingmayhavebroadapplications in

future studies that involve joint modeling of multi-population GWAS
associations.

Our study also has some limitations. First, although our method
does not require any individual-level sample with both genotype and
phenotype information, it remains crucial to have LD reference panels
that match the input GWAS. We observed an improvement in PRS
performance when applying our method to highly diverse samples
such as the PAGE study, but it remains unclear how to best select LD
references for multi-ancestry GWAS and admixed populations68. Sec-
ond, we generally believe that statistical methods alone cannot fully
solve the challenges in cross-population risk prediction14,17. It is an
important future direction to apply state-of-the-art methods to the
large and highly diverse GWAS conducted in global biobank cohorts36,
and carefully benchmark/combine various annotation data types and
PRS training procedures. Third, although we have demonstrated an
overall improved prediction accuracy over alternative methods across
many traits, the relative improvement in R2 reported for a single trait
may be statistically imprecise (Supplementary Data 12) and should be
interpreted with caution. Fourth, our simulations were carried out
using HapGen2-simulated genotypes, which is known to have smaller
fixation index (FST) than expectedbetween twopopulations. Fifth, only
categorical annotationswere used for PRS construction inour analysis.
It may be of interest to directly estimate local genetic correlation first,

Fig. 5 | Performance of X-Wing in combining population-specific PRS using
GWAS summary statistics for 31 traits in East Asian samples. a The percentage
relative increase in R2 of X-Wing PRS over PRS-CSx. The dashed line represents the
average increase. A list of trait acronyms can be found in Supplementary Data 5.
b Comparison of R2 for linearly combined PRS with mixing weights obtained using
GWAS summary statistics and individual-level data. The X-axis represents the R2

using weights estimated from individual-level data, while the Y-axis shows the R2

using summary statistics-based weights. The dashed line represents the diagonal
line of y = x. c The percentage relative increase in R2 of X-Wing PRS over PRS-CSx
using GWAS summary statistics. PRS-CSx PRS is calculated based on European
posterior mean effects. The dashed line represents the average increase.
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and then incorporate the correlation values as a quantitative annota-
tion to improve PRS.

Finally, the overall superior performance of X-Wing can be
attributed to the incorporation of cross-population local genetic cor-
relation and summary statistics-based PRS combination. Although we
anticipate improved prediction accuracy after incorporating the local
genetic correlation annotation, imprecise estimation of local genetic
correlation may affect PRS performance when input GWAS have lim-
ited sample size. However, the summary statistics-based PRS combi-
nation strategy is robust in our analyses. In cases where there are
concerns about the quality of local genetic correlation estimation,
integrating summary statistics-based PRS combination into existing
methods16,23 should still be a strategy for consideration.

Taken together, X-Wing addresses major challenges in existing
PRSmethods, showcases multiple innovations in trans-ancestry GWAS
modeling, and substantially improves the prediction accuracy of PRS
in non-European populations. These methodological advances, in
conjunction with the ever-growing GWAS sample size especially in
non-European populations, give hope to broad and equitable appli-
cations of genomic precision medicine around the globe.

Methods
Quantifying local genetic correlations between ancestral
populations
We extend the LOGODetect38 framework to detect genomic regions
showing local genetic correlations between two ancestral populations.
Suppose the association z-scores for two populations are denoted as

zk =
1ffiffiffiffiffi
Nk

p XT
kYk,k = 1,2. Here, Yk is a Nk-dimensional vector of standar-

dized phenotype values with mean 0 and variance 1, and Xk is the
standardized genotype matrix of dimension Nk × M where Nk is the
GWAS sample size for population k. We define the scan statistic as

Q Rð Þ=
P

i2Rz1iz2iP
i2RΣ1,ii*Σ2,ii

� �θ ð1Þ

whereR is the index set for SNPs in a genomic region,Σk is the variance-
covariancematrixof zk andΣk,iidenotes the i-th diagonal element ofΣk.
We note that the Σk matrix can be estimated using

Σk =
Nkh

2
k

M
fV2
k + 1� h2

k

� �
Vk . Here, h

2
k is the trait heritability which can

be estimated using GWAS summary statistics25, Vk is the LD matrix

which can be estimated using a reference panel, fV2
k =

Nðref Þ
k

�1

Nðref Þ
k

�2
V2
k �

M
Nðref Þ

k
�2

Vk is an unbiased estimator of the squared LDmatrix, and Nðref Þ
k

is the sample size of the LD reference panel. The numerator in the scan
statistic is the inner product of association z-scores for two popula-
tions in a genomic region, which quantifies the correlation of SNP
effect sizes. The denominator in the scan statistic adjusts for the effect
of LD in two populations, where a tuning parameter θ controls the
impact of LD. Technical details of the scan statistic and selection
procedure for θ can be found in the Supplementary Methods.

To perform statistical inference, we use themaximal scan statistic
over all possible genomic regions as the test statistic:

Qmax = max
∣R∣≤C

∣QðRÞ∣, ð2Þ

where C controls the upper bound of the region size (i.e., number of
SNPs) and is pre-specified as 2000 in our analyses. Similar to local
genetic correlation analysis in a single population38, we draw 5000
Monte Carlo simulations of z-scores for each population to assess the
null distribution of Qmax, and we apply the scanning procedure to
identify significant genomic regions showing cross-population local

genetic correlations. Significant regions with a distance less than
100KB in-between are merged into a single segment.

An annotation-dependent Bayesian horseshoe regressionmodel
for PRS
Next, we describe our Bayesian PRS framework with annotation-
dependent statistical shrinkage. Consider an additive genetic model:

Yk =Xkβk + ϵk,ϵk ∼MVN 0,σ2
kIk

� �
,p σ2

k

� � / σ�2
k ,k = 1,2, . . .K , ð3Þ

where βk is aM-dimensional vector of SNP effect sizes in population k,
ϵk is a vector of error terms with variance σ2

k , to which we assign a non-
informative Jeffreys prior69. MVN denotes multivariate normal dis-
tribution, and Ik is an identity matrix.

We introduce an annotation-dependent shrinkage parameter, in
addition to the global and local shrinkage parameters used in
literature16, to employ variable degrees of statistical shrinkage for SNPs
in different annotation categories42,43,45. Here we only consider one
annotation for simplicity, but ourmodel allows incorporatingmultiple
annotations (SupplementaryMethods). Consider an annotation with A
categories, we assign an annotation-dependent horseshoe prior to βjk:

βjk ∼N 0,
σ2
k

Nk
ϕψjλf jð Þ,k

 !
,j = 1,2, . . .M,k = 1,2, . . .K : ð4Þ

Here, βjkdenotes the effect of SNP j in population k,ϕ is the global
shrinkage parameter shared across all M SNPs and K populations, ψj

represents the local shrinkage parameter for SNP j, λf(j),k denotes the
annotation-dependent shrinkage parameter for SNP j in population k,
f : j ! a 2 f1, . . .Ag is a function that maps the j-th SNP to its corre-
sponding category a in the annotation. The annotation-dependent
shrinkage parameter is shared across SNPs that are in the same
annotation category for a given population, but varies between
populations to account for population-specific annotation.

Given this prior and marginal least squares estimates β̂k obtained
fromGWAS summary statistics, posterior mean effects in population k
is

E βk∣β̂k

h i
= Dk +S

�1
k

� �
β̂k, ð5Þ

where Sk =diag ϕψ1λf 1ð Þ,k ,ϕψ2λf 2ð Þ,k , . . . ,ϕψMλf Mð Þ,k
n o

and Dk is the LD

matrix for population k.

To provide an intuition of annotation-dependent statistical
shrinkage, suppose all SNP are unlinked (i.e., no LD), then the LD
matrix Dk = I and the posterior mean effect for SNP j in population k is

E βjk ∣β̂jk

h i
=

1

1 +ϕ�1λ�1
f jð Þ,kψ

�1
j

β̂jk = 1� 1
1 +ϕλf jð Þ,kψj

 !
β̂jk ð6Þ

Since SNPs in an important annotation explain more phenotypic
variance (λf(j),k tends to be big), the shrinkage factor 1� 1

1 +ϕλf jð Þ,kψj
will

be small if the j-th SNP is in an important annotation. Consequently,
there is less statistical shrinkage on SNP effects in genomic regions
marked by an important annotation.

To perform the full Bayesian model fitting, we assign half-Cauchy
priors to the global, local, and annotation-dependent shrinkage para-
meters as follows:

ψ
1
2
j ∼C + 1ð Þ,ϕ1

2 ∼C + 1ð Þ,λ
1
2
a,k ∼C + 1ð Þ,j = 1,2, . . .M,k = 1,2, . . .K,a= 1,2, . . . ,A, ð7Þ

where C+ (1) is the standard Cauchy distribution with the scale para-
meter equal to 1.
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We employ a simple and efficient block Gibbs sampler to fit the
PRS model using GWAS summary statistics and LD reference panel
(Supplementary Methods)70. Following Ruan et al.16, we recommend
using 1000 ×KMarkov ChainMonte Carlo (MCMC) iterations with the
first 500 ×K iterations as burn-in. We use the full Bayesian approach as
default, which does not require validation data to tune the model. An
alternative strategy is to select the optimal global shrinkage parameter
ϕ from {10−6, 10−4, 10−2, 1} that maximized the R2 in the validation
sample (SupplementaryMethods)16. Ourmethodoutputs theposterior
mean of population-specific SNP effects. PRS for the target cohort is
calculated subsequently as the sum of allele counts weighted by pos-
terior effect estimates.

Incorporating local genetic correlation annotation in PRS
Below we explain how to incorporate annotations based on local
genetic correlation in our PRS model. Without loss of generality, we
assume population 1 is the target population. We break down our
algorithm into three steps:

Step1: Obtain annotation information through local genetic corre-
lation analysis. We perform local genetic correlation analysis between
population 1 and population k (k = 2,…K) to identify top s regionswith
positive local genetic correlation. We denote the set of regions as Ωk

(e.g., when using UKB, BBJ, and PAGE as training GWAS, we ran local
genetic correlation analysis betweenUKBandPAGE, aswell as between
BBJ and PAGE). We selected s = 1000 in our primary analysis and
demonstrated that PRS performance is robust to the choice of s
(Supplementary Figs. 12, 13). We also used regions with both positive
andnegative local genetic correlation as annotation anddemonstrated
that the PRS performs better when only positive regions are used
(Supplementary Fig. 28).

Step2: Estimate posteriormean effects for all SNPs. Our annotation-
dependent shrinkage procedure is designed based on two key intui-
tions. First, we expect poor PRS portability when using GWAS from
various ancestral populations (e.g., European and African) to predict
trait values in a different target population (e.g., EastAsian), Therefore,
we want to amplify SNP effects that are more portable (i.e. correlated)
between each non-target population and the target population. Sec-
ond,wedonot expect anyportability issuewhen theGWASpopulation
and the target population are the same (e.g., using an East AsianGWAS
to build PRS for East Asian target samples). Thus, we do not employ
any annotation-dependent shrinkage when estimating posterior SNP
effects for the target population.

Specifically, when estimating posterior SNP effects for the target
population, we let λf(j), k)=1 for all j = 1, 2,… M, k = 1, …K. When esti-
mating the posterior SNP effects for the non-target population k (k = 2,
… K), we used λf(j),k = λ1,k if SNP j is not annotated by Ωk, λf(j),k = λ2,k if
SNP j is annotatedbyΩk, and λf jð Þ,k0 = λ1,k0 for k0 = 1, . . . ,k � 1,k + 1, . . . ,K .
We provide an example for the case where K = 3 in the Supplementary
Methods.

Step3: Linearly combine multiple population-specific PRS. Based
on theposteriormean effects of population kobtained in step2,wecan
calculate population-specific score PRSk. A common practice to
combine these population-specific scores is to fit a regression model
using the same phenotype Y(v) and K population-specific PRS in an
independent validation dataset from the target population:

Y vð Þ ∼w1PRS
vð Þ
1 +w2PRS

vð Þ
2 + . . . +wKPRS

vð Þ
K : ð8Þ

Here, superscript v highlights the fact that phenotypes and PRS in
this regression exercise need to be obtained from a validation dataset
that is different from any data used for GWAS and PRS modeling
training. Instead of fitting a regression in independent samples, we

introduce a strategy to obtain the least squares estimates of regression
weights (i.e. ŵ1, . . . ŵK ) using GWAS summary statistics. We introduce
this approach in the next section. The final X-Wing PRS is then calcu-
lated as:

PRSLC =
XK
k = 1

ŵkPRSk ð9Þ

Combining multiple PRS with GWAS summary statistics
First, we briefly illustrate that we do not need any individual-level data
from the validation sample, and summary statistics is sufficient for
estimating the least squares estimator ŵ of PRS combination weights.
Then, we provide detailed justifications on how to estimate ŵ using
only input GWAS data instead of summary statistics from a validation
sample. Suppose we have a validation dataset of N(v) individuals, ŵ can
be estimated as follows:

ŵ= PRS vð ÞTPRS vð Þ
h i�1

PRS vð ÞTY vð Þ: ð10Þ

Here,Y(v) is the phenotype vector andPRS(v) is theN(v) ×Kmatrixof
K population-specific scores in this sample. Further, PRS(v) can be
denoted asPRS(v) =X(v) bwhereX(v) is theNv ×M genotypematrix and b
is the M × K matrix for SNP effects. For simplicity, we assume Y(v) is
centered, X(v) is standardized, and b quantifies standardized SNP
effects. We note that PRS vð ÞTPRS vð Þ=NðvÞ quantifies the covariance of K
population-specific PRS which can be approximated by the sample
covariance obtained from a reference panel (e.g., LD reference of the
target population). Therefore, we have

ŵ= PRS vð ÞTPRS vð Þ
h i�1

PRS vð ÞTY vð Þ

= bTX vð ÞTX vð Þb
h i�1

bTX vð ÞTY vð Þ

= N vð ÞbT X
vð ÞTX vð Þ

N vð Þ b

" #�1

bTX vð ÞTY vð Þ

≈ N vð ÞbT X
refð ÞTX refð Þ

N refð Þ b

" #�1

bTX vð ÞTY vð Þ

=
N refð Þ

N vð Þ PRS refð ÞTPRS refð Þ
h i�1

bTX vð ÞTY vð Þ

ð11Þ

where X vð ÞTYðvÞ can be obtained from the summary statistics of the
validation sample (Supplementary Methods) and b is obtained from
the PRS training procedure. N(ref) and PRS(ref) denote the sample size
and PRS matrix in the reference panel. Taken together, Eq. (14) shows
that LD reference and summary statistics from a validation sample can
be used to estimate ŵ. However, summary statistics from a validation
cohort are still difficult to obtain in practice, and it is tempting to
replace it with the input GWAS used for PRS training. But this is not
feasible since it is a textbook example of overfitting. This motivates us
to use repeated learning (or a similar cross-validation approach; see
Supplementary Methods)71,72 to estimate ŵ.

Typically, repeated learning (or cross-validation) requires
individual-level genotype and phenotype data since it involves sample
splitting. Generalizing the technique in our recent work8 and its
extension handle the LD33, we introduce a summary statistics-based
repeated learning strategy, whichmimics the individual-level repeated
learning but does not need individual-level GWAS data (Supplemen-
tary Methods). This approach has three main steps which we describe
below. Since this approach does not involve a separate validation
sample, we will perform analysis using input GWAS from the target
population (e.g., BBJ GWAS when East Asian is the target population),
the sample size of which is typically sufficiently large to ensure the
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performance of repeated learning. Without loss of generality, we
denote k = 1 for this (target) population.

Step1: Subsample GWAS summary statistics from training and
validation sets. Supposewedivide the full GWAS sample (X1,Y1) into a

training set (XðtrÞ
1 ,YðtrÞ

1 Þ with N1 � NðvÞ
1 individuals, and a validation set

(XðvÞ
1 ,YðvÞ

1 Þ with NðvÞ
1 individuals. Given the association z-scores ðX

T
1 Y 1ffiffiffiffi
N1

p Þ
from GWAS summary statistics and genotype data from the reference
panel, association summary statistics based on training and validation
sets can be sampled as:

XðtrÞT
1 YðtrÞ

1

N1�NðvÞ
1

= XT
1 Y1
N1

+
NðvÞ

1

N1ðN1�N vð Þ
1 Þ

� �1
2

XðrefÞTffiffiffiffiffiffiffiffi
Nðref Þ

p g

X vð ÞT
1 Y vð Þ

1

N vð Þ
1

=
XT
1 Y1�X trð ÞT

1 Y trð Þ
1

N vð Þ
1

,

ð12Þ

where XðrefÞ is a Nðref Þ ×M standardized genotype matrix from the
reference panel for the target population,N(ref) is the sample size of the
reference panel, g is a N(ref)-dimensional vector with elements drawn
from a standard normal distribution (Supplementary Methods).

Step2: PRSmodel training. We train our PRSmodel using the training
summary statistics subsampled for the target population in step1 and
full GWAS summary statistics (without subsampling) for other popu-
lations. The output of PRS training is a M × K matrix b with the k-th
column showing standardized SNP effects for population k (Supple-
mentary Methods).

Step3: Estimate the linear combination weights. We then estimate
PRS weights by

ŵ≈
N refð Þ

N vð Þ
1

PRS refð ÞTPRS refð Þ
h i�1

bTX vð ÞT
1 Y vð Þ

1 , ð13Þ

where PRS refð Þ =X refð Þb denotes the N refð Þ ×K PRS matrix calculated in

the reference panel, X vð ÞT
1 Y vð Þ

1 is the subsampled validation summary
statistics. We note that when we calculate ŵ using PRS matrix in
the reference panel, essentially only LD matrix is used:

PRS vð ÞTPRS vð Þ =bTXðvÞTXðvÞb ≈
N vð Þ

1

N refð Þ ×b
TX refð ÞTX refð Þb=

N vð Þ
1

N refð Þ ×PRS
refð ÞT

PRS refð Þ, where X refð ÞTX refð Þ

Nðref Þ is the LD matrix. We choose to calculate ŵ

using PRS matrix to reduce computational complexity compared to
directly using LD matrix, but one can still estimate ŵ using only LD
matrix in the reference panel (Supplementary Methods). In practice,
we force any negative estimates ŵk to be 0 and center PRS in the

reference panel. We also normalize PRS weights by ew= ŵPK
k = 1

ŵ
k

.

At last, we perform P-fold repeated learning. The final linear
combination weights ŵfinal is the average of the normalized mixing
weights across P times:

ŵfinal =

PP
p= 1

ewp

P
,

ð14Þ

where ewp represents the normalized weights in p-th fold. To avoid
overfitting, we used distinct reference panels from the target popu-
lation forGWAS summary statistics subsampling, PRSmodel training,
and estimating weights for PRS combination. We provide the equally
divided reference panels from 1000G phase 3 data for Europeans,
East Asians, Africans, Central/South Asians, and admixed Americans
to the users. We also present the extensions of our approach to
handle tuning parameters in PRS model, negative mixing weights

from least squares, and multicollinearity between PRS in Supple-
mentary Methods.

Simulations
We used HAPGEN273 to simulate genotypes for 50,000 individuals of
European and East Asian ancestry respectively from population-
matched 1000 Genomes Project data. We only included SNPs with
MAF greater than 5% on chromosome 22. After removing strand-
ambiguous variants, 55,000 SNPs remained in the dataset and were
used for subsequent analysis.

First, we carried out simulations to assess the type I error rates of
twomethods (i.e., X-Wing and PESCA). We generated the effect size of
each SNP for two populations independently (i.e., under the null) fol-
lowing an infinitesimal model, where the per-SNP heritability was fixed
as a constant. Trait heritability for two populations were set to be the
same and varied between 0.001 and 0.01. We also compared two
methods in three additional model settings: heritability enrichment
model, LDAK model48 (SNP heritability is dependent on LD and MAF),
and binary trait scenario. In the heritability enrichment model, 30% of
heritability was attributed to 1000 randomly selected SNPs and 70% of
heritability to the remaining SNPs. LDAKmodel assumes that the effect

size of the j-th SNP follows the normal distributionNð0,h2
j Þ and the per-

SNP heritability h2
j is proportional to f j* 1� f j

� �h i0:75
*uj , where fj is

MAF and uj is LDAK weight computed by the LDAK software. In the
binary trait scenario, we first simulated the continuous liability fol-
lowing the same infinitesimalmodel as described above, then assigned
the samples with top 50% liability as cases and others as controls. We
repeated each simulation setting 100 times. Type I error rate was
defined as the proportion of simulation repeats in which correlated
regions (for X-Wing) and causal SNPs shared by two populations (for
PESCA) were identified.

Next, we compared the statistical power of X-Wing and PESCA
under the heritability enrichment model. We randomly selected a
genome segment on chromosome 22 spanning 1000 SNPs as the
correlated signal region. We attributed 30% trait heritability to the
signal region. We jointly simulated SNP effect sizes in the correlated
signal region for twopopulationswith a correlation set as0.9, and then
simulated effect sizes of the rest of the genome independently
between populations. Trait heritability for two populations were set to
be the same and varied between 0.001 and 0.01. We also investigated
the LDAK model and the binary trait model. Each simulation setting
was repeated 100 times. Statistical power was defined as the propor-
tion of simulation repeats in which at least one identified region (for X-
Wing) and one shared causal SNP (for PESCA) overlappedwith the true
signal region. We also performed simulations across the whole gen-
ome. We simulated genotypes for 50,000 individuals and 831,636
HapMap3 SNPs using the HapGen2 software. We simulated two inde-
pendent traits for two populations under the infinitesimal model and
assessed the type-I errors for the twomethods. To compared statistical
power under the heritability enrichmentmodel, we randomly selected
50 genome segments, each spanning 1000 SNPs as the correlated
signal regions. 30% trait heritabilitywas attributed to the signal regions
and 70% was attributed to the rest of the genome. Correlation of SNP
effect sizes in the correlated signal regions was set as 0.9. We further
performed simulation to compare the predictive accuracy (measured
by R2) of X-Wing PRS with the existing methods PRS-CSx and XPASS
(Supplementary Methods).

Analysis of GWAS data from UKB, BBJ, and PAGE study
We evaluated the prediction accuracy of X-Wing PRS using 31 traits in
East Asians and 13 traits in admixed Americans and Africans. European
and East Asian GWAS summary statistics were obtained from UKB and
BBJ (see Data availability). Trans-ancestry GWAS summary statistics for
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13 traits were obtained from the PAGE study74 (Supplementary Data 5).
East Asian and admixed American target samples in UKB were identi-
fied based on the Pan-UKB population assignment75. We removed
samples already included in the UKB European GWAS. We also used
KING76 to infer sample relatedness, and only kept individuals without
any relatives at the third-degree or higher. We further excluded indi-
viduals with conflicting genetically-inferred and self-reported sex. The
final East Asian, admixed American, and African target sample consist
of 2683, 749, and 6490 individuals, respectively.We calculated PRS for
these samples using the imputed genotype data provided by UKB but
restricted to the autosomal SNPs with info score > 0.9, MAF >0.01,
missing rate ≤0.01, and Hardy Weinberg equilibrium test p-value
≥ 1.0e-6.

We applied X-Wing to obtain the annotations based on pairwise
local genetic correlation between European, East Asian, and admixed
American population using UKB, BBJ, and PAGE GWAS summary sta-
tistics. We annotated SNPs in the top 500, 1000, 1500 correlated
regions and excluded regions with negative correlations. We then
incorporated the annotation into our PRSmodel, using 1000G phase3
data provided in Ruan et al.16 as LD reference panel and independent
LD block provided by LDetect77 for block Gibbs sampler. When the
target population is East Asian, we used UKB and BBJ GWAS as training
data and European and East Asian LD reference panel. For the admixed
American and African target population, we used UKB, BBJ, and PAGE
GWAS as training data and European, East Asian, and admixed Amer-
ican LD reference panel, since PAGE GWAS consists primarily of His-
panic/Latino16. We randomly and evenly split the target cohort into a
validation dataset to linearly combine population-specific PRS and
used the remaining samples as the test dataset to evaluate PRS per-
formance. When the PRS model involves model-tuning, the validation
dataset is also used to select tuning parameters. We used partial R2

averaged across 100 random splits to benchmark the predictive
accuracy of different methods, adjusting for age, sex, age2, age × sex,
age2 × sex, and the top 20 genetic principal components. We used the
percentage increase in partial R2 for X-Wing over other methods and
reported the p-value from two-sided Wilcoxon signed-rank test to
compare their performance. X-Wing uses local genetic correlation
annotations based on genome-wide imputed SNPs in primary analysis
but shows almost identical results using annotations based on Hap-
Map3 SNPs (Supplementary Fig. 29). When the target population is
Africans, we further replaced the admixed American LD reference
panel with European or Africans LD reference panel and found that
using admixed American LD reference yields better predictive per-
formance over alternatives (Supplementary Fig. 30).

We implemented 4-fold repeated learning to estimate the PRS
combination weights using GWAS summary statistics and our equally
divided 1000G reference panel8,78. In each fold, we first subsampled
East Asian (or admixed American) summary statistics for 75% BBJ (or
PAGE study) samples as the training and the remaining 25% as the
validation set. We applied X-Wing using the UKB and subsampled 75%
BBJ training data (or UKB, BBJ, and 75% simulated PAGE summary
statistics) to obtain the posteriormean effects for each population.We
then used these posterior mean effects to calculate PRS in the 1000G
dataset for East Asian (or admixed American) samples and estimated
the linear combination weights. We calculated the average weight
values over four repeats, used these weights to combine population-
specific PRS, and compared its prediction accuracy with the combined
PRS based on individual-level data in the same target population. The
weights selected fromour repeated learning procedure for 29/31 traits
in East Asians falls into the 95% confidence interval of the weights
estimated in an independent sample (Supplementary Fig. 31). X-Wing
uses 4-fold repeated learning in primary analysis but shows almost
identical results using 10-fold repeated learning (Supplementary
Fig. 32). In our software implementation, we allow the users to specify
the number of folds in repeated learning.

Implementation details of XPASS, PESCA, PolyFun-pred, PolyPred
+ and PRS-CSx are described in the Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study made use of publicly available datasets. This research has
been conducted using the UK Biobank Resource under Application
Number 42148. Data from the UK Biobank are available by application
to all bona fide researchers in the public interest at https://www.
ukbiobank.ac.uk/enable-your-research/apply-for-access. Phase 3 data
of the 1000 Genomes Project are publicly available at ftp://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/; Pan UK Biobank
data arepublicly available at: https://pan.ukbb.broadinstitute.org; UKB
GWAS summary statistics data are publicly available at: http://www.
nealelab.is/uk-biobank; BBJ GWAS summary statistics data are publicly
available at: http://jenger.riken.jp/en/result; PAGE study GWAS sum-
mary statistics data are publicly available at: https://www.ebi.ac.uk/
gwas/publications/31217584; PolyFun-pred PRS coefficients data are
publicly available at: http://data.broadinstitute.org/alkesgroup/
polypred_results.; All data generated during this study are included
in this published article and its supplementary information files.
X-Wing posterior SNP effect size estimates in this work are publicly
available at https://github.com/qlu-lab/X-Wing.

Code availability
X-Wing software is freely available at https://github.com/qlu-lab/
X-Wing;
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