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Bioinspired crowding directs supramole-
cular polymerisation

Nils Bäumer1, Eduardo Castellanos2, Bartolome Soberats 2 &
Gustavo Fernández 1

Crowding effects are crucial tomaintaining functionality in biological systems,
but little is known about their role in analogous artificial counterparts. Within
the growing field of supramolecular polymer science, crowding effects have
hitherto remained underappreciated. Herein, we show that crowding effects
exhibit strong and distinct control over the kinetics, accessible pathways and
final outcomesof supramolecular polymerisationprocesses. In thepresenceof
a pre-formed supramolecular polymer as crowding agent, a model supramo-
lecular polymer dramatically changes its self-assembly behaviour and under-
goes a morphological transformation from bundled fibres into flower-like
hierarchical assemblies, despiteno co-assembly taking place. Notably, this new
pathway can only be accessed in crowded environments and when the
crowding agent exhibits a one-dimensional morphology. These results allow
accessing diverse morphologies and properties in supramolecular polymers
and pave the way towards a better understanding of high-precision self-
assembly in nature.

Biological entities, such as cells, require a wide variety of macro-
molecules such as sugars and proteins to maintain their intricate
functionality1. As these macromolecules are not present at high con-
centrations, biologists have termed these conditions as crowded rather
than concentrated2,3. Despite that no specific interactions occur
between most biomolecules within a cell, the shear presence of other
(macro)molecular structures can have a strong non-linear impact on
key processes, such as protein folding and enzyme-substrate
association2,4. Accordingly, natural assemblies must efficiently main-
tain their intricate functionalities in crowded, multicomponent
environments2,5. The chaperonin GroES-GroEL represents an arche-
typal example of how crowding effects govern physiological func-
tionality (Fig. 1a)6. Under in vivo conditions, i.e. in crowded
environments, it can efficiently promote folding processes to aid
enzymes to reach their functional tertiary structure7. In contrast, under
isolated conditions (in vitro), this functionality is inefficient, as the
complex formation and substrate binding rely on the presence of
crowding agents in solution7. Macromolecular crowding has also been
linked to amyloidogenesis and protein fibrillation, which has tangible

implications for various diseases such as Alzheimer’s or Parkinson’s8–10.
The fibrillation process11,12 can be accelerated or decelerated by the
presence of macromolecular crowders based on a counterplay
between the influence of the excluded volume and the changes in
viscosity10,13. Additionally, non-specific interactions between macro-
molecular crowders and proteins are also associated with reduced
risks of dialysis-related amyloidosis in patients with high levels of
serum albumin and the onset of Alzheimer’s disease in vivo with
reduced levels of serum albumin14,15.

Supramolecular polymers can be considered as simplistic artificial
model systems that replicate multiple key properties of biological
assemblies, such as reversible binding, self-healing and diverse hier-
archical organizations16–18. For these systems, recent focus has been
placed on understanding supramolecular polymerisation processes in
multicomponent mixtures16,17,19,20. These approaches have specifically
aimed at controlling the morphology and monomer sequence in co-
assembled structures, making use of social self-sorting21. However,
although crowding effects have been examined in the context of crys-
tallization processes and macromolecular systems, their role in
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supramolecular polymers has thus far remained unexplored3,22,23. Here,
we show that crowding effects control the kinetics, accessible pathways
and final outcome of supramolecular polymerisation processes. To
probe this concept, we treated a model supramolecular polymer that
forms via fast kinetics with a second supramolecular polymer as
crowding agent.We found that, although the crowding agent assembles
independently, it simultaneously governs the supramolecular poly-
merisation process and opens up a new pathway into flower-like
microstructures, which ultimately evolve into hierarchical nanoribbons.
This new pathway can only be accessed in crowded environments and
when the crowding agent exhibits a one-dimensional morphology,
whereas the specific molecular structure of the crowding agent has no
influence on the self-assembly outcome, enabling the use of diverse
compounds as crowding agents.

Our results highlight that crowding effects direct the outcome
of supramolecular self-assembly, enabling accessibility to more
diverse morphologies without the need to change external para-
meters, such as solvent or temperature24,25. We anticipate that
relevant functional properties gated behind specific (hierarchical)
supramolecular morphologies will become accessible based on
supramolecular crowding approaches26–30, which should accelerate
the development of smart materials based on functional supramo-
lecular polymers31–35.

Results and discussion
Preliminary considerations
In order to address crowding effects in self-sorted supramolecular
systems, some key requirements need to be fulfilled. Firstly, two
monomer units capable of forming supramolecular polymers (one
acting as crowding agent and the secondone asmodel supramolecular
polymer, Fig. 1b) need to be selected. Secondly, both components
must be able to self-assemble independent from each other, i.e.
undergonarcissistic self-sorting, to avoid any potential influence of co-
assembly processes. In addition, surface accelerated secondary
nucleation processes must be avoided, for example using non-
complementary morphological properties, i.e., stiff vs. flexible or
globular vs. planar36,37. Finally, the crowding agent needs to self-
assemble within a timeframe in which the model supramolecular
polymer exists in a (kinetically trapped) monomeric state.

Self-assembly in crowded environments
Toprobe this concept,we selected twomodel supramolecular synthons
from our research group that satisfy the above-mentioned criteria: a
linear Pt(II) complex (1) comprising two trans-arranged monodentate
pyridine ligands and a V-shaped Pt(II) complex (2) derived from a
bidentate bipyridine ligand (Fig. 2a)38. In brief, the linear complex 1 self-
assembles in a cooperative manner into rigid bundles of fibres in low
polarity solvents (Agg1U; Fig. 2b). In contrast, the higher preorganisa-
tion of 2 arising from the planar bipyridine ligand enhances the aggre-
gation propensity, leading to thin and flexible one-dimensional
supramolecular polymers even at lower concentrations (Agg2; Fig. 2b).
The distinct timeframes at which 1 and 2 undergo self-assembly in the
same solvent system and temperature allow us to use Agg2 as a
crowding agent, which may subsequently affect the hierarchical self-
assemblyof 1 (Fig. 2c). Initially,we confirmed thenarcissistic self-sorting
of 1 and 2 under thermodynamic conditions, i.e. slow cooling rates and
mechanical agitation (Supplementary Fig 1–3, Supplementary Note 1).
Following these preliminary studies, the self-assembly protocol was
modified under kinetic regimes, in analogy to biological systems2.

To examine the kinetic aspects of the self-assembly, solutions of 1
inMCHwere heated to 363 K for no less than 45minutes prior to being
rapidly cooled down to room temperature. The resulting solutions
were subsequently subjected to time-dependent UV/Vis measure-
ments (see methods section for additional details). Under these con-
ditions, an unfavourable nucleation followed by a rapid aggregation
process leading to large self-assembled architectures with poor col-
loidal stability can be appreciated (Fig. 2d, Supplementary Fig. 4)38,39.
On the other hand, the presence of a supramolecular crowding agent
(Agg2) dramatically affects the self-assembly process of 1. The lag time
observed during UV/Vis measurements increased from merely
40minutes in the case of pure 1 (20 × 10-6 M) to over 1000minutes in
the presence of 2 at a concentration of 2.5 × 10-6 M (Fig. 2e, f). An even
more pronounced timedelayof nearly three days is observedwhen the
amount of crowding agent is increased to 5 × 10-6 M. Interestingly, the
final equilibrium is also affected by this change in environment. The
poor colloidal stability of the aggregates in uncrowded conditions
(Agg1U) leads to a nearly complete precipitation of all compound in
solution, as evidenced from the strong depletion of the absorbance
after 4200minutes (Fig. 2d). In stark contrast, the absorbance after
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Fig. 1 | Conceptual representation of crowding effects in biological and artifi-
cial systems. a schematic representation of the GroES-GroEL complex assembled
from21 individual components (middle) in vitro (left) and in vivo (right), highlighting

the influenceofmacromolecular crowding agents.b schematic representationof the
distinct self-assembly behaviour of a model monomer (middle) in the absence (left)
or presence (right) of a supramolecular polymer as crowding agent.

Article https://doi.org/10.1038/s41467-023-36540-x

Nature Communications |         (2023) 14:1084 2



equilibration is only halved in a crowded scenario (Agg1C). The change
in the final equilibrium was examined by microscopy techniques
(insets Fig. 2d+e). The morphology of Agg1C observed by scanning
electronmicroscopy (SEM) is best described as a complex hierarchical
flower-like structure, which has been previously observed in the self-
assembly of two-dimensional sheets40–42. This observation points to a
new self-assembly pathway of 1 under crowded conditions, as the self-
assembly in the absence of crowding agents solely leads to the
formation of bundled one-dimensional fibres, irrespective of the
concentration (see supporting information for details, Supplementary
Fig 4-15 and Supplementary Note 2). Note that the flexible fibres of
Agg2 are not incorporated in the flower-like structures of Agg1C, but
instead remain separately dispersed in solution, as demonstrated by
atomic forcemicroscopy (AFM), SEM and nuclear magnetic resonance
(NMR) spectroscopy (Supplementary Fig 16-21 and Supplementary
Note 3). Vigorous shaking of the assembled hierarchical flower-like
structures enables partial disruption of the layered sheets and allows
the visualization of individual sheets using AFM (Supplementary Fig 8).
The individual height of these sheets (h = 4.8 nm) matches the mole-
cular dimensions of 1 assuming a slightly tilted arrangement as a
consequence of a small translational offset in the molecular stack.

To rationalize crowding effects in artificial systems compared to
natural counterparts, some key differences must be taken into con-
sideration. As a consequence of the large differences in total con-
centrationof crowder (between300and400g/L in the caseofE. coli for
instance vs. below 1 g/L for the supramolecular polymers in this

study)1,43, the influence of a supramolecular crowder cannot be solely
rationalized by excluded volume effects. Further, the influence of
viscosity should be evaluated on a case-by-case basis. In the present
system, no changes in viscosity depending on the crowder concentra-
tion could be observed (Supplementary Table 1-4). Instead, the influ-
ence of an artificial supramolecular crowder should be traced to the
potential to decrease the likelihood of the energetically unfavourable
nucleation event, enhancing the lag phase of a kinetically controlled
process by steric clashes44–46. In order to gain further insights into this
potentialmechanismof the crowding-controlled self-assembly, we have
monitored the lag timeof 1byUV/Vis andphotoluminescence studies in
more detail revealing an unchanged spectroscopic behaviour in the
presence and absence of Agg2 (Supplementary Fig 22). In combination
with the narcissistic self-sorting of both monomers and the absence of
surface-catalysed secondary nucleation, we infer that the crowder
exerts its influence based on repulsive interactions with 1. Additionally,
a potential deceleration of the growth process may lead to organiza-
tions of a higher hierarchical order, as has been observed for various
supramolecular polymers and self-assembled architectures47–49. To
further support this hypothesis, we conducted additional temperature-
dependent experiments under kinetic conditions, in which the nuclea-
tion may be hindered, but an influence on the elongation can be
neglected. To our satisfaction, an increase in the heating-cooling hys-
teresis could be observed in the presence of Agg2, while the final
assemblies could clearly be characterized as Agg1U (Supplementary
Fig 24 and Supplementary Note 4). Based on these results, we propose
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that crowding in ourmodel supramolecular polymers is based on a dual
mechanism, i.e. an increase in the lag time combined with a decrease in
elongation rate, leading ultimately to the formation of assembled
structures with a higher hierarchical order.

Self-assembly pathways in crowded environments
In order to unravel the relative stability of Agg1U and Agg1C, we
compared the thermodynamic parameters of both assemblies
extracted from temperature- and solvent-dependent UV/Vis studies
(for sample preparation and experimental details, see methods sec-
tion). Temperature-dependent studies using controlled heating
revealed a higher stability for Agg1C compared to Agg1U with regards
to the degree of aggregation (αagg, Fig. 3a). This observation was
consistent for various concentrations, while the elongation tempera-
ture (Te) was identical for both aggregates for all investigated con-
centrations (Supplementary Fig 25–27)50. Based on the identical Te
observed from the temperature-dependent studies, it can be inferred
that the nucleation event is similar under crowded and uncrowded
conditions. However, the change in hierarchical organisation of the
individual stacks under crowded conditions leads to the formation of
two-dimensional sheets with a higher hierarchical stability compared
to the bundled fibres of Agg1U.

Additionally, the thermodynamic stabilities of Agg1U and Agg1C
were investigated by denaturation experiments, using CHCl3 as dena-
turing solvent51,52. These experiments disclosed nearly identical dis-
assembly curves (Supplementary Figs. 28, 29),whichunderlines that the
relatively higher hierarchical stability of Agg1C is notmaintained during

the addition of more polar chloroform. Interestingly, AFM analysis at
intermediate solvent mixtures reveals a drastic change in morphology
for Agg1C. At intermediate volume fractions of chloroform (16%) in
MCH, a transformation of the two-dimensional sheets into lamellae of
one-dimensional fibres is observed (Supplementary Fig. 31). This mor-
phology bears resemblance to that observed for Agg1U under identical
conditions, indicating a partial disruption of the hierarchical organiza-
tionof themorphologies (Supplementary Figs 30,31)53. This observation
agrees with the hypothesis that both aggregates exhibit the same
molecular arrangement wherein only the hierarchical organisation is
affected. In order to further confirm this hypothesis, we performed
X-ray diffraction (XRD) experiments of the two different assembled
states of 1 (Fig. 3b). The XRD patterns obtained for Agg1C and Agg1U
show identical lamellar packings with interlayer distances of ~33 Å. This
distance matches well with the molecular length and the layering pat-
tern observed in AFM experiments (Supplementary Fig 8). More
importantly, this observation supports the conclusions drawn from
temperature- and solvent-dependent studies indicating that both
aggregates are built on the same molecular arrangement but differ in
their hierarchical levels. Furthermore, during a standard stability
assessment of both aggregates over time, a morphological evolution
was observed only in crowded environments (Fig. 3e–g; Agg1U vs.
Fig. 3j–l; Agg1C). A systematic variation of the ratio between 1 and the
crowding agent, as well as their concentrations, revealed an intriguing
time-resolved transformation process of Agg1C: at low concentrations
(c ≤40 × 10−6 M), the hierarchical flower-like structures undergo an
apparent folding and rearrangement process into highly ordered
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ribbons with sizes between 5 and 35 microns (Agg1T, Fig. 3j–l, Supple-
mentary Fig 32–37, Supplementary Note 5). In stark contrast, no time-
dependent transformation of Agg1U could be observed irrespective of
the concentration, even after the addition of Agg2 to preformed Agg1U
(Fig. 3e–g). We also examined whether Agg1U undergoes a transfor-
mation into Agg1C or Agg1T using previously established mechanical
agitation protocols (Fig. 3g–i)54. Notably, SEM analysis revealed an
immediate conversion of Agg1U upon sonication into the nanoribbon
structure observed after ageing solutions of Agg1C. This observation
suggests that Agg1U represents a kinetically trapped topology in the
energy landscape of 1. Furthermore, this affirms that Agg1T represents
the global energy minimum in the self-assembly of 1, while both Agg1C
and Agg1U are kinetic intermediates along hierarchical paths towards
the same final structure (Fig. 3c, d)55–57. Considering the apparent simi-
larity between Agg1T obtained after ageing Agg1C and themorphology
observed after sonication of Agg1U, the stability of the aged product of
Agg1C upon sonication was probed (Fig. 3l–n). Notably, short sonica-
tion periods did not lead to the fragmentation of the larger ribbons, but
instead reversed the folding process to give the hierarchical flower-like
structures observed immediately after self-assembly. We attribute this
unexpected result tominor defects in the ideal ribbon structure, which,
even if not observable by SEM, can lead to an efficient unfolding of the
larger structures upon sonication.

The relatively high homogeneity of the nanomorphologies of
Agg1U after sonication motivated us to investigate the seeded supra-
molecular polymerisation of 1 in uncrowded and crowded environ-
ments using the small ribbon structures as seeds (Fig. 4a, b; see
methods section for a detailed description of the experimental
protocol)19,58,59. These seeds maintain their structure over time and do
not show any bias towards clustered agglomerates, which is a pre-
requisite for this approach (Supplementary Figs. 42)60. Addition of
Agg1T seeds to aliquots of 1 in uncrowded conditions (Fig. 4a) leads to
the formation of highly elongated morphologies resembling those of
Agg1U (in the following termed Agg1Us), together with practically
unchanged seeds (Fig. 4c and Supplementary Fig. 42). This observation
suggests that the added seeds can serve as nucleation sites in uncrow-
ded conditions, which then induces a highly efficient self-acceleration
based on secondary nucleation effects24,37,61,62. Because of this inhomo-
geneous growth process, not all seeds act as nucleation sites due to the
limited supply of 1. Captivatingly, a drastically different seed-induced
self-assembly behaviour is observed in crowded environments. After
employing the seeded supramolecular polymerisation protocol, an
efficient seed-induced polymerisation could be confirmed by SEM
analysis, with the resulting microarchitectures resembling those of
Agg1T (Agg1Ts). The sizes of these morphologies depend on the
amount of added 1, as expected (Fig. 4d and Supplementary Fig. 41).
Thermodynamic analysis of the homogenous morphologies of Agg1Ts
obtained in crowded environments reveals an intriguing size-
dependent change in stability compared to Agg1U and Agg1C, reaf-
firming that the changes in stability of the different structures can be
attributed to hierarchical effects (see Supplementary Note 6 and Sup-
plementary Fig 38–46 for further details). These results highlight the
importance of crowding effects in the production of structures with
increased thermodynamic stability, both under kinetically controlled
conditions and in the context of seeded supramolecular
polymerisation.

Scope and limitations
In order to probe the applicability of our method to other systems,
we selected other available building blocks that fulfil the above-
mentioned characteristics to act as supramolecular crowding
agents, and subsequently conducted analogous studies under
kinetic conditions (Fig. 5, Supplementary Fig 47–53)63–65. Initially, we
focused on one-dimensional supramolecular polymers previously
investigated in our group63,64. The results obtained using Agg2 as

crowding agent could be accurately reproduced using supramole-
cular synthons 3 and 4 (Fig. 5a, b; e, f). In both cases, an increase in
the lag time prior to the self-assembly could be observed, ultimately
producing the characteristic flower-like structures of Agg1C. Addi-
tionally, we used other aggregate morphologies, such as spherical
nanostructures or two-dimensional nanosheets, as crowding
agents64,65. These nanostructures do not affect the final aggregate
morphology of 1 into fibre bundles (Agg1U), indicating that only
elongated one-dimensional fibres are effective crowding agents for
the present system (Fig. 5c, d, Fig. 5g, h). The same holds true for
covalent polymers, which also failed to produce crowded environ-
ments, leading exclusively to the formation of Agg1U, even under
highly elevated concentrations (see Supplementary Fig 47–53 and
Supplementary Note 7 for details). On this basis, we conclude that
the supramolecular morphology, rather than the specific molecular
design, dictates the capabilities of a supramolecular polymer to act
as a suitable crowding agent.

Summary
In summary, we have demonstrated that binary systems undergoing
narcissistic self-sorting can activate alternative self-assembly path-
ways induced by a crowded environment. This phenomenon bears
close resemblance to examples of crowding phenomena in biolo-
gical systems. Furthermore, we have shown that the potential of a
supramolecular polymer to act as a crowding agent strictly depends
on its morphology rather than its molecular design, which enables
diverse supramolecular synthons to act as crowding agents. In
addition to social self-sorting phenomena, our results disclose that
crowding effects need to be considered in complex self-assembly
environments. In the everlasting strife of supramolecular polymer
researchers to rival the structural complexity of natural systems in
terms of precision and functionality, these effects need to be
acknowledged. We believe that our findings can serve as a founda-
tion for future research and inspire diverse crowding-based
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approaches to broaden the scope of self-assembled topologies and
resulting functional properties.

Methods
Synthesis
Compounds 1 and 2 have been synthesized using ligand replacement
protocols from commercially obtained PtCl2(PhCN)2 in toluene. The
respective ligands have been synthesized using a series of Sonogashira
coupling reactions and deprotections using K2CO3 and tetra-n-
butylammonium fluoride38.

UV/Vis spectroscopy
All UV/Vis spectra were recorded on a V-770, a V-750 and a V-730
spectrophotometer by the company JASCO with a spectral bandwidth
of 1.0 nm and a scan rate of 400nmmin−1. Glass cuvettes with an
optical length of 1 cm were used for all measurements. All measure-
ments have been conducted in solvents from commercial sources of
spectroscopic grade.

Atomic force microscopy
The AFM images have been recorded on a Multimode®8 SPM System
manufactured by Bruker AXS. The used cantilevers were AC200TS by
Oxford Instruments with an average spring constant of 9 Nm−1, an
average frequency of 150kHz, an average length of 200 µm, an average
width of 40 µm and an average tip radius of 7 nm. All samples have
been prepared using the protocol described below, unless specifically
stated otherwise.

Scanning electron microscopy
The SEM images were recorded on a PhenomPharos Desktop SEM and
on a Phenom ProX Desktop SEM manufactured by Thermo Fisher
Scientific. The individual images have been recorded using a zoom
between 22500× and 300× with either a BSD or SED detector and an
acceleration voltage of either 5 or 10 kV (For individual images please
see the corresponding figure caption). All samples have been prepared
using the protocol described below, unless specifically stated
otherwise.

Dynamic and static light scattering
All DLS and SLS spectra have been recorded on a CGS-3 Compact
Goniometer SystemmanufacturedbyALVGmbH, equippedwith aHeNe
Laser with a wavelength of 632.8 nm (22mW) and an ALV/LSE-5004
Digital Correlator by ALV GmbH.

X-ray diffraction experiments
X-ray diffraction (XRD) patterns were recorded on a BRUKER D8
Advance powder diffractometer (θ/θ geometry) with a nickel-filtered
Cu-Kα radiation (λ = 1.54Å).

FT-IR spectroscopy
Thin film measurements were performed using a JASCO-FT-IR-6800
with aCaF2window. Thinfilmswerepreparedbydropcasting 200 µLof
the respective solutions inMCH followed by careful evaporation using
an argon stream.

Fluorescence spectroscopy
All fluorescence spectra were recorded on a JASCO FP-8500 spectro-
fluorometer. Glass cuvettes with an optical length of 1 cm were used.
All measurements were conducted in solvents from commercial
sources of spectrophotometric grade.

Rheological measurements
Rheologicalmeasurements wereperformed on anAnton PaarModular
Compact Rheometer MCR 102 (Anton Paar GmbH, Graz, Austria) with
Anton Paar RhepCompass V1.20.40.496 (Anton Paar GmbH, Graz,
Austria) analysis software. All measurements were conducted with a
CP25-2 cone plate spindle (25mm diameter) and a P PTD200 mea-
suring cell. Measurements were performed with a constant shear rate
of 50 /s at 21 °C.

Kinetic self-assembly protocol
In order to investigate the kinetic self-assembly of 1 in crowded and
uncrowded conditions, we freshly prepared solutions of the desired
concentration by transferring thedesired amount of compound froma
stock solution in chloroform, followedbyevaporation todrynessusing
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3 4 5 6 

short slipped J-type 
1-D fibres  

parallel H-type 
1-D fibres  

parallel H-type 
0-D particles 

parallel H-type  
2-D sheets 

Fig. 5 | Generalizability assessment of self-assembly induced by supramole-
cular crowding. a–d chemical structures and schematic supramolecular self-
assembly behaviour of crowding agents 3, 4, 5 and 6. e–h SEM micrographs of

Agg1C obtained in different crowding environments (see method section for
experimental details); scale bars correspond to 5 µm.
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an argon stream. Subsequently, the necessary amount of MCH was
added to achieve the desired concentration. For experiments in
crowded environments, the required amount of crowding agent was
added froma separate stock solution prior to solvent evaporation. As a
standard protocol, the samples were heated to 368K for no less than
45min, but no more than 60min to ensure a complete disassembly in
the low polarity solvent and avoid any interference from potential
seeds or small oligomers, which could perturb the experimental data.
In order to induce the rapid temperature drop, the UV/Vis device was
cooled to 298K at the fastest cooling rate that the device is able to
achieve by changing the setting to 298K without intermediate steps
(leading to an effective cooling rate of roughly 15 K/min). The time-
dependent studies have been recorded over the course of 3 days using
a measurement interval of 10minutes.

Temperature-dependent UV/Vis studies (heating)
In order to examine the thermodynamic stability of Agg1C and
Agg1U, an initial stock solution of 1 at a concentration of c = 40 ×
10−6 M was prepared in MCH following the established kinetic self-
assembly protocol. For the preparation of Agg1C, 0.25 eq. of 2
was added prior to the kinetic self-assembly protocol. In order to
investigate the disassembly process for multiple concentrations,
the stock solutions were diluted using MCH and kept at 298 K for
three days to ensure sufficient equilibration. All heating experi-
ments have been recorded at a temperature range between 298 K
and 368 K using a heating rate of 1 K/min and a measurement
interval of 1 K. In order to minimize artifacts originating from the
poor colloidal stability and high degree of clustering, the solu-
tions were constantly stirred using a magnetic stirring bar at 1600
rpm. Thermodynamic analysis was performed using the
nucleation-elongation model.

Kinetic temperature-dependent UV/Vis studies (cooling)
In order to examine the effects of supramolecular crowding on kinetic
cooling experiments, measurements were conducted after transferring
aliquots of 1 or 2 from a highly concentrated stock solution (c = 1 ×
10−3 M) to the measurement cuvette, followed by evaporation using an
argon stream. After complete evaporation, the resulting solid was dis-
solved directly in MCH to give the final measurement solutions (c1 = 20
×10−6M (uncrowded) and c1 = 20 ×10−6 M; c2 = 5 ×10−6M (crowded)).
Afterwards, the samples were heated to 343K until both compounds
were completely dissolved. The measurement was conducted with a
cooling rate of 2 K/min without stirring and using a data interval of 2 K
to minimize equilibration periods during the spectra acquisition.

Solvent-dependent UV/Vis studies (denaturation)
In order to prepare the solutions of Agg1C and Agg1U for solvent-
dependent studies, the sample preparation described in the previous
section was used. Denaturation of the aggregates was achieved by the
addition of aliquots of 1 dissolved in chloroform to gradually increase
the solvent mixture polarity. The volume fraction of chloroform was
increased in increments of 1% between each measurement. After
additionof the required amount of chloroform, the cuvette was closed
andgently inverted three times inorder tominimizemechanical stress,
while enabling sufficient solventmixing. Following this procedure, one
spectrum was recorded every 2minutes, ensuring minimal contribu-
tion of solvent evaporation artifacts. For measurements of Agg1C, the
chloroform stock solution contained the same equivalents of 2 as the
aggregate solution tomaintain the overall concentration of compound
(1 and 2) present in solution. Thermodynamic analysis was performed
using the denaturation model.

Sample preparation for rheological measurements
Samples of Agg2 in MCH were prepared by directly dissolving solid
samples of 2 in MCH and heating to 363 K for 45minutes for

equilibration. After cooling to 298K, the samples were kept at this
temperature for 24 hours to ensure that the self-assembly of Agg2 is
under thermodynamic control. For each measurement, 300 µL of the
respective sample were loaded onto the rheometer with a syringe and
the plate was brought to a measuring distance of 0.106mm. After
trimming the sample with a wipe, an isolation hood was placed over
the sample to maintain a constant temperature and avoid solvent
evaporation.

Sample preparation for microscopy
For all microscopy experiments, the same sample preparation proto-
col was employed in order to ensure adequate comparability between
the different measurements, unless specifically stated otherwise.
Before the solutions were coated onto the surfaces, the cuvette or vial
containing the relevant sample was gently inverted 3 times to disperse
the hierarchical flower-like structures in the solvent. Afterwards, 10 µL
of the respective samplewere dropcasted (HOPG for AFM, SiWafer for
SEM) and dried under ambient conditions. For the time-dependent
studies on the morphological evolution, samples were prepared by
following the time-dependent protocol described above and mon-
itoring the progression of the self-assembly process by UV/Vis. After-
wards, the solutions were transferred into a small vial (V = 2.0mL). The
morphology was investigated before and after transferring the solu-
tions to confirm that the morphology was unaffected. Afterwards,
small aliquots (V = 10 µL) were used to conduct the SEM studies at
different time intervals.

Sample preparation for XRD experiments
The samples used for XRD analysis were obtained following the same
experimental protocol described above for inducing kinetic self-
assembly. In order to obtain enough sample, the supramolecular
polymer was formed using 20mg of 1 (plus 5mg of 2 for crowded
environments) dissolved in 100mLMCH,which ensured a comparable
concentration with previous UV/Vis experiments. Following the com-
plete equilibration over a three-day period, the solvent was slowly
removed using anArgon stream. Afterwards, the samplesweredried in
vacuo to remove residual solvent. The resulting powder samples were
directly used for the XRD measurements, which were recorded under
ambient conditions. The presence of the respective characteristic
morphologies of Agg1U and Agg1C was confirmed by SEM experi-
ments before and after the X-ray measurements (see Figure S31).

It is noteworthy that aggregate 2 is XRD silent, as previously
reported38. In accordance with this, all the signals observed in the
diffraction pattern of Agg1C correspond to 1.

Scope and limitation assessment
Different supramolecularly crowded environments were investigated
by following the kinetic self-assembly protocol described above. For
improved comparability, all measurements were performed using a 40
× 10−6 M solution of 1. At least two different concentrations were
investigated for all crowding agents, according to the concentrations
suitable for aggregation described in the respective original publica-
tions (for specific concentrations please refer to the individual figure
captions in the additional data and supporting information). In order
to avoid artifacts caused by small path lengths, a cuvette with a path
length of 1 cm was used for all studies. In cases where the resulting
samples exhibited absorbance levels beyond the range of the device,
wavelengths other than the absorption maximum of 1 were used to
evaluate the kinetic evolution.

Seeded supramolecular polymerisation
The seeded supramolecular polymerisation studies were all executed
following the same experimental protocol. Firstly, the specific aggre-
gate used for seed formation was formed following the kinetic self-
assembly protocol described above using a concentration of 40 × 10−6
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M. Secondly, the aggregates were subjected to sonication for a time
frame of no less than one hour, with the progress of fragmentation
being controlled at intermediate time frames by SEM. The aliquots of
added 1were freshly prepared for all studies using a heating period of
no less than 45min, followed by thermal quenching to 298K. To
initiate the seeded self-assembly, the seed solutions were mixed with
the fresh aliquots of monomeric 1 in a 1:1 ratio. The corresponding
time-dependent UV/Vis spectra were recorded immediately after seed
addition. In order to prevent artifacts from spontaneous self-nuclea-
tion, the seeds were added without any lag time after the quenching
protocol.

Data availability
The data supporting the findings of this study are provided in the
supporting information and are available from the corresponding
author on request.
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