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Cross-stress gene expression atlas
of Marchantia polymorpha reveals the
hierarchy and regulatory principles of
abiotic stress responses

Qiao Wen Tan 1, Peng Ken Lim 1, Zhong Chen2, Asher Pasha 3,
Nicholas Provart 3, Marius Arend 4,5, Zoran Nikoloski 4,5 &
Marek Mutwil 1

Abiotic stresses negatively impact ecosystems and the yield of crops, and
climate change will increase their frequency and intensity. Despite progress in
understanding how plants respond to individual stresses, our knowledge of
plant acclimatization to combined stresses typically occurring in nature is still
lacking. Here, we used a plant with minimal regulatory network redundancy,
Marchantia polymorpha, to study how seven abiotic stresses, alone and in 19
pairwise combinations, affect the phenotype, gene expression, and activity of
cellular pathways. While the transcriptomic responses show a conserved dif-
ferential gene expression between Arabidopsis and Marchantia, we also
observe a strong functional and transcriptional divergence between the two
species. The reconstructed high-confidence gene regulatory network
demonstrates that the response to specific stresses dominates those of others
by relying on a large ensemble of transcription factors. We also show that a
regression model could accurately predict the gene expression under com-
bined stresses, indicating thatMarchantia performs arithmetic multiplication
to respond to multiple stresses. Lastly, two online resources (https://conekt.
plant.tools and http://bar.utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi) are
provided to facilitate the study of gene expression in Marchantia exposed to
abiotic stresses.

The colonization of land by plants, which occurred around 470Ma,
was essential to establish habitable environments on land for all
kingdoms of life1. Bryophytes, which include mosses, liverworts, and
hornworts, represent the earliest diverging group of non-vascular land
plants2–4. Morphology of the earliest land plant fossils, consisting pri-
marily of tissue fragments and spores from the Middle Ordovician

around 470Ma, showed that early land plants were liverwort-like5,6. As
a liverwort, Marchantia polymorpha is a valuable model to study the
emergence and evolution of land plants, as it allows us to compare the
biology of aquatic algae and non-vascular plants to vascular, seed, and
flowering plants. Studying Marchantia can help us better understand
the successful terrestrialization event, as Marchantia contains traits
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essential for this task along with increased complexity (e.g., hormones
auxin, jasmonate, salicylic acid, protection mechanisms against
desiccation, photooxidative damage)7 which is still considerably lower
than that of vascular plants8.

Besides its interesting evolutionary position among land plants,
Marchantia is a valuablemodel for studyingbasicplant biology.Mainly
due to the lack of whole-genome duplications in the liverwort lineage,
Marchantia shows a simpler, low-redundancy regulatory genome8,
which together with the ease of growth and genetic manipulation9,
makes Marchantia an excellent model to study general plant biology.
The Marchantia genome contains necessary components for most
land-plant signaling pathwayswith low redundancy,making it easier to
dissect the pathways8. For example, the auxin signaling network in
Marchantia is simple yet functional, with all relevant genes existing as
single orthologs10. Similarly, cellulose biosynthesis inMarchantia uses
the same but simplified machinery; while Arabidopsis thaliana con-
tains 10 cellulose synthases in multimeric complexes,Marchantia has
only two11. Furthermore, since the dominant generation ofMarchantia
is the haploid gametophyte, heterozygosity can be circumvented to
directly study mutant and transgenic phenotypes. These, and other
features, make Marchantia an attractive model for dissecting the
function of genes and biological pathways.

Extremeenvironmental conditions can cause amultitude of biotic
and abiotic stresses that can devastate crops and induce the collapse
of entire ecosystems12,13. Plants have evolved sophisticated mechan-
isms to perceive and respond to the different stresses, which induces
an acclimation process that allows the plant to survive the stress14, but
often at the cost of reduced growth12,13.Many studies have analyzed the
effect of stress on plant growth by identifying differentially expressed
genes (DEGs) between stress-treated and untreated plants (e.g.
refs. 15–17), or by identifying single nucleotide polymorphisms asso-
ciated with stress resistance in Arabidopsis and maize18–20. The studies
performed on model plants such as Arabidopsis can shed light on
fundamental processes of stress acclimation, but it is currently unclear
whether the acclimation mechanisms are conserved and transferable
to crops.

In addition, plants are often exposed to a combination of stresses
in the natural environment which may require opposing strategies to
mitigate adverse effects. For example, drought causes plants to close
their stomata tominimize water loss21,22, while heat causes the stomata
to open to cool down their leaves via transpiration17,23. Stress signaling
ismediated by a diverse ensemble of stress-specific sensors/receptors,
networks of protein kinases/phosphatases, calcium channels/pumps,
and transcription factors (TFs) that can be localized to different
organelles24,25. The propagation of signals is modulated by hormones,
signaling molecules (e.g., reactive oxygen species), and other protein
modifications (S-nitrosylation, ubiquitination, myristoylation)26,27.
While this complexity renders it challenging to elucidate themolecular
basis of stress responses to single or combined stresses, the key fea-
tures of the model Marchantia provide the means to deepen our
understanding of stress acclimation.

In this study, wemake use ofMarchantia’s less complex regulatory
architecture to dissect howplants respond to environmental cues, such
as stresses, by modulating the expression of genes and biological
pathways. To this end,we constructed an abiotic stress gene expression
atlas of Marchantia comprising seven abiotic stresses, i.e. darkness,
high light, cold, heat, nitrogen deficiency, salt, and mannitol, and their
18 pairwise combinations. For each stress, we identified robustly-
respondingTFs that are likely important forMarchantia’s survival to the
stress. Comparing these TFs to gene expression responses and biolo-
gical function of Arabidopsis thaliana orthologs revealed poor agree-
ment between the two plants. However, when we looked at the profile
of differentially expressed genes in Marchantia and Arabidopsis
homologous gene families, there were significant similarities in cold,
heat, and salt stress based on the Jaccard Index (JI), suggesting

conservation of TF responses inMarchantia andArabidopsis at the gene
family level. Interestingly, the analysis of DEGs and biological pathways
in the combined stresses revealed that certain stresses (e.g., darkness
and heat) induce large transcriptomic responses that dominate other
stresses (e.g., salt andmannitol). The dominant stresses express a larger
ensemble of TFs that change the expression of more genes and path-
ways than thenon-dominant stresses. Importantly, we construct a linear
regression model that can explain the gene expression changes of
combined stresses when employing log2-fold change (log2fc) values,
showing that Marchantia performs an arithmetic multiplication to
integrate environmental cues. Finally, to provide bioinformatical
resources, we created i) an eFP browser for Marchantia (http://bar.
utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi) that allows the visua-
lization of gene expression in organs and stress conditions and ii) an
updated CoNekT platform (https://conekt.plant.tools)28, allowing
sophisticated comparative gene expression and co-expression analyses.

Results
Response of Marchantia to combined abiotic stresses
Tocapture gene expression changes causedby a singleor combination
of stresses, we first established the type and magnitude of stresses to
use. We defined two types of stresses: (i) the environmental stresses
comprised heat, cold, excess light, and prolonged darkness, while (ii)
media stresses comprised nitrogen deficiency, excess salt (represent-
ing ionic and osmotic stress), and excess mannitol (representing
osmotic/drought stress). Next, the magnitude of the stresses was
modulated to identify near-lethal stress conditions, growth decrease
by ~50% (inferred from the approximate thallus area), or stresses dis-
playing signs of necrosis. To this end, gemmaegrown on sealed, sterile
agar plates under constant light were subjected to varying degrees of
stress, and their phenotypes were observed on days 15 and 21. For
media stresses, the gemmae were subjected to the stress from day 0,
while for the environmental stresses, the stress was applied on day 14
for 24 h (Fig. 1a). Prolonged darkness was an exception to this design,
as plateswere subjected todarkness ondays 8, 9, 10, 11, 12, 13, and 14 to
expose the plants to 7, 6, 5, 4, 3, 2, and 1 day(s) of darkness at day 15,
respectively (Fig. 1a).

Single stresses showed varying degrees of effect on plant growth
on day 15 (day of harvest when compared to their respective batch
controls, Supplementary Fig. 1 shows growth measurements against
respective batch controls, Source Data 1 shows agar plates, Fig. 1d
shows growth measurements against controls averaged across all
batches) and day 21 (growth measurements for 6 days post-stress for
environmental stresses against controls averaged across all batches,
Fig. 1e). One day of cold stress did not affect the growth at the tem-
perature range tested (3–12 °C), and we selected 3 °C for further ana-
lysis. The heat stress experiment showed that the plants abruptly died
when the heat treatment temperature was increased from 33 °C (no
phenotype) to 36 °C (death), and we selected 33 °C for further study.
For light stress, we selected 435 µEm−2 s−1 as we observed necrosis at
the next higher light intensity (535 µEm−2 s−1, Source Data 1). For
osmotic (100mM selected) and salt stress (40mM selected), we
observed an expected negative growth gradient when the concentra-
tion of the two compounds was increased. For nitrogen deficiency, at
0mMKNO3, we observed a decrease in growth and an accumulation of
a red pigment, which likely represents auronidin, a flavonoid shown to
accumulate during phosphate deficiency29. Finally, for darkness, we
observed that the growth of plants decreased proportionatelywith the
duration of days without light, and we selected plants grown in 3 days
of darkness, as they showed a growth decrease of ~50% on day 15
(Supplementary Fig. 1). On day 21 (i.e., 6 days of normal growth con-
dition), all dark-grown plants showed increased size, indicating that
the 7 days of darkness is not lethal.

Next, we determined howMarchantia responds to a combination
of two stresses. To this end, we tested all 19 feasible pairs of stresses
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(cold+heat and dark+light combinations are mutually exclusive and
excluded) using the same experimental outline as for single stresses
(Fig. 1a). We did not observe any unexpected phenotypes when com-
bining the stresses (Fig. 1c), as typically, a combination of stresses
resulted in an expected combination of phenotypes (e.g., nitrogen:
small, pigmented, mannitol: small, nitrogen +mannitol: even smaller,

and pigmented) except for salt-nitrogen (SN), which is significantly
larger than its salt counterpart but not different from its nitrogen
counterpart (Fig. 1e). While plants subjected to a combination of sub-
lethal heat (33 °C) and high-light (435 µEm−2 s−1) died (Fig. 1c), this was
most likely due to a greenhouse effect caused by high irradiation and
sealed plates, as the temperature of agar climbed to 38 °C (i.e. lethal
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temperature, Fig. 1c). Interestingly, we observed yellowing of the thalli
for high light and cold, indicating that lowering the temperaturemakes
the plants more sensitive to high light (Fig. 1c).

The resulting panel of 7 single stresses, 18 combinations of two
stresses (excluding heat-light that resulted in plant death), and two
untreated controls were sent for RNA sequencing (Supplementary
Data 1 contains sample labels, and Supplementary Data 2 and Sup-
plementary Data 3 contain Transcript PerMillion (TPM) values and raw
counts, respectively). Overall, we observed a good agreement between
the sample replicates, as samples showed expected clustering (Sup-
plementary Fig. 2), and the correlation between expression profiles of
replicates was >0.97 (Supplementary Data 4).

Combinatorial differential gene expression analysis reveals a
hierarchy of stress responses
Plants perceive and respond simultaneously to multiple stresses when
growing in nature. To better understand howMarchantia responds to
stresses, we first identified DEGs in the single stresses and the 18
combinations of two stresses. Formore robust inferences, we used two
controls (grown on half-strength Gamborg B-5 Basal agar at 24 °C
under continuous LED light at 60μEm−2 s−1) taken frombatches F and L
and considered a gene differentially expressed (denoted by DEG) if it
showed conserved differential expression with respect to both con-
trols (Supplementary Data 5 and Supplementary Data 6). Overall, we
observed a good agreement between the two controls, demonstrated
by both the volcano plots (Supplementary Fig. 3) and comparisons
of the resulting lists of DEGs (Supplementary Fig. 4A). We compared
the number of up- and down-regulated genes with the single stresses
and observed that the combination of stresses typically contains a
similar or higher number of DEGs when compared to single stres-
ses (Fig. 2a).

Next, to investigate whether a severe growth phenotype results in
a larger number of DEGs, we plotted the plant size (x-axis) against the
number of differentially expressed genes (y-axis, Supplementary
Fig. 4B). We observed no significant correlation between these two
variables for plants on days 15 and 21 (p-value > 0.05, Supplementary
Fig. 4B). We concluded that there is no correlation between the
severity of growth phenotype and the transcriptomic response to
stress. For instance, the smallest plants (salt+mannitol, SM) also had
the fewest number of differentially expressed genes.

The different single and combined stresses are likely to elicit
similar and unique gene expression responses, resulting in the stresses
having similar sets ofDEGs.Weused theUpSet plot30 to elucidate these
similarities, which shows the intersection of multiple sets for upregu-
lated (Supplementary Fig. 5A) and downregulated (Supplementary
Fig. 5B) genes. Interestingly, the largest set of up- and down-regulated
genes was unique to heat+darkness combined stress (HD), suggesting
that HD elicits the most unique and dramatic transcriptional response
among the tested stresses. Other unique stress responses comprised
upregulated cold+darkness (CD), cold+high light (CL), cold+nitrogen
deficiency (CN) and heat+nitrogen deficiency (HN); and down-
regulated cold+darkness (CD), cold+nitrogen deficiency (CN), cold (C)
and cold+high light (CL). Darkness alone (D) and in combination with

other stresses (e.g., ND, CD,MD, SD, HD) also contained a high number
of upregulated (connected dots in columns 4, 5, Supplementary
Fig. 5A) and downregulated (columns 2, 4, Supplementary Fig. 5B)
genes, suggesting a conserved, core darkness response. Similarly, we
observed core responses to heat (e.g., 6th and 10th column, Supple-
mentary Fig. 5A) and cold (11, 12, 19, and 39th column, Supplementary
Fig. 5A). We also observed a high number of DEGs across heat and
darkness experiments (Supplementary Fig. 5A, B), suggesting that
these two stresses elicit a similar response to a degree.

To better understand how Marchantia responds to a combina-
tion of two stresses, we compared the combined response (Sxy) to
the response to individual stresses (Sx and Sy), with three different
metricsmeasuring the shared response, the dominance of stress, and
novel responses inducedby combined stress.Wefirst producedVenn
diagrams for upregulated (Supplementary Fig. 6) and downregulated
(Supplementary Fig. 7) gene sets. The first metric measures the
similarity between Sx and Sy (Fig. 2b, green area, JI) and ranges from
0 (Sx, Sy do not have any DEGs in common) to 1 (Sx, Sy elicit identical
DEGs). The second metric measures whether one stress suppresses
the other (Fig. 2b, the difference between red and blue area) and
ranges from −1 (Sxy is similar to Sx but not to Sy, i.e., Sx suppresses
Sy) to 1 (Sxy is similar to Sy but not Sx, i.e., Sy suppresses Sx). The
thirdmetricmeasureswhether a combination of two stresses elicits a
unique response when compared to the two individual stresses
(Fig. 2b, purple area specific to Sxy) and ranges from 0 (all DEGs are
found in Sx and Sy, i.e., no novel response) to 1 (all DEGs in Sxy are
unique, i.e., the combination of Sxy elicited a unique response).
Using the comparison of upregulated genes in cold+dark as an
example (Fig. 2c), the similarity between upregulated genes in cold
and dark stresses is low (white field, 0.04). Furthermore, cold+dark
combination showed a comparably high proportion of novel inter-
actions (mediumblue, 0.37), indicating that the combined cold+dark
stress upregulates genes not found in either cold or dark stress.
Lastly, the suppression analysis (Fig. 2e) revealed a positive value
(light red field, 0.22), indicating that there is a high proportion of
genes that are upregulated during cold, but not upregulated in cold
+dark. This indicates that darkness suppresses part of the upregu-
lated cold stress response.

Stresses showing the highest similarity in terms of DEG
responses comprise salt and mannitol for up- and down-regulated
genes (Fig. 2c, d, similarity values for SM is 0.27 and 0.20, respec-
tively), salt and nitrogen deficiency for upregulated genes (Fig. 2c,
similarity value 0.21), and heat and darkness for downregulated
genes (Fig. 2d, similarity value 0.26). The set analysis for novel
interactions revealed that the salt+mannitol combination involved
DEGs that were not found in the individual stresses (Fig. 2c, d, novel
interaction value 0.48 and 0.56, for up- and downregulated genes),
suggesting that the two stresses can activate altogether different
responses when combined. Lastly, the suppression analysis showed
that darkness is a strong suppressor for many stresses (negative
suppression scores ranging from −0.21 to −0.65 when D is Sx,
Fig. 2e, f), except HD (−0.09 and −0.06 for up- downregulated genes,
Fig. 2e, f), indicating that heat stress and darkness are comparably

Fig. 1 | Influence of different abiotic stresses on the growth ofMarchantia.
aOverview of the experimental setup for stress experiments. Black lines below the
timeline indicate the duration where plants were exposed to stress. Plants were
sampled on day 15. Cultures for observation were returned to normal growth
conditions on day 15, and photographs of the cultureswere taken on days 15 and 21.
b Phenotype of plants on day 21 for heat, cold, osmotic, salt, light, darkness, and
nitrogen deficiency stresses. Conditions with underlines represent the stress
intensities used for combined stress. Representativesof control frombatches F and
L for independent stresses performed over 14 batches in panel b (Supplementary
Fig. 1 and Source Data 1). c Phenotypes of plants on day 21 for combined stresses.

Representatives of control from batches O and R for combined stresses performed
over 9 batches in panel c (Supplementary Fig. 1 and Source Data 1).d, e Thallus size
of gemmalings on Days 15 and 21. Error bars are represented by standard deviation
and Student’s two-tailed t-test, p-value < 0.05. Asterisk (*) represents a significant
difference to control, caret (^) represents a significant difference to the first single
stress control, and plus sign (+) indicates a significant difference to the second
single stress control. The data comprises 131 samples (Control), 8 samples (Cold,
Light, Dark), 9 samples (Heat, Salt, Mannitol, HS, HM, HN, SM,ML, NL,MN, SD, MD,
ND, HD, CD, CL, HL, LS, SN) and 7 samples (Nitrogen, CS, CM).
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dominant. To support this observation, we found that heat stress
could suppress other stresses (negative suppression scores ranging
from −0.01 to −0.49 when H is Sx. Fig. 2e, f).

To better understand the hierarchies of the stresses and how
these stresses affect the activity of biological processes, we identified
processes that contained significantly more upregulated or

downregulated DEGs than expected by chance for each stress combi-
nation (Fig. 2g). The clustering of the rows (biological processes) and
columns (stresses) revealed that darkness-containing stresses form a
clear group of similar responses (six stress combinations comprising
D, HD, CD, MD, SD, and ND), confirming the previous observation of
darkness suppressing other stresses. Interestingly, darkness caused a

Article https://doi.org/10.1038/s41467-023-36517-w

Nature Communications |          (2023) 14:986 5



strong decrease in gene expression of numerous pathways (Fig. 2g,
~58% blue squares). The second largest group contained nearly all heat
stress combinations (four stresses: H, HM, HS, HN) and a similar but
less dramatic downregulation of transcripts in many biological pro-
cesses. Interestingly, despite the dramatic downregulation of biologi-
cal processes in most dark and heat stresses, a subset of stresses (H,
HS, HD, MD) was significantly upregulated for uncharacterized genes
(bin ‘not annotated’), suggesting that these responses employ poorly
understood genes. The other groups comprised high-light (four
stresses L, NL, LS, ML), nitrogen deficiency (three stresses N, MN, and
SN), and cold (three stresses C, CM, and CS). In contrast, salt- and
mannitol-containing stresses did not form any groups, suggesting that
despite dramatic phenotypic changes, ***these stresses are suppressed
by other stresses (Fig. 2g,M andS are not groupedwith other stresses).
Interestingly, salt+mannitol (SM), cold+high light (CL), and cold+low
nitrogen (CN) were also not grouped, indicating that these combina-
tions result in novel transcriptomic responses.

Basedon thesefindings, we can rank the strength of dominance of
abiotic stresses starting from darkness (six stress combinations), heat
and light (four each), nitrogen deficiency and cold (three each), and
finally, salt and mannitol (none).

Identification of high-confidence transcription factors involved
in stress response
Our results indicate that certain stresses (e.g., heat and darkness)
result in a large number of DEGs (Fig. 2a). These DEGs are likely a result
of the action of a gene regulatory network (GRN) comprising TFs that
are themselves differentially expressed.

To infer the stress-responsive GRNs (Supplementary Fig. 8B), we
used ElasticNet, to build regression models that can predict gene
expression of a gene (response variable), given the expression of
transcription factors (predictor variables). We chose ElasticNet, since
regularized regressions achieved competitive performance when
compared to other GRN inference methods31, and unlike some of the
top performing methods (e.g., Genie332), facilitate easier comparison
of inferred interactions across different datasets. We constructed one
model for each of the 6257 DEGs (response variable) and all 95 dif-
ferentially expressed TFs (predictor variables) that were responsive in
more than five experiments (Supplementary Fig. 8A). In addition to
constructing the GRNs from the whole dataset (i.e., all 81 RNA-seq
experiments), we also constructed stress-specific GRNs by using the
data from those experiments that included the respective stress
(summarized in Supplementary Fig. 8B). For instance, the darkness-
specific GRNwas inferred fromD, DC, DH, DS, DM, and DN expression
data. Altogether, we constructed 50,056 ElasticNet models (i.e., 6257
DEGs for eight stress datasets) containing up to 95 differentially
expressed TFs as predictors. To study the performance of the models
across the different expression datasets, we investigated the number
of DEGs (response variables) for which the corresponding models
showed coefficient of determination (R2) greater than or equal to a
given value. Interestingly, the number of DEGs for which reliable
models (R2 > 0.8) could be obtained was larger when using the com-
pilation of experiments that shared a stress, rather thanwhen using all

data (Supplementary Fig. 9A). This suggests that there is significant
variability between the datasets that can be used for linearmodeling at
the stress group level but not when all data sets are jointly examined.
As a result, the GRNs based on the individual stress groups showed
higher similarity based on the JI to experimentally-derived GRN from
Arabidopsis than the GRN based on all datasets (Supplementary
Fig. 9B). Furthermore, by taking the union of the stress-specific net-
works, weobtained aGRNwith the highest similarity to theArabidopsis
GRN (p-value < 0.05, Supplementary Fig. 9B). Thus, we settled on the
union of the models from seven stress-specific GRN, with R2 > 0.8
performance. Next, to obtain a high-confidence GRN, we selected the
TF with the highest absolute relative coefficient for each gene (Fig. 3a).
Based on the value of the selected coefficients, the majority of the
inferred relationships reflect TFs as activators (3355 positive coeffi-
cients, green edges), followed by repressors (1338 negative coeffi-
cients, red edges) and ambiguous (1185 mixture of positive and
negative coefficients, gray).

To identifywhichTFs are robustly responding to a given stress, we
visualized the significantly up- and down-regulated TFs across all
available combinations of stresses (Fig. 3b). Interestingly, certain TFs
show consistent expression patterns across most combinations of a
given stress group (e.g., Mp2g00890.1 is downregulated in 5 out of 6
cold stress combinations, Fig. 3b, bottom row and Supplementary
Fig. S10, 26th row from bottom). In total, we identified 75 TFs that
showed a consistent, robust response across >70% of combinations
within a stress group (termed robustly-responding TFs). The number
of robustly-responding TFs in a stress group corresponds to the
number of differentially expressed genes. For example, a large number
of robustly-responding TFs are found for stresses with a higher num-
ber of DEGs (Fig. 3c, darkness, heat), while stresses with few DEGs had
fewer robustly-responding TFs (salt, nitrogen deficiency). To study the
roles of these 75 robustly-responding TFs, we considered the available
literature on NCBI for studies that investigate the molecular function
of the TFs. Out of the 75 TFs, 14 were found in the literature and only 3
have been studied for their role in abiotic stress response (MpLAXR
(Mp5g06970.1, robustly upregulated in high light and mannitol stress)
and MpERF15 (Mp7g09350.1, robustly downregulated in heat stress):
regeneration after wounding, MpHSF1 (Mp4g12230.1, robustly down-
regulated in heat stress): heat tolerance) (Supplementary Data 7 and
Fig. 3c). The remaining 11 TFs have roles in various developmental
processes (e.g., gemma cup formation, Supplementary Data 7), indi-
cating that abiotic stress influences the development of Marchantia.

We expect that the observed downregulation of biological pro-
cesses in darkness should be caused by upregulation of repressors,
downregulation of activators, or both. Interestingly, in darkness, the
downregulated TFs comprise mainly of activators (leftmost column,
green cells, Fig. 3c). In contrast, the upregulated TFs contained many
repressors (red cells), suggesting that the large downregulation of
most biological processes is due to the combined action of repressed
activators and expressed repressors. Finally, most TFs showed specific
expression in at most one stress with few exceptions, such as
Mp8g11560 (robustly downregulated in all stresses) and Mp4g17430
(upregulated in 5 out of 7 stresses).

Fig. 2 | Analysis of differentially expressed genes and biological pathways.
a The number of significantly (BH-adjusted p-value < 0.05) upregulated (red) and
downregulated (blue) differentially expressed genes. The stresses are (C)old, (D)
arkness, (H)eat, (L)ight, (M)annitol, (N)itrogen deficiency, and (S)alt. b Illustration
and equation of metrics used to measure similarity between two stresses (left),
suppression of one stress when two stresses are combined (middle), and novel
genes that are differentially regulated when stresses are combined (right). Simi-
larity and novel interaction between independent and cross stresses for
c upregulated genes and d downregulated genes. In each stress combination, the
first (Sx) and second (Sy) stress corresponds to the first and second letter of the
combined (Sxy) stress, respectively. The values were calculated from the equations

given in b. Suppression analysis for e upregulated and f downregulated genes. A
darker shade of red and blue indicates that more genes from the first (Sx) and
second (Sy) stress are not represented in the combined stress (Sxy), respectively.
The values were calculated from the equations given in b. g Biological processes
that were significantly differentially expressed (hypergeometric test with 1000
permutations, BH-adjusted p-value < 0.05). For brevity, we only showMapman bins
that were differentially expressed in at least three stress perturbations. The groups
of stresses are color-coded. Abbreviations used to describe the categories of reg-
ulation are upregulation (‘U’, red), up and downregulation (‘UD’, purple), down-
regulation (‘D’, blue), and no change (‘N’, gray).
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Construction of stress-responsive transcription factor
regulatory network
To gain a robust, genome-wide view of the Marchantia stress-
responsive transcription factor regulatory network (TFRN), we set a
global coefficient threshold of the ElasticNet Regression that best
explains the observed DEG patterns. To achieve this, we

differentiated ‘expected’ from ‘unexpected’ gene regulatory patterns
(see “Methods” section). For example, an upregulated transcriptional
activator is expected to upregulate its target, and conversely, an
upregulated repressor is expected to downregulate its target
(Fig. 4a). We then set to identify the coefficient that produced the-
highest ratio of expected / total regulatory edges ranging from 0

a c

b

Fig. 3 | Identification of robustly-responding transcriptional activators and
repressors. a Gene regulatory network constructed from the union of the seven
stress-specific networks. For each of the 6257 differentially expressed genes, we
kept models with R2 > 0.8 and selected one TF with the highest absolute rela-
tive coefficient. Orangeand graynodes represent TFs andgenes, respectively, while
green and red edges represent positive and negative coefficients, respectively.
b Differential expression patterns of TFs across stress groups. Red, blue, and gray
indicate significantly up-, down-regulated, andunchangedexpression, respectively.
Stresses are colored according to the stress groups. c Identification of 75 robustly-

responding TFs across the stresses. For clarity, cells with specificity scores <0.7 are
masked. Red and blue cells indicate the degree of up- and down-regulation,
respectively. Green, red, and yellow colors on the leftmost column of the plot
represent the most commonly observed relationship between TF and gene, which
corresponds to an activator, repressor, and ambiguous (positive and negative
coefficients observed for the same TF-gene pair in different stress-specific net-
works) respectively. TFs are colored according to their TF family for TFs that are
represented at least thrice.
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(no expected edges were observed) to 1 (all edges were expected).
The analysis revealed that at a coefficient cut-off of 0.22, the highest
ratio was achieved (48.4% of edges can be explained, Supplementary
Fig. 11A), while at the same time, most (89 out of 95) TFs were still
connected to other TFs in the GRN (Supplementary Fig. 11A, red line,
Supplementary Fig. 11B).

The resulting TREN revealed intricate regulatory relationships
between the 89 TFs. TFs with the highest number of regulatory targets
(dark node color) are heat- and dark-related (indicated by H, D in the
node name) (Supplementary Fig. 12). At the same time, these TFs also
regulate the highest number of other TFs (larger nodes indicate TFs
controlling a higher number of other TFs). Interestingly, TFs with the

c db
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highest number of regulatory targets are typically downregulated
(dark nodes with blue borders).

Investigating the regulatory wiring of stress-responsive tran-
scription factors and biological processes
Next, we set out to investigate which biological processes the
robustly-responding TFs regulate in the different stresses. We first
investigated which biological processes are robustly differentially
expressed by finding MapMan bins that show consistent expression
pattern changes across the stress combinations (Supplementary
Fig. 13). Next, we calculated the percentage of target genes in each
MapMan bin that a given TF regulates, based on the above GRN. The
number can range from 0 (a TF regulates 0% of genes in a bin) to 1 (a
TF regulates 100% of the genes). We set a threshold of 5% target
genes in the MapMan bin based on the distribution of the percen-
tages across the network (Supplementary Fig. 14), as at this thresh-
old, the majority of regulatory relationships are expected (e.g.,
upregulated activator results in an upregulated bin, Fig. 4b), and
most TF-MapMan bin edges are removed (Supplementary Fig. 14),
resulting in a sparse network.Weobserved thatmultiple TFs typically
regulate each biological process (Figs. 4c, d and S15). For example,
the expression of cell wall proteins is decreased in heat (blue node
‘Cell wall organisation.cell wall proteins’, Fig. 4c), and this biological
process is controlled by two downregulated TFs: Mp5g01530 and
Mp3g07510 (blue downregulated nodes). At the same time, a TF can
regulate multiple biological processes, as exemplified by dark stress-
specific downregulated activator Mp7g09260 downregulating mul-
tiple processes related to photosynthesis (Fig. 4d). Thus, the inferred
GRN can serve as a resource to dissect howMarchantia can copewith
abiotic stresses.

Functional comparison of transcription factor responses in
Marchantia and Arabidopsis
Often, scientists study model organisms with the hopes of under-
standing the biology of other species. However, it is currently unclear
how conserved the GRNs are between species. If Arabidopsis and
Marchantia show a high degree of GRN conservation, we expect the TF
orthologs to show conserved expression patterns and be necessary for
survival under the same stresses.

To gauge how similar the stress-specific responses are between
Marchantia and Arabidopsis, we identified the Arabidopsis orthologs of
the 95 stress-responsive Marchantia TFs and studied their
experimentally-verified biological function and stress-responsive
expression patterns. Typically, each Marchantia TF has many Arabi-
dopsis orthologs due to larger gene families in Arabidopsis, and the
functions of theArabidopsisorthologs are annotatedbasedon evidence
from literature or gene expression from the eFP browser abiotic stress
dataset33 (Supplementary Data 8). To summarize the findings, we
grouped theMarchantiaTFs according to the stress-specificoccurrence
and counted the number of literature and gene expression evidence in
the corresponding Arabidopsis orthologs (Fig. 5a and Supplementary
Data 9). For most stresses, we did not find visible congruence between
the transcriptomic response of Marchantia TFs and the biological

function and transcriptomic response of the Arabidopsis orthologs
(Fig. 5a and Supplementary Data 9). For example, the heat-responsive
Marchantia orthologs in Arabidopsis have experimentally-verified bio-
logical functions in cold, dark, salt, mannitol/drought, and nitrogen
deficiency (Fig. 5a) with the majority of functions not being involved in
heat stress (Fig. 5b, <20% Arabidopsis orthologs invovled in heat
response,first columnon the left).We alsoobserved similar patterns for
the gene expression responses of Arabidopsis orthologs (Fig. 5c), where
most observed gene expression responses were not related to heat. To
investigate whether the differential gene expression patterns of stress
responses are similar between Marchantia and Arabidopsis, we down-
loaded the differentially expressed genes for Arabidopsis cold, dark,
heat, and salt16. Next, we calculated the JI similarity of the gene families
that are differentially expressed between Arabidopsis and Marchantia
genes. The analysis revealed that for all stresses, with the exception of
dark, the number of similar gene expression families that are differen-
tially expressed in the stresses is higher than expected by chance
(Fig. 5d, the observed JI is a black dot, significantly higher JI values are
indicated by black asterisk). This indicates that despite the seemingly
different responses (Fig. 5a–c), the two plants differentially express a
similar set of gene families (Fig. 5d).

Regression-based prediction of stress-responsive gene
expression
Our analysis of significantly differentially regulated MapMan bins
across experiments revealed that specific stresses (e.g., darkness, heat)
candominate other stresses (e.g., salt,mannitol, Fig. 2g). This indicates
that when two stresses (Sx and Sy) are present, the combined stress Sxy
may resemble one of the stresses more than the other. However, the
rules governing how gene expression values change in combined
stress when two genes are aligned (a gene is upregulated in Sx and Sy)
or conflicting (agene is upregulated in Sx anddownregulated inSy), are
still unclear.

To better understand the rules governing gene expression in
combined stresses, we compared the gene expression changes of
single stresses and combined stresses. For each of the seven stresses,
represented by Sx, we identified significantly down- (blue),
up-regulated (red), and unchanged genes, resulting in nine possible
combinations of Sx and Sy (Fig. 6a). Then, for each combination, we
calculated the average log2fc in Sx, Sy, and Sxy. The resulting plot
revealed simple near-additive rules governing gene expression. For
example, downregulated genes in cold stress (Sx log2fc-2.3, Fig. 6a, top
left corner), when combined with downregulated genes in all other
stresses (Sy log2fc-2.5), resulted in more negatively downregulated
genes in the combined stresses (Sxy log2fc-2.9). This near-additive
pattern was seen for all seven stresses for downregulated (first row)
and upregulated genes (last row, Fig. 6a). Interestingly, when Sx, Sy
regulation types were conflicting (e.g., Sx was up- and Sy was down-
regulated), Sxy showed log2fc values between the two single stresses,
as would be expected from additivity (Fig. 6a).

The near-additive pattern is seenwhen all possible combinations
of Sx and Sy are color-coded by the Sxy outcome (Fig. 6b). For
example, genes upregulated in Sx and Sy tend to bemore upregulated

Fig. 4 | Analysis of stress-responsive transcription factor regulatory network.
a Transcription factor regulatory network comprising of TFs differentially regu-
lated in at least five experiments. Labels below the gene name indicate robustly-
responding TFs in (C)old, (D)arkness, (H)eat, (L)ight, (M)annitol, (N)itrogen defi-
ciency, and (S)alt. Pointed and blunt arrows correspond to transcription activators
and repressors respectively. Darker node colors indicate a higher number of genes
a TF is regulating, while the node sizes indicate the number of TFs the node is
regulating. Node borderwidth indicates the number of incoming regulatory signals
of the TF. Red, blue, and yellow node border colors indicate TFs that are robustly
upregulated, downregulated, or both. Thicker edges indicate higher absolute
coefficients, where pointed and blunted arrows represent positive and negative

coefficients, respectively. Solid and dashed edges represent expected and unex-
pected regulations, respectively. b The number of expected, unexpected, and
ambiguous gene regulatory relationships between TFs and MapMan bins. Only
edges between TFs controlling ≥5% of genes in a MapMan bin are used. Identifi-
cationof TFs that regulate biological processes during c heat stress andd darkness.
Red and blue nodes indicate robustly up- and down-regulated second-level Map-
Man bins, respectively. Edge thickness represents the percentage of genes con-
trolled by a TF, in a given MapMan bin, with thicker edges indicating a higher
percentage. Pointed and blunt arrows indicate that a TF is an activator or repressor
of a given process.
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in Sxy (Fig. 6b, red points in upper right quadrant). Conversely,
downregulation in Sx and Sy produces an even stronger down-
regulation in Sxy (Fig. 6b, blue points in the lower left quadrant).
Conversely, the conflicting log2fc values tend to produce a response

between Sx and Sy (Fig. 6b, gray points). Differential gene expression
analysis of Sx, Sy, and Sxy follow similar patterns, where down-
regulated Sx and Sy almost exclusively result in downregulated Sxy
(Fig. 6c, top row).

a

c

b

d

All

Dark

Dark/Heat/Salt

Dark/Heat

Dark/Light

Dark/Cold

Heat

Heat/Cold

Heat/Light

Heat/Nitrogen
Cold

Cold/Nitrogen
Light Light/Nitrogen

No specific
response

Biological function in Arabidopsis Expression response 
in Arabidopsis

Fig. 5 | Comparison of stress-responsive transcription factors inMarchantia to
Arabidopsis orthologs. a The function of Arabidopsis thaliana orthologs, inferred
from the literature (green, obtained from NCBI, Arabidopsis.org) and gene
expression responses (blue, eFP browser). Each row contains one Arabidopsis TF,
and the rows are grouped and color-coded according to the stress response in
Marchantia. The columns indicate the stresses observed in Arabidopsis. b Ratio of
evidence from the literature for Arabidopsis TFs grouped according to the stress
specificity observed in Marchantia (x-axis). c Ratio of evidence by observation of
change in expression in Arabidopsis TFs based on expression data (source eFP
browser). High light, dark, and nitrogen deficiency are omitted due to the lack of
data. ‘No specific response’ comprises transcription factors that were not robustly

responding to a stress in Marchantia. d Similarity in differential gene expression
betweenMarchantia andArabidopsishomologs belonging to the same gene family.
The black points indicate the observed JI capturing the similarity of the differen-
tially expressed gene families. The violin plots indicate the JI where the gene-gene
family assignments have been shuffled 1000 times. The black asterisk shows cases
where the observed JI is significantly higher (p-value < 0.05). The center of the
boxplot indicates themedian. The upper and lower boundsof the box indicate 75th
and 25th percentile, respectively. Thewhiskers indicate the 1.5x interquartile range,
while the minima and maxima indicate the minimum and maximum Jaccard Index.
The p-values were calculated using hypergeometric test with 1000 permutations.
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Since the rules of how thedifferent stress responses seem to follow
a simple additive pattern, we investigated whether we can explain the
average log2fc Sxy observed in Fig. 6a by regressing it on the average
log2fc Sx andSy.We found that themodel Sxy = −0.04 +0.61*Sx +0.69*Sy
can excellently explain the average log2fc (R2 = 0.95, Fig. 6d), suggesting

a simple linear mechanism of integrating gene expression changes. To
further examine how well Sxy can be explained by the log2fc values of
the individual genes, rather than averages (Fig. 6d) from theperspective
of various stresses, we performed another 3-dimensional linear
regression (Fig. 7a–g), where the x-axis (Sx) and y-axis (Sy) of the cold-

Sx/y

a

d

b c

Sx/y

Sxy SxySxy

Fig. 6 | Analysis of gene expression responses in combined stress. a Averaged
log2fc of genes in Sx (type of stress indicated at the bottom), Sy (other stresses), and
Sxy (combined stress). Blue, red, and gray circles indicate genes that are sig-
nificantly downregulated, upregulated, and not changed, respectively. b Scatter
plot depicting the outcome in combined stress, where red, blue, and gray dots
indicate that the response is higher, lower, orwithin the rangeof the single stresses,
respectively. c Break down of the response observed in combined stress Sxy. The

heatmap reflects the proportion of events in a given stress (column), and the colors
are normalized across each category of Sx and Sy. The actual number of observa-
tions is annotated in the cells. Blue, red, and gray circles indicate genes that are
significantly downregulated, upregulated, and not changed, respectively. d Linear
regression of the average log2fc values from panel (a). The inferred formula is
shown, together withmean absolute error (MAE), rootmean squared error (RMSE),
and R2 (goodness-of-fit measure).
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centric (Fig. 7a) plot represent individual gene expression values from
cold stress and all other stresses respectively. While the R2 values
dropped, which is not unexpected as the first analysis in Fig. 6d was
doneon averaged log2fc valueswhich likely smoothedout gene-specific
variations in gene expression, the resulting models could still approx-
imate the expected values well (R2 = 0.57–0.67).

Interestingly, we observed that the Sx of Sy parameters differed
between stresses (Fig. 7h). For example, the Sx parameter (reflecting
log2fc from the darkness experiment) in darkness is larger (0.86) than
the Sy parameter (0.31, capturing log2fc from all non-darkness experi-
ments), indicating that gene expression differences resulting from
darkness have a higher influence on gene expression than other stres-
ses, which is in line with above results (Fig. 2g). Based on the Sx coeffi-
cients, we can rank the dominance of stresses as darkness (0.86) > heat

(0.71) > cold (0.58) > light (0.53) >mannitol (0.46) > nitrogen deficiency
(0.43) > salt (0.35).

eFP browser and CoNekT database for Marchantia
Bioinformatic data is only as useful as its accessibility. To make our
data readily accessible, we have constructed an eFP browser instance
for Marchantia available at https://bar.utoronto.ca/efp_marchantia/
cgi-bin/efpWeb.cgi33, and updated the CoNekT database28 with our
stress data, available at https://conekt.sbs.ntu.edu.sg/. To exemplify
how our data and these databases can be used, we provide an example
with phenylpropanoids, which contribute to all aspects of plant
responses towards biotic and abiotic stimuli. In flowering plants,
phenylpropanoids were found to be highly responsive to light or
mineral treatment, important for resistance to pests35, and invasion of

a) Cold b) Salt c) Mannitol

d) Heat e) Dark f) Light

g) Nitrogen deficiency h)

Fig. 7 | Stress-specific linear regression analysis. Sx indicates log2fc from the
specific stress, Sy indicates log2fc from all other stresses, and Sxy represents the
log2fc from the combined stresses. The Sx stresses are a Cold, b Salt, c Mannitol,
d Heat, e Dark, f Light, and g Nitrogen deficiency. h Summary of the linear

regression coefficients andmodel prediction quality. Theblue and redbars indicate
the Sx and Sy coefficients, respectively, while the light blue bar indicates the
R2 value.
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new habitats and reproduction36. The biosynthesis of phenylpropa-
noids begins with phenylalanine ammonia lyases (PAL) and tyrosine
ammonia lyases (TAL) that catalyze the non-oxidative deamination of
phenylalanine to trans-cinnamate, which directs the output from the
shikimate pathway phenylpropanoid metabolism35.

Notably, there are two other databases dedicated to Marchantia,
MarpolBase37 and MarpolBaseExpression (MBEX)38, which are genome
and expression databases respectively. With various information and
functionality spread across databases, we summarize the main func-
tionalities for the databases and the usefulness of each for different
purposes. MarpolBase is the place to go for the download of genome-
related information and tools such as BLAST toMarchantia and other
plant species of interest, guide RNAdesign forCRISPR/Cas9, and other
tools that aid in the retrieval of gene-related information. On the other
hand,MBEX, eFP, andCoNekT areexpression-baseddatabases. Among
the three, eFP serves purely as a visualization of expression data in the
anatomy of the plant, and theMarchantia instance is one of the many
species found in the database collection. Visualization by anatomy is
also available onMBEX as ‘Chromatic Expression Images’. While MBEX
and CoNekT overlap in the area of expression and co-expression tools,
MBEX provides more downstream analysis tools that allow for the
analysis of differential expression, enrichment of biological functions,
and set relations between conditions in Marchantia. On the other
hand, CoNekT provides an organ-centric dissection of the expression
data with the integration of orthology information across 12 other
species from the Viridiplantae and tools for comparison across species
and tissues. However, only CoNekT and eFP browser contain the single
and combined stress data at the moment.

To study phenylpropanoid metabolism inMarchantia, we started
by entering ‘PAL1’ into CoNekT’s search box (https://conekt.sbs.ntu.
edu.sg/), which took us to the page of PAL1, a PAL gene AT2G37040
from Arabidopsis thaliana. To identify PAL genes in Marchantia, we
clicked on the link of the Land Plants orthogroup (CoNekT provides
orthogroups for Archaeplastida, Land Plants, and Seed Plants), which
revealed that all 11 land plants in the database contain PALs, while the
algae Cyanophora paradoxa and Chlamydomonas reinhardtii do not.
Marchantia contains a surprisingly large number (13) of PALs when
compared to Arabidopsis (4). CoNekT contains gene trees that also
show the expression of genes in major organ types. The analysis
revealed that the many PAL genes inMarchantia likely resulted from a
recent duplication within Marchantia (Supplementary Fig. 16).

To gain insight into the function of the 13 PAL genes from
Marchantia, we set out to study the expression of the PALs during
stress conditions. First, we copied the gene identifiers into Tools/
Create heatmap (https://conekt.sbs.ntu.edu.sg/heatmap/), revealing
that most PALs show a high expression during cold treatment com-
binedwith nitrogen starvation (Fig. 8a). Then, we clicked on one of the
highly responsive genes Mp4g14110.1, which took us to the page
dedicated to the gene. The page contains various information, such as
genedescription, CDS/protein sequences, gene families, foundprotein
domains, co-expression networks, and others. The detailed CoNekT
expression profile plot (Fig. 8b) and eFP browser results (Fig. 8c, red
square at the intersection of cold and nitrogen deficiency) confirmed
the high cold + nitrogen-specific expression of Mp4g14110. To better
understand the function of Mp4g14110, we clicked on the cluster link
that directed us to the co-expression cluster link of Mp4g14110. The
cluster page contains information about the genes found in the cluster,
GeneOntology enrichment analysis, foundprotein domains, and other
functional information.

Interestingly, the ‘Similar Clusters’ section of the cluster page
revealed similar co-expression clusters in other species (similarity is
based on ortholog membership and defined by JI), and with another
similar clusters in Marchantia. To study these duplicated clusters, we
clicked on the ‘Compare’ button, which revealed that the two clusters
contained several gene families involved in phenylpropanoid

biosynthesis (yellow rounded rectangles: PALs, brown rectangles:
chalcone synthases), ABC and DTX transporters implicated in meta-
bolite transport across membranes (purple/gray/green and red
rectangles39), auresidin synthases that can hydroxylate or cyclize
chalcones (light blue rounded rectangles40) and glutathione trans-
ferases (red rounded square41) (Fig. 8d). Interestingly, both clusters
contained WRKY TFs (salmon rectangles), implicating these TFs in
controlling the biosynthesis of the respective metabolites.

Taken together, our tools revealed evidence of duplicated mod-
ules, likely involved in the biosynthesis of related phenylpropanoids.
The updated CoNekT platform contains many additional tools to
predict gene function and find relevant genes16,28,34,42. For example, the
tool found many of the described genes by identifying genes highly
expressed during combined cold and nitrogen starvation (Supple-
mentary Data 10), by clicking on Tools/Search Specific Profiles,
selecting Marchantia and ‘Cold-Nitrogen deficiency’.

Discussion
Plants are often exposed to multiple abiotic stresses, which require
them to perceive and integrate multiple signals and respond in a
manner that allow themto survive. Tounderstandhowplants integrate
and respond to the various environmental cues, we constructed a
stress expression atlas capturing gene expression changes to single
and combined stresses for Marchantia.

Notably, the chronic stresses darkness, salt, osmotic, andnitrogen
deficiency cause growth inhibition largely due to the longer duration
of these stresses, likely capturing late-stage responses. During the
comparison of chronic stresses with the acute stresses of heat, cold,
and light, we may miss the effects of early-stage responses that might
have been present in the acute stresses. However, we assume that the
sampling of 1 day after stress induction for acute stresses captures
mostly late-stage responses, allowing us to compare the chronic and
acute stresses43.

To determine the response of Marchantia towards various single
stresses, we tested a rangeof severity forheat, cold, salt, osmotic, light,
dark, and nitrogen deficiency on Marchantia. As expected in most
stresses, the size of the plants decreased proportionally to the severity
of stresses (Fig. 1b). Specific stresses, such as 3 °C cold and 535 uEm−2s−1

light, caused only minor growth phenotypes, suggesting that March-
antia can survive under even lower temperatures and higher light
intensities. Conversely, stresses such as osmotic (100mM mannitol),
salt (40mMNaCl), and carbon starvation (3 days of darkness) produce
strong growth phenotypes resulting in reduced growth and dis-
coloration (yellow-green for mannitol >150mM, darker plants for salt
>60mM salt) (Fig. 1b). Death of plants occurred for heat stress at 36 °C
for 24 h and athigher salt concentrations (>200mM). Interestingly, the
plants grew at 0mM KNO3, albeit slower and with reddish discolora-
tion likely caused by auronidin, a flavonoid shown to accumulate
during phosphate deficiency29.

Inmost cases, the combination of two stresses resulted in additive
phenotypes (e.g., salt+mannitol stress results in smaller plants than the
two stresses separately, Fig. 1c–e). While heat (33 °C) combined with
high light intensity (435 uEm−2s−1) resulted in death, this was caused by
temperature built up in the sealed plates, causing the temperature to
rise to the lethal 38 °C. Consequently, this stress combination should
be performed using an open plate setup in the future. The only
exception to this was salt+nitrogen deficiency (SN) (40mM NaCl,
0mM KNO3), which was significantly larger than plants exposed only
to salt stress and was observed to have extensive and dense rhizoids
(Source Data 1). Curiously, we did not observe any dramatic pheno-
types when combining carbon/energy starvation (3 days of darkness)
with any other stresses (Fig. 1c). This is counterintuitive as, e.g. heat
stress acclimation is a costly process requiring the biosynthesis of new
transcripts and proteins to repair, replace and rebalance the affected
cellular machinery44. A hypothesis for the unexpectedly mild
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Fig. 8 | Implementation of theMarchantia gene expression data in CoNekT and
eFP browser. a Heatmap showing expression of PALs in representative stresses.
b Expression profile ofMp4g14110.1 (MpPAL7) under single and combined stress in
CoNekt. c Expression of MpPAL7 in different organs and under different abiotic

stress conditions in eFP.dComparisonofCluster 102 and 50boundedby green and
blue boxes, respectively. The border of node MpPAL7 is colored red, and blue
dashed lines indicate homology between genes from the two clusters.
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phenotype for combined dark stress could be due to the lack of pho-
tosynthetic processes in the absence of light, which increases the
plants' capacity to copewith increasedROS, a typical response tomost
abiotic stresses45. This is also exemplified by the significant down-
regulation of oxidoreductases and chloroplast redox homeostasis in
combined dark stress (Fig. 2g). These phenotypes demonstrate that
Marchantia is able to survive various adverse growth conditions and
can serve as an excellent model for studying stress acclimation.

Interestingly, environmental stresses (cold, heat, darkness, and
high light) showed a higher number of DEGs thanmedia stresses (salt,
mannitol, and nitrogen deficiency) (Fig. 2a). We speculate that the
environmental stresses resulted in more DEGs because these stresses
can permeate every cell, affect every protein (heat, darkness), and/or
dramatically affect the energy levels that have consequences on all
processes (darkness, high light). Conversely, stresses such asmannitol
and salt can be effectively contained by the action of ion transporters
and osmolyte accumulation46. Interestingly, we did not observe any
correlation between the number of DEGs and the effect on plant
growth (Supplementary Fig. 4B); while salt and mannitol treatments
caused the most dramatic growth defects, these two stresses also
showed the lowest number of DEGs (Supplementary Fig. 4B). This
observation is in line with our study on alga Cyanophora16, suggesting
that there is no correlation between a visible phenotype and growth
across stresses in other plants.

We observed that certain stresses dominate the transcriptional
responses. For example, darkness+cold looks more like darkness
than cold (Fig. 2g), and our metric measuring suppression suggests
that darkness is the dominant stress (Fig. 2e, f, plots are red in
darkness stresses). The analysis of differentially expressed pathways
allowed us to rank the strength of dominance of abiotic stresses:
darkness (clustered in six stress combinations), then heat and light
(four combinations each), then nitrogen deficiency and cold (three
each) (Fig. 2g). To better understand the mechanism governing the
dominance of the stresses, we performed several analyses that
revealed multiple mechanisms that likely work together.

Firstly, we identified 75 robustly-responding TFs, revealing that
the dominant stresses (e.g., heat and darkness) differentially express a
higher number of TFs than the non-dominant stresses (Fig. 3c). Sec-
ondly, the inferred TFRN showed that the TFs active in the dominant
stresses regulate more genes and other TFs than TFs from non-
dominant stresses (Fig. 4a nodes labelled with H and D tend to be
darker). Thirdly, our regression model showed that the gene expres-
sion changes in a combination of two stresses could be explained by
the addition of the log2fc values (Fig. 6d). Thus, when combining stress
with a high number of largely negative log2fc values (e.g., darkness
downregulated log2fc is between −3.9 to −2.9, Fig. 6a, top row), with
other stresses, the log2fc in combined stress will also be negative
(log2fc for combined stress in darkness down-regulated genes ranges
between −4.7 to −1.8, Fig. 6a). Fourth, our regression models showed
that dominant stresses have higher coefficients (Fig. 7h), suggesting
yet another unknown component governing the integration of multi-
ple stress responses.

Our comparison of stress-responsive Marchantia TFs and their
Arabidopsis orthologs revealed that majority of Arabidopsis TFs were
not involved in the same stresses as theMarchantia TFs (Fig. 5a, c). On
the other hand, we did observe significant conservation in differential
gene expression between Arabidopsis andMarchantia gene families in
cold, heat, and salt, but not dark (Fig. 5d). The latter result agrees with
studies showing the conservation of stress response in plants focusing
on transcription factors and hormones47–51. However, the relatively
poor conservation between Marchantia and Arabidopsis orthologs is
not entirely unexpected, asmassive changes such as genome and gene
duplications have occurred since the last common ancestor, rendering
a lack of homology in genes across species and differences in gene
families and regulation. This suggests that each model plant uses a

different strategy to acclimate to stress, and considerations regarding
thephylogenetic distance betweenmodel species and cropsof interest
should be accounted for when attempting to make knowledge trans-
fers from a model plant to crops. This lack of conservation of
responses to abiotic stresses has been observed by us at the species
level inCyanophora16, and at the intraspecies level by a salt stress study
in six Lotus accessions, where only 1% of genes showed a conserved
response52, in seven Arabidopsis accessions, which showed a divergent
response to treatment by salicylic acid53 and by two strawberry culti-
vars, which displayed modest conservation of DEGs to the same
pathogen54. However, while we analyzed only gene expression, stress
responses can be active at the epigenetic (methylation of genes),
transcriptomic (mRNA, microRNA, lncRNA), and proteomic (post-
translational modifications and activation) levels55–59.

To make our data more readily accessible, we provide an eFP
browser for Marchantia, a popular tool allowing the visualization of
gene expression by an ‘electronic Fluorescent Pictograph’. Further-
more, we provide an updated CoNekT database with expression
atlases of 13 species comprising various algae and land plants. The
database provides tools to study gene expression, functional enrich-
ment analyses of co-expression networks, and other comparative
tools. These valuable tools will help further dissect the gene regulatory
networks behind abiotic stress responses in Marchantia and other
species (Fig. 8).

Importantly, our analysis shows that it is possible to predict gene
expression of combined stresses with a simple linear regression. This
paves the way to building more complex, better-performing models
that can predict gene expression in any environment, given sufficient
input data. This strengthens the call for more emphasis on studying
combined biotic and abiotic stresses in light of future challenges
posed by climate change60,61.

Methods
Maintenance of Marchantia
Male Marchantia polymorpha, accession Takaragaike-1 was propa-
gatedonhalf-strengthGamborgB-5 Basal agar (1% sucrose, pH 5.5, 1.4%
agar)62 in deep well plates (SPL Biosciences, SPL 310101) at 24 °C under
continuous LED light at 60μEm−2 s−1.

Experimental setup for stress experiment
To determine the ideal stress condition for cross-stress experiments, a
series of severity levels was used for heat, cold, salt, osmotic, light,
dark, and nitrogen deficiency stresses. For each stress level, three agar
plates containing nine gemmae each were plated, where two plates
were used as material for RNA sequencing, and one plate was kept for
observation until 21 days after plating (DAP).

For salt and osmotic stress, the gemmae were plated on half-
strength Gamborg B-5 Basal agar (pH 5.5, 1.4% agar, 12.4mM KNO3,
0.5mM (NH4)2SO4) supplemented with 20–200mM NaCl (20mM
steps), and 50–400mM mannitol (50mM steps) respectively. For
nitrogen deficiency stress, the gemmae were plated on half-strength
Gamborg B-5 Basal agar (pH 5.5, 1.4% agar, 0.5mM (NH4)2SO4) and
KNO3 concentration ranging from90 to0% (12.4–0mM, 1.2mMsteps),
respectively. The potassium concentration in nitrogen deficiency agar
was maintained using equimolar concentrations of KCl. Gemmae
subjected to heat, cold, light, and dark stress were plated on normal
half-strength Gamborg B5 agar (pH 5.5, 1.4% agar, 12.4mM KNO3,
0.5mM (NH4)2SO4).

Plates were grown at 24 °C under continuous LED light at
60μEm−2s−1 from days 0 to 13. For dark stress, plates were moved to
the plant growth chamber (HiPoint M-313) on days 8, 9, 10, 11, 12, 13,
and 14 for growth in darkness at 24 °C for 7, 6, 5, 4, 3, 2 and 1 day(s),
respectively. On day 14, all plates were transferred to the plant
growth chamber (HiPoint M-313) for 24 h. Control and plates for salt,
osmotic, and nitrogen deficiency stresses were maintained at 24 °C
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under continuous LED light at 60 μEm−2 s−1 in the plant growth
chamber. The following modifications were used growth conditions
for heat, cold, dark, and light stresses. For heat and cold stress, 27 °C
to 36 °C (3 °C steps) and 3 °C to 12 °C (3 °C steps) were used,
respectively. For light stress, plants were subjected to 20 to 100%
chamber capacity of light output (115 to 535μEm−2 s−1) at steps of 20%,
~100μEm−2 s−1 per step.

On day 15, whole plants were harvested by pooling three plants
into 2mL Eppendorf tubes, flash-frozen in liquid nitrogen, and stored
at −80 °C. This was done in triplicates, resulting in 3 (replicates) × 3
(pooled plants) used for eachRNA-seq sample. Images of the front and
back of the observation plates were taken, and the plates were
returned to normal growth conditions. Pictures of the front and back
of the observation plates were taken on day 21 without cover. All pic-
tures are collated in Source Data 1.

Cross-stress experiments were carried out similarly with the
following parameters for the various stress combinations - heat
(33 °C), cold (3 °C), salt (40mM NaCl), osmotic (100mM mannitol),
light (435 μMm−2s−1), darkness (3 days), and nitrogen deficiency
(0mM KNO3).

Due to equipment constraints, the experiment was carried out
over 22 batches. Some variability in size was observed in the controls
(Supplementary Fig. 1). To account for this variability, we have
sequenced controls from batches F and L to impose a more stringent
criteria for the identification of differential gene expression.

Size measurement of Marchantia
To measure the size of the plants grown under the different stresses,
the images of the observation plates were scaled and measured in
Adobe Illustrator. The length and breadth of the thallus were taken in
relation to the central axis (Fig. 1b, c show the plants with the central
axis in a vertical position). The thallus’s approximate area was derived
from the product of the length and breadth of the thallus. Abnormally
small plants (outliers) were excluded from further analysis.

RNA extraction and sequencing
Using a mortar and pestle, plants from each Eppendorf tube were
ground into fine powder in liquid nitrogen. Total RNA was extracted
using the SpectrumTM Plant Total RNA Kit (Sigma, STRN-250) using
Protocol A (750μL Binding Solution) according to manufacturer’s
instruction with on-column DNase digestion using 60μL of DNase
mixture (15μL RQ1 RNase-Free DNase (Promega, M6101), 6 μL RQ1
DNase 10X Reaction Buffer and 19 μL nuclease-free water) per
column.

Preliminary quality control of the extracted RNA (triplicates for
each condition) was done using Nanodrop before further quality
control checks by Novogene (Singapore) for sample quantitation,
integrity, and purity using Nanodrop, agarose gel electrophoresis and
Agilent 2100 Bioanalyzer. Library construction from total RNA,
including eukaryotic mRNA enrichment by oligo(dT) beads, library
size selection, and PCRenrichment,wasperformedbyNovogeneusing
NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina®. The
libraries were then sequenced with Illumina Novaseq-6000, paired-
end sequencing at 150 base pairs, and sequencing depths of ~20 mil-
lion reads per sample.

Expression quantification
RNA sequencing data were mapped against the Marchantia poly-
morpha CDS (v5.1 revision 1, MarpolBase37), quantified, and TPM-
normalized (transcript per million) using Kallisto v 0.46.163.

Identification of differentially expressed genes
Non-normalized counts from Kallisto were used to analyze differen-
tially expressed genes (DEGs) using RpackageDESeq264, where various

stress conditions were compared against the controls from bat-
ches F and L.

For our Marchantia dataset, only genes that were found to be
differentially expressed against controls from two different bat-
ches, F and L, were considered for further analysis. For downstream
analysis, only genes with a Benjamini–Hochberg65 adjusted p-value
<0.05 and a − 1 > log2fc >1 were considered as differentially
expressed.

Identification of transcription factors and differentially expres-
sed pathways
The biological function and pathway membership of genes of March-
antia were annotated using Mercator 4 v2.066. The annotation of
Marchantia TFs was retrieved from PlantTFDB v5.067.

Significantly differentially expressed pathways were determined
through a permutation analysis, where the observed number of DEGs
in a pathway was compared to the permuted number of DEGs. The p-
values were adjusted for multiple testing using Benjamini–Hochberg
correction (p-value < 0.05)65. To identify which stresses (columns) and
biological pathways (rows) were similar, we first calculated the Jaccard
distance (JD) between all columns/rows. The JD values were used to
build a condensed distance matrix which was used as input for the
hierarchical clustering algorithm.

To investigate the behavior of homologous TFs inArabidopsis and
Marchantia during various stress conditions, we compared the
occurrence of DEGs from our dataset and from Ferrari et al.16 study on
Arabidopsis cold (E-GEOD-63406), dark (E-GEOD-67956), heat (E-
GEOD-72806), and salt stresses (E-GEOD-72806). Corrected p-value
(<0.05) and an absolute log2fc cut-off of more than 1 were used to
determineDEGs for both datasets. Homologous relationships between
Arabidopsis and Marchantia were obtained from PLAZA Dicots 5.068

and the compatibility of gene names from Marchantia genome v3 to
v5.1r1 was ensured using the conversion table onMarpolBase37. For the
analysis, only homolog IDs common to both species were used. The JI
based on the homolog ID assigned to the gene inPLAZAwas calculated
for each stress. In addition, the p-value was determined through a
permutation test where the observed JI of homolog IDs in a stress for
each species was compared to the permuted JI of homolog IDs
1000 times.

Construction of stress-specific gene regulatory networks
To reconstruct the gene regulatory network (GRN), we selected DEGs
expressed inmore thanfive experiments to ensure sufficient variability
in our dataset needed for statisticalmodeling (Supplementary Fig. 8A).
Apart from using all the experiments, we also reconstructed stress-
specific networks by employing a subset of experiments that included
the respective stresses (Supplementary Fig. 8B). For example, the
heat-specific network is based only on data from experiments where
heat stress was involved (i.e., Heat, Heat-Mannitol, Heat-Salt, Heat-
Dark, and Heat-Nitrogen deficiency).

The gene expression values were log-transformed and scaled
prior tomodeling; hence, the relationship between the expression of a
DEG, as a response variable, and the expression of TFs, as predictor
variables, is non-linear. The GRN was reconstructed using linear
regression as described in Eq. (1) where the response variable, Y,
represents the vector of (log-transformed) expression levels of a DEG;
the predictor variables, X, represents a matrix of (log-transformed)
expression levels of the TFs; and the error term, ε, of normally dis-
tributed variance. The parameters (i.e regression coefficients), β, were
estimated by minimizing the sum of the loss and a weighted combi-
nation of the first and second norm of the regression coefficients,
termed ElasticNet regularization69 as described in Eq. (2), which pro-
vided a good compromise between model sparsity (i.e., feature
selection corresponding to the inclusion of transcription factors in the
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model) and model explanatory power.
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Three- and five-fold cross-validation were used for the stress-
specific data and all data, respectively, to determine the optimal λ (L1
regularization; 0.1 to 0.9, 0.1 steps) and α (L2 regularization; 0, 0.001,
0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, 10, 100) that resulted in the lowest coef-
ficient of variation for eachmodel. We filtered for good qualitymodels
with R2 > 0.8 (Supplementary Fig. 9A).

Evaluating the accuracy of the GRNs
We evaluated our GRN network against the known curated gene reg-
ulatory networks in Arabidopsis retrieved from AGRIS70. Orthogroups
ofArabidopsis andMarchantiageneswere identifiedusingOrthofinder
v2.3.171 and used as the basis for comparing the Arabidopsis and
MarchantiaGRNs.We used the JI to quantify the similarity between the
GRNs, where TF-target edges were converted into orthogroup-
orthogroup tuples that were used in the set comparisons. The union
of the stress-specific networks produced the highest JI score between
our networks and the AGRIS network (Supplementary Fig. 9B). To test
the significance of the similarity between our GRN and the AGRIS
network, we calculated empirical p-values by shuffling the TF and gene
pair in theAGRIS network 1000 times and calculated the resulting JI for
each shuffling.

Construction of the high-confidence GRN
For each gene, we identified the TF with the highest absolute rela-
tive coefficient (Fig. 3a) in themergednetwork. In themergednetwork,
the coefficients in different stress-specific networks are used to
determine whether the TF is an activator (all coefficients are positive),
repressor (all coefficients are negative) or if the regulation is ambig-
uous (mixture of positive and negative coefficients). For example, if TF
X regulates gene Y in 4 different stress-specific networkswith a positive
coefficient, the TF is considered an activator.

Revealing transcription factors regulating biological pathways
To understand how robustly-regulated TFs might be affecting certain
biological processes,we tookTFs and second-levelMapmanbins66 that
were specifically regulated in a stress group. A stress group is defined
as a group of experiments sharing common stress, for example, the
heat stress group contains the experiments Heat, Heat-Mannitol, Heat-
Salt, Heat-Dark, and Heat-Nitrogen deficiency.

Robustly-responding TFs were identified based on the ratio of
occurrences where it is differentially regulated in a stress group
against the number of experiments in the stress group. A TF is con-
sidered to be specifically expressed in the stress group if the ratio >0.7.
Stress group-specific MapMan bins were defined in the same manner.

Robustly-responding MapMan bins (Supplementary Fig. 13) were
considered to be regulated by robustly responding TFs if at least 5% of
the genes (Supplementary Fig. 14) in the MapMan bin were regulated
by the TF in our GRN (Figs. 4c, d and S15).

Inference of TFRN
We chose the highest absolute relative coefficient for each TF-TF pair
to indicate the putative regulatory relationships between TFs. Next, we
defined the transcription factors to be upregulated, downregulated, or
ambiguous (up- and down-regulated in more than 1 stress group)
based on their specific expression across stress groups. We then
defined the edges as expected if: (1) TFA (up-/down-regulated, acti-
vator) regulates TFB (up-/down-regulated), (2) TFA (down-/up-

regulated, repressor) regulates TFB (up-/down-regulated). All other
edges were defined as unexpected, e.g., TFA (upregulated, activator)
regulates TFB (downregulated). Finally, we applied an absolute coeffi-
cient cut-off that produced the highest ratio of expected / total edges
(Supplementary Fig. 11), arriving at a cut-off value of 0.22.

Linear regression of gene expression
Trends in gene expression during combined stress were revealed
using ordinary least squares (OLS) regression. For the general trend,
we first grouped the expression values (log2fc) according to the 9
possible combinations of responses in Sx and Sy (i.e. downregulated/
upregulated/no change in Sx and Sy) for each stress, where Sx
represents the stress of interest. The log2fc values were then aver-
aged. In addition, linear regression shown in Fig. 7a–gwas performed
on non-averaged gene expression values for each stress group
independently. For example, for cold stress, this will involve Sxy of
CD, CL, CN, CS, and CM, where Sx is C and Sy are all other corre-
sponding stresses. A standard linear regression of the (averaged)
log2fc was performed using the scikit-learn linear model package
(linear_model) with Sxy as the response variable and Sx and Sy as the
predictor variables.

Functional analysis of Arabidopsis TF orthologs
The biological function of Arabidopsis TF orthologs was inferred from
gene ontology terms with experimental evidence and literature sear-
ches. The expression responses were inferred through observation of
gene expression changes on the Arabidopsis eFP browser using the
“Abiotic stress” dataset from33.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA-seq data capturing the expression of controls, single and
double stresses are available from https://www.ebi.ac.uk/ena as E-
MTAB-11141 [https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-
MTAB-11141]. Source data are provided with this paper.

Code availability
Python and bash scripts used to generate the figures in the paper are
available from: https://github.com/tqiaowen/marchantia-stress.
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