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Ideal acoustic quantum spin Hall phase in a
multi-topology platform

Xiao-Chen Sun1,2,4, Hao Chen1,4, Hua-Shan Lai1,4, Chu-Hao Xia1,
Cheng He 1,2,3 & Yan-Feng Chen 1,2,3

Fermionic time-reversal symmetry (Tf )-protected quantum spin Hall (QSH)
materials feature gapless helical edge states when adjacent to arbitrary trivial
cladding materials. However, due to symmetry reduction at the boundary,
bosonic counterparts usually exhibit gaps and thus require additional cladding
crystals to maintain robustness, limiting their applications. In this study, we
demonstrate an ideal acoustic QSH with gapless behaviour by constructing a
global Tf on both the bulk and the boundary based on bilayer structures.
Consequently, a pair of helical edge states robustly winds several times in the
first Brillouin zone when coupled to resonators, promising broadband topo-
logical slow waves. We further reveal that this ideal QSH phase behaves as a
topological phase transition plane that bridges trivial and higher-order phases.
Our versatile multi-topology platform sheds light on compact topological
slow-wave and lasing devices.

Topological insulators1–4 (TIs) originating from solid-state materials
manifest insulating interiors but conducting surfaces when adjacent to
topologically distinctmaterials, e.g., trivial free space. This concept has
spread into classical wave systems5–17 in the past decade. The gapless
edge states of TIs supporting robust propagation against defects leads
to many unique phenomena and fantastic applications, such as robust
slow waves18–20 and stable lasers21,22. A typical case is the family of
quantum Hall effects. For example, photonic5,6 and phononic16,17

quantum anomalous Hall effects with broken time-reversal symmetry
provide support for gapless chiral edge states at boundaries when
adjacent to arbitrary trivial cladding layers, such as crystal structures21,
perfect electric conductors6, complete reflection boundaries23, and
even radiation boundaries24. Nevertheless, these models necessitate
external or equivalent magnetic fields, thus suffering from narrow
bandwidths, low operating frequency windows, and magnetic appli-
cation scenarios.

Magnetic-free quantum spin Hall (QSH) materials, i.e., two-
dimensional (2D) TIs, maintain time-reversal symmetry while resort-
ing to spin degrees of freedom1–3. In solid-state materials, helical edge
states possess spin-momentum locking, i.e., up and down spins

propagating in opposite directions, nomatter the trivial cladding layer.
Their robustness directly refers to the intrinsic spin-1/2 and fermionic
time-reversal symmetry (Tf ) of electrons, naturally guaranteeing Kra-
mers degeneracy (Fig. 1a). In contrast, QSH in bosonic systems must
construct artificialTf associatedwith Tf -relatedpseudospins7–9,25–28 via
interplay between bosonic spins (polarizations or modes) and bulk
symmetry; however, Tf is barely maintained at the boundary. Com-
promisingly, bosonic QSH requires trivial cladding crystals with spe-
cific symmetries or fine modifications of the boundary29 to alleviate
this mismatching8–10. Thus, robust transport and pseudospin-
momentum locking are limited. Moreover, this mismatching is fur-
ther enhanced to open a more significant gap when meeting resona-
tors (Fig. 1b), destroying the robustness and consequently hindering
its application potential for broadband topological slow waves18–20.
Simultaneously, the same edge gap could support higher-order (HO)
or spin higher-order (SHO) corner states30,31. The physics for the
coexistence of topologically distinct QSH and HO phases remain elu-
sive. These problems seem unsolvable in pure 2D models.

On the other hand, twisted bilayer graphene32 intrigued the study
of various bilayer systems, such as layered valley states with sites
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rotation33, spin–Chern insulators with broken spin conservation34, and
corner states with hybrid behaviours35. As a result, the topological
phases are vastly enriched with the extended layer degree of freedom
and further advance the study of TIs, providing a new possibility for
reconsidering the original boundary sensitivity of bosonic QSHs.
Recently, Gladstone et al. theoretically proposed photonic SHOTIwith
the QSH phase via novel interactions between the transverse electric
and magnetic polarizations of photons36, yet to be realized. However,
the required electromagnetic duality and imaginary coupling remain
challenging in spinless airborne sound systems.

In this work, we experimentally demonstrate an acoustic ideal
QSH (IQSH) in a bilayer hexagonal lattice insensitive to boundary
conditions and free from cladding crystals (Fig. 1c), where 8 × 8 spin-
less Hamiltonian can hybridize to extract an equivalently spinful 4 × 4
Hamiltonian2. For the first time to our knowledge, we observe a pair of
helical edge states winding several times whilemaintaining robustness
in an unbroken time-reversal symmetry system. In this study, the IQSH
acts as a topological phase transition plane that bridges the trivial, HO,
and SHO phases. The entire multi-topology platform is promising for
compact and tuneable devices with on-demand topological
characteristics.

Results
Topological phase diagram
Herein, we construct a bilayer honeycomb lattice model with 120°
chiral interlayer channels (Fig. 2a), acting as a Kane–Mele-likemodel1 in
an acoustic systemwith real couplings. Eachunit cell contains 12 atoms
(6 on each layer). The lattice constant a is set to 3 cm, and the full
heightH is a=

ffiffiffi
3

p
. Uniform triangular prism cavities with sidelengths of

Lc =0:4H and heights of h=H=3 represent acoustic atoms. The bilayer
structure provides more symmetries than the 2D single-layer case8 for
manipulation, such as out-of-plane rotation Ĉ2, mirror, and inversion.
In our structure, the chiral channels have broken mirror and inversion
symmetries, while Ĉ2 could be either unbroken or broken. Intuitively,
although keeping the in-plane C6v symmetry as that in a single-layer
honeycomb lattice8, the bilayer model may contribute excellent
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Fig. 1 | QSH in fermionic and bosonic systems. a Fermionic QSH case and its
gapless helical edge stateswithTf maintained forboth the bulk andboundary.b 2D
(single-layer) bosonic QSH case with a trivial cladding crystal. There is a gap for the
edge dispersionbecause of the absenceofTf . A resonatoron theboundary scatters
different helical states and further breaks its dispersion. c Bilayer bosonic IQSH
case. It allows robust helical edge states without cladding crystals, which is robust
against a resonator.

Fig. 2 | Topological phase diagram. a Ball-stick schematic, tight-binding model
and acoustic structure of a bilayer hexagonal unit cell. to, ti and λ represent
intercell, intracell and interlayer couplings, respectively. b Topological phase dia-
gram in parameter space spanned byΔ",Δ#, and λ.Δ"# = to"# � ti"# is the intralayer

hopping difference where the subscript arrow denotes the upper or lower layer.
c Phase transition process relying on either bulk or edge band inversion, where p1,2

and d1,2 represent degenerate dipole and quadrupole modes, respectively.
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topological phenomena due to the additional degrees of freedom
introduced.

There are three structural parameters left for manipulation:
intercell hopping (denoted as wo-width tube), intracell hopping (wi),
and chiral interlayer coupling ðRλÞ, corresponding to to, ti, and λ in the
tight-binding model, respectively. For simplicity and without loss of
generality, we consider total intralayer hopping (intercell and intracell)
in each layer to remain invariant to + ti = 2, while their intralayer hop-
ping difference Δ= to � ti plays a pivotal factor in realizing nontrivial
topology. Both to and ti are real and positive. In a single-layer system,
Δ>0 indicates larger intracell hopping, which used to be the sole
parameter in realizing QSH8. However, the bilayer system is more
complicated with additional degrees of freedom, whose Hamiltonian
can be written as follows34,36:

H = �
X

hm,nioα
toα ĉ

y
mα ĉnα �

X
hm,niiα

tiα ĉ
y
mα ĉnα � λ

3

X
hhm,nii,α≠β

vmn,α ĉ
y
mα ĉnβ:

ð1Þ
In Eq. (1), ĉnα ðĉynαÞ are annihilation (creation) operators on site

n= 1, . . . ,N, where α = "# denote the upper and lower layers. The first
two terms represent the nearest intercell hopping and intracell hop-
ping, respectively. The third term represents the next-nearest inter-
layer coupling with the coefficient vmn,α = ½εα êlm × ênl

� �
z + 1�=2. Here,

ε"# = ± 1, m and n indicate the next-nearest site sharing the same
nearest site l, and êlm is a unit vector pointing from l to m. Thus,
the next-nearest couplings from the upper to lower layers show
clockwise chirality.

From there, we can obtain a full topological phase diagram in a
three-dimensional (3D) parameter space spanned by Δ" (upper-layer
hopping difference), Δ# (lower-layer hopping difference), and λ
(interlayer coupling). According to different topological invariants,
our model can be classified into four topological phases: trivial, IQSH,
HO, and SHO (shown in Fig. 2b). The IQSH phase acts as a phase
transition plane (red triangular area) only in the Δ" =Δ# slice, inserting
into the trivial, HO, and SHO regions35,36. The phase transition process
determined by either bulk or edgeband inversion procedures is shown
in Fig. 2c.

Each unit cell of ourmodel has 12 eigenstates. After neglecting the
∣si and ∣f

�
states, four pairs of twofold degenerated eigenstates

∣ψ
�
"# = ∣p

�
"#,∣d

�
"# at the Γ point hybridize as follows:

∣ψ
�
M = ∣ψ

�
" + �1ð ÞMĈ6z ∣ψ

�
#

� �
=

ffiffiffi
2

p
, ð2Þ

where M = 1,2 indicates the mixing of states in two layers, Ĉ6z is the
anticlockwise rotation operator of π=3 around the z-axis, and
∣piM = ∣pxiM ,∣pyiM and ∣diM = ∣dx2�y2 iM ,∣dxyiM are degenerate dipole
and quadrupole modes (guaranteed by C6v in each layer), respectively
(see Part I in the Supplementary Information). Bulk band inversion
between ∣p

�
1 and ∣d

�
2 corresponds to a topological phase transition

from the trivial to IQSH regions. Further inversion between ∣p
�
2 and

∣d
�
1 leads to the SHO phase. For the phase transition between HO"#

and IQSH, edge bands rather than bulk bands experience an
open–close–reopen process.

Table 1 provides details for different phases. When λ2 � Δ"Δ# >0,
interlayer coupling dominates formixing pseudospins for two layers34.
At this time, when Δ" =Δ#, the out-of-plane dimension supports the
rotation operator Ĉ2y, allowing us to artificially define Tf as follows:

Tf = Ĉ2yK = � σy � I4K , ð3Þ

where σy is the Pauli matrix and K is the complex conjugation operator
(see Part II in the Supplementary Information).Tf ismaintainedboth in
the bulk and on the boundaries, guaranteeing boundary-insensitive
and cladding-crystal-free acoustic IQSH with a pair of gapless helical

edge states. In contrast, in HO phases with broken Ĉ2y with Δ"≠Δ#,
their edge states are gapped, wherein one corner state appears.
Depending onwhether it is located on the upper or lower layer, theHO
is further divided into subphases: HO" and HO#. With λ2 � Δ"Δ# <0,
the trivial phase is located in the Δ"#<0 region. However, the SHO is
located in the Δ"#>0 region, behaving like two isolated layers due to
the weak interlayer coupling.

From the trivial to the IQSH phases
In the experiments, we begin with a phase transition from the trivial to
the IQSH phases in the Δ" =Δ# vertical slice, as shown in Fig. 3a. The
topological invariant spin–Chern numbers (C ± )

34,36 of these three pha-
ses are 0, ± 1, and 0 for the trivial, IQSH, and SHO phases, respectively
(see Part III in the Supplementary Information). The calculated bulk
band structures are plotted in Fig. 3b, showing an open–close–reopen
process. In the trivial phase (wo"# =0:13cm, wi"# =0:33cm; Rλ =a=30),
the bulk bandgap is 7.6–9.2KHz without edge propagation, matching
the measured transmission spectra well (Fig. 3c).

The phase turns from the trivial to the IQSH phases by increasing
the intralayer hopping difference and/or the interlayer coupling
(wo"# =0:29cm, wi"# =0:31cm, and Rλ = 7a=120). Although there
remains no bulk transmission in the bandgap, edge states appear to
form a pair of gapless dispersions (Fig. 3d). The frequency window for
helical edge states is 7.8–8.9 KHz with a relative bandgap width over
10%. Notably, these edge states appear without cladding crystals, and
only resin plates are used as hard boundaries to avoid radiation. This
boundary-insensitive characteristic comes from the fact that Ĉ2y ful-
filled Tf is held on the boundary, which remains valid even in a trun-
cated case (see Fig. S3 in Supplementary Information).

QSH in fermionic systems is energized by a spinful 4 × 4 Hamil-
tonian, i.e., BHZ model2, which cannot be satisfied directly with only a
4 × 4 spinless Hamiltonian in bosonic systems due to the intrinsic dif-
ferences between their spins. For our acoustic system, we start with a
unit cell containing 12 sites, compress it to an 8 × 8 Hamiltonian, and
finally hybridize it to extract an equivalent spinful 4 × 4 Hamiltonian.
This implies that a higher Hamiltonian dimension can compensate for
a lack of spin degree, which is essential for constructing IQSH.

Winding of helical edge states
Although the IQSH phase requires relatively harsh conditions
throughout the topological phase diagram, it contributes to the robust
insensitivity of the gapless helical edge states. The experimental setup
is shown in Fig. 4a. Our bilayer acoustic sample has 21 × 4

ffiffiffi
3

p
periods in

the xy-plane with full dimensions of 63:0×22:5 × 1:7cm3. In our
experiments,weexcite the soundpropagationalong the boundary and
measure the amplitudes and phases at each site in 21 periods. The
phases are calibrated by using an additional reference detector (see
Methods and Supplementary Information for details). After Fourier
transformation, we obtain the edge dispersion with a resolution of 0.1
(π=a). The measured helical edge states for intact and truncated
boundaries are shown in Fig. 4b, c, respectively. The ribbon super unit
cells are shown in the right panels,which areperiodic in the x-direction
and have different boundary configurations in the y-direction. The

Table 1 | Parameters for various phases

Interlayers & Intralayers Layers " & # Phases

λ2 >Δ"Δ# Δ" =Δ# IQSH

Δ" >Δ# HO"

Δ" <Δ# HO#

λ2 <Δ"Δ# Δ",Δ# <0 Trivial

Δ",Δ# >0 SHO

Note: λ2 =Δ"Δ# is the bulk degeneracy condition and indicates phase transitions.
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boundary decoration only slightly shifts the frequencies of the edge
Dirac nodes, leaving them both gapless. The helical edge states are
robust against various disorder types, including cavity, disorder, and
Z-shaped corners, and they are experimentally checked (see Part IV in
the Supplementary Information).

The gapless helical edge states of acoustic IQSH with boundary-
insensitive properties are good candidates for realizing robust slow
waves over wide frequency windows. The winding strategy for realiz-
ing topologically slow waves was proposed in photonic systems with
broken time-reversal symmetry, e.g., the photonic anomalous quan-
tum Hall effect under magnetic bias18–20. Due to the nonreciprocal
chiral edge states, the edge dispersion winds in the Brillouin zone
without opening a gap. But this scheme cannot be directly trans-
planted to themagnetic-free cases because the lack of Tf

8,9,37–41 harshly
breaks the edge dispersion when meeting resonators (Fig. S10). Thus,
the spin-momentum locking and the robust wave propagation are
destroyed, leading to backscattering. However, our IQSH handles this
problem and winds the pair of helical states to realize extremely slow
yet robust edge wave propagation against backscattering throughout
the bulk bandgap window.

Benefiting from the ideal QSH phase, the approach to achieving
this goal is very simple. We only need to add a pendant cavity
(wo-width connecting tube) as a local resonator on eachboundary site.
As shown in Fig. 4d, the edge dispersion is flattened and winds once
more; nevertheless, the spin-momentum locking and robust wave
propagation are largely maintained. As a result, the sound velocity is
retarded significantly. This direct and simple design leaves a tiny gap
(approximately 0.27% relative to the bandgap center frequency and
2.4% relative to the bandgap width) in the winding dispersion on the
boundary due to the size effect and the inevitable resonator-affecting
fluctuation of pseudospins. Moreover, we can further minimize this

gap and slow the sound propagation by tuning the shapes of pendant
cavities, winding it twice with flatter dispersion, slower wave and
negligible tiny gap (see Part V in Supplementary Information). Note
that local defects in our model must be smooth in the z-direction
(identical between two layers) to fulfil Tf and avoid interspin
scattering.

HO and SHO phases
The edge states open a gapwhen breaking the Ĉ2y symmetry (Δ"≠Δ#).
In Fig. 5a, we display the phasediagram in the λ= 1 horizontal slice. The
edge dispersion gaps, wherein the corner state, e.g., HO phase, can
appear. In our bilayer model, the layer components "# are coupled
through λ, making the corner charge Q"#

c for each layer no longer
quantized as in single-layer cases. Here, the modified corner charges
are defined byweighing the layer contribution for low-energy bands as
follows36,42,43:

Q"#
c =

1
4

X
i

∣ "# ∣ψi Mð Þ� �
∣2 � ∣ "# ∣ψi Γð Þ� �

∣2
� �

: ð4Þ

where ∣ψi kð Þ� is the low-energy wave function at the k =M, Γ points.
Then, the total spin corner charge can be quantized as
Qc =Q

"
c +Q

#
c = 1=2, leading to only one corner state in this phase (see

Part VI in the Supplementary Information). For convenience, we define
the spin imbalance Sc =Q

"
c �Q#

c and divide the HO phase into HO"
(Sc >0) and HO# (Sc < 0), in which their acoustic field distributions are
mainly located on the upper and lower layers, respectively. Note that
theHO" andHO# phases acting as a Ĉ2-connecting pair are intrinsically
the same, sharing the same topological charge.

Tomeasure the HO phase, a diamond-shaped sample of 8 × 8 unit
cells marked with pump-probe configurations is shown in Fig. 5b. The

Fig. 3 | Trivial and IQSH phases. a Topological phase slice when Δ" =Δ#. Insets
show spin–Chern numbers. b Bulk bands inversion associated with the phase
transition from the trivial to the IQSH phases. c, d Numerical projected band

structures and experimental transmission spectra for the trivial and IQSH phases,
respectively. Here, only hard boundary conditions are used.
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parameters are wo" =0:4cm, wo# =0:13 cm, wi" =0:2 cm,
wi# =0:33 cm, and Rλ =a=30. The experimental response spectra
clearly show a bulk gap of 7.3–9.4 KHz and an edge gap of 7.5–8.1 KHz,
wherein the corner state is located at approximately 7.8 KHz with a
25 dBpeak (Fig. 5c). The experimental data are in good agreementwith
the numerical results. Our fabricated sample is in the HO" phase, and
one can find its Ĉ2-connecting partner in the HO# phase.

The phase transitions from the HO phase to the SHO phase by
increasing the lower intralayer hopping difference (wo# =0:4 cm,
wi# =0:2 cm) while maintaining the other parameters. Unlike the HO
case, the SHOcorner charges for two layers are separatelyquantized as
Q"

c =Q
#
c = 1=2 according to Eq. (4), thus supporting two corner states

with different pseudospins. As shown in Fig. 5d, the SHO case shows a
bulk bandgap of 7.5–9.3KHz and an edge bandgap of 7.6–8.3 KHz, in
which we find two types of corner states located at approximately
7.9 KHz with different symmetries, as shown in Fig. 5b and Fig. 5e. The
symmetric S-mode shows the symmetric phase relative to the xy plane,
while the AS-mode shows the anti-symmetric phase (see Methods and
Supplementary Information for detailed experimental setup). These
two corner states originate from two pairs of gapped edge states due
to the thorough band inversions for four paired p–d bulk bands. Note
that the slightly different frequencies between them are due to the
finite-size effect36.

Discussion
The full topological phase diagram obtained in a high-dimensional
parameter space offers an opportunity to re-examine pure 2D QSH
phases. Our 3D topological phase diagram collapses into a line in the
2D limitation, i.e., the λ=0 line on the Δ" =Δ# plane (Fig. 2b). There is
only one crucial point for IQSH, i.e., the phase transition point between
trivial and HO. From this aspect, we can clearly understand the physics
behind why the previous pure 2D QSH cases are boundary sensitive

with edge gaps wherein HO coexists8,31. However, in our bilayer
structure, the IQSH point broadens to a phase transition plane con-
necting two HO phases, guaranteeing gapless helical edge states and
robustness against imperfections. Compared to the recently proposed
photonic bilayer model36, our acoustic structure only requires one
polarization and real couplings, which is convenient for experiments.
Note that if we release more degrees of freedom, such as by breaking
C6v, various topological valley states are possible

33. Furthermore, there
are alternative choices for the Ĉ2 operator in the xy plane associated
with fermionic Tf . Thus, our IQSH phase remains valid for various
boundary conditions, including zigzag and armchair.

To conclude, in a time-reversal invariant bilayer acoustic system,
we experimentally demonstrate abundant topological phases, in
which IQSH plays the role of the neighbouring and parent phase for
realizing other phases. Our IQSH releases boundary restriction and
serves as a good candidate for more robust and compact topological
devices. The observed flat yet robust polariton-like helical edge dis-
persion (winding several times) makes significant progress for
achieving waves that are extremely slow and robust over a wide
frequencywindow (exceeding 10%), which has longbeen sought after
in industrial delay devices. This design strategy can be readily
extended to other systems, including photonics. Notably, the
strengthened interactions between slow waves and matter may
advance future topological insulator lasers22 and quantum emitters44

with smaller sizes and higher performance levels. Moreover, this
model can serve as a multifunctional platform to reveal other topo-
logical phases and phase transitions by considering more degrees of
freedom, such as disorder in a topological Anderson TI45, gain/loss in
a non-Hermitian model46,47, or braiding in a non-Abelian system48,49.
The entire multi-topology platform investigated in higher-
dimensional parameter space may shed light on tuneable devices
with on-demand topological characteristics.

Fig. 4 | Robustness of ideal helical edge states. a Experimental setup to measure
the dispersion. The blue arrow marks the acoustic propagation. b Experimentally
measured band structures with intact boundary along the x-direction. The colour
scale represents the strength of the acoustic energy density with arbitrary units

(arb. units). The grey lines denote the calculated bulk bands. The blue (green)
circles denote calculated acoustic pseudospin up (down) edge states. c Truncated
case with half unit cells. d Winding once for acoustic helical edge states when
coupled to boundary pedant resonators.
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Methods
Experimental measurement
All samples used in the experiments are fabricated using photo-
sensitive resin (GodartTM8111X) via 3D printing (geometry tolerance of
0.1mm). This stereolithography material (modulus 3160MPa, density
1:14 gcm�3) is regarded as an acoustic hard boundary for the impe-
dancemismatch. The thicknesses of all sites and tubewalls are 1mm. In
the experiments, we drill some equilateral triangle holes with side-
lengths of 0:2

ffiffiffi
3

p
cm on the cavities at the upper and lower surfaces

and print a corresponding plug for the convenience of measurements
(see Fig. S5 in the Supplementary Information for details).

In the measurements, commercial loudspeakers (AMT-47)
and microphones (BSWA MPA416) are used as the acoustic source
and detector, respectively. In Fig. 4, 21 points from each unit cell
are detected under a frequency sweep utilizing the designed
holes. Both the amplitude and phase information are collected
with NI cDAQ-9185. We use an additional reference detector to
calibrate the phase at each site to reduce errors. For the response
spectra in Fig. 5c, d, the positions of the sources and detectors
can be seen from Fig. 5b marked by S and D. Note that for the
measurements of corner states of the SHO phase in Fig. 5e, a pair
of speakers are used at the orange‒purple site S shown in Fig. 5b,
with one speaker at the top surface and the other at the bottom
surface of the sample, respectively. The relative phases of these

two speakers are controlled to generate corner states with dif-
ferent symmetries. Four sites at the corner are detected, marked
as 1, 2, 3, and 4 in Fig. 5b, e.

Numerical simulation
Full-wave simulations are implemented by the commercial software
COMSOL Multiphysics with a 3D acoustic module based on a finite
element method. The mass density and sound velocity are 1:21 kgm�3

and 343ms�1, respectively. When calculating the bulk band in Fig. 3b,
the periodic boundary condition is used in the xy-directions with a hard
boundary for the z-direction. When calculating the boundary band in
Figs. 3c, d and 4b–d, only the x-direction boundary is set as a periodic
condition. All boundaries are hard for corner states in Fig. 5c, d.

Data availability
The simulated and experimental data are under private user license
which cannot be made public. The data that support the plots within
this paper and the other findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
All related codes can be built with the instructions in the Supplemen-
tary Information and available from the corresponding authors upon
reasonable request.
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Fig. 5 | Response spectra for HO and SHO phases. a Phase diagram at λ= 1 slice.
The insets show corner charges. b Sample structure for measurements (upper
panel). Theblue, green, andorangemarkers S (D) denote thebulk, edge, and corner
sites, respectively, for the placement of acoustic sources (detectors) in experi-
ments. The middle (lower) panel shows the simulated field distribution for the

S-mode (AS-mode) in the SHOphase, with colour scale representing the strength of
the acoustic pressure with arb. units. c Measured HO phase, including response
spectra for the corner, edge and bulk versus the calculated results (left column).
d Measured SHO phase case. e Measured acoustic pressure with arb. units. for S-
and AS-modes at sites 1–4 marked in b.
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