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Genome-wide genotype-serum proteome
mapping provides insights into the cross-
ancestry differences in cardiometabolic
disease susceptibility

FengzheXu1,2,13, EvanYi-WenYu3,13,XueCai2,4,13, LiangYue2,4,13, Li-peng Jing5,6,13,
Xinxiu Liang2,4,13, Yuanqing Fu 2,4, Zelei Miao2,4, Min Yang2,4, Menglei Shuai2,4,
Wanglong Gou2,4, Congmei Xiao2,4, Zhangzhi Xue2,4, Yuting Xie2,4, Sainan Li2,4,
Sha Lu7, Meiqi Shi7, Xuhong Wang7, Wensheng Hu7, Claudia Langenberg 8,9,
Jian Yang 2,10,11, Yu-ming Chen 5 , Tiannan Guo 2,4,11 &
Ju-Sheng Zheng 2,4,11,12

Identification of protein quantitative trait loci (pQTL) helps understand the
underlying mechanisms of diseases and discover promising targets for
pharmacological intervention. For most important class of drug targets,
genetic evidence needs to be generalizable to diverse populations. Given
that the majority of the previous studies were conducted in European
ancestry populations, little is known about the protein-associated genetic
variants in East Asians. Based on data-independent acquisition mass spec-
trometry technique, we conduct genome-wide association analyses for 304
unique proteins in 2,958 Han Chinese participants. We identify 195 genetic
variant-protein associations. Colocalization and Mendelian randomization
analyses highlight 60 gene-protein-phenotype associations, 45 of which
(75%) have not been prioritized in Europeans previously. Further cross-
ancestry analyses uncover key proteins that contributed to the differences
in the obesity-induced diabetes and coronary artery disease susceptibility.
These findings provide novel druggable proteins as well as a unique
resource for the trans-ancestry evaluation of protein-targeted drug
discovery.

Circulating proteins, as representatives of intermediate molecular
phenotypes in human health, are widely used to reveal novel drug
targets and translational biomarkers for clinical outcomes1. Genetic
modulation on proteins has been well-known but poorly described,
whichhas stimulated not only commercial but also scientific interest in
integrating genetics and proteomics for providing new insights into
human health.

In recent years, studies of blood-based protein quantitative trait
loci (pQTL) using aptamer-based multiplex protein assay (SOMAscan)
and antibody-based multiplex immunoassays (Olink panels) have
identified thousands of associations between single-nucleotide poly-
morphisms (SNP) and protein levels, many of which colocalized with
association signals for common human diseases2–12. Both techniques
rely on conserved binding regions of protein epitopes, which possibly
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introduce binding artifacts. Therefore, cross-platform, e.g., usingmass
spectrometry (MS)-based technique, is desirable but still mainly lack-
ing. In addition, the majority of investigations of pQTLs to date have
beenundertaken inpopulations of European ancestry,with few studies
in non-Europeans, such as Africans or East Asians10,13.

In this study, we provided insights into the genetic control on
circulating proteome in Han Chinese, by using data-independent
acquisition (DIA) mass spectrometry, a high-throughput proteomics
strategy that could accurately quantify proteins with high reproduci-
bility in a complex proteome14,15. Furthermore, we performed a colo-
calization analysis of cis-pQTLs and complex traits/diseases followed
byMendelian randomization analysis, through which we observed the
putative effect of proteins on clinically relevant phenotypes, suggest-
ing causal roles andpotential therapeutic targets of several proteins on
certain diseases. Lastly, we demonstrated that our datasets could
potentially help interpret the differences in diseases susceptibility
between East Asians and Europeans, revealing a striking different
obesity-induced proteomics signatures between the two populations
with different ancestries. These results provided mechanistic insights
into the different susceptibilities in obesity-induced diabetes and
coronary artery disease risk in the East Asians compared with the
Europeans.

Results
Associations of the genetic variants with proteins
We employed a mixed linear model-based genome-wide association
analysis (GCTA-MLMA) of approximately 5 million autosomal variants
against levels of 304 proteins in four sub-cohorts of GNHS
independently16,17, which were then pooled by a meta-analysis with a
random-effects model consisting of 2410 Chinese participants (Fig. 1,
see below, Supplementary Data 1 and Supplementary Data 2). The
missing data were imputed by 1/2 of the minimummeasured value for
the proteinmatrix. We identified genome-wide signals for 48 proteins,
and extracted themost significant lead SNP of eachprotein as its pQTL
(P < 1.6 × 10−10, 5.0 × 10−8/304, “Methods”) (Fig. 2 and Supplementary
Data 3). We defined the pQTLs located within 1Mb distance to the
transcript starting sites (TSS) of the corresponding genes as cis-acting
variants, while the ones out of 1Mb to TSS as trans-acting variants.
Overall, 34 are cis-pQTLs (71%), and 14 are trans-pQTLs (29%). Todetect

secondary signals at the same locus, we conducted a stepwise condi-
tional analysis by GCTA-COJO18, using the same threshold of the
genome-wide significance, and observed seven additional pQTLs for
four proteins (“Methods” and Supplementary Data 5).

The median value of variance explained by an independent lead
genetic variant was 0.034 (ranging from 0.01 to 0.14), 14 of 48 lead
genetic variants were shown to explain more than 0.05 of variance
(Fig. 3b). We found that the 48 lead SNPs and the 7 additional inde-
pendent SNPs (identified from the conditional analysis), including
both cis- and trans-pQTLs, could explain 11–15% of the variance of
corresponding proteins, of which 2.6–7.8% were contributed by the
seven additional SNPs (Supplementary Data 5). In total 91.6% of the
cis-pQTLs were located in regions within 0.2Mb to TSS (Fig. 3c).
Furthermore, we estimated the phenotypic variance contributed by
the lead pQTLs, and the heritability explained by the additional
genome-wide SNPs located over 10Mb to the lead pQTLs (i.e., the
polygenic background) (“Methods”). We found that for some pro-
teins, the polygenic background explained a higher level of herit-
ability than the lead pQTLs, whereas for some proteins such as
hexokinase-4 (GCK) and serum amyloid A-2 protein (SAA2), the
major loci contributed more than the polygenic background (Fig. 3d
and Supplementary Data 4). Among all the identified pQTLs, intronic
variants accounted for 22%, variants located at the 5’-region of a gene
(upstream genetic variants) accounted for 30%, and variants located
at the 3’-region of a gene (downstream genetic variants) accounted
for 23% (Fig. 3e).

Complementary GWAS analysis based on peptide-level data
Next, we employed tryptic-digested peptide-level data to perform the
complementary GWAS analyses in addition to the above GWAS based
on protein-level data. We included 1298 peptides that were only
mapped tooneprotein, with an averageof 4.3 peptides (ranging from 1
to 89 peptides) per protein. Based on peptide-level profiling, we found
147 pQTLs for 64 proteins at P < 3.9 × 10−11 (5.0 × 10−8/1298, “Methods”).
Of 64 proteins, the pQTLs of 19 proteins have not been identified using
protein-level data. Except for apolipoprotein B (APOB), the rest of
the peptides were found to be genetically associated with SNPs within
the same locus to their correspondingproteins. For APOB, onepeptide
was associated with a cis-acting locus, while nine peptides shared the

Fig. 1 | Overview of the study design. Using data-independent acquisition mass
spectrometry, we measured serum proteome in up to 2410 Han Chinese partici-
pants with replication in 548 Han Chinese women. A total of 1298 tryptic-digested
peptides and 304proteinswere included in the analysis.We used the colocalization

of cis-pQTLs with the clinically relevant phenotypes, as well as the Mendelian ran-
domization approach, to investigate the putative effects of the circulating proteins
on complex traits/diseases. pQTL protein quantitative trait loci.
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trans-acting locus. In addition, 122 (83%) out of 147 pQTLs could be
reproduced using protein-level data at false discovery rate
(FDR) <0.05. Furthermore, no correlation (rho =0.05) was observed
between the number of peptides with the genetic association and the
reproducibility (i.e., the gene–protein associations could be success-
fully replicated using protein-level data).

Sensitivity analysis and replication of the identified pQTLs
We performed a sensitivity analysis for 195 pQTLs (48 protein-level
pQTLs and 147 peptide-level pQTLs, Fig. 4) by excluding the partici-
pants with missing data in each protein or peptide and found that the
results were largely similar to the main model with imputation,
whereof only 11 pQTLs failed to reach significance at FDR <0.05 (8 cis-
acting variants, 3 trans-acting variants) (Supplementary Data 3). Also,
we calculated the statistical power for each association in 195 pQTLs,
whereof 146 (75%) associations were justified with sufficient statistical
power (>0.8) (Supplementary Data 3). To examine whether the pQTLs
could be replicated, we measured the serum proteome in an inde-
pendent cohort study consisting of 548 Chinese women. Among all
identified pQTLs, 38 out of 39 (97%) trans-pQTLs and 153 out of 156
(98%) cis-pQTLs could be replicated with sufficient statistical power
(>0.8). Despite the replication cohort being made up of women who
were younger than the participants in the discovery cohort (mean age:
31.1 versus 63.4 years), we replicated 165 (84.6%) out of 195 pQTLs at
FDR <0.05 (Supplementary Data 6). These observations suggested
that GWAS analyses using both MS-based protein-level and peptide-
level data were effective and appropriate for identifying possi-
ble pQTLs.

Trans-ancestry and cross-platform replication of previously
reported pQTLs
To testwhether the prior reportedpQTLs among Europeanpopulation
could be replicated in our Chinese population, we firstly checked the
overlappedproteins and found that among the 304proteinsmeasured
in the present Chinese study, 132 proteins had reported pQTLs among
Europeans based on SOMAscan assay (130 proteins)8,12,19,20, Olink assay
(1 protein)5 orMS (3 proteins, 2 of them accessible through SOMAscan
assay)21. Of the 132 proteins and related pQTLs (i.e., independent lead
SNPs) identified previously among Europeans, there were 1249 pQTLs
from 118 proteins available in our present Chinese population for
replication. The 1249pQTLs showedmoderately correlated effect sizes
between prior European studies and our current Chinese study
(r =0.41). Of them (i.e., 1249 pQTLs), 197 (16%) associations were

replicated in our Chinese study with consistent directions of effect
(FDR <0.05, Supplementary Data 7), including 135 cis-pQTLs and 62
trans-pQTLs.

Then, we tried to replicate our newly identified 195 pQTLs in the
prior European pQTL datasets, in which 111 pQTLs were available20. We
found that 62% (69/111) associations could be validated in the Eur-
opean populations at FDR <0.0520, suggesting that many pQTLs iden-
tified in the current study may be conservative across the two
populations (Supplementary Data 6).

Three pQTLs, corresponding to haptoglobin (HP), alpha-1-
antitrypsin (SERPINA1) and apolipoprotein E (APOE), were previously
identified by an MS-based proteomics study21 consisting of 1060
European-descent individuals, showing consistent directions of effect
with significance at FDR <0.05 in our study. In addition, we found that
for some proteins (e.g., APOE, AHSG, and HP), the directions of effect
were opposite in our discovery cohort compared to the previously
affinity-based studies12,19. For instance, T-allele of rs7412 was positively
associated with APOE levels in our study, consistent with the results
from a previous meta-analysis reporting that the increased number of
T-allelemutationof rs7412was associatedwith a higher level of APOE22,
while an inverse association was observed in an aptamer-based pQTL
European study12.

Integrative analysis of pQTLswith clinically relevantphenotypes
We used the multi-SNPs-based SMR (summary-data-based Mendelian
randomization) test and HEIDI (heterogeneity in dependent instru-
ments) analysis23,24 to assess the causal inference of cis-QTLs with
clinically relevant phenotypes. We extracted cis-pQTLs identified at
P < 5 × 10−8 and obtained the GWAS summary statistics of outcomes
from external datasets, with 57 clinical traits and 35 diseases25–27 from
the Biobank Japan (BBJ) study, and the summary statistics of type 2
diabetes from the AGEN-T2D study28. Despite we observed the pre-
sence of population stratification between Chinese and Japanese
(Fig. 3a), HanChinese and Japanesepopulations are usually considered
together as East Asians, thereby with the rationale to be referered to
each other for MR analysis. After excluding the pQTLs located at the
major histocompatibility complex (MHC) region, we retained 31 pro-
teins and 160 peptides with correspondence to 51 proteins. We found
43 associations comprising 7 proteins and 10 traits that passed the
HEIDI test (PHEIDI < 0.05) and experiment-wise significance threshold
corrected for the multiplication of 51 proteins and 93 traits
(PSMR < 1.1 × 10−5, i.e., 0.05/4743) (Fig. 5a and Supplementary Data 8).
The results showed that increased levels of apolipoprotein

cis
transpQTLs identified based on protein-level data

Fig. 2 | Gene–protein associations based on protein-level data. The left plots
show the position of genetic variants against the position of the coding gene. The
Manhattan plots (right) show the sentinel pQTLs and associated proteins. The
green dots represent cis-pQTLs, while the red dots represent trans-pQTLs. pQTLs,

proteinquantitative trait loci. Thegenome-wide significant associations that should
have (i) meta-analysis P < 5 × 10−8/304; (ii) P <0.05 in four sub-cohorts; (iii) con-
sistent direction of effect across the sub-cohorts. pQTLs protein quantitative
trait loci.
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(a) (LPA) were significantly associated with a higher risk of coronary
artery disease (CAD) (odds ratio = 1.26, P = 2.1 × 10−7) (Fig. 5b). In
addition, the levels of HP were negatively associated with CAD risk at
the borderline experiment-wise significance (odds ratio = 0.84,
P = 1.4 × 10−5) (Fig. 5b). The HP was also inversely associated with CAD-
related traits, e.g., LDL-c and total cholesterol, in which the association
between the HP and LDL-cwas consistent in the European populations
(Beta = −0.058, P = 5.1 × 10−7)29. Furthermore, APOE, which is essential
in the development of cardiovascular and neurodegenerative diseases,
had a nominally positive association (P <0.05) with esophageal cancer
and hematological malignancy (Supplementary Data 8). The carbox-
ypeptidase B2 (CPB2) showed a nominally negative association
(P < 0.05) with the risk of neurological disorders including cerebral
aneurysm and epilepsy.

Mendelian randomization analysis for putative causal
relationships
To clarify the potential causal effects of protein levels on diseases, we
performed two-sample Mendelian randomization analysis by inte-
grating cis-pQTLs clumped at P < 5 × 10−8 (LD r2 < 0.05) and lead trans-
acting variants as instrumental variables (Methods and Supplementary
Data 10). We used the Generalized Summary-data-based Mendelian
Randomization (GSMR) and HEIDI methods to perform the forward

and reverse MR analysis30, and the outcome variables were derived
from the BBJ study and the AGEN-T2D study25–28. The advantage of
GSMR and HEIDI test is their high statistical power in detecting
pleiotropic effects. This analysis included 41 proteins and 179 tryptic-
digested peptides, corresponding to 64 proteins, 16 of which have yet
to be studied before5,8,12,19,20.

We found that the genetically determined von Willebrand factor
(VWF) levels may increase the risk of CAD and type 2 diabetes (T2D)
(P < 8.4 × 10−6, i.e., 0.05/5952 computed by 64 proteins and 93 traits,
Fig. 5c and Supplementary Data 9). The trans-pQTLs associated with
VWF levels were located in the ABO gene, and previous studies sug-
gested that ABO blood groups were associated with several health and
disease outcomes31,32, e.g., hyperlipidemia, T2D, and heart failure. The
top trans-pQTL (rs687621) for VWFwas in LDwith genetic variants that
determined blood types (rs8176719, r2 = 0.95; rs8176746, r2 = 0.34),
which provided the genetic underpinning and possible mechanism
underlying the links between ABO blood groups and cardiometabolic
health. According to transcriptomics data from the Human Protein
Atlas Version 20.1 (see refs. 33,34), PRPH2, mainly expressed in the retina,
showed a positive association with glaucoma risk (odds ratio = 1.11,
P = 1.8 × 10−2), which indicated that pQTL in plasma may contain the
information on the role of proteins expressed in specific tissues in the
development of disease.

a.

b.

d.

e.

Major loci
Polygenic

c.

Fig. 3 | Characteristics of sentinel pQTLs. a Genetic principal component of the
GNHS study compared to the 505 East Asian participants from the 1000 Genomes
Project Phase3. b Distribution of explained variance that the genetic variant con-
tributed to the corresponding protein. c The distance of lead variant to the tran-
script start site.dHeritability of circulating proteins. The variance explained by the

lead SNPs is shown in light blue, with the variance explained by the polygenic
background shown in dark blue. e The proportion of predicted functional anno-
tation classes of the identified genetic variants. GNHS Guangzhou Nutrition and
Health Study, PCA principal component analysis, TSS transcript start site, pQTLs
protein quantitative trait loci.
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Furthermore, the results of MR analysis showed that some pro-
teins were associated with metabolic traits, for instance, IGHG4 was
inversely associatedwith left ventricularmass and left ventricularmass
index that had been used to predict abnormal cardiovascular events35

(Supplementary Data 9). Through reverse MR analysis, we found a
positive association of rheumatic arthritis with C4A and C4B. In addi-
tion, metabolic traits, e.g., LDL-c, lactate dehydrogenase (LDH), and
albumin/globulin ratio (AG), were associated with specific proteins
(Supplementary Data 11).

Druggable targets pinpointed by proteins for complex traits
Based on the above colocalization and MR analyses, we identified 19
putative druggableproteins (P < 0.05 after Bonferroni correction) for 7
diseases and 24 clinically relevant traits, with a total of 60
protein–phenotype associations (Fig. 6a and Supplementary Data 12).
In total, 45 (75%) out of the 60 associations were novel and have not
been prioritized in Europeans8. For instance, the genetic variants at the
MHC region could regulate the expression levels of hexokinase-4
(GCK), and the genetically determined higher GCK levels were asso-
ciated with a lower risk of rheumatoid arthritis in East Asians (Fig. 6b)
(odds ratio = 0.67, P = 1.2 × 10−13). According to a published animal
study36, hexokinase is a pattern-recognition receptor for innate
immunity. We could replicate the effect of GCK on rheumatoid
arthritis in Europeans (Fig. 6b, odds ratio = 0.68, P =0.21) based on the
published GWAS results20,37. Our results suggested the possible rela-
tionships between hexokinase-4 and autoimmune diseases in humans.

In addition, coagulation factor XII (F12) was a newly identified
therapeutic target for kidney diseases. F12 has been a candidate target
for thromboembolic and inflammatorydiseases38. In our current study,
we observed the associations of F12 with estimated glomerular filtra-
tion rate (EGFR), serum creatinine, and urolithiasis. Furthermore, we
summarized the protein–phenotype associations with supportive evi-
dence of both colocalization and Mendelian randomization analyses
(SupplementaryData 15). Of them, alpha-2-antiplasmin (SERPINF2)was
positively associated with BMI and C-reactive protein, suggesting that
SERPINF2 was a potential therapeutic target in metabolic diseases.

Most of the proteins that share genetic underpinnings with those
tested diseases are currently unavailable as targeted drugs based on
the DrugBank database (v5.1.8)39, while their expression or activation
could be modulated by several common small molecules such as zinc
and copper (Supplementary Data 13).

Interpretation for the trans-ancestry cardiometabolic disease
susceptibility
With these newly identified pQTL data, we then investigated the
potential underlying etiological differences in the susceptibility to
cardiometabolic diseases between Europeans and East Asians, given
that East Asians compared to Europeans are more susceptible to car-
diometabolic diseases at a lower BMI40–42. To find a potential inter-
pretation for this phenomenon, we clumped genetic instruments of
BMI from the European and East Asian populations, respectively (LD
r2 < 0.05)43,44. Correlation analysis indicated a shared genetic archi-
tecture between Europeans and East Asians (r =0.68, Fig. 7a). We
found that genetically determined BMI was positively associated with
T2D and CAD risk across populations, with odds ratio for T2D: 1.22
(95% confidence interval (CI): 1.19–1.25) per 1 kg/m2 higher BMI for East
Asians, and 1.26 (95% CI: 1.25–1.28) for Europeans. For CAD, the odds
ratio was 1.10 (95% CI: 1.08–1.13) for East Asians, and 1.09 (95% CI:
1.09–1.10) for Europeans (Fig. 7b). Thus, in Europeans and East Asians,
genetically determined BMI levels had a consistent effect on T2D
and CAD.

Using the 41 proteins having pQTLs in both Chinese (our own
dataset, representing East Asians) and European populations, we
observed that genetically determined BMI was positively associated
with 28 proteins and negatively associated with 2 proteins in Eur-
opeans (P < 0.0006, i.e., 0.05/82 computed by 41 proteins across two
populations, Fig. 7c and Supplementary Data 14); in East Asians, how-
ever,we foundnoevidenceof above associations aftermultiple testing
corrections, while 34 proteins showing non-significant negative asso-
ciations. These results suggested that the obesity–protein associations
might be substantially different between the two populations with
different ancestries.

a. Overview of all identified pQTLs

b. 67 proteins with pQTLs based 
on protein- and peptide-level 
data

pQTLs identified based on protein-level data
pQTLs identified based on peptide-level data

-log10(P)

-log10(P)

Fig. 4 | Genomic atlas of all identifiedpQTLs. aOverview of all identified proteins
excluding the participants with missing data in each protein or peptide. Each dot
represents a protein/peptide-associated genetic variant. The genome-wide sig-
nificant associations that should have (i) meta-analysis P < 5 × 10−8/n, where n is the
number of proteins/peptides; (ii) P <0.05 in four sub-cohorts; (iii) consistent

direction of effect across the sub-cohorts. b Number of proteins identified by
protein- or peptide-level data. We found 67 proteins with pQTLs in Han Chinese,
three ofwhichwerebasedonprotein-level data and 19onpeptide-level data. pQTLs
protein quantitative trait loci.
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Next, the effect of the proteins on T2D and CAD was examined.
We used publicly available GWAS summary data of T2D and CAD from
the European and East Asian populations respectively for our
analysis27,28,45,46. Using the GSMR method, we found that the negative
associations of HP and heparin cofactor 2 (SERPIND1) with CAD and
T2D, were consistent between East Asians and Europeans (Fig. 7c and
Supplementary Data 14).

To estimate the indirect effect of BMI on T2D and CAD via iden-
tified proteins, we performed a two-step MR analysis and used the
“product of coefficients” method47. We found that HP, SERPIND1,
Factor H (CFH), and C4b-binding protein alpha chain (C4BPA) may
suppress the effect of BMI on T2D in European populations but not in
East Asians (Fig. 7c). Furthermore, in European populations, HP, SER-
PIND1, CFH, inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3), and
kininogen-1 (KNG1) may suppress the effect of BMI on CAD, but not in
East Asians. The proteins SERPIND1, KNG1, C4BPA, and CFH were
involved in the complement system and blood coagulation, which
could regulate the production of proinflammatory cytokines such as
tumor necrosis factor (TNF), interleukin-6 (IL-6), interleukin-8 (IL-8)

and interleukin-1 (IL-1) (Fig. 7d)48. The increased levels of proin-
flammatory cytokines were associated with higher risk of cardiome-
tabolic diseases, including T2D and cardiovascular diseases49,50. Taken
together, we discovered a differential obesity-induced proteomics
signatures between Europeans and East Asians, which might poten-
tially contribute to the interpretation of different cross-ancestry car-
diometabolic disease susceptibilities to obesity status.

Discussion
MS is a commonly used technique in proteomics research within the
biomedical field, with an advantage of not relying on conserved
binding regions of the protein target, enabling the discovery of
novel protein biomarkers. To the best of our knowledge, however,
only a small number of human cohorts have integrated MS-based
proteomics with human genetic data21,51. Leveraging MS-based
methods with a multistage strategy in 2958 Han Chinese partici-
pants, we identified 195 lead gene variant–protein associations in
total, depicting the genetic architecture of circulating proteins
in East Asians. Furthermore, we revealed the potential causal

Fig. 5 | Associations between proteins and clinically relevant phenotypes.
a Colocalization of cis-pQTLs and the clinical traits. The squares represent the
estimated effect size from the summary-data-based Mendelian randomization
analysis, and the lines represent the 95% confidence intervals. b Effect sizes from
disease GWAS studies against those from pQTL summary statistics. The orange
dashed lines show the estimate at the top cis-pQTL. The error bars represent the

standard errors of SNP effects. c Putative causal relationships between serum
proteins and clinically relevant phenotypes. The clinical traits were obtained from
GWAS summary statistics of BioBank Japan. The green represents proteins with cis-
instruments, while the red represents proteinswith trans-instruments. ○Praw < 0.05;
*PBonferroni < 0.05. GWAS genome-wide association analysis, SMR summary-data-
based Mendelian Randomization, CAD coronary artery disease.
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relationships between circulating protein levels and clinically rele-
vant phenotypes in East Asians.

We have also identified novel trans-pQTLs that may play a pivotal
role in establishing functional links between downstream effectors
(i.e., proteins) and disease endpoints, and reveal previously uni-
dentified pathways relevant to disease processes and etiology while
their effects on protein levels are mild. However, the physiological
significance of the above-mentioned trans-pQTLs is yet to be con-
firmed via in vitro or in vivo perturbation experiments.

From a drug-discovery perspective, the current study provided
putative druggable targets formultiple diseases, particularly the novel
ones that have not been prioritized in Europeans. Despite proteins are
the most common biological class of drug targets, there has been
mainly lacking research on non-EUR populations for new drug devel-
opment. This study, based on East Asians and high-throughput pro-
teomic technologies, enabled a greater understanding of the genetic
control of circulating levels of protein drug targets and biomarkers
and thereby, may improve pharmaceutical interventions and clinical
trials in non-European populations.

The cross-ancestry analyses revealed several proteins that may
be crucial for the development or suppression of BMI-induced T2D
and CAD, thereby potentially explained differences in the disease
susceptibility between Europeans and East Asians. Interestingly, in
the population of European ancestry, BMI was mainly positively

related to the identified circulating proteins, whereas the negative
associations of BMI with these circulating proteins were observed in
East Asians. Of these identified proteins, Factor H (CFH) has been
reported to regulate the alternative pathway of complement via
inactivating C3b and increasing the dissociation of C3 convertase
and C5 convertase52. A higher level of CFH could reduce inflamma-
tion and the formation of immune complex53. Another example is
heparin cofactor 2 (SERPIND1), a serine proteinase inhibitor that
suppresses the functions of thrombin and chymotrypsin54. Throm-
bin exerts proinflammatory effects via promoting complement
system activation by cleaving C5 into C5a55, or activating protease-
activated receptors (PARs), which stimulates the production of IL-8
and IL-148. However, the influence of different proteomics technol-
ogies (i.e., SOMAscan and MS) used in the two populations should
be considered. Although it will be advantageous to evaluate the
impact of ancestry differences by measuring blood proteomics
using the same approach in two populations, this sort of dataset was
not available at this stage to our knowledge. Thus, the detailed
mechanism underlying the relationship among these proteins,
obesity, T2D and CAD warrants further investigations.

In summary, the pQTLs identified and analyzed in this study
provide an unprecedented resource to unveil the genetic archi-
tecture of blood proteome in Han Chinese populations. The newly
discovered protein-disease relationships from MR analysis may

Protein

Clinically relevant trait

Disease

Positive association

Negative association

a.

b.

HHexokinase-4Hexokinase-4

Healthy joint Rheumatic arthritis

rs2244027 G allele 
associated with 
higher plasma 
GCK levels

rs2244027 A allele 
associated with 
lower plasma GCK 
levels

Example of the gene-protein-phenotype association Effect of GCK levels on 
rheumatic arthritis

Fig. 6 | Network representation of potential gene–protein–phenotype asso-
ciations. a Associations between proteins and diseases, as well as clinically rele-
vant traits found by Mendelian randomization analysis and colocalization analysis
(P <0.05 after Bonferroni correction). The solid line represents the
gene–phenotypeconnections that have yet to beprioritized in Europeans,whereas
the dashed lines represent those that have already been reported. The color of the
line denotes the effect directions (orange, positive associations; green, negative

associations). Proteins are represented by the gray dots, whereas diseases and
traits are represented by the blue and red dots, respectively. b An example from
the gene–protein–phenotype map. Higher hexokinase-4 (GCK) levels are asso-
ciated with a lower rheumatic arthritis risk. The plot shows the consistent effect of
GCK on rheumatic arthritis across two populations. The effect sizes are present as
the odds ratio per higher RINT(GCK). EAS East Asian, EUR European, RINT rank-
based inverse normal transformation.
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shed light on the development of novel drug targets for human
complex diseases. This is a unique resource for the cross-ancestry
evaluation of protein-targeted drug discovery. We also created a
web server as an interactive online resource (https://omics.lab.
westlake.edu.cn/data/proteins/) for the search and visualization of
summary statistics for genetic variants across all measured proteins
and peptides.

Methods
Ethics approval and consent to participate
The study protocol of Guangzhou Nutrition and Health study was
approved by the Ethics Committee of the School of Public Health at
Sun Yat-sen University and Ethics Committee of Westlake University.
The study protocol of Westlake Precision Birth Cohort was proved by
the Ethics Committee ofWestlake University. All participants provided
written informed consent.

Study participants and sample collection
Thediscovery cohort datawerederived from theGuangzhouNutrition
and Health study56,57. Together, it included up to 2410 participants
after excluding related individuals (genetic relatedness >0.05). Inclu-
ded participants were 40–83 years old, living in urban Guangzhou city.
Biological samples and questionnaires of the GNHS study were col-
lected at the time of recruitment (2008–2013) and follow-up was
scheduled every 3 years. Whole blood samples were collected after
overnight fasting. Subsequently, serum and buffy coat separated from
whole blood were stored at −80 °C.

Circulating proteomics profiling
Peptides were extracted from the serum samples as previously
described58. Briefly, 1 µL of serum samples were lysed using 20 µL of
lysis buffer with 8M urea (Sigma, #U1230) in 100mM ammonium
bicarbonate (ABB) at 32 °C for 30min. Then the lysates were reduced

Fig. 7 | Putative mechanism for difference in BMI-induced type 2 diabetes and
coronary artery disease susceptibility between Europeans andEastAsians.The
analysis comprised 41 proteins with pQTLs in two populations. a Shared genetic
architecture among two populations. EAS, East Asian; EUR, European. b Effect of
BMI on cardiometabolic disease risk. The effect sizes are present as odds ratios per
1 kg/m2 increase in BMI. The dots represent the estimated effect size, and the lines

represent the 95% confidence intervals. c Overview of obesity-related protein
patterns. The circular heatmap exhibits the effects of proteins on risk of CAD and
T2D and indirect effect of the BMI on CAD and T2D via each protein. All statistical
testswere two-sided. ○Praw < 0.05; *PBonferroni < 0.05.dHypotheticalmechanism for
susceptibility differences in cardiometabolic diseases between Europeans and East
Asians.
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and alkylated with 10mM tris (2-carboxyethyl) phosphine (TCEP,
Sigma #T4708) and 40mM iodoacetamide (IAA, Sigma, #SLCD4031).
The solution was diluted with 70 µL 100mM ABB and then a 2-step
overnight tryptic digestion (Hualishi Tech. Ltd, Beijing, China), at an
enzyme/substrate ratio of 1:60 for 4 h and 12 h, successively. There-
after, the digestion was quenched with 1% trifluoroacetic (Thermo
Fisher Scientific, #T/3258/PB05) to pH 2–3. Peptides were cleaned
using C18 SOLAu columns (Thermo, #60209-001) before MS analysis.
Peptide samples were then analyzed by SWATH-MS over a 20min
linear LC gradient on a TripleTOF 5600 system (SCIEX, CA, USA)
coupled to Eksigent NanoLC 400 System (Eksigent, Dublin, CA, USA).
The SWATH-MS method is composed of a 100ms of full TOF MS scan
with an acquisition range of 350–1250m/z, followed by 55 sequential
MS/MS scans of variable m/z isolation windows from 100 to 1500Da.
The accumulation time was set at 30ms per isolation window, result-
ing in a total cycle time of 1.9 s.

After SWATH acquisition, the wiff files were analyzed using DIA-
NN (1.7.12)59 against a serum spectral library containing 3474 peptide
precursors and 536 uniqueproteins fromSwiss-Prot database ofHomo
Sapiens60. In the DIA-NN setting, the peptide length rangewas set from
5 to 30, the precursor m/z range was set from 400 to 1200, and the
fragment ion m/z range was set from 100 to 1500. The retention time
extraction window was automatically set by the software, and them/z
extraction window for MS1 and MS2 was 20 ppm and 50 ppm,
respectively. Protein and peptide FDRs were controlled below 1%.

Quality control of proteome analysis
The quality of proteomic data was ensured at multiple steps sepa-
rately. Proteomic matrix contained missing values. Missing values
can be due to the low abundance in certain samples or technical
issues. First, to remove the proteomic data with poor quality, we
excluded the data with protein identifications below 80% of the
median value. Subsequently, we removed the peptide sequences
with missingness over 80%. This strategy was aimed to exclude
peptide sequences that can only be identified in a small number of
samples, which might be false-positive signals due to technical
issues. For 1394 biological replicates (i.e., duplicated samples
per serum specimen that were randomly selected from all partici-
pants), the median Pearson correlation coefficient was 0.973;
whereas for 5766 technical replicates (i.e., replicates were acquired
with randomly repeated measurements of per prepared sample
including unique and duplicated ones), it was 0.965, indicating high
reproducibility of proteomics workflow. Then we filled the missing
values with each other and calculated mean value for the quanti-
tative results of replicates with a Pearson correlation higher than
0.8 as the final quantitative result of the sample.

Genotyping data
DNAwas extracted from leukocyte using the TIANamp® BloodDNAKit
as per the manufacturer’s instruction. DNA concentrations were
determined with the Qubit quantification system (Thermo Scientific,
Wilmington, DE, USA). Extracted DNA was stored at −80 °C. Illumina
ASA-750K arrays were applied for genotyping. We removed the SNPs
with HWE P value <0.00001 and missing call rate > 0.05 (Supplemen-
tary Data 1). The genetic relationship matrix generated from the LD-
pruned (r2 < 0.2) autosomal SNPs (n = 109,079) with GCTA-GREML was
used to compute the principal components and cryptic relatedness.
Individuals with a high or low proportion of heterozygous genotypes
(outliers defined as 3 standard deviations), sex mismatch, or different
ancestries (the first two principal components ±5 standard deviation
from the mean) were excluded61. After that, genetic variants were
mapped to the 1000 Genomes Project Phase3 v5 by SHAPEIT62,63, and
then imputed with 1000 Genomes Project Phase3 v5 reference panel
by Minimac364,65. We included genetic variants with imputation accu-
racy RSQR>0.3 and MAF >0.05 for the GWAS analyses.

Genome-wide association analysis in the discovery cohort
(Guangzhou Nutrition and Health Study)
In themainmodel,we replaced themissing data by 1/2 of theminimum
observed value in the protein or peptide matrix. The abundances of
proteins were rank inverse normalized, and then we applied the GWAS
analysis at four measurement batches according to the time of fin-
ishing the measurements of the proteome (here we called them four
sub-cohorts). In eachmeasurement batch (sub-cohort), a mixed linear
model (MLM)-based association analysis was performed with GCTA-
MLMA16,17, adjusted for the covariates including age, sex, and the first
five genetic principal components of ancestry as fixed effects and the
effects of all the SNPs as random effects.

Meta-analysis of genome-wide association studies
GWAMA software was used to perform a meta-analysis of our serum
proteome GWAS analyses across the four sub-cohorts based on a
random-effectmodel66. The genome-wide significant associations that
should have (i) meta-analysis P < 5 × 10−8/n, where n is the number of
proteins or peptideprecursorsused for the analysis; (ii)P <0.05 in four
sub-cohorts; (iii) consistent direction of effect across the sub-cohorts.

Power calculation
The genetic association has a test statistic which is a chi-square dis-
tribution with one degree of freedom. It is a non-central chi-square dis-
tribution under the alternative hypothesis, while it is a central chi-square
distribution under the null alternative. We calculated the non-centrality

parameter (NCP) by NCP= 2f 1�fð Þb2N
1�2f 1�fð Þb2, where N is the sample size, f is the

allele frequency and b is the estimated value of the GWAS analysis. The
test statistic of a central chi-square distribution with one degree of

freedom is t = F�1ð1� p,1Þ, where F is the cumulative distribution func-
tion of a central chi-square distribution with one degree of freedom and
p is the significance threshold of GWAS analysis. The statistical power is
P = 1� Gðt,NCP,1Þ, where G is the cumulative distribution function of a
non-central chi-square distribution with one degree of freedom.

Conditional analysis
To identify secondary signals at the identified loci, conditional analysis
was implemented with GCTA-COJO18 at a stepwise selection procedure
for both identified proteins and peptides with the threshold of
P < 1.6 × 10−10 or 3.9 × 10−11, respectively. Linkage disequilibrium (LD)
was estimated in 2536 unrelated participants from the discovery study.

Heritability analysis
The SNP heritability was estimated according to the procedures
described by the previous study5. First, phenotypic variance explained
by the lead pQTLs was calculated by 2β2MAF(1−MAF), where βwas the
effect size of the genetic variance and MAF represented the minor
allele frequency. Given that the LDSC regression performed poorly
when large effect geneswerepresent and the varianceexplainedby the
major loci could be double-counted via LD, the contribution of the
polygenic background was estimated in SNPs other than the genetic
variants located within 10Mb of the lead pQTLs. We used the LDSC
regression to estimate the contribution of the polygenic background
for the proteins with genome-wide significant associations67.

In addition, to capture the variance explained by the SNPs jointly
associated with the lead SNPs, we used the formula qj

2 = 2 ×
β × βj ×MAF × (1 −MAF), where βj was the estimate from the condi-
tional analysis.

Functional annotation
A pQTL was defined as cis when it was located within 1Mb distance of
the transcript starting site (TSS). TSSs of proteins were accessed from
Ensembl GRCh37 Version 102 by the UniProtKB ID (using “biomaRt” R
package). For all identified loci, the predicted function was annotated
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with Ensembl VEP release 10468. The nearest gene of each locus was
annotatedwith GENCODE Version 29, using BEDOPS (“closest-features”
function)69,70. Expression profiles for proteins in tissues were based on
The Human Protein Atlas Version 20.1 and Ensembl version 92.3833,34.

Replication analysis of the previously identified pQTLs in the
literature
Tocompareour resultswith those in theprevious studiesusingdifferent
techniques5,8,12,19–21, based on the discovery cohort, we tried to replicate
those previously identified associations. After removing the com-
plementary bases in consideration of flipping strands, genetic associa-
tions were considered to be replicated up to the criteria: (i) significant P
value after FDR correction; (ii) consistent direction of effect.

Replication analysis of the novel identified pQTLs
To test whether the novel identified pQTLs in our discovery cohort
could be replicated in an independent cohort, we assessed them in the
Westlake Precision Birth Cohort (WEBIRTH), consisting of 548 gesta-
tional women aged 21–44 years old (ClinicalTrials.gov Identifier:
NCT04060056). Serum proteome profiling and processing of genetic
data were performed with the identical pipeline as the discovery
cohort. We excluded one of each pair of participants with estimated
genetic relatedness >0.05. After that, the protein abundances were
rank inverse normalized and performed with the GWAS analysis using
GCTA-MLMA, adjusted for covariates including age, gestational week,
and the first five genetic principal components of ancestry.

Colocalization of pQTLs with clinically relevant phenotypes
To investigate the genetic correlation of the circulating protein levels
with the clinically relevant phenotypes, we performed the multi-SNP-
based SMR (summary-data-based Mendelian randomization) test and
HEIDI (heterogeneity in dependent instruments) analysis in the Asian
populations23,24,30, using the cis-pQTLs as the exposure variables and
drawing the outcome SNPs from the Biobank Japan (BBJ) study as well
as GWAS summary statistics of type 2 diabetes from the AGEN-T2D
study25–28. The reference sample was 2536 unrelated participants from
the GNHS study. We excluded the SNPs located in the MHC region
(chr6:28,477,797–33,448,354) due to the complexity of this region and
included the gene probes or proteins with at least cis-acting variants at
P < 5 × 10−8. The significance at Bonferroni correction <0.05 and
acceptance by the HEIDI test (PHEIDI > 0.05) were both required to be
recognized as significant.

Mendelian randomization analysis
We performed a bi-directional two-sample Mendelian randomization
(MR) analysis with cis-pQTLs (LD r2 < 0.05) clumped at P < 5 × 10−8 and
all identified trans-acting variants. The outcome variables were
obtained from the aforementioned studies including BBJ and the
AGEN-T2D study25–28. We reported the associations passing the Bon-
ferroni correction at P-corrected <0.05. GSMR (Generalized Summary-
data-based Mendelian Randomization)30 was used for the bi-
directional MR analysis. For each trait included in the reverse MR
analysis, the independent instrumental variables (LD r2 < 0.05) were
clumped at P < 5 × 10−8 in PLINK71.

Mediation analysis
We used a two-step MR approach with GSMR to investigate the effect
of BMI on T2D via proteins. First, we evaluated the total effect of BMI
on T2D based on summary-level GWAS results28,43,44,46. Given that the
BMI s.d. was larger in the European populations (s.d. = 3.7 in the Bio-
bank Japan study, 4.65 in the GIANT study), we converted 1-SD unit to
1 kg/m2 unit. Then theMR analysis for the effect of BMI on proteins (α)
and the effect of proteins on T2D (β) to estimate the indirect effects
with “product of coefficients”47. The standard errors for the indirect
effects were derived as the formula σαβ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2σ2
β +β

2σ2
α � σ2

ασ
2
β

q

.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
An interactive web resource (https://omics.lab.westlake.edu.cn/data/
proteins) was developed to visualize our pQTL data. The raw data for
serum proteomics are available in the iProX (https://www.iprox.cn/
page/home.html) at accession numbers PXD039236, PXD039231, and
PXD038253. Other datasets generated during and/or analyzed during
this study are available upon reasonable request by bona fide
researchers for specified scientific purposes via contacting the corre-
sponding authors.

Code availability
Analysis code is available via: https://github.com/nutrition-westlake/
Chinese_pQTL/blob/main/Data_analysis.
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