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Reciprocal causation mixture model for
robust Mendelian randomization analysis
using genome-scale summary data

Zipeng Liu1,2,3,7, Yiming Qin 1,2,3,7, Tian Wu 1, Justin D. Tubbs 1,
Larry Baum 1,2,3, Timothy Shin Heng Mak3, Miaoxin Li 1,4,5 ,
Yan Dora Zhang 3,6 & Pak Chung Sham 1,2,3

Mendelian randomization using GWAS summary statistics has become a
popular method to infer causal relationships across complex diseases. How-
ever, the widespread pleiotropy observed in GWAS has made the selection of
valid instrumental variables problematic, leading to possible violations of
Mendelian randomization assumptions and thus potentially invalid inferences
concerning causation. Furthermore, current MR methods can examine cau-
sation in only one direction, so that two separate analyses are required for bi-
directional analysis. In this study, we propose a ststistical framework, MRCI
(Mixture model Reciprocal Causation Inference), to estimate reciprocal cau-
sation between two phenotypes simultaneously using the genome-scale
summary statistics of the two phenotypes and reference linkage dis-
equilibrium information. Simulation studies, including strong correlated
pleiotropy, showed thatMRCI obtainednearly unbiased estimates of causation
in both directions, and correct Type I error rates under the null hypothesis. In
applications to real GWAS data, MRCI detected significant bi-directional and
uni-directional causal influences between common diseases and putative risk
factors.

The advent of genome-wide association studies (GWASs) has con-
firmed widespread genetic correlations among numerous complex
diseases and traits1. Such correlations may represent pleiotropic
genetic effects on multiple phenotypes, or causal relationships
between phenotypes2. The analysis of GWAS data may help to iden-
tify causal relationships between phenotypes, contributing to our
understanding of disease etiology. In recent years, causal modeling
using Mendelian randomization (MR) has been widely applied to
GWAS summary data3,4. MR uses genetic variants, typically single
nucleotide polymorphisms (SNPs), as instrumental variables (IVs)

which, to be valid, should be (1) associated with the exposure (the
relevance assumption), (2) not associated with confounders of
exposure and outcome (the independence assumption), and (3) only
associatedwith outcome through exposure (the exclusion restriction
assumption)5. Basically, MR estimates the causal effect of an expo-
sure on an outcome by the ratio of the effect of a genetic variant on
the outcome to the effect of the same genetic variant on the expo-
sure. In practice, due to the high polygenicity of complex traits,
multiple SNPs may be necessary to increase the power and robust-
ness of MR6.
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However, using multiple SNPs as IVs also increases the chance of
horizontal pleiotropy for some SNPs7, which would violate the
assumption for methods like inverse-variance weights (IVW)4. MR-
Egger8 and MR-PRESSO9 address the issue of horizontal pleiotropy
under the InSIDE (instrument strength independent of direct effect)
assumption, whileWeightedMedian10 andWeightedMode11 are robust
to horizontal pleiotropy provided that there is an adequate proportion
of valid IVs in estimation. More recent methods such as MRMix12

assume a normal-mixture model to consider horizontal pleiotropic
effects. While these methods address the violation of the MR
assumptions by either removing pleiotropic SNPs or explicitly mod-
eling pleiotropic effects, they still involve the selection of independent
IVs, which may exclude the majority of SNPs, with consequent loss of
information. One recent advance is to account for correlated pleio-
tropy by estimating the nuisance parameters of a mixture model from
randomly selectedgenome-wide summarydata.However, thismethod
still requires a set of linkage disequilibrium (LD) pruned variants to
calculate posterior distributions to fit the causation model13. As with
other existing methods, inference of the causal relationship in the
reverse direction requires a separate analysis with a different set of
IVs7,14, which may not always be a nontrivial process.

In recent years, causal modeling based on MR approaches has
been applied to investigate the inter-relationships between a wide
range of phenotypes for which summary GWAS data are available15.
With such widespread usage and the proneness of MRmethodologies
to violations of model assumptions, there is a risk of false positive
findings from such studies. False positive causal inferences may be
particularly likely when most causal SNPs are pleiotropic so that few
SNPs can serve as valid IVs16.

In this article, we propose a statistical method called mixture
model reciprocal causal inference (MRCI) to infer the causal paths
simultaneously in both directions between two phenotypes. Our
method uses GWAS summary statistics of all available SNPs for the two
phenotypes, together with reference LD information on the SNPs. We
consider SNPs to fall into four mutually exclusive effect categories
(trait-specific, pleiotropic, and null SNPs) and construct a composite
likelihood function that takes into account the LD among SNPs.
Compared with existing MR approaches our method tests for reci-
procal causation without the selection of IVs, thus making full use of
genetic informationwhile explicitlymodeling pleiotropy. In particular,
MRCI is robust even in situations where most causal variants are
pleiotropic. We applied MRCI to cardiovascular and metabolic dis-
orders and some of their putative risk factors using public GWAS
summary data, with results that provided insights into the causal
relationship between several pairs of phenotypes.

Results
Overview of MRCI
All phenotypes and additively coded genotypes were assumed to have
been standardized to have unit variance. In the full model, SNPs were
assumed to fall into fourmutually exclusive components: trait-specific
(G1,G2), pleiotropic (GC) and null SNPs (G0), with mixing proportions
π1,π2,πc and π0, respectively. SNPs in the G1 and G2 components have
direct effect sizes of γ1 and γ2 on phenotype Y 1 and Y 2 respectively,
while GC SNPs have direct effect sizes of γC1 and γC2 with covariance
ρC1,C2, on Y 1 and Y 2. The effect sizes γ1, γ2, γC1 and γC2 were assumed to
be normally distributed, and their variances were denoted as σ2

1 , σ
2
2,

σ2
C1and σ2

C2, respectively. Two reciprocal causal paths (δ12 and δ21)
were specified between Y 1 and Y 2 (Fig. 1). Additionally, we considered
systemic biases such as population stratification (a1 and a2) and sam-
ple overlap (ρ0) in variance and covariance estimates for phenotype Y 1

and Y 2 in the model. From the above parameters, we also calculated
the genetic correlation (rg) between the two phenotypes.

From these assumptions, we derived the bivariate distribution of
the marginal effect size estimates of the two phenotypes from their

respectiveGWAS. The covariancematrix of thisbivariatedistribution is
determined by the mixture distribution of the direct effect sizes γ, the
reciprocal causal effects δ and the nuisance parameters a1, a2, and ρ0

(see the “Methods” section). We then calculated the composite like-
lihood function for all available SNPs to estimate the two causal effects
as well as other nuisance parameters by an expectation-maximization
(EM) algorithm, together with robust sandwich estimates of their
standard errors. Besides the above full model scenario, we further
considered four sub-model scenarios in which one or two components
were absent (Supplementary Fig. 1). Under these sub-model scenarios,
we found that full model estimation often produced poor estimates,
and developed a method based on model averaging to achieve more
robust model fitting.

We then performed comprehensive simulations, including the full
model and sub-model scenarios, to evaluate the estimation accuracy,
Type I error rate, and statistical power of MRCI, compared to existing
MR methodologies.

Simulation results
Estimation and hypothesis testing under the full model. We com-
pared the accuracy of the causal estimates betweenMRCI and IV-based
MR methods under several simulated low polygenicity scenarios in
which the true IVs could be considered nearly independent to satisfy
the assumption of classic MR methods. MRCI produced nearly
unbiased estimates for both causal directions under both independent
and correlated pleiotropy scenarios. Not surprisingly, using exposure-
specific true causal SNPs as IVs in IV-based MR methods always
obtained unbiased estimates. However, many IV-based MR methods
generated biased estimates when GWAS significant SNPs for the
exposure phenotype were used as IVs, especially under scenarios with
correlated pleiotropy, except for Weighted Mode. In these scenarios,
excluding IVs which showed strong GWAS association with the out-
come phenotype reduced the magnitude of the bias (Fig. 2a–c and
Supplementary Fig. 2).

MRCI achieved correct control of the Type I error rates under all
scenarios when the exposure phenotype had no effect on the outcome
phenotype. Not surprisingly, IV-based MR methods also correctly
controlled Type I error rates in the perfect scenario where all IVs were
exposure-specific true causal SNPs. However, when IVs were selected
according to statistical significance in GWAS of the exposure pheno-
type, most of the MR methods showed severely inflated Type I error
rates in simulations with correlated pleiotropy. Excluding SNPs which
showed a strong association with the outcome phenotype decreased
the Type I error rates, sometimes to the correct level (Weighted
Median), when correlated pleiotropy was present (Fig. 2d and Sup-
plementary Tables 2–4).

In terms of statistical power under the alternative hypothesis, we
only considered MR methods (MR-Egger, Weighted Mode, and
MRMix) that demonstrated correct control of Type I error rates when
using statistically significant exposure-associated SNPs as IVs. MRCI
and MR methods achieved comparable power in low polygenicity
simulations: as high as almost 1 in the stronger causal direction and
slightly lower in the weaker causal direction. For IV-based MR meth-
ods, excluding potential outcome-associated significant SNPs did not
guarantee a sufficient power increase in correlated pleiotropy sce-
narios (Supplementary Tables 3–7).

Additionally, simulations of other scenarios, including high poly-
genicity and asymmetry between the two phenotypes (different levels
of heritability and polygenicity, and where one phenotype was binary
and the other quantitative) showed that MRCI achieved nearly
unbiased estimates, well-controlled Type I error rates, and favorable
statistical power in both causal directions (Supplementary Table 8).
Sample overlap was reflected in the estimates of the nuisance para-
meter ρ0 and had no obvious effects on causal estimates in the simu-
lation (Supplementary Fig. 3). Genetic correlation estimates calculated
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from the MRCI parameter estimates were highly consistent with those
obtained from LD Score regression (LDSC)1 (Supplementary Table 9).
Simulations with different sample sizes show that when the sample
sizes of the GWAS of the two phenotypes are unequal, the accuracy
of the causal effect estimate from the phenotype with the larger
sample size to the phenotype with the smaller sample size is dis-
proportionately reduced compared to the causal effect estimate in the
other direction (Supplementary Table 10).

Estimation and hypothesis testing under sub-models. When the true
model does not contain all four SNP components, there is a risk of
incorrect inference from estimation that assumes the full model. To
examine the robustness of MRCI, we performed estimations under
four sub-models which allowed for the absence of one or two specific
components.Writing the fullmodel as s1,2,C (indicating the presence of

Y 1-specific SNPs, Y 2-specific SNPs, and pleiotropic SNPs, as well as the
omnipresent null SNPs), the four sub-models were s1,C , s2,C ,s1,2 and sC
(indicating the presence of the corresponding SNP components). We
performed simulations to investigatemodel fitting performanceunder
these sub-models, excluding s1,C as it is equivalent to s2,C (Supple-
mentary Fig. 1 and Table 1). We found that estimation assuming the full
model often did not correctly infer the absent component, which
resulted in biased causal effect estimates and inflatedType I error rates
(Supplementary Fig. 4a).

While estimation under the true model performed well in simu-
lations, the true model is not known when applied to real data.
Accordingly, to improve the robustness of MRCI we implemented an
additional model fitting procedure which involved estimation under
each sub-model and the fullmodel, and performedmodel averaging of
parameter estimates with weights that optimized the composite

Fig. 1 | Schematic diagram of MRCI. a Y 1 and Y 2 represent a pair of phenotypes.
Genotypes can be divided into four components: Y 1-specific causal SNPs (G1),
Y 2-specific causal SNPs (G2), pleiotropic causal SNPs (GC ) and null SNPs (G0, not
shown). Lines connecting these genotypes represent the LD correlation between
SNPs. Arrow lines from genotype to phenotype represent the direct effect of
corresponding SNPs (γ1, γ2, γC1 and γC2) on the phenotypes. Covariance (ρC1,C2)
between γC1 and γC2 is allowed. Arrow lines between the twophenotypes represent
the reciprocal causal paths (δ12 and δ21). Non-additive genetic effects on pheno-
types are representedby e1 and e2. In real situations, one or two components in the
model could be absent and ourmethod could handle these sub-model scenarios in
a robust way. b Illustration of several representative simulation scenarios. simIDs

are LoS1, LoS3, LoS7 (upper panel from left to right), LoS2, LoS4, LoS8 (lower panel
from left to right) (see Supplementary Table 1). x-axis and y-axis show the stan-
dardized effect size estimates for GWAS Y 1 and Y 2, respectively. Red, orange,
green, and gray points represent Y 1-specific, Y 2-specific, pleiotropic, and null SNPs
in the simulation respectively. For null causation, δ12 = δ21 = 0:0; for uni-directional
causation, δ12 = 0:1, δ21 = 0:0; for bi-directional causation, δ12 = 0:1, δ21 = 0:05.
For independent pleiotropy, ρC1,C2 =0:0; for correlated pleiotropy, ρC1,C2 =0:1.
In these plots, the mixing proportions for non-null components were set as
π1 =π2 =πc = 1 × 10

�4, and the heritabilities contributed by Y 1-specific, Y 2-specific,
and pleiotropic SNPs were set as 0.3, 0.3, and 0.1, respectively (see Supplementary
Fig. 1 for other simulated scenarios).
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likelihood. Simulation results showed that this procedure usually
assigned lowweights to incorrect sub-models (Supplementary Fig. 4b).
When the averaged model was preferred, which was usually the case
when the exposure-specific component is absent (Supplementary
Fig. 4c), parameter estimates from the model averaging procedure
were adopted, insteadof the fullmodel estimates. In simulations under
null, uni-directional, and bi-directional causation models, this method

gave nearly unbiased estimates of the reciprocal causal effects (Fig. 3a)
and correct control of Type I error rates when a causal effect was
absent, and acceptable powerwhen a causal effectwas present and the
model included exposure-specific SNPs (Fig. 3b). We also tested sub-
model scenarios with unbalanced pleiotropy effects and observed
similar estimation results of the reciprocal causations (Supplemen-
tary Fig. 5).
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Comparison with CAUSE and MRMix. CAUSE13 and MRMix12 are two
recent methods that share similarities with MRCI. With large samples
(50,000 for both phenotypes), when the true model was s1,2,C or s1,2,
simulation results showed that these twomethods produced unbiased
estimates and correct Type I error rates. However, under scenarios
where trait-specific SNPs were absent for one or both phenotypes (i.e.,
s2,C and sC) these methods obtained biased causal estimates and
inflated Type I error rates for the causal direction in which the
exposure-specific SNPs were absent (Fig. 4a, b). With small samples
(20,000 for both phenotypes), CAUSE produced biased estimates and

increased Type I error rates, even under the full model. Under these
small sample scenarios, both MRCI and MRMix maintained unbiased
estimates and corrected Type I error rates, with MRCI achieving
slightly smaller estimation variance and greater statistical
power (Fig. 4c).

Causation of risk factors on common diseases. We applied MRCI to
study causal relationships between 3 common diseases (coronary
artery disease, CAD; ischemic stroke, IS; type 2 diabetes, T2D) and 16
putative risk factor phenotypes (Table 1). Figure 5 shows the estimated

Fig. 2 | Comparison of estimates for the reciprocal causal effect by ourmethod
and instrumental variable (IV)-based MR methods in simulations with corre-
lated pleiotropy. a Estimates in null causation scenarios (δ12 = δ21 = 0:0, LoS2).
b Estimates in uni-directional causation scenarios (δ12 = 0:1 and δ21 = 0:0, LoS4).
c Estimates in bi-directional causation scenarios (δ12 = 0:1 and δ21 = 0:05, LoS8).
d Rejection rates of the null hypothesis in bi-directional, uni-directional, and null
scenarios. In plots a–c, our method took genome-scale SNPs for estimation and
produced nearly unbiased estimates in different scenarios; the true values of δ12

and δ21 are indicated by up- and down-pointing triangles, respectively. For MR
methods, IVs were selected in three ways: (1) use the exposure-specific true causal
SNPs in the simulation as IVs; (2) use exposure-associated SNPs (p-value < 5 × 10�8)

after clumping but exclude potential outcome-associated SNPs (defined as p-
value < 5 × 10�5 with the outcome); (3) use significant exposure-associated SNPs
after clumping regardless of their associationwith outcome. In plotd, the exclusion
criteria were applied to IV-based MR methods and our method shows well-
controlled Type I error rates and adequate power. In these plots, ρC1,C2 for the
correlated pleiotropy is 0.1; themixing proportions for non-null components were
π1 =π2 =πc = 1 × 10

�4; the heritabilities contributed by Y 1-specific, Y 2-specific, and
pleiotropic SNPs were 0.3, 0.3, and 0.1, respectively (note: The selection of
exposure-specific true causal SNPswas not applied toMRMix due to its assumption
of a normal-mixture distribution).

Table 1 | Descriptive summary statistics of included traits

Traits Total reported
sample size

Number of
reported cases

Number of repor-
ted controls

Number of independent
significant SNPs/loci

Variance explained by
significant SNPs/loci (%)

Publication

CAD 148,172 10,801 137,371 66 21.2 Nelson et al.
(2017)33

IS 440,328 34,217 406,111 2 0.6–1.8 Malik et al. (2018)34

T2D 898,130 74,124 824,006 243 18.0a Mahajan et al.
(2018)35

BirthWeight 298,142 – – 190 7.0 Warrington et al.
(2019)36

BMI 681,275 – – 941 6.0 Yengo et al.
(2018)37

BodyFat 89,297 – – 7 0.6 Lu et al. (2016)38

Height 693,529 – – 3290 24.6 Yengo et al.
(2018)37

FastGluc 140,595b – – 7c – Lagouet al. (2021)39

FastInsulin 98,210b – – 1c – Lagouet al. (2021)39

HDL 188,577 – – 70 1.6 Willer et al. (2013)40

LDL 188,577 – – 57 2.4 Willer et al. (2013)40

Triglycerides 188,577 – – 37 2.1 Willer et al. (2013)40

CRP 418,642 – – 526 13.0 Han et al. (2020)41

CigPerDay 337,334 – – 55 ~1.1 Liu et al. (2019)42

DrinksPerWeek 941,280 – – 99 ~0.2 Liu et al. (2019)42

pulsePressure 757,601 – – 143/62d 2.6 Evangelou et al.
(2018)43

dBP 757,601 – – 130/120d 4.5 Evangelou et al.
(2018)43

sBP 757,601 – – 183/81d 4.8 Evangelou et al.
(2018)43

MDD 500,199 170,756 329,443 102e 1.5–3.2% Howard et al.
(2019)44

CAD coronary artery disease, IS ischemic stroke, T2D type 2 diabetes,BirthWeight birth weight, BMI bodymass index, BodyFat body fat percentage, FastGluc fasting glucose level, FastInsulin fasting
insulin level,HDL high-density lipoprotein cholesterol level, LDL low-density lipoprotein cholesterol level, Triglycerides triglyceride level,CRPC-reactive protein level,CigPerDay cigarettes per day,
DrinksPerWeek drinks per week, pulsePressure pulse pressure, dBP diastolic blood pressure, sBP systolic blood pressure, MDDmajor depressive disorder.
aTrait variance explained by all GWAS SNPs/loci.
bMaximum number of samples used for meta-analysis, not only European population.
cDiscoveries in this study.
dTwo-stage/one-stage. One-stage analysis criteria: p-value < 5 × 10−9 for the discovery meta-analysis (757,601 samples), p-value < 0.01 for UKB (458,577 samples), p-value < 0.01 for ICBP
(299,024 samples) and concordant direction of effect between UKB and ICBP. Two-stage analysis criteria: genome-wide significance in the combinedmeta-analysis, p-value < 0.01 in the replication
meta-analysis and concordant direction of effect.
eFor all meta-analysis, not specific to European populations.
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reciprocal causal effects (δ) between these diseases and phenotypes.
Considering that 96 tests were performed, the Bonferroni adjusted
significance level is 5:0× 10�4. Causal influences significant at this level
were from low-density lipoprotein level (LDL) to CAD (δ =0.32, 95%
CI = [0.18,0.47], p-value = 1.7 × 10−5), and from body mass index (BMI)
to T2D (δ =0.72, 95% CI = [0.59,0.85], p-value = 3.8 × 10−30). In the
reversedirection, significant causal influencesweredetected fromT2D
to BMI (δ = −0.17, 95% CI = [−0.24,−0.10], p-value = 2.2 × 10−6) and fast-
ing glucose (δ =0.32, 95% CI = [0.20, 0.44], p-value = 6.9 × 10−8).

A number of nominally significant (p-value < 0.05) causal effects
that did not survive multiple testing adjustments were detected
(Fig. 5). These included effects of fasting glucose on CAD and LDL on
both IS and T2D. Nominally significant effects in the reverse direction
includedCADonBMI, LDL anddiastolic bloodpressure (dBP), andT2D
on birth weight.

Discussion
We have developed a new method, MRCI, to jointly estimate the
reciprocal causal effects between two phenotypes using GWAS sum-
mary statistics and reference LD data. Our extensive simulation stu-
dies, under both independent pleiotropy and correlated pleiotropy
scenarios, indicate that MRCI obtains nearly unbiased estimates of
causation in both directions, and maintains well-controlled Type I
error rates under the null hypothesis, even when most causal SNPs for

one or both phenotypes are pleiotropic. MRCI also achieves compar-
able statistical power to other methods when Type I error rates are
controlled.

Our simulations showed that existingMRmethods that require the
selection of IVs produced unbiased estimates and correct Type I error
rates when using genome-wide significant exposure-associated IVs, for
scenarios with independent pleiotropy. However, somemethods often
produced biased estimates and severely inflated Type I error rates in
the presence of correlated pleiotropy. ForMR-Egger8 andMR-PRESSO9,
designed to cope with horizontal pleiotropy under the InSIDE
assumption, excluding potential outcome-associated SNPs according
to a p-value cut-off helped control Type I error, but in practice, the
optimal choice for cut-off is unknown and may vary depending on the
genetic architecture of the phenotypes as well as GWAS sample sizes.
These are important limitations as pleiotropy is common for complex
traits9, and independent pleiotropy is implausible8.

The robustness of MRCI is partly derived from the explicit con-
sideration of sub-models with absent SNP components during model
fitting. When an SNP component is absent, estimation under the full
model sometimes incorrectly infers the absent SNP componentswhich
can lead to spurious inferences on the causal effects. Thus, we perform
estimation under both the full model and sub-models, but the goal is
not to select a single best model. Rather, our aim is to obtain robust
causal estimates. Based on simulation performance, our method of

Fig. 3 | Estimationaftermodel averaging. a Final estimatesof causal effects under
null, uni-directional, and bi-directional causations in four scenarios (s1,2,C , s2,C , s1,2,
and sC). When the exposure-specific SNPs exist, the final estimates after model
averaging still produced nearly unbiased estimates in simulated scenarios. For null
causation (gray) δ12 = δ21 = 0:0; for uni-directional causation (blue), δ12 = 0:1 and
δ21 = 0:0; for bi-directional causation (purple), δ12 = 0:1 and δ21 = 0:05. The true
causation values of δ12 and δ21 are indicated by up- and down-pointing triangles,
respectively. b Rejection rates of the null hypothesis of the final δ12 and δ21

estimates after model averaging in different scenarios. For the zero-effect causal
direction, the Type I error rates were well-controlled; for the non-zero-effect causal
direction, the presence of the exposure-specific SNPs showed reasonably good
power, and the absence of the exposure-specific SNPs showed conservative power
of estimation. In the simulations, themixing proportions of the present component
were 1 × 10�3; the pleiotropic effects were correlated (ρC1,C2 =0:1); and the herit-
abilities contributed by Y 1-specific, Y 2-specific and pleiotropic SNPs (if present in
the sub-model scenario) were 0.3, 0.3, and 0.1, respectively.
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Fig. 4 | Estimation comparison with CAUSE and MRMix. a Estimates from MRCI
(green), CAUSE (orange), and MRMix (blue) under null, uni-directional, and bi-
directional causations in four scenarios (s1,2,C , s2,C , s1,2, and sC). CAUSE and MRMix
produced severelyover-estimated causal effects when exposure-specific SNPswere
absent in the sub-model s2,C and sC . For null causation, δ12 = δ21 = 0:0; for uni-
directional causation, δ12 = 0:1 and δ21 = 0:0; for bi-directional causation, δ12 = 0:1
and δ21 = 0:05. The true causation values of δ12 and δ21 are indicated by up- and
down-pointing triangles, respectively. b Rejection rates of the null hypothesis for
δ12 and δ21 estimates from MRCI (green), CAUSE (orange), and MRMix (blue) in
different simulated scenarios. CAUSE and MRMix produced inflated Type I error
rates for the causal direction where exposure-specific SNPs were absent (s2,C and
sC). c Estimates of causal effects and rejection rates of null hypothesis from MRCI

(green), CAUSE (orange) and MRMix (blue) under null, uni-directional, and bi-
directional causations in s1,2,C scenarios with small sample sizes (20,000 indivi-
duals). Decreased GWAS power led to over-estimates for CAUSE and larger esti-
mation variance forMRMix. MRCI produced nearly unbiased estimates and correct
Type I error rates. In these results, the estimates of MRCI came from the final
estimates after model averaging; p-value thresholds for CAUSE and MRMix were
1 × 10�3 and 5× 10�8, respectively. In the simulations, themixing proportions of the
present component were 1 × 10�3; the pleiotropic effects were correlated
(ρC1,C2 =0:1); the heritabilities contributed by Y 1-specific, Y 2-specific and pleio-
tropic SNPs (if present in the sub-model scenario) were 0.3, 0.3, and 0.1,
respectively.

Article https://doi.org/10.1038/s41467-023-36490-4

Nature Communications |         (2023) 14:1131 7



model averaging reduces the chance of such spurious inferences and
produces unbiased estimates and correct control of Type I error rates
even in these challenging scenarios. Two recentmethods, CAUSE13 and
MRMix12, which share some similarities with MRCI, nevertheless pro-
duced biased estimates and inflated Type I error rates when a trait-
specific SNP component was absent.

MRCI also provides estimates for nuisance parameters such as
heritabilities and genetic correlation, which may help clarify the
genetic architecture of the two phenotypes. In our model, the para-
meters for the population stratification are also considered nuisance
parameters,which behave similarly to genomic control when testing in
mixed population simulations and barely affect the causal estimates in
the simulated scenarios (Supplementary Fig. 6). Since most reported
GWAS would have minimized population stratification effects prior to
association testing, including these parameters during estimation
represents an additional safeguard. The genetic correlation estimates
fromMRCI are consistent with results obtained from LDSC. Moreover,
our model takes the sample overlap into consideration, including
complete overlapwhich enables GWAS results obtained from the same
sample (e.g., UK Biobank) to be analyzed for causal relationships.

When applied to realGWASdata,MRCIwas able to identify several
well-established causal relationships at a Bonferroni-corrected sig-
nificance level, including a reciprocal causal relationship between
bodymass index and type 2 diabetes. Being overweight is known to be
strongly associated with an increased risk of type 2 diabetes17–19, while
weight loss is a known clinical feature of type 2 diabetes20. MRCI also
confirmed low-density lipoprotein level but not high-density lipopro-
tein level as a causal factor for coronary artery disease21–23. MRCI did
not detect additional causal effects at the Bonferroni-corrected sig-
nificance level, which may reflect the ability of MRCI to control the
Type I error rate. It is also possible that GWAS for some of the phe-
notypes may not have adequate statistical power because of small
sample sizes or high polygenicity.

The current formulation of MRCI has certain limitations. Our
assumption of bivariate normality of standardized marginal effects in
the four SNP components may not hold in practice, and serious viola-
tion of this assumption may affect the performance of the method.
Further simulations to evaluate the sensitivity of the method to viola-
tions of this assumption are desirable. A second limitation is that we
used composite likelihood for model fitting because marginal SNP
effects are correlated. This necessitated the use of robust sandwich
standard errors, which may lead to conservative, less powerful tests.
Finally, in the scenario where pleiotropic effects are very strong and
nearly no causal SNPs contribute specifically to the exposure,MRCIwill
typically produce very large standard errors for the causal path esti-
mate from exposure to the outcome, so there is little power to detect
such a causal effect even when it is present. However, this situation of
having almost noSNPs that canbeusedas valid IVs couldbe a limitation
for the MR approach in general, rather than for MRCI specifically.

Methods
Data and the full model
MRCI uses theGWAS summary statisticsof the twophenotypes (Y 1 and
Y 2) and referenceLD information (~1million SNPs from 1000Genomes
Project data). For a pair of reciprocal causal phenotypes (Fig. 1a), each
available SNP belongs to one of four mutually exclusive SNP
components:

• Y 1-specific component (G1): SNPs that contribute directly
to Y 1 only;

• Y 2-specific component (G2): SNPs that contribute directly
to Y 2 only;

• pleiotropic component (GC): SNPs that contribute directly to
both phenotypes;

• null component (G0): SNPs with no direct effects on either
phenotype.

The proportions of all SNPs in the four components are π1,π2,πc

and π0. The values of the two phenotypes in an individual are given by:

Y 1 = δ12Y 2 +
X
i2G1

γ1iX i +
X
l2GC

γC1lX l + e1

Y 2 = δ21Y 1 +
X
j2G2

γ2jX j +
X
l2GC

γC2lX l + e2

Here, Y 1 and Y 2 are the two standardized phenotypes; δ12 is the causal
effect Y 2 ! Y 1 and δ21 is the causal effect Y 1 ! Y 2; Xi,Xj and Xl

represent the standardized genotype of ith, jth and lth SNP in G1,G2

and Gc component, respectively; γ1i, i 2 G1 and γ2j, j 2 G2 denote the
direct effect sizes of phenotype-specific SNPs for Y 1 and Y 2; γC1l and
γC2l , l 2 Gc denote the direct effect sizes of pleiotropic SNPs for Y 1 and
Y 2, respectively; e1 and e2 are residual effects. Since the SNPs in
G0 have no direct effects on either phenotype, they are not included.
For the direct effect sizes of SNPs, we assume γ1i ∼Nð0, σ2

1 Þ,

γ2j ∼Nð0, σ2
2Þ and

γC1l
γC2l

� �
∼N

0
0

� �
,

σ2
C1 ρC1,C2

ρC1,C2 σ2
C2

� �� �
for i 2 G1,j 2

G2 and l 2 GC , where σ
2
1 and σ2

2 denote the per-SNP variances ofG1 and

G2, and σ2
C1 and σ2

C2 the per-SNP variances of GC for Y 1 and Y 2

respectively, with covariance ρC1,C2. Therefore, the model encom-
passes both independent pleiotropy (ρC1,C2 =0) and correlated
pleiotropy (ρC1,C2 ≠0).

The above formulae can be expressed in the bivariatematrix form

Y = ½I�Δ��1P
h
P

khΓ
ðhÞ
k Xk + ε, where Y is a 2 × 1 vector of the two

standardizedphenotypes, I is the 2 × 2 identitymatrix,Δ=
0 δ12
δ21 0

� �
,

Fig. 5 | Summary of estimates for three common diseases and sixteen risk
factors. In the figure, the upper triangle in a box represents the causal direction
from the risk factor to the disorder, and the lower triangle represents the reverse
causal direction. Darker color represents stronger causation estimates. Stars in the
triangle represent different significance levels of the estimation. CAD coronary
artery disease, IS any ischemic stroke, T2D type 2 diabetes, BirthWeight birth
weight, BMI body mass index, BodyFat body fat percentage, FastGluc fasting glu-
cose level, FastInsulin fasting insulin level, HDLhigh-density lipoprotein cholesterol
level, LDL low-density lipoprotein cholesterol level, Triglycerides triglyceride level,
CRP C-reactive protein level, CigPerDay cigarettes per day, DrinksPerWeek drinks
per week, pulsePressure pulse pressure, dBP diastolic blood pressure, sBP systolic
blood pressure, MDD major depressive disorder.
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Γ ðhÞ
k is the direct effect of the kth SNP on the phenotypes depending on

its componentmembership h, i.e. h 2 ðG0,G1,G2,GCÞ and Γ ðG0Þ
k =

0
0

� �
,

Γ ðG1Þ
k =

γ1k
0

� �
, Γ ðG2Þ

k =
0
γ2k

� �
, Γ ðGC Þ

k =
γC1k
γC2k

� �
, Xk is the standardized

genotype for the kth SNP and ε is the residual effects of any non-
additive genetic and environmental factors. This expression is similar
to that used for reciprocal causal modeling in twin data24 and requires
that δ12δ21

�� ��< 1 to ensure that the reciprocal causation between the two
phenotypes results in a steady state rather than unlimited growth25. In
practice,we constrain bothδ12 andδ21 tobebetween−1.0 and 1.0, since
both phenotypes are standardized variances as 1.0, ensuring the
inequality.

If we define βðhÞ
k = ½I�Δ��1Γ ðhÞ

k as a 2× 1 vector of the component-
dependent joint effect sizes for the kth SNP, including any effect
mediated through one phenotype on the other, then themodel can be

expressed asY =
P

βðhÞ
k Xk + ε. For eachphenotype, themarginal effect

of SNP k is τk =
PN*

k
i = 1βiρki, whereN

*
k is the total number of SNPs tagged

by the kth SNP, ρki is the LD correlation between kth and ith SNP, and
βi is the joint effect size of the ith SNP tagged by the kth SNP26, taking
account of the reciprocal causations.

Composite likelihood estimator
We assume that the estimates of the marginal effects of the kth SNP
from the GWAS summary statistics have a bivariate normal distribu-
tion:

τ̂k =
τ̂1k
τ̂2k

� �
∼
X
Nk

PrðNkÞN
0

0

� �
,

σ2
τ̂1k

ρτ̂1k ,τ̂2k

ρτ̂1k ,τ̂2k
σ2
τ̂2k

 !" #

In the formula, τ̂1k and τ̂2k represent the marginal effect size
estimates of the kth SNP from GWAS summary statistics of phenotype

Y 1 and Y 2, respectively. Nk = NðG1Þ
k ,NðG2Þ

k ,NðGC Þ
k ,NðG0Þ

k

� �
are the possible

combinations of counts of SNPs in LD with SNP k that belong to the
four SNP components. The probability of each combination, PrðNkÞ,
can be calculated based on the multinomial distribution with total

counts N*
k =
P

hN
ðhÞ
k over h 2 ðG0,G1,G2,GC Þ, where NðhÞ

k is a latent
variable denoting the number of h-component SNPs tagged by the kth
SNP. σ2

τ̂1k
, σ2

τ̂2k
and ρτ̂1k ,τ̂2k

can be derived from the relationships

between themarginal and joint regression coefficients inmixture form
(see Supplementary Note):

σ2
τ̂1k
≈

σ2
1

1� δ12δ21

	 
2 N
ðG1Þ
k

N*
k

lk +
δ2
12σ

2
2

1� δ12δ21

	 
2 N
ðG2Þ
k

N*
k

lk

+
σ2
C1 + δ

2
12σ

2
C2 + 2δ12ρC1,C2Þ

h i
1� δ12δ21

	 
2 NðGC Þ
k

N*
k

lk +a1 + 1=n1

σ2
τ̂2k

≈
δ2
21σ

2
1

1� δ12δ21

	 
2 N
ðG1Þ
k

N*
k

lk +
σ2
2

1� δ12δ21

	 
2 N
ðG2Þ
k

N*
k

lk

+
σ2
C2 + δ

2
21σ

2
C1 + 2δ21ρC1,C2

h i
1� δ12δ21

	 
2 NðGC Þ
k

N*
k

lk +a2 + 1=n2

ρτ̂1k ,τ̂2k
≈

δ21σ
2
1

1� δ12δ21

	 
2 N
ðG1Þ
k

N*
k

lk +
δ12σ

2
2

1� δ12δ21

	 
2 N
ðG2Þ
k

N*
k

lk

+
δ21σ

2
C1 + δ12σ

2
C2 + 1 + δ12δ21

	 

ρC1,C2

� �
1� δ12δ21

	 
2 NðGC Þ
k

N*
k

lk +ρ0

where lk is the LD score for the kth SNP; a1 and a2 are additional
inflation factors accounting for systematic bias in variance estimates
(e.g., due to population stratification) for phenotype Y 1 and Y 2

respectively26; ρ0 is a factor accounting for bias in the covariance
estimates (e.g., due to sample overlap); n1 and n2 are the sample sizes
for the two GWAS of the two phenotypes. In this way, the partitioned
genetic variances, LD conditions as well as reciprocal causal effects are
reflected in the assumed bivariate distribution.

The likelihood for the summary-statistic of the kth SNP is then:
L θ; τ̂k

	 

=p τ̂k ,j,θ
	 


=
P

Nk
PrðNkÞf ðτ̂1k , τ̂2kÞ, where f τ̂1k , τ̂2k

	 

is the

density function of a bivariate normal distribution with parameters
θ= ðπ1,π2,πc, σ

2
1 , σ

2
2,σ

2
C1,σ

2
C2,ρC1,C2,δ12,δ21,a1,a2,ρ0Þ. Thus, the com-

posite log-likelihood function is in the form:

CL θ; τ̂
	 


=
XK
k = 1

log L θ; τ̂k
	 


=
XK
k = 1

log
X
Nk

Pr Nk

	 

f τ̂1k , τ̂2k
	 
2

4
3
5

Thus, the maximum composite likelihood estimator is given by

θ̂= argmax
θ

CLðθ; τ̂Þ

Parameter estimation and testing
The reciprocal causal paths (δ12 and δ21), together with nuisance
parameters, are estimated by maximizing the likelihood with an
expectation-maximization (EM) algorithm. For each M-step in the EM,
parameters for mixing proportions (π1,π2 and πc) are estimated
according to the closed form, while the remaining parameters
(i.e. σ2

1 , σ
2
2,σ

2
C1,σ

2
C2, ρC1,C2,δ21,δ21,a1,a2 and ρ0) are estimated by

Nelder–Mead optimization (see Supplementary Note).
The standard errors of each parameter are calculated using a

sandwich variance estimator adapted from Zhang et al.26 since
sandwich estimators can provide valid variance estimation and tol-
erate the possible misspecification of the model. Briefly, if we define
lk θð Þ= log L θ; τ̂k

	 

then the score function could be written as in

the form: U θð Þ= ∂CL θ;τ̂kð Þ
∂θ =

PK
k = 1

∂ log L θ;τ̂kð Þ
∂θ =

PK
k = 1

∂lk ðθÞ
∂θ =

PK
k = 1UkðθÞ,

where UkðθÞ is the score vector for the kth SNP. Then the sandwich

form of variance-covariance matrix for the estimate θ̂ is

var θ̂
� �

= I�1ðθÞJðθÞI�1ðθÞ, which can be estimated by plugging in

the estimated parameter values θ̂ in lieu of θ. Thus, we can

get Î θ̂
� �

= �PK
k = 1

∂l2k θð Þ
∂θ∂θT jθ̂ and Ĵ θ̂

� �
=
PK

k = 1Ukðθ̂Þ�U
T
k ðθ̂Þ, where

�U
T
k θ̂
� �

=
P

k 02Nk
Uk0 ðθ̂Þ is the sum of likelihood scores for all SNPs

tagged by the kth SNP. In practice, we used the symmetric derivative
to obtain the derivatives for parameter estimates (see Supplemen-
tary Note). To determine the significance of estimates for parameters
of interest, estimates and the corresponding standard errors are
converted to χ2 statistics.

Sub-models and model averaging
To increase the robustness of MRCI in real situations, we performed
model fitting not only to the full model (referred to as the s1,2,C model)
but also to four sub-models, each of which has one or two absent SNP
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components: (I) the s2,C model excludes G1 SNPs; (II) the s1,C model
excludesG2 SNPs; (III) the sC model excludes bothG1 andG2 SNPs; and
(IV) the s1,2 model excludes GC SNPs. For each sub-model, the para-
meters are estimated using the same composite likelihood estimator
as above, only that the parameters of the corresponding absent
components are set as zero during the EM process and are thus
excluded in variance calculation. Accordingly, we define the complete
model set S = ðs1,2,C ,s2,C ,s1,C ,s1,2,sCÞ.

After estimating all five models, we calculated weighted averages
of the parameter estimates of these models to obtain an “averaged”
model, and calculated its composite likelihood. The averaged estimate

for the jth parameter can bewritten as θ̂j,ma =
PS
s
ŵsθ̂j,s, where ŵs is the

weight for the sthmodel and θ̂j,s is the estimate of the jth parameter in

the sth model. θ̂j,s is zero if the jth parameter is not included in the sth
model. Then, the variance of the jth averaged parameter can be cal-

culated as var θ̂j,ma

� �
=
PS
s
ŵs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var θ̂j,s

� �
+ θ̂j,s � θ̂j,ma

� �2r !2

, where

var θ̂j,s
� �

is the variance of the jth parameter in the sth model and is

defined as zero if the jth parameter is not included in the sth model27.
The composite likelihood is then maximized over the weights for the
fivemodels, where the initial weights for the optimization are based on
a modified Akaike information criterion (AIC) for composite
likelihood28, for the five models (see Supplementary Note).

Finally, the averaged model will be selected as the final model if
either of the following criteria is met: (1) the composite likelihood of
the averaged model is higher than that of the s1,2,C model; or (2) for
either of the two traits, the estimate of the trait-specific heritability
from the s1,2,C model is <0.05 and the estimate of the corresponding
trait-specific mixing proportion is not significant. Otherwise, the s1,2,C
model is selected as the final model.

Genetic correlation calculation
Based on our reciprocal joint model, genetic correlation (rg) between
the two phenotypes is calculated as

rg =
π1δ21σ

2
1 +π2δ12σ

2
2 +πC δ21σ

2
C1 + δ12σ

2
C2 + 1 + δ12δ21

	 

ρC1,C2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π1σ

2
1 +π2δ

2
12σ

2
2 +πC σ2

C1 + δ
2
12σ

2
C2Þ

h i� �
� π1δ

2
21σ

2
1 +π2σ

2
2 +πC δ2

21σ
2
C1 + σ

2
C2

h i� �r

The derivation of rg and the corresponding variance calculation
can be found in Supplementary Note.

Simulation data
In summary, the simulation data were generated using imputed gen-
otypes of 50,000 individuals randomly extracted from UK Biobank
white British subjects. We only selected common SNPs (i.e., MAF ≥
0.05) that are available in the HapMap 3 reference panel, resulting in a
total of about 0.68 million SNPs. The majority of the simulations were
based on 100% overlapping samples with a sample size of 50,000.
Moreover, we tested our model using 0 and 50% overlapping samples
with a sample size of 50,000. We also tested our model using 100%
overlapping samples with a sample size of 20,000. The phenotypes
were simulated using GCTA software29 based on these genotype data
and the association tests were performed using PLINK software30.
Detailed simulation scenarios (represented by simID in the table) and
corresponding parameter settings can be found in Supplementary
Table 1.

Specifically, in each simulation scenario, we first defined values of
π1,π2,πc,σ

2
1 ,σ

2
2,σ

2
C1,σ

2
C2,ρC1,C2,δ12 and δ21 for the scenario. The number

of causal SNPs in each component was determined according to the

assigned mixing proportions for the four SNP components. Then,
the corresponding number of causal SNPs was randomly chosen
from the set of available SNPs. For trait-specific SNPs, the direct effect
sizes for causal SNPs were assigned based on γ1i ∼Nð0,σ2

1 Þ and

γ2j ∼Nð0,σ2
2Þ with i 2 G1 and j 2 G2. For pleiotropic SNPs, the

direct effect sizes for causal SNPs were assigned based on
γC1l
γC2l

� �
∼N

0
0

� �
,

σ2
C1 ρC1,C2

ρC1,C2 σ2
C2

� �� �
, with l 2 GC . Next, we converted

the direct effect sizes to the component-dependent joint effect sizes

using βðhÞ
k = ½I�Δ��1Γ ðhÞ

k to take into account reciprocal causation. In
this way, we could obtain the joint effect sizes of causal SNPs for each
phenotype. Then we simulated the two phenotypes (Y 1 and Y 2) with
these joint effect sizes using GCTA software and performed the asso-
ciation test using PLINK toobtain the summary-level results. Finally, we
repeated the simulations 100 times for each scenario.

For the full-model scenario (S1,2,C), we generated data under three
causation scenarios: “bi-directional causation” when there are causal
effects in both directions, “uni-directional causation” when there is a
causal effect in only one direction, and “null causation” when there is
no causal effect in either direction. We considered low and high
polygenicity scenarios. For low polygenicity scenarios (LoS1—LoS12),
we performed two sets of simulation studies: (I) independent pleio-
tropy (π1 =π2 =πc = 1 × 10

�4 and ρC1,C2 = 0:0); and (II) correlated
pleiotropy (π1 =π2 =πc = 1 × 10

�4 and ρC1,C2 =0:1) (Fig. 1b). For high
polygenicity scenarios, we set π1 =π2 =πc = 1 × 10

�3 and performed six
simulation studies under correlated pleiotropy considering bi-direc-
tional, uni-directional and null causations (HiS1—HiS6). We also addi-
tionally simulated a high polygenicity scenario in which the two
phenotypes had different mixing proportions and genetic variances
(HiS7). For simulation studies with different sample sizes, we set
π1 =π2 =πc = 1 × 10

�3 and decreased the sample sizes to 20,000 under
correlated pleiotropy scenarios (SS1–SS3).

For simulations involving binary phenotypes (HiS8), we assumed
Y 1 to be the continuous phenotype and Y 2 to be the binary phenotype.
For Y 1 we used the above method (with 50,000 individuals) to obtain
GWAS summary data. For Y 2, we generated the joint effect sizes on the
liability scale, then took a total of 300,000 individuals to simulate a
case-control study with a disease prevalence of 0.05 and case:control
ratio of 1:2, using GCTA. Thus, we generated 15,000 cases from
the 300,000 individuals and generated 30,000 controls from the
remaining individuals. Consequently, the total sample size for the
binary phenotype is 45,000. We then ran logistic regression analysis
using PLINK to obtain the GWAS summary statistics for Y 2. Since the
parameters in our model are on the liability scale, we converted the
summary-level estimates of odds ratios to the liability scale effect size
through approximation31,32 (see Supplementary Note).

For sub-model scenarios, we generated three sets of simulated
data: no Y 1-specific component (S2,C), no pleiotropy component (S1,2),
and pleiotropy component only (SC). For each sub-model, we further
simulated data for bi-directional, uni-directional and null causations.

Moreover, we designed simulations using unbalanced effects for
genetic components, which means that the genetic effects for each
component are different. Under these scenarios, we first simulated
data with sample overlapping changing from 0% to 100% (Unbalance
1–3). Then, we simulated sub-model scenarios with unbalanced set-
tings (Unbalance S1,2,C , S2,C , and SC).

Representative bivariate scatterplots for these simulations can be
found in Fig. 1 and Supplementary Fig. 1.

Existing MR methods and LD score regression
We also ran several IV-basedMRmethods on the simulated data: Egger
regression, Weighted Median, Weighted Mode, Inverse-Variance
Weighted (IVW) (from the TwoSampleMR package3), MRMix12, and
MR-PRESSO9. We tested three SNP selectionmethods: (a) use valid IVs,
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i.e. all the exposure-specific true causal SNPs assigned in the simulation
as IVs; (b) use significant exposure-associated SNPs (p-value < 5 × 10�8)
but exclude potential outcome-associated SNPs by setting p-value >
5 × 10�5 in outcome GWAS; (c) use significant exposure-associated
SNPs regardless of their association with outcome. For SNPs selected
in (b) and (c), we further performed clumping (r2<0:01) to obtain the
independent IVs for MR analysis. Additionally, we also compared with
CAUSE13, a recent method using genome-wide summary statistics. The
p-value thresholds for CAUSE and MRMix were set as 1× 10�3 and
5× 10�8, respectively. To calculate the genetic correlation using LD
Score regression1, we followed the online tutorial and used the default
settings.

Real data processing
We followed steps similar to those implemented by Zhang et al.26 to
preprocess the public GWAS summary data. Briefly, SNPs were exclu-
ded if MAF was <5%; or if the imputation INFO score was low (INFO <
0.9); or if the available sample size was less than 0.67 of the 90th
percentile of the available sample sizes for all SNPs; or if it was located
within the major histocompatibility complex (MHC) region; or if the
absolute value of standardized effect size is >0.1. The summary sta-
tistics of the remaining SNPs weremergedwith 1000Genomes Project
reference SNPs to obtain their corresponding LD scores.

Data availability
The genotype data for simulation were applied from UKB biobank
(www.ukbiobank.ac.uk). LD infomation data were from GENESIS
(https://github.com/yandorazhang/GENESIS) with permission.
Public GWAS summary data were from the corresponding
website: MAGIC consortium (ftp://ftp.sanger.ac.uk/pub/magic);
CARDIoGRAMplusC4D (http://www.cardiogramplusc4d.org/data-
downloads); Global Lipids Genetics Consortium (http://csg.sph.
umich.edu/willer/public/lipids2013/); DIAGRAM consortium
(https://diagram-consortium.org/downloads.html); EGG Con-
sortium (http://egg-consortium.org/); GIANT consortium (http://
portals.broadinstitute.org/collaboration/giant/index.php/Main_
Page); GWAS catalog (https://www.ebi.ac.uk/gwas/downloads/
summary-statistics).

Code availability
The MRCI program code can be found at https://github.com/zpliu/
MRCI. Detailed results of all real data analyses can be visualized
through the website: https://triangularcell.shinyapps.io/MRCI_
Estimate_for_CommonDiseases.
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