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Impact of diet and host genetics on the
murine intestinal mycobiome

Yask Gupta1,2,5, Anna Lara Ernst 1,5, Artem Vorobyev1,3,5, Foteini Beltsiou 1,
Detlef Zillikens 3, Katja Bieber 1, Simone Sanna-Cherchi 2,
Angela M. Christiano 4, Christian D. Sadik 3, Ralf J. Ludwig 1,3,5 &
Tanya Sezin 3,4,5

The mammalian gut is home to a diverse microbial ecosystem, whose com-
position affects various physiological traits of the host. Next-generation
sequencing-based metagenomic approaches demonstrated how the interplay
of host genetics, bacteria, and environmental factors shape complex traits and
clinical outcomes. However, the role of fungi in these complex interactions
remains understudied. Here, using 228 males and 363 females from an
advanced-intercross mouse line, we provide evidence that fungi are regulated
by host genetics. In addition, we map quantitative trait loci associated with
various fungal species to single genes inmice usingwhole genome sequencing
and genotyping. Moreover, we show that diet and its’ interaction with host
genetics alter the composition of fungi in outbred mice, and identify fungal
indicator species associatedwith different dietary regimes. Collectively, in this
work, we uncover an association of the intestinal fungal community with host
genetics and a regulatory role of diet in this ecological niche.

The mammalian gut is home to a diverse microbial ecosystem that
harbors bacteria, archaea, fungi, protists, and viruses, which affect
various physiological and pathophysiological mechanisms in the
host1–4. Through recent advances in next generation sequencing-based
meta-genomics, the critical role of host genetics in shaping of diverse
microbial communities in mammalian gut, has been implicated in
multiple developmental and pathogenic processes5–7. Considering
environmental factors such as diet, stress, hygiene, among others,
these emerging data provide important information for an even more
detailed understanding of the complexity associated with alterations
of these communities. Likewise, disruption of microbiota homeostasis
(dysbiosis) has been established as a key driver of inflammatory dis-
eases, such as inflammatory bowel disease (IBD) and systemic lupus
erythematosus (SLE), and affects their clinical outcome by affecting
the immune system of the host8–11.

Given the high abundance of bacteria among all microbial gut
communities and the well-established amplification methods of con-
served hyper-variable bacterial gene regions, changes in other con-
stituents of gut microbiota, such as fungi have not yet been studied in
similar depth12,13. More recently, comparable to the 16S rRNA in bac-
teria, amplification and sequencing of the fungal ribosomal DNA ITS,
specifically ITS1 and ITS2 has greatly facilitated our understanding of
the biological role of fungi in the host. To date, whole metagenomic
profiling and ITS1 and ITS2 sequencing have provided insights into the
fungal kingdom within the gut ecosystem14,15. Recently, as a result of
these advances, the important role of mycobiome, including the
diversity and dynamics of fungi, in homeostasis as well as disease is
being increasingly recognized16–19.

Fungi belong to one of the largest and most diverse kingdoms of
living organisms, and are associated with a variety of diseases20–22.
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Previous research focused on gut bacterial communities and demon-
strated that gut commensals are influenced by host genetics as well as
external factors such as diet. Of note, caloric restriction led to higher
diversities of gutmicrobiota, whereas the oppositewas observedwhen
thehostswere exposed to aWestern diet23–25. However, the interplayof
fungal communities, diet, and host genetics remains unknown.

We previously demonstrated the eminent impact of diet on the
genetic susceptibility of NZM2410/J mice to develop SLE by reshaping
the gut microbiome26. Caloric restriction in NZM2410/J mice led to a
complete protection from clinical lupus manifestation, whereas
accelerated disease was observed in NZM2410/J mice fed a Western
diet. Thus, diet overrode genetic susceptibility and delayed SLE onset
by reshaping intestinal bacterial and fungal communities before the
onset of lupus. Consistent with this observation, disrupted interac-
tions of bacteria and fungi and reduction of co-abundances between
intra- and interkingdom microbial pairs were shown to be associated
with disease pathogenesis in other murine models and in humans27–32.
Thus, changes in microbial abundances can be linked to disease sus-
ceptibility, and together with the identification of host susceptibility
genes, predict disease outcome33–35.

To investigate the impact of host genetics and diet on the com-
position of the intestinal fungal ecosystems, in this study, we fed ~600
mice of an advanced-intercross mouse line (AIL) either a Western diet
(WES), a control diet (CON), or a calorie-restricted diet (CAL) for a
period of 5months. At the end of the observation period, ITS2 and 16S
rRNA sequencing was used to characterize the composition of the
fungal and bacterial communities in the gut. Further, we used QTL
mapping and a haplotype-sharing analysis to pinpoint possible asso-
ciations of the gut microbiome with host genetics. We also investi-
gated the impact of diet on the interaction between bacteria and fungi
in the gut ecosystem. Overall, here we demonstrate that in the gut,
fungal communities are associated with host genetics. Ultimately, we
show that the composition and diversity of murine intestinal myco-
biome is not exclusively regulated by host genetics, but by the joint
interaction of diet and host genetics.

Results
Diet modulates fungal communities in the gut
To determine if diet modulates fungi composition in the gut, we ran-
domly distributed 591 AIL mice at weaning to three different dietary
groups and fed them three different diets: Western diet (WES), control
diet (CON), or a calorie-restricted diet (CAL). At the age of six months,
we collected cecum content from AIL mice and performed
ITS2 sequencing (Fig. 1a and Supplementary Data 1). To characterize
fungi composition across the three diets, we assigned reads from
ITS2 sequencing to different taxonomical ranks from phylum to genus
(Fig. 1b). At the phylum level, we identified Ascomycota and Basidio-
mycota as the most abundant phyla in the gut of AIL mice, which was
inversely represented between CAL- and CON-diet fed mice, as
opposed to WES-diet fed mice (Supplementary Data 2). Consistently,
while Ascomycotawas comparably abundant in CAL- and CON-diet fed
mice and comprised up to 97% of all taxa in these mice, it was sig-
nificantly decreased in WES-diet fed mice (91% of all taxa). In contrast,
Basidiomycota made up 2% of all taxa in CAL- and CON-diet fed mice
andwas expanded inWES-diet fedmice (8%), suggesting that a high-fat
diet promotes expansion of Basidiomycota. At the genus level, Peni-
cilliumwas themost abundant genus (53.3%) found in the gut of all AIL
mice, followed by Aspergillus at 8.4%, unknown Ascomycota at 7.8%,
and Candida at 7.7%. Consistent with the decrease in the Ascomycota
phylum, a significant decrease in several Ascomycota genera such as
Claviceps, Davidiella, and Alternaria, and an expansion in the Basidio-
mycota genus,Wallemiawas observed inWES-diet fedmice compared
to CAL-and CON-diet fed mice (Fig. 1b). Detailed statistical analysis of
relative abundances of all fungal taxa across the threedietary regimens
is summarized in Supplementary Data 2.

To further examine gut fungal diversity and composition, we
clustered the sequences to species level OTUs at a 97% threshold
using the PIPITS pipeline36 (Supplementary Data 3). No significant
difference in fungal alpha diversity in terms of species richness and
evenness (Chao1 index; Shannon index; Simpson index) was found
among the three dietary groups (Fig. 1c). In contrast, variation of
fungal communities (beta diversity) showed significant differences
(Fig. 1d; PCAL vs. CON < 0.05, PCON vs. WES < 0.01; PCAL vs. WES < 0.01). We
used Linear discriminant analysis Effect Size (LEfSe) algorithm37

(which determines features that explain differences between classes
and assesses their relevance to the examined phenotype), to corre-
late fungi genera to the three dietary groups (Fig. 1e). The phylum
Basidiomycota with the genera Wallemia and Mycena, and an uni-
dentified genus from the order Helotiales were more abundant in
WES- compared to CON- and CAL-diet fed mice. In the CAL-diet fed
mice, the genera Claviceps, Davidiella, Phoma, and Ascochyta, and
the family Nectriaceae all belonging to the Ascomycota phylum were
more abundant compared to WES-diet fed mice.

Using indicator species analysis, in CAL-diet fed mice, P. her-
barum, A. nidulans, and N. paspali were identified as indicator species
(Fig. 1f and Supplementary Data 4). In contrast, in WES-diet fed mice,
W. sebi, P. decumbens, A. rubrum, F. culmorum, K. marxianus, P. chryo-
sosporium, L. laevis, and N. gypsea were identified as indicator species
(Fig. 1f). Notably, several of the species identified in WES-diet fed mice
were shown tobe associatedwith allergic hypersensitizationof airways
and lung infections38,39, chronic granulomatous disease40,41, obesity42,43,
as well as chronic infections, and fatal mycoses in immunocompro-
mised patients44,45.

Taken together, our results show that diet modulates composi-
tion of intestinal fungi in the host by affecting their relative abun-
dances in the gut. Further, WES diet promoted expansion of several
Basidiomycota species, which were previously linked to inflammation
and shown to be associated with development of innate and adaptive
immune responses in mice46,47.

Composition of the gut bacteria and their alteration with diet
Since we identified that diet shifts fungi composition in the gut of AIL,
we hypothesized that it may also modulate fungal bacterial inter-
kingdom co-abundance correlations in the gut. To interrogate how
diet shapes bacterial standing (DNA) and active communities (RNA) in
the gut (Fig. 1a and Supplementary Data 1), we assigned rRNA gene
copy (DNA) and transcript (RNA) levels from V1 to V2 region, respec-
tively, to the 16S rRNA database using the RDP classifier. For standing
communities, the phyla Firmicutes (P = 1.68E−08; CAL:64.7 ± 14%,
CON:57 ± 11.7%, WES:53 ± 9.6%), Bacteroidetes (P =0.01; CAL:28.1 ±
12.8%, CON:35.1 ± 11.4%,WES:25 ± 10.7%), and Proteobacteria (P = 6.74E
−30; CAL:5 ± 5.2%, CON:5.2 ± 3.7%, WES:18.2 ± 7.5%) were most abun-
dant in the gut of AIL mice, and were significantly different between
the three groups of mice (Fig. 2a). Accordingly, WES-diet fed mice
showed a significant decrease in the Firmicutes phylum and expansion
of Deferribacteres and Proteobacteria phyla compared to CAL- and
CON-diet fed mice. At the genus level, a significant decrease in Lacto-
bacillus and Mucispirillum genera, as well as expansion of Eisenber-
giella, Bacteroides, and Anaeroplasma genera was found in WES-diet
fed mice compared to CAL-and CON-diet fed mice (Fig. 2a).

Detailed statistical analysis of the bacterial phyla and genera
relative abundances across the three dietary regimens is summarized
in Supplementary Data 5. Similarly, we found comparable trends in the
overall distribution of major bacterial phyla across different diets in
the active communities (Supplementary Fig. 1a; Supplemen-
tary Data 6).

To assess the diversity and the composition of gut bacteria at
species-level resolution, we clustered the sequences at species level
OTUs using the VSEARCH algorithm48 (Supplementary Data 7 and
Supplementary Data 8). We found significant changes in alpha
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diversity (species richness and species evenness) as assessed byChao1,
Shannon, and Simpson indices among the three dietary groups in both
the standing (Fig. 2b) and active communities (Supplementary Fig. 1b).
In both type of communities, CAL-diet fed mice had a higher species
diversity compared to CON-diet fed mice, whereas WES-diet fed mice
showed the least diverse bacterial microbiome. Likewise, the beta-
diversity was also significantly different between all the dietary groups
for both standing (PCAL vs. CON < 0.001, PCON vs. WES < 0.001; PCAL vs.

WES < 0.001) and active communities PCAL vs. CON < 0.001, PCON vs.

WES < 0.001; PCAL vs. WES < 0.001) (Fig. 2c and Supplementary Fig. 1c).
These results are consistent with previous reports on the influence of a
high-fat diet on diminishing bacterial richness in the gut, and the
effects of reduced microbial richness in promoting intestinal pro-
inflammatory environment49.

To further identify microbial taxa that were differentially repre-
sented in CON-, CAL-, and WES-diet fed mice, we used the LEfSe
algorithm37. We found the genera Clostridiumsensustricto, Anaero-
vorax, and Acetatifactor were overrepresented in CAL-diet fed mice,
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and the genus Bacteroides was overrepresented in WES-diet fed mice,
in both the active and standing communities (Fig. 2d and Supple-
mentary Fig. 1d). These findings are consistent with the previously
reported increase in the abundance of Bacteroides in WES-diet fed
mice, and the observed shift towardsmetabolism of simple sugars and
lipid digestion50,51. In contrast, the genus Acetatifactor (which was
overrepresented in CAL-diet fed mice) was previously reported to be
involved in production of acetate and butyrate in the gut, which sup-
press inflammatory response and regulate insulin sensitivity52,53.
Additionally, Acetatifactor has also been reported to regulate the
development of obesity by improving the intestinal absorption of
dietary fats54,55.

Using indicator species analysis, we identified species from Clos-
tridium IV (C. hylemonae, C. populeti, C. xylanolyticum and C. tertium),
Alistipes (A. onderdonkii and A. putredinis), Lactobacillus (L. hominis
and L. reuteri), A. agile, B. coccoides, C. eutactus, D. longicatena, and S.
saccharolytica as indicator species in the gut of CAL-diet fed mice. In
contrast, B. pectinophilus, B. wadsworthia, E. oxidoreducens, F. orotica,
F. pleomorphus, L. bovis, O. valericigenes, P. capillosus, and R. hominis,
were identified as indicator species in the gut of WES-diet fed mice in
both the standing and active communities (Fig. 2e, Supplementary
Fig. 2a, b, Supplementary Fig. 1e, Supplementary Data 9, and Supple-
mentary Data 10).

Consistent with previous reports, we demonstrated that diet
shifts the composition of standing and active bacterial communities in
the gut, affecting both species richness and evenness, as well as their
relative abundances. Furthermore, we identified overrepresentation of
the genus Bacteroides and the genus Acetatifactor, in the gut of WES-
diet and CAL-diet fed mice, respectively.

Inter-domain correlations of fungi and bacteria in the gut
ecosystem
We and others previously identified inter-domain co-abundances
correlations betweenmicrobial and fungi communities in the gut to be
associated with inflammatory responses in the host26,28,56. To investi-
gate associations between fungal and bacterial communities and to
characterize how different kingdoms interact within the murine gut
ecosystem, we correlated fungal genera abundances with bacterial
standing (nDNA = 419) and active (nRNA = 420) genera across the three
different diets using FastSpar algorithm57. (Fig. 3a, Supplementary
Data 11, and Supplementary Data 12). We observed 320 significant
correlations based on 1000 bootstrap permutations (P < 0.05)
between fungi and standing bacterial communities (Fig. 3a and Sup-
plementary Data 11), and 323 significant correlations between fungi
and active bacterial communities (Fig. 3a and Supplementary Data 12).
Out of 323 correlations, 174 (37%) correlations were common between
bacteria and fungi, andmore than 90%of all correlationswerenegative
(DNA= 90.6%; RNA=90.1%), suggesting that bacteria and fungi

negatively regulate each other co-abundances in the gut. These find-
ings highlight to a competitive relationship between fungi andbacteria
in the gut58 and are consistent with the observation that prolonged use
of systemic antibiotics promotes invasive fungal infection in the host
and fungal overgrowth in the gut59,60.

The strongest negative correlation with fungal genera was
observed between Intestinimonas and Claviceps for standing bacterial
communities and between Butyricicoccus and Wallemia for active
bacterial communities. In contrast, the strongest positive correlation
with fungal genera was observed between Lactobacillus and the genus
Claviceps for both standing and active communities. In addition, we
observed a significant (P < 0.05) negative correlation between Lacto-
bacillus and Candida in our study, further supporting the previously
reported antagonistic effects of Lactobacillus on the growth of C.
albicans in the gut via the production of lactic acid and hydrogen
peroxyde61,62. The genus Claviceps showed the highest number of
negative associations (ncor=30) with standing bacterial communities
(Fig. 3a), while the genus Candida was mostly associated (ncor = 24)
with active communities (Supplementary Fig. 3). Consistently, alka-
loids of Claviceps (also known as ergot) and their derivatives were
shown to display antimicrobial properties63

Further,we investigated conserved correlations (common to both
active and standing communities; Padj < 0.05) between bacteria and
fungi (Fig. 3b). We observed nine putative key drivers (degree ≥ 10)
within the bacteria and fungus kingdoms in the gut. These include five
fungi genera (Claviceps, Candida, Alternaria, Davidella and Wallemia)
and four bacterial genera (Lactobacillus, Clostridium IV, Butyricicoccus
and Pseudoflavonifractor). Further, altered abundances of Candida,
Alternaria,Wallemia, and Lactobacilluswere reported in the gut of the
dextran sulfate sodium-induced colitis mouse model64. Additionally,
dysbiosis characterized by underrepresentation of the butyrate-
producing Clostridium cluster IV genus Butyricicoccus was identified
in the gut of IBD patients65.

Taken together, our findings suggest that both bacteria and fungi
play central role in maintaining the homeostasis in the gut ecosystem
by inversely regulating each other composition in the gut.

The intestinal fungal community shows a strong genetic
association
Having identified that diet modulates intestinal fungi composition in
AIL mice, we next addressed if host genetics and its interaction with
diet is associated with differences in the intestinal mycobiome. To
interrogate the relationship of host genetics with the fungal commu-
nity in the gut, we determined changes in intestinal fungi composition
in association with variations in host genetics (additive model), host
genetics interaction with diet (IntDiet model) or sex (IntSex model) in
AIL mice. We used 591 mice from the AIL population across three
generations (18th–20th) and across WES, CON, or CAL, diets to

Fig. 1 | Diet modulates composition of intestinal fungi in the host.
a Experimental design (created using Biorender). Mice were fed calorie restricted
diet (CAL; nCAL = 250; nmales = 111; nfemales = 139), control diet (CON; nCON = 145;
nmales = 54;nfemales = 91), or western diet (WES; nWES = 196;nmales = 63;nfemales = 133).
We generated 427 ITS2 (nmales = 167; nfemales = 260), 557 16S rRNADNA (nmales = 214;
nfemales = 343), and 552 16S rRNA RNA (nmales = 215; nfemales = 337) samples from
cecum.bBoxplots representing the relative abundanceof fungal phyla and genera.
CAL (blue; nCAL = 188; nmales = 83; nfemales = 105), CON (gray; nCON = 108; nmales = 39;
nfemales = 69), andWES (red;nWES = 131;nmales = 45;nfemales = 86) groups. The band in
the box plot indicates themedian, the box indicates the first and third QRs, and the
whiskers indicate 1.5*IQR. (Ascomycota:PCAL-WES = 0.01; Basidiomycota: PCAL-
WES = 0.01; Fungi_Un: PCAL-WES = 1.24 × 10−5, PCON-WES = 0.0009; Zygomycota: PCAL-
WES = 0.04; Claviceps: PCAL-WES = 3.79 × 10−30, PCON-WES = 2.68 × 10−18; Davidiella: PCAL-
WES = 1.35 × 10−11, PCON-WES = 6.59 × 10−7; Alternaria: PCAL-WES = 1.55 × 10−13, PCON-
WES = 1.31 × 10−10; Wallemia: PCAL-WES = 0.001, PCON-WES = 0.0001). #Supplementary
Data 2 shows statistical analysis of all taxa including low abundant taxa (“others”)
across different diets. c Violin plots depicting alpha diversity indices of mycobiota

composition inmice. The lines in the violin plot frombottom to top indicate 1st QR,
median, and 3rd QR. The tips of the violin plot represent minima and maxima, and
the width of the violin plot shows the frequency distribution of the data. d Beta
diversity of intestinal fungi composition in mice displayed by canonical analysis of
principal coordinates (capscale) plot of the BrayCurtis distances. e Differentially
abundantmycobiota taxa identified by LEfSe algorithm inCAL (blue) andWES (red)
mice. The root denotes the fungal domain and sizeof each nodecorresponds to the
relative abundance of the taxon. f Heatmap showing fungal indicator species and
mean scaled counts for every species within each diet. Statistical significance in
panel b was determined using Kruskal–Wallis test followed by two-sided
Mann–Whitney U test adjusted by FDR correction. In panel c statistical significance
was determined using one-way ANOVA on residuals after sex and generation
adjustment followed by Tukey’s multiple comparisons test. *Padj < 0.05,
**Padj<0.01, ***Padj< 0.01. Data in panel dwas analyzed using “anova.cca” function
(999 permutations) followed by “MANOVA.RM” for post hoc analysis. Source data
for b–f are provided as a Source Data file.
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determine an estimate of QTLmap location compared to conventional
mapping populations (Figs. 1a and 4). In AIL mice, the average size of
the QTL that were identified at genome-wide-significance level
(αgw<0.05) using 1000 permutations for each taxon and for each
model (Additive, IntDiet, and IntSex) was 0.91 ± (SEM) 0.12Mb
(Table 1).

In total, we mapped 51 QTL (genome-wide p-value < 0.05) that
influence the abundance of 42 intestinal fungal taxonomic lineages in

AIL mice. We identified 28 QTL for the Add model (A), 17 QTL for the
IntDiet (D)model, and 6 QTL for IntSex (S)model (Table 1). Consistent
with previous findings, the highest percentage of phenotypic variation
in fungi composition that were associated with host genetics was
explained by cage (mean: 24.7%)66,67. Further, host genetics explained
an average 9.1% of the phenotypic variation in AIL mice, whereas diet
accounted for 1.0% of the phenotypic variation. Intrinsic factors such
as generation and sex explained 4.7 and 0.05% of the phenotypic
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Fig. 2 | Diet modulates composition of bacterial standing communities in the
host. a Box plots representing relative abundance of bacterial phyla and genera.
The band in the box plot indicates the median, the box indicates the first and third
QRs, and the whiskers indicate 1.5*IQR. Calorie-restricted (CAL; blue; nCAL = 239;
nmales = 106; nfemales = 133), control (CON; gray; nCON = 136; nmales = 51; nfemales = 85)
or WES (Wes; red; nCAL = 182; nmales = 57; nfemales = 125) groups. (Firmicutes: PCAL-
CON = 0.01, PCAL-WES = 2.97 × 10−8, PCON-WES = 0.04; Bacteroidetes: PCAL-CON =0.01,
PCON-WES = 2.92 × 10−6; Deferribacteres: PCAL-WES = 6.62 × 10−13, PCON-WES = 9.91 × 10−15;
Actinobacteria: PCAL-WES = 5.05 × 10−18, PCON-WES = 8.93 × 10−12; Proteobacteria: PCAL-
WES = 1.43 × 10−26, PCON-WES = 1.79 × 10−21; Candidatus Saccharibacteria: PCAL-
WES = 2.51 × 10−19, PCON-WES = 1.77 × 10−13; Tenericutes: PCAL-WES = 0.0008, PCON-
WES = 0.003; Eisenbergiella: PCAL-WES = 0.01, PCON-WES = 6.39 × 10−6; Oscillibacter:
PCON-WES = 0.0005; Lactobacillus: PCAL-CON = 0.01, PCAL-WES = 7.24 × 10−26, PCON-
WES = 2.15 × 10−13; Odoribacter: PCAL-WES = 0.01; Alistipes: PCAL-WES = 0.007; Bacter-
oides: PCAL-WES = 1.39 × 10−8, PCON-WES = 0.002; Anaeroplasma: PCAL-WES = 9.41 × 10−9,
PCON-WES = 6.39 × 10−6; Mucispirillum: PCAL-WES = 1.47 × 10−8, PCON-
WES = 2.22 × 10−11).#Supplementary Data 5 shows statistical analysis of all taxa
including low abundant taxa (“others”) across different diets. b Violin plots

depicting alpha diversity indices of bacterial standing communities in mice. The
lines in the violin plot frombottom to top indicate 1st QR, median, and 3rdQR. The
tips of the violinplot representminima andmaxima, and thewidthof the violinplot
shows the frequency distribution of the data. c Capscale plot of the BrayCurtis
distance depicting beta diversity of bacterial standing communities in mice.
d Differentially abundant microbial taxa of bacterial standing communities iden-
tified by the LEfSe algorithm in CAL- (blue), CON (gray), and WES- (red) mice. The
root represents the fungal domain and the size of each node corresponds to the
relative abundance of the taxon. e Cladogram depicting bacterial indicator species
among standing communities for each diet. Statistical significance in panel a was
determined using Kruskal–Wallis test followed by two-sided Mann–Whitney U test
adjustedby FDR correction. In panelb statistical significancewas determined using
one-way ANOVA on residuals after sex and generation adjustment followed by
Tukey’s multiple comparisons test.*Padj < 0.05, **Padj < 0.01, ***Padj < 0.001. Data
in panel cwas analyzed using “anova.cca” function (999 permutations) followed by
“MANOVA.RM” for post hoc analysis. Source data for a–d are provided as a Source
Data file.
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Fig. 3 | Interaction network between microbial standing communities and
fungi in the gut of AIL mice. a Heatmap demonstrating significant (Padj < 0.05)
correlations between fungal genera (columns) abundances and bacterial genera
(rows) abundances (standing communities). The color codes of the cells indicate
either positive (purple) or negative (orange) correlations among the species
(Padj < 0.05); n = 419 samples were used for the correlation analysis. b Interaction
networkdemonstrating conserved correlations (interaction that is present for both
standing and active communities; Padj < 0.05) between bacterial standing

communities (pink nodes) and fungal (blue nodes) taxa. The size of the font indi-
cates the key driving taxa, which are characterized as taxa with the highest number
of associations with taxa from the other domain. Positive correlations are denoted
in red and negative correlations are denoted in green. Data in a, b were calculated
using FastSpar implementation of the FastCC algorithm (n = 999 permutations). P-
value were adjusted using Benjamini–Hochberg correction. Source data are pro-
vided as a Source Data file.
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variation, respectively (Table 1). Taken together, thesefindings suggest
that host genetics only, as well as its interactionwith dietmodulate the
composition of fungi in the gut in mice.

Mapping of fungal QTL
Since we identified that host genetics alone, or in combination with
diet or sex regulates the composition of fungi in the gut, we next
explored the identified QTL and the associated candidate genes, for
their potential function in modulating fungi composition at different
taxonomical levels. At the phylum level and consistent with the effects
of diet on Basidiomycota composition in the gut68, we identified two
IntDiet QTL on chromosome (Chr) 7 (0.16Mb; LOD= 10.3) and Chr 11
(0.98Mb; LOD=9.0) containing the genes Gm23292 and Tmc8,
respectively. Rare variants in the TMC8 gene, which encodes for a

transmembrane channel-like protein, were previously discovered to be
associated with type 2 diabetes (T2D) and obesity in Russian and
Japanese patient cohorts69,70. Additionally, variants in the TMC8 locus
were associated with the levels of glycated hemoglobin (HbA1c), a
commonly used test used in clinical settings to assess glycemic control
and an established biomarker and predictor for T2D and cardiovas-
cular disease71.

At the class level, we identified IntSex QTL from an unknown
Basidiomycota on Chr 9 (0.61Mb; LOD=8.95), one Add QTL for the
class Pucciniomycetes (Chr 9; 0.02Mb; LOD=8.4), and IntDiet QTL for
the composition of Zygomycota (Chr7; 1.1Mb; LOD= 11.1) containing
theWdr11gene.Zygomycota is a class of opportunistic fungi, whichwas
previously reported to cause infections in immunocompromised hosts
with severe underlying metabolic disorders72,73. Consistently, the gene

Fig. 4 | Gut fungal and bacterial QTL in AIL mice. Circos plot showing QTL
(αgw<0.05) in AIL mice associated with bacteria (standing and active community)
and fungi as traits. The outer most circle in the circos plot describes chromosomes
with cytogenic bands in the C57BL/6J mouse genome (reference mouse assembly
mm10). Every circle within each chromosome is color coded for fungi (yellow),
bacterial standing communities (gray) and bacterial active communities (purple)

describing the three models i.e., additive (Add), interaction with diet (IntDiet), and
interaction with sex (IntSex) from outwards to inwards. The QTL, marked as rec-
tangles, with brown color represent the additive model, while the green color and
the red color represent diet- and sex-interacting QTL, respectively. Note, only
chromosomes in which QTL were detected are shown. QTL, quantitative trait loci.
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WDR11 was previously identified in a meta-analysis of genome-wide
association study for adiponectin levels in EastAsian individuals,which
positively correlate with increased risk for metabolic and cardiovas-
cular disorders74.

At the order level, we identified Corticiales (IntSex; 0.55Mb;
LOD= 9.16), and its family Corticiaceae and the genus Vuilleminia on
Chr 18. Notably, a QTL for the family Corticiaceae and its genus Vuil-
leminia was identified using all the three models, i.e., Add, IntSex, and
IntDiet with interweaving loci containing the gene Taf4b. TATA-Box
Binding Protein Associated Factor 4b (Tafb) and its paralog gene Taf4
form the TFIID protein complex during gene transcription by RNA
polymerase II. Taf4b maintains TFIID integrity in the absence of Taf4,
which was previously shown to regulate insulin signaling pathway in
pancreatic beta cells in mice75.

At the species level, we identified 19 QTL (13 Add QTL; 6 IntDiet
QTL) corresponding to 15 species, out of which ~95% belonged to the
Ascomycota phylum and one species (Malassezia restricta) belonged
to the Basidiomycota phylum. The Ascomycota species include pre-
dominantly members of the Eurotiales (10/15 species) and Sacchar-
omycetales (3/15 species) orders. For example, two QTL for the
Eurotiales species, Aspergillus nidulans were identified on Chr 11 (Add;
0.54Mb; LOD=6.72) and Chr 19 (IntDiet; 0.71Mb; LOD=8.87). The
IntDiet QTL for A. nidulans contains the candidate gene Grk5, which
was previously associated with metabolic disorders76,77. Increased
expression ofGRK5 has been reported in several pathologies including
cardiac hypertrophy and heart failure, hypertension, cancer, obesity,
and T2D. Additionally, Grk5−/− mice were shown to exhibit higher glu-
cose, insulin, and triglyceride levels, andweremore resistant to insulin.
Several case reports, demonstrating A. nidulans infection in T2D
patients were also recently reported78,79. Other species, including the
species YamadazymaMexicana from the Saccharomycetales order was
mapped to Chr 11 (Add; 3.9Mb; LOD=6.98) containing the candidate
genes Nos2 and Vtn. Polymorphisms in Nos2 gene encoding for the
inducible nitric oxide synthase 2 (NOS2) were previously reported in
IBD patients80. Accordingly, higher activity of NOS2, which contributes
to the microbicidal activity of macrophages in the host, were found to
contribute to onset of IBD in children below 10 years of age81. Further,
increased abundance of Saccharomycetales was previously demon-
strated in the ileum of patients with ulcerative colitis and Crohn’s
disease82,83. In addition to Nos2, the candidate gene Vtn that was
identified in the QTL for Y. Mexicana and encoding for the Vitronectin
protein is known to interact with β-glucans of the fungal cell wall and
induce the release of TNF-α by macrophages84. At last, we identified
IntDiet QTL (Chr 8; 1.23Mb; LOD=8.77) for the Basidiomycota species
M. restricta, containing the Ikbkb gene (also known as the inhibitor of
nuclear factor kappa-B kinase subunit beta or IKBKB). IKBKB phos-
phorylates IkB molecule, which interacts with the NF-kB transcription
factors (RelA and p50) and renders them inactive. Once phosphory-
lated, the IkB molecule is degraded followed by the release of NF-kB
transcription factors and activation of the NF-kB pathway in the nuclei.
Thus, various signaling pathways that activate the NF-kB transcription
factors converge at the level of IKKb. Interestingly, M. restricta was
recently shown to promote the production of NF-kB–mediated cyto-
kines (TNF-α and IL-6) in myeloid phagocytes in the gut of patients
with Crohn’s disease in a CARD9-dependent manner85. CARD9 serves
as an adaptor for c-type lectin receptors, which recognize fungi and
activates the NF-kB signaling pathway. Consequently, loss-of-function
mutations in CARD9 were recently shown to impair anti-fungal IgG
responses, thereby regulating fungi distribution in the gut86.

Diet dependent QTL (IntDiet) were observed for five species
Penicillium citreonigrum, M. restricta, Penicillium spathulatum, A.
nidulans and Aspergillus glabripes. Deconvolving AIL mice to the
founder strains (see “Methods” section) showed higher abundance of
A. nidulans, M. restricta and P. spathulatum in AIL mice containing
MRL/MpJ allele under CAL and CON diets in comparison to WES diet

(Supplementary Fig. 4a–d). Same effect was also observed for A.
glabripes with the founder strain CAST/EiJ (Supplementary Fig. 4e).
Additionally, we identified significant underrepresentation of P.
citreonigrum in mice that were fed WES diet and in which the founder
alleles were derived from the Cast/EiJ strain as opposed to mice in
which the founder alleles were derived from the NZM2410/J strain
(Supplementary Fig. 4f). In contrast, mice fed CAL diet and containing
founder alleles derived from the Cast/EiJ strain showed significant
overrepresentation of P. citreonigrum as opposed to mice on CAL diet
in which the founder alleles were derived from the NZM2410/J mice.

Validation and identification of new QTL associated with gut
bacteria
After identifying that host genetics and its interaction with diet mod-
ulates fungi composition in the gut of AIL mice, we next investigated
their effects on the composition of bacterial species.We identifiedQTL
for both standing and active bacterial communities within the same
cohort of AIL mice, again using the three models including Add,
IntDiet, and IntSex (Figs. 1a and 4). In total, we identified 45QTL for the
standing bacterial communities and 38 QTL for the active bacterial
communities (Supplementary Data 13). At the phylum level, we
observed two QTL for the phylum Proteobacteria (RNA; IntDiet; Chr 9;
LOD= 11.46) and Actinobacteria (DNA; Add; Chr 8; LOD= 6.76) har-
boring the genes Gramd1b and Myom2, respectively. Interestingly,
Gramd1b is important for cholesterol homeostasis87 and has been
associated with 6-hydroxymethyl dihydropterin diphosphate bio-
synthesis in human gut microbiome GWAS in Dutch population88. At
the class level, we identified QTL for Clostridia on Chr 9 (DNA; IntDiet;
LOD= 10.51) and Chr 11 (RNA; Intsex; LOD= 10.1) containing the genes
Smad3 and Tanc2, respectively. Deficiency in Smad3 protects against
insulin resistance and obesity induced by a high-fat diet, while in gut it
regulates TGF-β auto induction in Clostridium butyricum-activated
dendritic cells89. Further, we identified an order level QTL for Desul-
fovibrionales (RNA; Add; LOD=6.88), Lactobacillales, and Bacteroi-
dales on Chr 11 (RNA; Add; LOD=6.88), Chr 13 (DNA; InDiet,
LOD= 10.6) and Chr 15 (DNA; Add, LOD=6.78), respectively. At the
family level, we identified 6 Add QTL for the families Desulfovi-
brionaceae (RNA; Chr 11; LOD= 7.01), Planococcaceae (DNA; Chr 12;
LOD= 7.53), Prevotellaceae (DNA; Chr 3; LOD= 7.44; RNA; Chr 3;
LOD= 7.42), Peptostreptococcaceae (genus Romboutsia, DNA; Chr 4;
LOD= 7.31), and Enterococcaceae (genus Enterococcus, RNA; Chr 5;
LOD= 7.18). The identified QTL for Prevotellaceae harbores the gene
Adgrl2 that encodes for a member of the latrophilin subfamily of
G-protein coupled receptors, participating in the regulation of exo-
cytosis. SNPs in ADGRL2 have been previously found to be associated
with gutmicrobiomeGWAS in Japanese cohort90 and genome-wide gut
microbiota interaction with bone mineral density in the UK Biobank
cohort91.

For lower taxa ranks i.e., genus and species, overall, we identified
70 QTL (DNA: 39 QTL and RNA: 31 QTL) for Add (52 QTL), IntDiet (9
QTL), and IntSex (9QTL)models (SupplementaryData 13). Of these, 59
QTL had been previously reported and 11 QTL are novel92,93.

Out of the 70 QTL, 18 QTL mapped for OTUs assigned to Clos-
tridium, 6 mapped for the Roseburia and its associatedOTU, 5mapped
for Marvinbryantia, 4 mapped for Ruminococcus, and 4 for genus
Blautia. Additionally, we mapped four species level OTUs (C. populeti,
O. valericigenes, R. hominis and M. formatexigens) for both DNA and
RNAQTL within the same intervals on Chr 1, Chr 14, Chr 15, and Chr 19.
These 70 identified QTL include several known, but also so far unre-
ported candidate genes. For example, the QTL controlling the genus
Marvinbryantia and its species M. formatexigens (DNA and RNA) were
mapped to Chr 19 harboring the candidate gene Tcf7l2. Tcf7l2 encodes
for transcription factor 7-like 2, a high mobility group (HMG) box-
containing transcription factor that plays a role in the Wnt-signaling
pathway and serves as a master regulator of insulin biosynthesis and
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secretion94. Accordingly, the TCF7L2 gene harbors risk SNPs with the
strongest effect on T2D95. Interestingly, a higher abundance of the
genus Marvinbryantia has been inversely correlated with insulin
resistance96. We mapped R. hominis for both DNA and RNA on Chr 15
containing the candidate gene Osmr, which encodes for the
Oncostatin-M specific receptor subunit beta. Increased levels of OSMR
and its ligand OSM were identified in intestinal tissues from patients
with IBD and closely correlated with disease severity on histopatho-
logical level97. In line with that decreased abundance of the butyrate-
producing species R. hominis was associated with patients with
ulcerative colitis.

Taken together, our results extend and support the role of host
genetics and its interactionwith diet inmodulating the composition of
intestinal standing and active bacterial communities.

Common genetic control of fungi and bacteria in the mamma-
lian gut
We identified a distinct role of diet in controlling the intestinal com-
position of the fungus and bacteria in the AIL mice. To investigate the
role of host genetics on the co-regulation of fungi and bacteria in the
gut, we next compared our mapped QTL to previously reported gut
microbiome QTL93,98,99. We extracted 347 microbiome QTL from pre-
vious studies, which overlapped with 62% (28/45) of the bacterial
standing communities and with 52% (20/38) of the bacterial active
communities identified in the current study. Some of the bacterial QTL
overlapped with previously identified QTL along the same taxonomical
lineage (Supplementary Data 14). For example, DNA (IntDiet; Chr 9;
LOD= 10.51) and RNA (Intsex; Chr11; LOD= 10.1) QTL for the class
Clostridia overlapped with previously published QTL for the family
Lachnospiraceae and the genus Coprococcus (both belonging to class
Clostridia) on Chr 9, respectively99. The QTL for species level OTU for
(DNA, LOD=9.23; RNA, LOD=7.35) O. valericigenes (order Clostridiales)
overlappedwithQTL forClostridialeson chromosome 1499. Further, 60%
of the identified fungalQTL (30/51) overlappedwith previously reported
gutmicrobiomeQTL (SupplementaryData 14). For example,QTL for the
genus Penicillium or different Basidiomycota species overlapped with
QTL for species of the bacterial class Clostridia such as Oscillospira or
Coprococcus. Notably, Penicillium was previously shown to negatively
correlate with Oscillospira and Clostridoides infections100. Additionally, a
decreased abundance of Coprococcus along with an increase in Basi-
diomycota was previously reported in IBD32, suggesting that similar
genetic elements regulate the composition of fungi and bacteria in the
host via potentially common molecular pathways.

Discussion
Fungi and bacteria colonize the mammalian gut forming a complex
ecosystem consistent of dynamic microbe-microbe and host-microbe
interactions that shape the immune systemof the host. The role of diet
has come to focus in studies investigating both bacterial and fungal
associations with the host genetics, and its effects on the gut micro-
biome has been extensively studied in different organisms101–105. High-
fat WES diet is one of the major causes for obesity seen in both mice
and humans, which (in the mouse) correlated with high abundance of
specific fungal genera such as Aspergillus104 and Candida106. In the
present study, we first analyzed the effects of diet on the composition
of gut fungi in AIL mice. In accordance with previous study by Heisel
et al.104, examining the effects of high-fat diet (HFD) on the composi-
tionof gut fungi inC57BL/6mice, no significant differenceswere found
in fungi richness and evenness but rather in their relative composition
in AIL mice fed WES diet. In both C57BL/6 and AIL mice, Ascomycota
species dominated the gut ecosystem and were largely suppressed
under high-fat and WES diets. Consistently, significant under-
representation of members of the Pleosporales and the Hypocreales
orders was observed in C57BL/6 and AIL mice. Thus, while AIL mice
showed significant suppression in Phoma, Ascochyta, Claviceps, and

Nectriaceae taxa, C57BL/6 mice showed suppression of Fusarium and
Didymellaceae following HFD. Remarkably, both WES and high-fat
diets suppressed the relative abundance of the Ascomycota genus
Alternaria, and inducedoverrepresentation of theBasidomycota genus
Wallemia in the gut. Notably, we previously identified increased levels
of Wallemia in a cohort of NZM2410/J mice fed Western diet and
exhibiting lupus-nephritis, suggesting of a pro-inflammatory role of
Wallemia species in the gut. In the AIL mice, the overrepresentation of
theWallemia genus was specifically attributed to the speciesW. sebi, a
xerophilic fungus that is known for its remarkable genetic adaptations
to osmotic stress107. In linewith the suspectedpro-inflammatory role of
Wallemia sp., it was previously shown that overrepresentation of W.
sebi in the murine gut is associated with exacerbated allergic airway
disease and signs of intestinal inflammation108, which are also exacer-
bated following exposure to HFD109–111. One of potential limitations of
our study is the analysis of relative fungal abundance (standing com-
munities) without profiling their activity (active communities). This
was due to technical difficulties to achieve consistent quality and
quantity of extracted fungal RNA from stool samples. Thus, future
studies are required to profile the ITS2 region inmice at both the gene
copy (DNA) and transcript (RNA) levels, which will reflect on the rela-
tive number and activity of the fungal taxa, respectively.

Fungal-bacterial interactions within the total microbial gut com-
munity influence fungal composition and specific traits in AIL mice. It
has already been shown that bacteria and fungi can form “consortia” in
which they coexist56,112. These interactions can play a role, especially
during infections, when fungi like Candida are accompanied or chal-
lenged bybacteria or vice versa113–116. Within this study, comparingQTL
for fungal and bacterial traits in AIL mice, no overlap between QTL of
the two kingdoms was found. However, the identified correlations
between fungal andbacterial taxa suggest the existenceof putative key
drivers within the gut ecosystem that are involved in the homeostasis
regulation. Interestingly, four of the five identified key fungi genera,
that were found to interact with most of the bacterial species in the
gut, specifically Claviceps, Alternaria, Davidella, and Wallemia, were
also significantly modulated by diet, suggesting that diet has a detri-
mental role on regulatingmicrobe-microbe interactions in the gut, and
is only one of the many potential mechanisms of how diet may mod-
ulate hosts’ immune system.

Fungi are known to calibrate immunological responsiveness in
humans that may improve the outcome of inflammatory disorders or
infections.More recent reports have even implicatedmycobiota in the
pathogenesis of cancer in humans117,118 and demonstrated that ablation
of the commensal gutmycobiomeby fluconazole treatment protected
mice from developing pancreatic ductal adenocarcinoma119. Thus,
dissecting the interplay between host genetics and diet on shaping the
gut mycobiome composition for the first time in a mammal, may have
profound implications on human health and disease. Here, we
demonstrated that host genetics not only modulates the composition
of bacteria but also of commensal fungi in the gut and explains the
largest proportion (28/51 Add QTL) of the phenotypic variation in
fungal composition. Interestingly, interaction of host genetics with
diet reveals novel associations (IntDiet QTL) and explains ~33% (17/51
IntDiet QTL) of the phenotypic variation in fungi composition in the
gut. The remaining 12% of the phenotypic variation, are attributed to
sex (IntSex QTL) and are consistent with previous reports showing a
shift in intestinal mycobiome composition in a gender-dependent
manner120. These findings add to our understanding of how host
genetics and diet shape the collective intestinal microbiome and
warrant inclusion of diet and sex as covariates in human
host–microbiome genome-wide association studies (mGWAS), as well
as in experimental setups aiming at understanding the role of fungi in
preclinical mouse models.

Using the AIL population that allows us to experimentally increase
the actual recombination proportion across the genome and create a
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genetically diverse pool, we identified QTL of an average size of
0.91 ± 0.14Mb. This experimental design further allowed us to pin-
point several candidate geneswithin the identifiedQTL. Looking at the
IntDietmodel, we identified several candidate genes such asNos2, Vtn,
and Ikbkb that were previously reported to affect fungi composition in
the host by potentiating phagocytic cell activation. In addition, we
identified several interesting candidates such as Taf4b, Tmc8, Wdr11,
and Grk5 that were previously associated with different chronic
metabolic and inflammatory diseases including T2D, cardiovascular
disease, and/or IBD69,70,74,76,77,80,81. However, how this group of genes
may modulate fungi composition in the host remains presently
unknown.

To deepen our understanding on interference of diet with host
genetics in shaping microbial traits including both fungi and bacteria,
the evaluation of the identified candidate genes together with possible
fecal transplantation studies in murine models will be of future inter-
est. Large-scale dietary intervention studies could further unravel
hidden correlations between host genetics and the different microbial
kingdoms within the gut microbiome, as well as provide insights and
potential new therapeutic approaches into common human disorders,
such as obesity.

Methods
Animals and sample collection
All animal experiments were conducted in accordance with the Eur-
opean Community rules for animal care that were approved by the
respective governmental administration of state of Schleswig-Holstein
(“Ministerium für Energiewende, Landwirtschaft, Umwelt und länd-
liche Räume des Landes Schleswig-Holstein” in Kiel, Germany, refer-
ence number 27-2/13).

To study the interaction between host genetics and diet and its
effect on the composition of microbiome in the gut, we performed
QTL mapping. As the resolution of QTL mapping depends on the
number of recombination events in the studied population, and on the
effect size of the QTL, many thousands of such events in the genome
are required. One approach to circumvent this difficulty is to use a
population with high incidence of recombination, such as advanced
intercross line (AIL). AIL is generated by intercrossing parental inbred
lines formore than ten generations, resulting in chromosomes that are
a mixture of the founder haplotypes. This approach provides
improved mapping resolution, with minor allele frequencies and
linkage disequilibrium (LD) comparable to values detected in isolated
human populations121. In this study, we used the previously established
four-way advanced intercross line (AIL)26. This line was generated by
intercrossing four inbredparental strainsMRL/MpJ, NZM2410/J, BXD2/
TyJ, and Cast/EiJ (all purchased from Jackson Laboratory (Maine, USA)
at equal strain and sex distribution for 20 generations with at least 50
breeding pairs per generation. Overall, we generated a cohort of 591
mice (Supplementary Data 1).

After weaning at 3–4 weeks, 591 offspring mice of either sex were
transferred into separate cages and randomly allocated to one of the
three different diets: control mouse chow (CON; #1320, Altromin
Spezialfutter GmbH, Lage, Germany; nCON = 145; nmales = 54;
nfemales = 91), caloric restriction (CAL; nCAL = 250; nmales = 111;
nfemales = 139), and Western diet (WES; S0587-E020, ssniff Spezialdiä-
ten GmbH, Soest, Germany; nWES = 196; nmales = 63; nfemales = 133).
Control mouse chow (CON) was given ad libitum, while for caloric
restriction (CAL), 60% of food amount (measured by weight) con-
sumedby sex- and age-matchedmice on control diet wasgiven tomice
once daily. For that the consumption of control food was con-
secutively measured in approx. 300 mice of 15th and 16th generation
of this 4-way advanced intercrossmouse strain. WES diet was given ad
libitum and was rich in cholesterol, butter fat, and sugar. Animals were
kept on the corresponding diet until the age of 6 months under spe-
cific pathogen-free conditions at 12 h light/dark cycle at the animal

facility of the University of Lübeck, Germany. At the age of 6 months,
mice were sacrificed and cecum content samples were collected and
processed for sequencing (Supplementary Data 1).

Genotyping of AIL mice
Genomic DNA was isolated from the tail tips of AIL mice after six
months using DNeasy Blood & Tissue Kit (Qiagen GmbH, Hilden,
Germany) according to the manufacturer’s instructions. Isolated DNA
was quantified with the NanoDrop2.0 (Implen, Munich, Germany) and
stored at −20 °C until further use. DNA was analyzed by MegaMUGA
genotyping array (Neogen Genomics, Lincoln, Netherlands) covering
77,800 markers throughout the mouse genome.

Bacterial DNA/RNA isolation and PCR
Bacterial DNA and RNA was isolated from murine cecum content
samples that were stored at −20 °C in a RNAlater™ Stabilization Solu-
tion (Thermo Fisher Scientific, Waltham, MA, USA). Briefly, the cecum
contentwas disrupted using the Speedmill Plus homogenizer (Analytik
Jena, Jena, Germany)within LysisMatrix E tubes (MPBio, Santa Ana, CA,
USA) and DNA and RNA was isolated with the AllPrep DNA/RNA Mini
Kit (Qiagen, Venlo, Netherlands) according to manufacturer’s proto-
col. The isolation was carried out following the manufacturer’s
instructions with on-membrane DNA-digestion for 20min during RNA
isolation. Negative extraction controls (in total 23) were included for
each RNA/DNA isolation process. Thirty ng of isolated RNA was tran-
scribed into cDNA using the High Capacity cDNA Reverse Transcrip-
tion Kit (Thermo Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s instructions. Additionally, to control for possible
contamination, a non-enzyme control was run during each transcrip-
tion process. The isolated RNA and DNA were quantified using the
Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific,
Dreieich, Germany) and checked for purity. Bacterial DNA and RNA-
derived samples the V1–V2 regions of the bacterial 16S rRNAgenewere
amplified using dual indexing approach. All primers used in this study
are indicated in the Supplementary Data 15. Briefly, primers contain
broadly conserved bacterial primers 27F and 338R and P5 (forward)
and P7 (reverse) sequences:

Forward 5′-AATGATACGGCGACCACCGAGATCTACAC XXXXXX
XX TATGGTAATTGT AGAGTTTGATCCTGGCTCAG-3′ and

Reverse 5′-CAAGCAGAAGACGGCATACGAGAT XXXXXXXX AGTC
AGTCAGCC TGCTGCCTCCCGTAGGAGT-3′).

In order to specifically tag PCR amplicon both primers contain
unique eight-base multiplex identifier, designated as XXXXXXXX. To
increase annealing temperature of sequencing primers, as recom-
mended by Illumina, 12 nt long linker sequence (underlined) was
added to primer sequences.

All PCR amplifications were conducted in a 20 µl volume con-
taining 30 ng of either cDNA or DNA template using Phusion®Hot Start
II DNA High-Fidelity DNA Polymerase (Thermo Fisher Scientific, Wal-
tham, MA, USA). The cycling conditions were as follows: initial dena-
turation for 30 s at 98 °C; 20 cycles of 9 s at 98 °C, 30 s at 55 °C, and
30 s at 72 °C, final extension for 10min at 72 °C.

Fungal DNA isolation and PCR
Fungal DNA was isolated from murine cecum content samples, which
were described above, using the DNeasy PowerLyzer PowerSoil Kit
(Qiagen, Venlo, Netherlands) following the manufacturer’s instruc-
tions with minor modifications. Briefly, samples were added to Pow-
erBead tubes containing 750 µl PowerBead Solution, 60 µl C1 solution,
and 20 µl Proteinase K (Qiagen, Venlo, Netherlands), and incubated in
Eppendorf ThermoMixer® at 800 rpm at 50 °C for 2 hrs. After 2 h
incubation, cecum contents were homogenized in a Precellys 24 tissue
homogenizer (Bertin Technologies SAS, Montigny-le-Bretonneux,
France). Subsequently, the nuclear ribosomal internal transcribed
spacer 2 (ITS2) region was amplified using dual indexing approach.
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Briefly, an internal transcribed spacer (ITS2) specific sequence primers
fITS7 (forward) and ITS4 (reverse) were linked to a unique eight-base
multiplex identifier (designated as XXXXXXXX) as described above for
the 16S rRNA gene amplification. Primers also contain 10-nt pad
sequence in order to prevent hairpin formation (underlined), and 2-nt
linker sequence. Reverse primer was degenerated at one position. All
primer sequences are described in Supplementary Data 15.

forward 5′- AATGATACGGCGACCACCGAGATCTACAC XXXXXX
XX TATGGTAATT GG TCCTCCGCTTATTGATATGC-3′,

reverse 5′-CAAGCAGAAGACGGCATACGAGAT XXXXXXXX AGTC
AGTCAG CC GTGA[AG]TCATCGAATCTTTG-3′

All PCR amplifications were conducted in a 25 µl volume using the
Phusion® Polymerase (see above). The cycling conditions were as fol-
lows: initial denaturation for 30 s at 98 °C; 35 cycles of 9 s at 98 °C, 30 s
at 50 °C, and30 s at 72 °C,final extension for 10min at 72 °C. Template-
free reactions were performed with all forward and reverse primer
combinations, for both bacterial and fungal PCR reactions, to exclude
primer contamination.

Library preparation and sequencing
All PCR products, both bacterial and fungal, were quantified on 1.5%
agarose gel (Biozym, Hessisch-Oldendorf, Germany) that was run at
120V for 5min followed by 110V for 1 h. Bacterial PCR products were
quantified and directly mixed into equimolar subpools. The subpools
were loaded on 1.5% agarose gel and further extracted with the GeneJet
NGS Cleanup Kit (Thermo Fisher Scientific, Waltham, MA, USA). The
fungal PCRproductswere extractedwith theMinElute Gel Extraction Kit
(Qiagen, Venlo, Netherlands). After extraction, concentration of each
subpool was determinedwith the NEBNext LibraryQuantification Kit for
Illumina (New England Biolabs, Frankfurt am Main, Germany) in accor-
dance with the manufacturer´s instructions. The quantified subpools
were combined into equimolar libraries, each library containing up to
300 samples for the bacterial V1–V2 region sequencing and separately
for the fungal ITS2 region sequencing. Then, the libraries were purified
using AMPure® Beads XP Kit (Beckman&Coulter, Brea, CA, USA) and
quantified with the NEBNext Library Quantification Kit. Prior to
sequencing, the average amplicon bp size of the library was determined
by the Agilent Bioanalyzer with the Agilent High Sensitivity DNA Kit
(Agilent, Santa Clara, CA, USA). Libraries were then sequenced on a
MiSeq (Illumina, San Diego, CA, USA) using the MiSeq v3 2 × 300 cycles
sequencing chemistry (Illumina, San Diego, CA, USA) at a 12pM (16S
rRNA) or 17.5pM (ITS2) concentration together with 10% (16S rRNA) or
20% (ITS2) of PhiX control library (Illumina, San Diego, CA, USA).

Data processing and statistical analysis
Rawbacterial and fungal data generated as gzipped FASTQ format files
on the Illumina MiSeq sequencing platform consisted of 20 million
reads for each library. The fungal ITS2 region data was analyzed using
the open-source bioinformatic pipeline PIPITS (v2.7)36. Briefly, paired
end readsweremerged and reads below q < 20were filtered out. Then,
using “pipits_funits” reads belonging to ITS2 region were extracted.
Next, we used UNITE dataset for reference-based chimera removal and
UCHIME for de novo chimera removal by the vsearch algorithm (v.2.8)
with E =0.5.

Sequences were classified with the RDP Classifier 2.12122 against
the UNITE fungal database v8.2 (https://doi.org/10.15156/BIO/786369).
After rarefaction, each sample was normalized to 5,000 sequences.
Therefore, after quality control, 427 ITS2 samples were included for
the downstream analyses. Reads derived from bacterial 16S rRNA
sequencingwere analyzed usingQIIME1 (v1.9.1)123 pipeline with python
(v2.7.1) in anaconda environment. Briefly, unique barcode sequences
were used to assign the pair-end reads to samples. Subsequently, pair-
end reads merging and quality filtering was done with QIIME1. Then,
demultiplexing and removal of tags and primers, as well as the
detection and removal of chimera sequences was performed using

VSEARCH (v2.8)48 followed by OTU clustering of sequences with ≥97%
similarity. TheOTUswerefilteredwithQIIME1with aminimumnumber
of 10.000 reads. After quality control, 557 16S rRNA DNA and 552 16S
rRNA RNA samples were used for downstream analyses. Taxonomic
assignments fromdomaindown togenus levelwereperformedagainst
the RDP database using the Blast algorithm.

Subsequent, ecological analysis was done using the VEGAN
(v2.5.7) library R package124. Alpha diversity for the composition of
taxonomies and microbial and fungal communities was calculated
using the Shannon metrics (mean). The non-Euclidean dissimilarity
Bray Curtis, and the abundant Jaccard distance were used to com-
pute beta diversity in 16S rRNA data and ITS data, respectively. To
assess statistical significance for alpha and beta-diversity, we used
generation and sex as covariates. To adjust covariates (sex and
generation) for alpha diversity we first normalized Chao1, Shannon,
and Simpson index using box-cox transformation (MASS v7.3.54R
package). We then derived standardized residual by regressing (lin-
ear model, lm in R) the indices with covariates. Thereafter, these
residuals were used for accessing statistical significance for dietary
groups using one-way anova and post hoc test (Turkey procedure
with fdr correction). Statistical significance in beta-diversity among
the different dietary groups was determined using the distance-
based redundancy analysis (dbRDA) in the VEGAN R package124,
which performs constrained (capscale) principle coordinate analysis.
The “anova.cca” function (999 permutations) from the VEGAN R
package was used to derive test statistics and P values while con-
ditioning the model by both sex and generation. Since, post-hoc
comparison are not available for constrained analysis we used
“MANOVA.RM” (v0.5.2) R package for multivariate data analysis
(based on resampling). MANOVA.RM R package assumes neither
multivariate normality nor covariance homogeneity while perform-
ingmultivariate data analysis. We used capscale scores (derived from
constrained analysis) as response variable, diet as dependent vari-
able with 1000 iterations for resampling (“MANOVA.wide”) to derive
multivariate statistical model. Afterwards, pairwise post hoc com-
parisons were performed using “simCI” function with Turkey’s pro-
cedure to derive resampling based adjusted P values, estimates, and
confidence intervals for every dietary comparisons. The current
version of “simCI” do not provide exact P values below 0.01 there-
fore, we provide estimates and confidence intervals along with P
values.

To identify, potential microbial and fungal biomarkers for traits
(diet), we used the LEfSe algorithm (v1.1.2)37, which combines standard
statistical tests with biological consistency and effect relevance to
determine the features (taxonomical ranks) thatmost likely explain the
differences between classes (diet). For LEfSe we report only those taxa
that were significant specifically for diet while excluding those which
were also significant for either sex or generation. In addition to LEfSe
we also performed indicator species analysis using “multipatt” func-
tion with default parameters in indicspecies R package(v1.7.9)125 for all
OTUs identified in bacterial and fungal community. For indicator
species analysis diet sex and generation were analyzed as separate
phenotypes. In current work, we only reported taxa that were sig-
nificant specifically for diet while excluding those which were also
significant for either sex or generation.

QTL mapping
Using the plink toolset (v1.9)126, non-informative SNPs were filtered
out based on aminor allele frequency (maf) of >0.05, a missing geno
probability of <0.1 and common homozygous SNPs among the
founders resulting in 55,458 SNPs, which were used in downstream
analysis. The Happy R package (v2.4)127 was then used for probabil-
istic reconstruction of the AIL mouse genome in terms of that of the
four founder strains. The posterior probability that each mouse was
in one of the four possible genotype states was determined by using
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a hidden Markov model at every adjacent marker interval across a
chromosome. Based on posterior probability we calculated kinship
matrix (“kinship.probs”, DOQTL R package (v1.19)) that estimates
intra-individual relationship128. For the phenotypic traits (micro-
biome and mycobiome), we first filtered out rare (abundance read
count <5 present in <20% samples) taxonomical lineages (Phylum to
genus and OTU). We used variance stabilizing transformation
(DESeq2 R package, v1.12.3) for every lineage separately to normal-
ize the count data matrix (abundance table)129. Thereafter, we cal-
culated residual for each taxa using lmer R packagewhile accounting
for generation as fixed effect and cage as random effect. LOD scores
for additive QTL were estimated by fitting residuals against poster-
ior probabilities (G) with sex and diet as fixed effect and kinship
matrix as random effect using scanone.eqtl (DOQTL R package)130.
For interacting (diet and sex) QTL, we first estimated a full model
where residuals were fitted against posterior probabilities (G) and
product of these probabilities with interaction term (G × diet, sex)
similar to additive QTL. For null model, we fitted the same model
while excluding product of posterior probabilities with the inter-
action term. LOD scores for the interactionmodel were calculated as
differences in the LOD score between full model and null model131.
We estimated genome-wide significance (P < 0.05) by permutation
procedure (1000 permutations). A 1.5 LOD drop described the
confidence interval for a QTL.

We calculated the percentage of phenotypic variation explained
separately for confounding, environmental, and genetic factors. Total
variance explained by cage was calculated using ‘VarCorr’ from lme4 R
package (v4.1) where cage was considered as random effect. The
residuals phenotype obtained after regressing out the cage effect from
the above model was fitted with linear model (‘lm function in R’)
against sex, generation, and diet (fixed-effect). From this model, we
derived the sum of squares for each variable and phenotypic variation
was calculated as sumof square for eachcovariate dividedby total sum
of square. For calculating proportion for variation explained by QTL
we used the equation h2 = 1 − 10−(2/n)LOD, where h2 is the proportion of
variation explained LOD is the LOD score for the QTL, and n is the
number of mice, as was previously described in the Package ‘qtl’
developed by Broman et al.132.

To further analyze how specific fungal species are influenced by
diet in a genetics-dependent manner, we assigned each mouse from
the AIL to its founder strains using maximum posterior probability of
the peak SNP. Assignment of AIL mice to the founder strains was
performed independently for every genome-wide significant QTL.
Afterwards, we performed association between the AIL mice derived
founder strains with the standardized residuals (after regressing the
abundances with cage, sex, and generation) of fungi species across
individual diets (Supplementary Fig. 4).

Correlation analysis
Correlation between mycobiome and microbiome at genus level
within murine gut was investigated using FastSpar (v1.0) algorithm57.
FastSpar algorithm is a python based implementation that infers
interaction network for taxonomical units from count based compo-
sitional data. We applied FastSpar algorithm to identify correlated
genus between bacteria and fungi. All P-values were corrected using
the Benjamini–Hochberg multiple correction method. Afterwards, all
the statistically significant correlated genus (P <0.05) were used to
infer bacteria-fungi network and visualized using Cytoscape (v3.8)133

where key driver of the community (bacteria of fungi) were inferred
based on number of correlating partners.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data, i.e., FASTQ files for microbiome and myco-
biome from AIL mice generated in this study have been deposited in
the NCBI SRA under accession code PRJNA886734. Additionally, Plink
formatted genotype data (bed, bim and fam files) for AIL mice is
available at Zenodo platform (DOI: 10.5281/zenodo.7592055).

UNITE fungal database v8.2 (https://doi.org/10.15156/BIO/
786369) was used. All other data supporting the findings of this
study are provided in the Supplementary Information/Source Data
file. Source data are provided with this paper.

Code availability
All codes generated or used during the current study are available at
Github repository (https://github.com/Yask-Gupta/QTL_MYCO) and at
Zenodo platform (DOI: 10.5281/zenodo.7580792).

References
1. Chen, Y., Zhou, J. & Wang, L. Role and mechanism of gut micro-

biota in human disease. Front. Cell Infect. Microbiol. 11,
625913 (2021).

2. Pérez, J. C. Fungi of the human gut microbiota: roles and sig-
nificance. Int. J. Med. Microbiol. 311, 151490 (2021).

3. Chin, V. K. Mycobiome in the gut: a multiperspective review.
Mediat. Inflamm. 2020, 9560684 (2020).

4. Harper, A. et al. Viral infections, the microbiome, and probiotics.
Front. Cell Infect. Microbiol. 10, 596166 (2020).

5. Wensel, C. R., Pluznick, J. L., Salzberg, S. L. & Sears, C. L. Next-
generation sequencing: insights to advance clinical investigations
of the microbiome. J. Clin. Invest .132, e154944 (2022).

6. Kishikawa, T. et al. Metagenome-wide association study of gut
microbiome revealednovel aetiology of rheumatoid arthritis in the
Japanese population. Ann. Rheum. Dis. 79, 103–111 (2020).

7. Nash, A. K. The gut mycobiome of the humanmicrobiome project
healthy cohort. Microbiome 5, 153 (2017).

8. Glassner, K. L., Abraham, B. P. &Quigley, E. M. M. Themicrobiome
and inflammatory bowel disease. J. Allergy Clin. Immunol. 145,
16–27 (2020).

9. Caruso, R., Lo, B. C. & Núñez, G. Host-microbiota interactions in
inflammatory bowel disease. Nat. Rev. Immunol. 20,
411–426 (2020).

10. Silverman, G. J. The microbiome in SLE pathogenesis. Nat. Rev.
Rheumatol. 15, 72–74 (2019).

11. Clarke, J. Microbiota, metabolism and lupus in mice. Nat. Rev.
Rheumatol. 16, 474 (2020).

12. Enaud, R. et al. The mycobiome: a neglected component in the
microbiota-gut-brain axis. Microorganisms 6, E22 (2018).

13. Richard,M. L. &Sokol, H. Thegutmycobiota: insights into analysis,
environmental interactions and role in gastrointestinal diseases.
Nat. Rev. Gastroenterol. Hepatol. 16, 331–345 (2019).

14. Hoggard, M. et al. Characterizing the human mycobiota: a com-
parison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA
genomic targets. Front. Microbiol. 9, 2208 (2018).

15. Mangalam, A. K. Fungal microbiome and multiple sclerosis: The
not-so-new kid on the block. EBioMedicine 72, 103621 (2021).

16. Mok, K. et al. ITS2 sequencing and targeted meta-proteomics of
infant gutmycobiome reveal the functional role of rhodotorula sp.
during atopic dermatitis manifestation. J. Fungi 7, 748 (2021).

17. Liguori, G. et al. Fungal dysbiosis in mucosa-associatedmicrobiota
of Crohn’s disease patients. J. Crohns Colitis 10, 296–305 (2016).

18. Zhang, F. et al. Longitudinal dynamics of gut bacteriome, myco-
biome and virome after fecal microbiota transplantation in graft-
versus-host disease. Nat. Commun. 12, 65 (2021).

19. Coker, O. O. et al. Enteric fungal microbiota dysbiosis and eco-
logical alterations in colorectal cancer. Gut 68, 654–662 (2019).

Article https://doi.org/10.1038/s41467-023-36479-z

Nature Communications |          (2023) 14:834 13

https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA886734
https://doi.org/10.15156/BIO/786369
https://doi.org/10.15156/BIO/786369
https://github.com/Yask-Gupta/QTL_MYCO


20. Revankar, S. G. & Sutton, D. A. Melanized fungi in human disease.
Clin. Microbiol. Rev. 23, 884–928 (2010).

21. Naik, B., Ahmed, S. M. Q., Laha, S. & Das, S. P. Genetic suscept-
ibility to fungal infections and links to human ancestry. Front.
Genet. 12, 709315 (2021).

22. Casadevall, A. Fungal diseases in the 21st century: the near and far
horizons. Pathog. Immun. 3, 183–196 (2018).

23. Fujisaka, S. et al. Diet, genetics, and the gut microbiome drive
dynamic changes in plasma metabolites. Cell Rep. 22,
3072–3086 (2018).

24. Kurilshikov, A. et al. Large-scale association analyses identify host
factors influencing human gut microbiome composition. Nat.
Genet. 53, 156–165 (2021).

25. Parks, B. W. et al. Genetic control of obesity and gut microbiota
composition in response to high-fat, high-sucrose diet in mice.
Cell Metab. 17, 141–152 (2013).

26. Vorobyev, A. Gene-diet interactions associated with complex trait
variation in an advanced intercross outbred mouse line. Nat.
Commun. 10, 4097 (2019).

27. Diaz, P. I., Strausbaugh, L. D. & Dongari-Bagtzoglou, A. Fungal-
bacterial interactions and their relevance tooral health: linking the
clinic and the bench. Front. Cell Infect. Microbiol. 4, 101 (2014).

28. Krüger, W., Vielreicher, S., Kapitan, M., Jacobsen, I. D. & Niemiec,
M. J. Fungal-bacterial interactions in health and disease. Patho-
gens 8, 70 (2019).

29. Wu, X., Xia, Y., He, F., Zhu, C. & Ren, W. Intestinal mycobiota in
health and diseases: from a disrupted equilibrium to clinical
opportunities. Microbiome 9, 60 (2021).

30. Gosiewski, T. et al. Quantitative evaluation of fungi of the genus
Candida in the feces of adult patientswith type 1 and 2diabetes—a
pilot study. Gut Pathog. 6, 43 (2014).

31. Lemoinne, S. et al. Fungi participate in the dysbiosis of gut
microbiota in patientswith primary sclerosing cholangitis.Gut69,
92–102 (2020).

32. Sokol, H. Fungal microbiota dysbiosis in IBD. Gut 66,
1039–1048 (2017).

33. Liu, Y. et al. Early prediction of incident liver disease using con-
ventional risk factors and gut-microbiome-augmented gradient
boosting. Cell Metab. S1550-4131, 00090–00090 (2022).

34. Hughes, D. A. et al. Genome-wide associations of human gut
microbiome variation and implications for causal inference ana-
lyses. Nat. Microbiol. 5, 1079–1087 (2020).

35. McQuade, J. L., Daniel, C. R., Helmink, B. A. & Wargo, J. A. Mod-
ulating the microbiome to improve therapeutic response in can-
cer. Lancet Oncol. 20, e77–e91 (2019).

36. Gweon, H. S. PIPITS: an automated pipeline for analyses of fungal
internal transcribed spacer sequences from the Illumina sequen-
cing platform. Methods Ecol. Evol. 6, 973–980 (2015).

37. Segata, N. et al. Metagenomic biomarker discovery and explana-
tion. Genome Biol. 12, R60 (2011).

38. Knutsen, A. P. et al. Fungi and allergic lower respiratory tract
diseases. J. Allergy Clin. Immunol. 129, 280–291 (2012). quiz
292–293.

39. Em, R., K, W., Ch, P. & Aj, W. Allergic fungal airway disease. J.
Investig. Allergol. Clin. Immunol. 26, 344–354 (2016).

40. Cohen, M. S. et al. Fungal infection in chronic granulomatous
disease. The importance of the phagocyte in defense against
fungi. Am. J. Med. 71, 59–66 (1981).

41. Henriet, S., Verweij, P. E., Holland, S.M.&Warris, A. Invasive fungal
infections in patients with chronic granulomatous disease. Adv.
Exp. Med. Biol. 764, 27–55 (2013).

42. García-Gamboa, R. et al. The intestinal mycobiota and its rela-
tionship with overweight, obesity and nutritional aspects. J. Hum.
Nutr. Diet. 34, 645–655 (2021).

43. Borges, F. M. et al. Fungal diversity of human gut microbiota
among eutrophic, overweight, and obese individuals based on
aerobic culture-dependent approach. Curr. Microbiol. 75,
726–735 (2018).

44. Anaissie, E. Opportunistic mycoses in the immunocompromised
host: experience at a cancer center and review.Clin. Infect. Dis. 14,
S43–S53 (1992).

45. Malcolm, T. R. & Chin-Hong, P. V. Endemic mycoses in immuno-
compromised hosts. Curr. Infect. Dis. Rep. 15, 536–543 (2013).

46. Bartemes, K. R. & Kita, H. Innate and adaptive immune responses
to fungi in the airway. J. Allergy Clin. Immunol. 142,
353–363 (2018).

47. Nelson, A. et al. The Impact of NOD2 genetic variants on the gut
mycobiota in Crohn’s disease patients in remission and in indivi-
duals without gastrointestinal inflammation. J. Crohns Colitis 15,
800–812 (2021).

48. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH:
a versatile open source tool for metagenomics. PeerJ 4,
e2584 (2016).

49. Manor, O. et al. Health and disease markers correlate with gut
microbiome composition across thousands of people. Nat. Com-
mun. 11, 5206 (2020).

50. Cabral, D. J., Wurster, J. I., Korry, B. J., Penumutchu, S. & Belenky,
P. Consumption of a western-style dietmodulates the response of
the murine gut microbiome to ciprofloxacin. mSystems 5,
e00317–e00320 (2020).

51. Cho, S.-H., Cho, Y.-J. & Park, J.-H. The human symbiont Bacter-
oides thetaiotaomicron promotes diet-induced obesity by reg-
ulating host lipid metabolism. J. Microbiol. 60, 118–127 (2022).

52. Pfeiffer, N. et al. Acetatifactor muris gen. nov., sp. nov., a novel
bacterium isolated from the intestine of an obese mouse. Arch.
Microbiol. 194, 901–907 (2012).

53. Weitkunat, K. et al. Short-chain fatty acids and inulin, but not guar
gum, prevent diet-induced obesity and insulin resistance through
differential mechanisms in mice. Sci. Rep. 7, 6109 (2017).

54. Kübeck, R. et al. Dietary fat and gut microbiota interactions
determine diet-induced obesity in mice. Mol. Metab. 5,
1162–1174 (2016).

55. Kim, J., Choi, J. H., Oh, T., Ahn, B. & Unno, T. Codium fragile
ameliorates high-fat diet-induced metabolism by modulating the
gut microbiota in mice. Nutrients 12, E1848 (2020).

56. Peleg, A. Y., Hogan, D. A. & Mylonakis, E. Medically important
bacterial–fungal interactions. Nat. Rev. Microbiol. 8,
340–349 (2010).

57. Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid
and scalable correlation estimation for compositional data.
Bioinformatics 35, 1064–1066 (2019).

58. Sartor, R. B. & Wu, G. D. Roles for intestinal bacteria, viruses, and
fungi in pathogenesis of inflammatory bowel diseases and ther-
apeutic approaches. Gastroenterology 152, 327–339.e4 (2017).

59. Dollive, S. et al. Fungi of the murine gut: episodic variation and
proliferation during antibiotic treatment. PLoS One 8,
e71806 (2013).

60. Noverr,M.C., Noggle, R.M., Toews,G.B. &Huffnagle, G. B. Role of
antibiotics and fungal microbiota in driving pulmonary allergic
responses. Infect. Immun. 72, 4996–5003 (2004).

61. Vazquez-Munoz, R. & Dongari-Bagtzoglou, A. Anticandidal activ-
ities by lactobacillus species: an update onmechanisms of action.
Front. Oral. Health 2, 689382 (2021).

62. Zangl, I., Pap, I.-J., Aspöck, C. & Schüller, C. The role of Lactoba-
cillus species in the control of Candida via biotrophic interactions.
Micro. Cell 7, 1–14 (2019).

63. Panaccione, D. G. Origins and significance of ergot alkaloid
diversity in fungi. FEMS Microbiol. Lett. 251, 9–17 (2005).

Article https://doi.org/10.1038/s41467-023-36479-z

Nature Communications |          (2023) 14:834 14



64. Qiu, X. Changes in the composition of intestinal fungi and their
role in mice with dextran sulfate sodium-induced colitis. Sci. Rep.
5, 10416 (2015).

65. Eeckhaut, V. et al. The butyrate producing Clostridium cluster IV
genus Butyricicoccus has a decreased abundance in IBD stool
samples and a comparative efficacy in TNBSmodels compared to
currently available therapeutics: P-177. Inflamm. Bowel Dis. 17,
S65–S66 (2011).

66. McCafferty, J. Stochastic changes over time and not founder
effects drive cage effects in microbial community assembly in a
mouse model. ISME J. 7, 2116–2125 (2013).

67. Hildebrand, F. et al. Inflammation-associated enterotypes, host
genotype, cage, and inter-individual effects drive gut microbiota
variation in common laboratory mice. Genome Biol. 14, R4
(2013).

68. Hallen-Adams, H. E. & Suhr, M. J. Fungi in the healthy human
gastrointestinal tract. Virulence 8, 352–358 (2017).

69. Barbitoff, Y. A. et al. Identification of novel candidate markers of
type 2 diabetes and obesity in Russia by exome sequencingwith a
limited sample size. Genes 9, E415 (2018).

70. Hachiya, T. et al. Genome-wide meta-analysis in Japanese popu-
lations identifies novel variants at the TMC6-TMC8 and SIX3-SIX2
loci associated with HbA1c. Sci. Rep. 7, 16147 (2017).

71. Syed, I. A. A. & Khan, W. A. Glycated haemoglobin—a marker and
predictor of cardiovascular disease. J. Pak. Med. Assoc. 61,
690–695 (2011).

72. de Hoog, S., Ibrahim, A. S. & Voigt, K. Zygomycetes: an emerging
problem in the clinical laboratory. Mycoses 57, 1 (2014).

73. Ribes, J. A., Vanover-Sams, C. L. & Baker, D. J. Zygomycetes in
human disease. Clin. Microbiol. Rev. 13, 236–301 (2000).

74. Wu, Y. et al. A meta-analysis of genome-wide association studies
for adiponectin levels in East Asians identifies a novel locus near
WDR11-FGFR2. Hum. Mol. Genet. 23, 1108–1119 (2014).

75. Kleiber, T., Davidson, G., Mengus, G., Martianov, I. & Davidson, I.
Single cell transcriptomics reveal trans-differentiation of pan-
creatic beta cells following inactivation of the TFIID subunit Taf4.
Cell Death Dis. 12, 790 (2021).

76. Li, H. et al. A genome-wide association study identifies GRK5 and
RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 62,
291–298 (2013).

77. Shang, Z. et al. A variant ofGRK5 is associatedwith the therapeutic
efficacy of repaglinide in Chinese Han patients with type 2 dia-
betes mellitus. Drug Dev. Res. 79, 129–135 (2018).

78. Verma, R. et al. First reported case of Aspergillus nidulans
eumycetoma in a sporotrichoid distribution. Int. J. Dermatol. 54,
74–77 (2015).

79. Saud, B. et al. Fungal infection among diabetic and nondiabetic
individuals in Nepal. Interdiscip. Perspect. Infect. Dis. 2020,
7949868 (2020).

80. Martín, M. C. et al. Influence of the inducible nitric oxide synthase
gene (NOS2A) on inflammatory bowel disease susceptibility.
Immunogenetics 59, 833–837 (2007).

81. Dhillon, S. S. Higher activity of the inducible nitric oxide synthase
contributes to very early onset inflammatory bowel disease. Clin.
Transl. Gastroenterol. 5, e46 (2014).

82. Buzzo, C. et al. Epigenetic regulation of nitric oxide synthase 2,
inducible (Nos2) by NLRC4 inflammasomes involves PARP1 clea-
vage. Sci. Rep. 7, 41686 (2017).

83. Massimino, L. et al. The inflammatory bowel disease tran-
scriptome and metatranscriptome meta-analysis (IBD TaMMA)
framework. Nat. Comput. Sci. 1, 511–515 (2021).

84. Olson, E. J., Standing, J. E., Griego-Harper, N., Hoffman, O. A. &
Limper, A. H. Fungal beta-glucan interacts with vitronectin and
stimulates tumor necrosis factor alpha release from macro-
phages. Infect. Immun. 64, 3548–3554 (1996).

85. Limon, J. J. et al. Malassezia is associatedwithCrohn’s disease and
exacerbates colitis in mouse models. Cell Host Microbe 25,
377–388.e6 (2019).

86. Doron, I. et al. Human gut mycobiota tune immunity via CARD9-
dependent induction of anti-fungal IgG antibodies. Cell 184,
1017–1031.e14 (2021).

87. Naito, T. & Saheki, Y. GRAMD1-mediated accessible cholesterol
sensing and transport.Biochim. Biophys. ActaMol. Cell Biol. Lipids
1866, 158957 (2021).

88. Lopera-Maya, E. A. et al. Effect of host genetics on the gut
microbiome in 7738 participants of the DutchMicrobiome Project.
Nat. Genet. 54, 143–151 (2022).

89. Kashiwagi, I. et al. Smad2 and Smad3 inversely regulate TGF-β
autoinduction in clostridium butyricum-activated dendritic cells.
Immunity 43, 65–79 (2015).

90. Ishida, S. et al. Genome-wide association studies and heritability
analysis reveal the involvement of host genetics in the Japanese
gut microbiota. Commun. Biol. 3, 686 (2020).

91. Cheng, B. et al. Gut microbiota is associated with bone mineral
density: an observational and genome-wide environmental inter-
action analysis in the UK Biobank cohort. Bone Jt. Res. 10,
734–741 (2021).

92. Snijders, A. M. et al. Influence of early life exposure, host genetics
and diet on the mouse gut microbiome and metabolome. Nat.
Microbiol. 2, 16221 (2016).

93. Benson, A. K. et al. Individuality in gut microbiota composition is a
complex polygenic trait shaped by multiple environmental and
host genetic factors. Proc. Natl Acad. Sci. USA 107,
18933–18938 (2010).

94. Zhou, Y. et al. TCF7L2 is a master regulator of insulin production
and processing. Hum. Mol. Genet. 23, 6419–6431 (2014).

95. Cauchi, S. et al. TCF7L2 is reproducibly associated with type 2
diabetes in various ethnic groups: a global meta-analysis. J. Mol.
Med. 85, 777–782 (2007).

96. Chen, Z. et al. Association of insulin resistance and type2 diabetes
with gut microbial diversity: a microbiome-wide analysis from
population studies. JAMA Netw. Open 4, e2118811 (2021).

97. West, N. R. et al. Oncostatin M drives intestinal inflammation and
predicts response to tumor necrosis factor-neutralizing therapy in
patients with inflammatory bowel disease. Nat. Med. 23,
579–589 (2017).

98. McKnite, A. M. et al. Murine gut microbiota is defined by host
genetics and modulates variation of metabolic traits. PLoS One 7,
e39191 (2012).

99. Kemis, J. H. et al. Genetic determinants of gut microbiota com-
position and bile acid profiles in mice. PLoS Genet. 15,
e1008073 (2019).

100. Stewart, D. B. Integrated meta-omics reveals a fungus-associated
bacteriome and distinct functional pathways in clostridioides dif-
ficile. Infection 10, 00454–19 (2019).

101. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet-microbiota inter-
actions and personalized nutrition. Nat. Rev. Microbiol. 17,
742–753 (2019).

102. Wilson, A. S. et al. Diet and the human gut microbiome: an inter-
national review. Dig. Dis. Sci. 65, 723–740 (2020).

103. Leeming, E. R. et al. The complexities of the diet-microbiome
relationship: advances and perspectives. Genome Med. 13,
10 (2021).

104. Heisel, T. High-fat diet changes fungal microbiomes and inter-
kingdom relationships in the murine gut. mSphere 10,
00351–17 (2017).

105. Nagpal, R. et al. Gut mycobiome and its interaction with diet, gut
bacteria and alzheimer’s disease markers in subjects with mild
cognitive impairment: a pilot study. EBioMedicine 59, 102950
(2020).

Article https://doi.org/10.1038/s41467-023-36479-z

Nature Communications |          (2023) 14:834 15



106. Sun, S. et al. The gut commensal fungus, Candida parapsilosis,
promotes high fat-diet induced obesity in mice. Commun. Biol. 4,
1220 (2021).

107. Padamsee, M. et al. The genome of the xerotolerant mold Walle-
mia sebi reveals adaptations to osmotic stress and suggests
cryptic sexual reproduction. Fungal Genet. Biol. 49,
217–226 (2012).

108. Wheeler, M. L. et al. Immunological consequences of intestinal
fungal dysbiosis. Cell Host Microbe 19, 865–873 (2016).

109. Cheng, L. et al. High fat diet exacerbates dextran sulfate sodium
induced colitis through disturbing mucosal dendritic cell home-
ostasis. Int. Immunopharmacol. 40, 1–10 (2016).

110. Wood, L. G., Garg, M. L. & Gibson, P. G. A high-fat challenge
increases airway inflammation and impairs bronchodilator
recovery in asthma. J. Allergy Clin. Immunol. 127, 1133–1140 (2011).

111. Allegra, C. J., Egan, G. F., Drake, J. C., Steinberg, S. M. & Swain, S.
M. The treatment of metastatic breast cancer with 5-fluorouracil
and leucovorin. Adv. Exp. Med. Biol. 244, 107–112 (1988).

112. Frey-Klett, P. et al. Bacterial-fungal interactions: hyphens between
agricultural, clinical, environmental, and food microbiologists.
Microbiol. Mol. Biol. Rev. 75, 583–609 (2011).

113. Khan, F. et al. Mixed biofilms of pathogenic Candida-bacteria:
regulation mechanisms and treatment strategies. Crit. Rev.
Microbiol. 47, 699–727 (2021).

114. Allison, D. L. et al. Candida-bacteria interactions: their impact on
human disease. Microbiol. Spectr. 4, 1–26 (2016).

115. Haiko, J., Saeedi, B., Bagger, G., Karpati, F. & Özenci, V. Coex-
istence of Candida species and bacteria in patients with cystic
fibrosis. Eur. J. Clin. Microbiol. Infect. Dis. 38, 1071–1077 (2019).

116. Seghir, A., Boucherit-Otmani, Z., Sari-Belkharroubi, L. & Boucherit,
K. [Infectious risk related to the formationofmulti-speciesbiofilms
(Candida - bacteria) on peripheral vascular catheters]. J. Mycol.
Med. 27, 20–27 (2017).

117. Dohlman, A. B. et al. A pan-cancer mycobiome analysis reveals
fungal involvement in gastrointestinal and lung tumors. Cell 185,
3807–3822.e12 (2022).

118. Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-
specific fungal ecologies and bacteriome interactions. Cell 185,
3789–3806.e17 (2022).

119. Aykut, B. et al. The fungal mycobiome promotes pancreatic
oncogenesis via activation of MBL. Nature 574, 264–267 (2019).

120. Strati, F. et al. Age and gender affect the composition of fungal
population of the human gastrointestinal tract. Front. Microbiol. 7,
1227 (2016).

121. Nicod, J. et al. Genome-wide association of multiple complex
traits in outbred mice by ultra-low-coverage sequencing. Nat.
Genet. 48, 912–918 (2016).

122. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian
classifier for rapid assignment of rRNA sequences into the new
bacterial taxonomy. Appl Environ. Microbiol. 73,
5261–5267 (2007).

123. Caporaso, J. G. QIIME allows analysis of high-throughput com-
munity sequencing data. Nat. Methods 7, 335–336 (2010).

124. Dixon, P. VEGAN, a package of R functions for community ecol-
ogy. J. Vegetation Sci. 14, 927–930 (2003).

125. Cáceres, M. D. & Legendre, P. Associations between species and
groups of sites: indices and statistical inference. Ecology 90,
3566–3574 (2009).

126. Purcell, S. et al. PLINK: a tool set for whole-genome association
and population-based linkage analyses. Am. J. Hum. Genet. 81,
559–575 (2007).

127. Mott, R., Talbot, C. J., Turri, M. G., Collins, A. C. & Flint, J. Amethod
for fine mapping quantitative trait loci in outbred animal stocks.
Proc. Natl Acad. Sci. USA 97, 12649–12654 (2000).

128. Cheng, R., Parker, C. C., Abney, M. & Palmer, A. A. Practical con-
siderations regarding the use of genotype and pedigree data to
model relatedness in the context of genome-wide association
studies. G3 3, 1861–1867 (2013).

129. McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying
microbiome data is inadmissible. PLoS Comput. Biol. 10,
e1003531 (2014).

130. Gatti, D. M. et al. Quantitative trait locus mapping methods for
diversity outbred mice. G3 4, 1623–1633 (2014).

131. Cheng, R., Abney, M., Palmer, A. A. & Skol, A. D. QTLRel: an R
package for genome-wide association studies in which related-
ness is a concern. BMC Genet. 12, 66 (2011).

132. Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL map-
ping in experimental crosses. Bioinformatics 19, 889–890 (2003).

133. Shannon, P. et al. Cytoscape: a software environment for inte-
grated models of biomolecular interaction networks. Genome
Res. 13, 2498–2504 (2003).

Acknowledgements
Foremost we are grateful for the mentorship and continued support we
had received from the late Detlef Zillikens. His inspiring enthusiasm and
dedication to research will be deeply missed. This work has been finan-
cially supported by the Juniorförderung grant “Characterization of host
genetics, diet andmicrobiome interplay in systemic lupus erythematosus”
awardedby theUniversity of Lübeck (YG), aswell asCluster of Excellence
Precision Medicine in Chronic Inflammation (EXC 2167), the Collaborative
Research Center Pathomechanisms of Antibody-mediated Autoimmunity
(SFB 1526), Research Training Groups Modulation of Autoimmunity
(GRK1727) (AV),GenesEnvironment and Inflammation (GRK1743) (AV), and
the clinician scientist program (Deutsche Dermatologische Gesellschaft/
Arbeitsgemeinschaft Dermatologische Forschung) (AV), all from the
Deutsche Forschungsgemeinschaft and from the Schleswig-Holstein
Excellence-Chair Program from the State of Schleswig Holstein.

Author contributions
Y.G. performed the bioinformatics and statistical analyses. Y.G. and T.S.
created the figures and tables. A.L.E. and F.B. performed NGS studies.
T.S. supervised NGS studies. Y.G., A.V., R.J.L., and T.S. planned and set
up the study. A.V. and K.B. conducted the animal experiments. Y.G.,
A.L.E., A.V., R.J.L., and T.S. wrote the manuscript. S.S.C., A.M.C., and
C.D.S. critically revised the manuscript. Y.G., D.Z., and R.J.L. obtained
funding for the work. All authors read, revised, and approved the final
version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-36479-z.

Correspondence and requests for materials should be addressed to
Ralf J. Ludwig or Tanya Sezin.

Peer review informationNature Communications thanks Tao Zuohe and
the other, anonymous, reviewer for their contribution to the peer review
of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-36479-z

Nature Communications |          (2023) 14:834 16

https://doi.org/10.1038/s41467-023-36479-z
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-36479-z

Nature Communications |          (2023) 14:834 17

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Impact of diet and host genetics on the murine intestinal mycobiome
	Results
	Diet modulates fungal communities in the gut
	Composition of the gut bacteria and their alteration with diet
	Inter-domain correlations of fungi and bacteria in the gut ecosystem
	The intestinal fungal community shows a strong genetic association
	Mapping of fungal QTL
	Validation and identification of new QTL associated with gut bacteria
	Common genetic control of fungi and bacteria in the mammalian gut

	Discussion
	Methods
	Animals and sample collection
	Genotyping of AIL mice
	Bacterial DNA/RNA isolation and PCR
	Fungal DNA isolation and PCR
	Library preparation and sequencing
	Data processing and statistical analysis
	QTL mapping
	Correlation analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




