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Integrative proteomic characterization of
adenocarcinoma of esophagogastric
junction
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Xiaoqing Guan1, Guang-Zhao Pan1, Can Hu5, Jinyun Dong1, Yi-An Du1,3,4,
Li-Tao Yang1,3,4, Mao-Wei Ni1, Rui-Bin Jiang1, Xiu Zhu1, Hang Lv 7, Han-Dong Xu5,
Sheng-Jie Zhang1, Jiang-Jiang Qin 1,3,4 & Xiang-Dong Cheng 1,3,4

The incidence of adenocarcinoma of the esophagogastric junction (AEG) has
been rapidly increasing in recent decades, but its molecular alterations and
subtypes are still obscure. Here, we conduct proteomics and phosphopro-
teomics profiling of 103 AEG tumors with paired normal adjacent tissues
(NATs), whole exome sequencing of 94 tumor-NAT pairs, and RNA sequen-
cing in 83 tumor-NAT pairs. Our analysis reveals an extensively altered
proteome and 252 potential druggable proteins in AEG tumors. We identify
three proteomic subtypes with significant clinical andmolecular differences.
The S-II subtype signature protein, FBXO44, is demonstrated to promote
tumor progression and metastasis in vitro and in vivo. Our comparative
analyses reveal distinct genomic features in AEG subtypes. We find a specific
decrease of fibroblasts in the S-III subtype. Further phosphoproteomic
comparisons reveal different kinase-phosphosubstrate regulatory networks
among AEG subtypes. Our proteogenomics dataset provides valuable
resources for understanding molecular mechanisms and developing preci-
sion treatment strategies of AEG.

Adenocarcinoma of the esophagogastric junction (AEG) generally
refers to the adenocarcinoma that occurs in the esophagogastric
junction within the range of 5 cm in both directions1,2. More than 1.5
million patients suffer from AEG each year3,4. AEG tumors are anato-
mically classified into three types5: Siewert type I, tumors with an
epicenter of 1–5 cm above the esophagogastric junction (EGJ); Siewert
type II, tumors within 1 cm above and 2 cm below the EGJ; and Siewert
type III, tumorswithin 2–5 cmbelow the EGJ. AEG is obviously different

from gastric cancer in epidemiology, etiology, and pathological char-
acteristics. The incidence rate of AEG has increased year by year, while
that of gastric antral carcinoma has decreased significantly6,7.
According to the Lauren classification, the intestinal type was most
common in AEG, and intestinal metaplasia led by gastroesophageal
reflux disease (GERD) is the main risk factor for AEG8,9. However, there
are more diffuse type cases of gastric antrum carcinoma, and chronic
atrophic gastritis is an important precancerous lesion of gastric
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antrumcarcinoma9. In addition,Helicobacter pylori (H. pylori) infection
is a recognized carcinogenic factor of gastric antrum cancer. Cyto-
toxigenic associated gene A (CagA) in H. pylori may significantly
increase the risk of atrophic gastritis and gastric antrum cancer, but its
role in AEG is controversial10. Some studies have shown that H. pylori
infection can prevent GERD, Barrett’s esophagus and other reflux
diseases, thus reducing the incidence of AEG to a certain extent11.
Currently, comprehensive treatment, including surgical resection,
chemotherapy, and immunotherapy, is the most effective treatment
for AEG. However, most AEG patients have locally advanced tumors or
distant metastasis at diagnosis and are ineligible for surgery12. Tar-
geted therapies are only for patients with late-stage metastatic HER2-
positive tumors, and the benefited population is very limited12,13. With
the use of PD1/PD-L1 inhibitors, the immunotherapy of AEG has made
significant progress. However, due to the heterogeneity and com-
plexity of the immune microenvironment, immunotherapy still has
many challenges, such as hyperprogression14. Therefore, it is necessary
to better understand the molecular mechanisms underlying AEG car-
cinogenesis and to identify potential prognostic indicators and drug
targets.

Genomic interrogations in AEG have revealed that most AEG
tumors are characterized by focal copy number variations
(CNVs)15,16. These focal CNVs are thought of as tumorigenic fac-
tors that promote chromosomal instability in AEG tumors. The
TCGA Research Network analyzed 295 primary gastric adeno-
carcinomas using six molecular platforms, including array-based
somatic copy number analysis, whole-exome sequencing, array-
based DNA methylation profiling, messenger RNA sequencing,
microRNA (miRNA) sequencing, and reverse-phase protein array
(RPPAR)15. They classified gastric cancer into for subtypes: tumors
positive for Epstein–Barr virus; microsatellite unstable tumors;
genomically stable tumors; tumors with chromosomal instability,
which was mainly dependent on genomics data. Cristescu et al.
used transcriptomics data to describe four molecular subtypes of
gastric cancer, including the mesenchymal-like type,
microsatellite-unstable type, and the tumor protein 53 (TP53)-
active and TP53-inactive types17. The subtyping was primarily
based on gene expression signatures. Other studies related to
AEG subtyping based on omics data mainly including genomics
and transcriptomics data15,16,18–21. In addition to various post-
translational modifications, genomic changes are supposed to be
translated into protein-level alterations to affect phenotypes22,23.
Increasing attention has been given to the application of pro-
teomics and various modified proteomics approaches in the
molecular typing of tumors. Multiple studies have included mass
spectrometry (MS)-based proteomics analyses of various cancers,
including brain cancer24,25, gastrointestinal cancer18,26,27, breast
cancer28, lung cancer29–32, and liver cancer33,34. These studies have
revealed that proteomic signatures can provide complementary
information for patient stratification and can better identify
potential drug targets and disease markers. Proteomic analysis,
integrated with other types of omics data, may help advance our
understanding of the molecular mechanism of AEG carcinogen-
esis and the development of therapeutic drugs for AEG patients.

In this work, we perform comprehensive genomic, tran-
scriptomic, proteomic, and phosphoproteomic analyses of tumor
tissues and paired normal adjacent tissues (NATs) derived from
103 AEG patients. We describe integrative proteogenomic ana-
lyses of a large cohort of AEG samples and focus particularly on
the clinically actionable insights revealed in the proteome and
phosphorylation modifications. Based on proteomic data, we
identify three different AEG subtypes that exhibit clearly sig-
nificant differences in clinical and molecular features. Our study
may improve current knowledge about AEG and contribute to its
diagnosis, prognosis evaluation, and drug development.

Results
Molecular landscape of AEG tumor samples
To characterize a comprehensive molecular landscape in AEG tumors,
we appliedmulti-omics profiling to the paired tumor andNAT samples
from 103 patients (Supplementary Data 1), including proteomics pro-
filing, phosphoproteomics profiling, WES, and RNA-seq (Fig. 1a). In
particular, proteomics and phosphoproteomics profiling were per-
formed on 206 samples. Of these 206 samples, 188 had been analyzed
for WES, and 166 had corresponding RNA-seq data. In total, 30,053
non-synonymous single-nucleotide variants (SNVs) were identified in
94 AEG patients (Supplementary Data 2). In the present AEG cohort,
the most frequently mutated cancer-related genes (derived from
COSMIC v95)35 were TP53 (62%),MUC16 (31%), FAT4 (22%), LRP1B (18%),
ARID1A (16%), and FAT3 (16%) (Fig. 1b). We reviewed the gastro-
esophageal locations of cancer and retrieved 129 samples that were
regarded as AEG in the TCGA esophageal and gastric carcinoma
cohort36. The most frequent genomic alterations in the TCGA AEG
cohortwere captured in our cohort (Supplementary Fig. 1a). Of note, 9
of top 10 mutated genes in our cohort were among the top mutated
genes of the TCGA cohort. Genes with top 20 frequent CNVs in the
TCGA cohort were also found to be frequently altered in our cohort
(Supplementary Fig. 1b). The most frequent nucleotide variant across
103 AEG patients was C > T (16.7%). AEG patients of older age were
found to harbor higher tumor mutation burdens (TMB) (P =0.045,
Wilcoxon rank sum test), while other clinicopathological features
showed no obvious association with the TMB (Supplementary Fig. 2).
Proteomics and phosphoproteomics data showed consistent quality
across 206 samples (Supplementary Fig. 3a, b). In addition, principal
component analysis of 206 proteomes showed clear divergence
between AEG tumor and NAT samples and also showed heterogeneity
among tumor samples (Supplementary Fig. 3c). On average, 8885
proteins (Fig. 1c) and 8445 phosphorylation sites (Fig. 1d) were iden-
tified from the 206 proteomes and phosphoproteomes of 103 AEG
patients. From the RNA-seq data, 23,131 genes were found to be
expressed in 166 AEG tumor and NAT samples on average (Fig. 1e).
Overall, significantly more proteins (P = 3.8E−15, Wilcoxon rank sum
test), phosphorylation sites (P = 1.6E−4, Wilcoxon rank sum test), and
genes (P < 2.2E−16, Wilcoxon rank sum test) were detected in AEG
tumors than in NAT samples (Supplementary Fig. 4). This observation
indicates that compared with NATs, AEG tumors might show abnor-
mally higher molecular activity. In summary, our multi-omics profiling
presented a comprehensive molecular atlas of AEG.

Proteomic characteristics of AEG tumors
We next investigated the disturbance of proteins in AEG tumors. Dif-
ferential protein analysis revealed 2,300 upregulated and 1667 down-
regulated proteins in AEG tumor samples compared to paired NAT
samples (Fig. 2a and Supplementary Data 3). The upregulated proteins
were significantly enriched in genome regulation and instability-
related biological processes, such as “spliceosome” and “DNA repli-
cation”, while downregulated proteins were more enriched in
metabolism-related processes, such as “oxidative phosphorylation”
and “carbon metabolism” (Fig. 2b). Furthermore, the overall protein-
level integrated abundances offifty hallmark biological processeswere
evaluated in each sample (seeMethods). Most of the hallmarks (36 out
of 50, 72%) showed significantly distinct integrated abundance
between paired tumor and NAT samples (Fig. 2c). For example, the
“apical junction” hallmark gene set was remarkably upregulated
(P = 2.40E−16), whereas the “KRAS signaling up” hallmark gene set was
significantly downregulated (P = 1.1E−3) in tumor samples (Fig. 2d).
Higher integrated abundances of the “apical junction” hallmark gene
set indicate a worse prognosis (P =0.016, log-rank test), while the
higher integrated abundanceof “KRAS signaling up” indicated a longer
overall survival time in AEG patients (P =0.0033, log-rank test)
(Fig. 2e). These results revealed extensive dysregulation of hallmark
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biological processes in AEG tumors, which also showed clinical sig-
nificance. To examine whether these differentially expressed proteins
(DEPs) were targeted by FDA-approved drugs or candidate anti-cancer
compounds in clinical trials, we screened datasets of the Genomics of
Drug Sensitivity in Cancer (GDSC)37, Cancer Therapeutics Response
Portal (CTRP)38, and Broad Institute Drug Repurposing project39. Of

these DEPs, 252 were found to be targeted by FDA-approved drugs or
candidate drugs that are currently under clinical trials (Supplementary
Data 4 and Supplementary Fig. 5a). For example, the AHR protein,
which could be inhibited by flutamide, was significantly upregulated in
tumor samples (Supplementary Fig. 5b). AEG patients with high AHR
protein levels showed markedly shorter (P = 6.7E−3, log-rank test)

（ ）

Fig. 1 | Multi-omics landscape of adenocarcinoma of the esophagogastric
junction (AEG). a Schematic overview of the experimental design and data
acquisition process for proteomics, phosphoproteomics, WES, and RNA-seq. NAT
indicates normal adjacent tissue. b The genomic profiles of AEG patients. The top
panel shows the tumor mutation burden (TMB) in each patient. The top bars show
the clinicopathological features of AEG patients. The middle panel is the oncoplot
generated with maftools depicting the top 30mutated cancer-related genes in the

present AEG cohort. The bottom panel shows the proportion of different types of
nucleotide substitutions in each patient. The right panel representsmutation types
and frequencies for each gene. P, two-sided Wilcoxon’s rank test for age, sex,
smoking, and alcohol, and Kruskal–Wallis rank sum test for Siewert type and tumor
stages. cOverview of the proteomics profile in 103 AEG patients. dOverview of the
phosphoproteomics profile of 206 samples from 103 AEG patients. e Overview of
the RNA-seq profile of 83 tumors and paired NAT samples.
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overall survival times than those with low levels (Supplementary
Fig. 5c). To identify proteins thatmayplay crucial roles in AEG, and can
be potential drug targets, we constructed the protein-protein inter-
actions (PPI) network of DEPs (see Methods). A PPI network of 3923
nodes and 79,088 edges was obtained (Supplementary Fig. 6a). The
network topology was further analyzed to identify hub proteins,
including the degree, closeness and betweenness (Supplementary

Fig. 6b–d and Supplementary Data 5). To further optimize the list of
protein candidates, we mapped the top 50 DEPs with the top 50 pro-
teins with the largest degree, closeness, or betweenness, some of
which were also found to be targeted by known anti-cancer com-
pounds, such as HDAC1, HSP90AA1, and TP53 (Fig. 2f). Our analysis
presented a comprehensive view of proteomic alterations in AEG
tumors, and further investigation on their functions and molecular
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mechanisms in AEG may provide promising drug targets for this
disease.

Proteomics-based subtyping of AEG tumors
The proteomic heterogeneity among tumor samples inspired us to
explore AEG subtypes based onproteomicsdata. ANMFalgorithmwas
employed to cluster AEG tumor samples by using proteomics data (see
Methods). Three different subtypeswere identified, with 40 samples in
the S-I subtype, 23 samples in the S-II subtype, and 40 samples in the
S-III subtype (Fig. 3a and Supplementary Data 6). Clinicopathological
characteristics, including age, sex, smoking, alcohol, Siewert type and
tumor stage, exhibited no significant differences between these three
AEG subtypes except for age and Siewert type. The S-I subtype was
significantly associated with older age (75% ≥65 years old, P =0.0093,
Fisher’s exact test). The Siewert type II patients were more enriched in
the S-I subtype, while the S-III subtype had many more Siewert type III
patients (P =0.011, Fisher’s exact test). Patients in these three subtypes
showed significantly distinct overall survival times (P = 0.0011, log-
rank test), wherein S-III patients had the longest survival time and S-I
patients had the shortest survival time (Fig. 3b). The proteomics-based
AEG subtyping remained an independent prognostic factor when
adjusted for other clinicopathological characteristics in multivariate
Cox regression analysis (P =0.002, Supplementary Fig. 7). The top
mutated genes showed clear distinctions among these three subtypes
(Supplementary Fig. 8a-c). We next compared gene mutation fre-
quencies among these three subtypes and found 97, 143, and 29 spe-
cifically mutated genes in the S-I, S-II, and S-III subtypes, respectively
(Fig. 3C and Supplementary Data 7). For example, LEPR mutation was
most common in the S-I subtype (OR = 20.1, P = 2.8E−4, Fisher’s exact
test), NCKAP1 mutation was most common in the S-II subtype (OR =
10.5, P = 5.8E−3, Fisher’s exact test), and WIZ mutation was most
common in the S-III subtype (OR = 10.0, P = 7.5E−3, Fisher’s exact test)
(Supplementary Fig. 8d). To further integrate the genomics and pro-
teomics data, we examined how subtype-specific mutations influence
proteins (Supplementary Fig. 9 and Supplementary Data 8). The con-
sequence of mutation on protein was evaluated by comparing the T/N
(tumor/normal) values between mutation and wild-type samples as
described in a previous study32. For each mutated gene, we examined
changes of all the possible proteins. We identified 65,184, 3900, and
1146 significantmutation-to-protein associations in the S-I subtype, S-II
subtype, and S-III subtype, respectively (Supplementary Fig. 9a). In all
three subtypes, over 60% are negative associations, i.e., most muta-
tions directly or indirectly led to the decrease of protein levels. We
showed the top five mutation-protein associations of the top five
mutated genes in Supplementary Fig. 9b–d. Although tumor samples
exhibited dysregulation of integrated protein abundance of hallmarks
in all subtypes, samples in the S-II subtype showed a decreased degree
of change (Fig. 3d). The S-III subtype not only displayed a higher
degree of dysregulation in tumor samples but also showed a sub-
stantial difference in abundance than the S-I and S-II subtypes. For
example, the integrated abundance of the “G2M checkpoint” hallmark
in the S-III subtype was significantly greater than that in the other two
subtypes (P = 1.7E−3 compared to S-I subtype, P = 1.2E−4 compared to
S-II subtype, Student’s t test) (Fig. 3e), while “pancreas beta cells”
showedmarkedly lower levels in the S-III subtype (P = 1.7E−2 compared

to S-I subtype, P = 4.3E−2 compared to S-II subtype, Student’s t test)
(Fig. 3f). To further investigate the protein features in specific sub-
types, we identified subtype signature proteins that showed subtype-
specific high expression patterns (see “Methods”). Briefly, the
expression levels of signature proteins in specific subtypes were sig-
nificantly higher in tumor samples than in all NAT samples and tumor
samples of the other subtypes. Our analysis found 36, 54, and 10 sig-
nature proteins in the S-I, S-II, and S-III subtypes, respectively. Of these,
12 signature proteins showed a significant association with patient
survival time in the univariate Cox regression analysis (Fig. 3g). Seven
of these 12 signature proteins showed significant prognostic associa-
tions in AEG patients (Supplementary Fig. 10). In the multivariate Cox
regression analysis, FBXO44 was the most unfavorable risk factor
according to the risk score, while PKD2 and CD3D were potent favor-
able factors. In summary, our proteomics analysis identified three
different AEG subtypes that exhibited molecular and clinical
distinctions.

FBXO44 promotes AEG tumor progression and metastasis
In the multivariate Cox regression analysis above, FBXO44 showed a
significantly high unfavorable risk score (Fig. 3g), which was a valuable
candidate for further investigation. FBXO44 is a member of the F-box
protein family that has been shown to play roles in human cancers40.
The FBXO44 gene showed significant dysregulation in eight of 18 dif-
ferent tumor types from TCGA cohorts (Supplementary Fig. 11a).
FBXO44 showed upregulation in colon cancer but showed no sig-
nificant expression change in stomach cancer. The FBXO44 protein
exhibited significantly higher abundance in S-II AEG tumor samples
than in S-II normal samples (P = 1.1E−4, Student’s t test), S-I tumor
samples (P = 2.3E−3, Student’s t test), and S-III tumor samples (P = 5.3E
−4, Student’s t test) (Fig. 4a). The upregulation of FBXO44 protein in
tumor samples was further validated in an independent clinical cohort
of 251 AEG patients (P = 1.55E−4, Student’s t test) (Fig. 4b and Supple-
mentary Fig. 11b). Our analysis in this cohort found that FBXO44 was
significantly associated with distant metastasis (χ2 = 6.19, P =0.013)
and advanced TNM stage (χ2 = 8.95, P = 0.030) of AEG tumor (Sup-
plementary Fig. 12). Furthermore, we also assessed the association
between FBXO44 protein level and all other available clin-
icopathological features of AEG patients (Supplementary Data 9). In
addition to distant metastasis and advanced TNM stage, FBXO44 was
found to be highly associated with older age (χ2 = 5.507, P = 0.019) and
high AFP level (χ2 = 14.489, P < 2.00E−16). AEG patients with high levels
of FBXO44 showed significantly shorter survival times than those
expressing low levels of FBXO44 inboth the present cohort (P = 1.5E−2,
log-rank test) (Fig. 4c) and the other independent clinical cohort of 251
AEGpatients (P = 7.0E−3, log-rank test) (Fig. 4d). To further confirmthe
role of FBXO44 in AEG, we performed overexpression (OE) and
knockdown (KD) of FBXO44 in two different AEG cell lines, OE19 and
SK-GT-4. In OE19 and SK-GT-4 cells, FBXO44 OE promoted cell pro-
liferation by 1.79-fold (P =0.031) and 1.48-fold (P = 0.029) (Fig. 4e and
Supplementary Fig. 11c), increased cell invasion by 1.68-fold (P =0.032)
and 2.18-fold (P =0.035) (Fig. 4f and Supplementary Fig. 11d), and
enhanced cell migration by 2.13-fold (P =0.004) and 1.18-fold
(P = 0.018) (Fig. 4g and Supplementary Fig. 11e), respectively, com-
pared to control cells. In contrast, FBXO44 KD inhibited cell

Fig. 2 | Proteomic variations in AEG tumors. a Volcano plot showing the differ-
ence inproteins betweenAEG tumorandpairedNATsamples. Red circles represent
upregulated proteins (FDR<0.01 and log2(fold change) > 1), and blue circles indi-
cate down-regulated proteins (FDR<0.01 and log2(fold change) < −1).b Functional
enrichment results of upregulated and downregulated proteins, respectively.
c Heatmap showing the difference in the protein abundance of hallmarks between
AEG tumor and paired NAT samples. Different font colors indicate different hall-
mark categories. FDR, adjusted P fromWilcoxon’s rank-sum test. dComparisons of
integrated abundances of “apical junction” and “KRAS signaling up” between AEG

tumor and paired NAT samples (n = 103). Each box represents the IQR and median
of the hallmark scores in each group, whiskers indicate 1.5 times IQR. P, two-sided
Wilcoxon’s rank-sum test. e Kaplan–Meier survival curves comparing groups with
high (n = 51) and low (n = 52) abundance of “apical junction” and “KRAS signaling
up” gene sets, respectively. f Heatmap showing the difference in the proteins that
are included in at least two sets of top 50 DEPs, top 50 proteins with the largest
degree, closeness, or betweenness. Bubble plot on the right shows the degree,
closeness, or betweenness of the corresponding proteins in the PPI network.
*P <0.05, **P <0.01, ***P <0.001, two-sided Wilcoxon’s rank-sum test.
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proliferation by 68.1% (P =0.002) and by 49.1% (P =0.005) (Fig. 4e and
Supplementary Fig. 11c), decreased cell invasion by 79.3% (P =0.008)
and 70.9% (P =0.001) (Fig. 4f and Supplementary Fig. 11d), and
reduced cell migration by 71.8% (P =0.005) and 54.7% (P =0.003)
(Fig. 4g and Supplementary Fig. 11e) in OE19 and SK-GT-4, respectively.
Theoncogenic role of FBXO44 inAEGwas further validated in theOE19
xenograft mouse model. We observed that FBXO44 OE increased the
growth of AEG xenograft tumors by 2.54-fold (P = 0.004), whereas

FBXO44 KD suppressed tumor growth by 67.17% (P =0.029) in vivo
(Fig. 4h and Supplementary Fig. 11f–h). Similar results were also
observed in an OE19 orthotopic AEG mouse model (Fig. 4i, j, and
Supplementary Fig. 11i, j). Of note, FBXO44 OE not only enhanced
tumor growth but also increased the incidence of liver metastasis. In
conclusion, our analysis revealed that a high level of FBXO44 expres-
sion is associated with a poor prognosis in AEG patients and promotes
the growth and metastasis of AEG tumor cells in vitro and in vivo.
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Genomic differences among different AEG subtypes
We further examined the genomic alterations between different AEG
proteomics subtypes. Mutation signatures were separately extracted
in AEG subtypes (see Methods). These three subtypes showed shared
and specific mutation signatures (Fig. 5a–c). In particular, S-I and S-II
shared the SBS3 signature (Fig. 5a, c), which indicates defects in DNA
double-strand break (DSB) repair by homologous recombination (HR).
Both the S-II and S-III subtypes exhibited SBS6 mutation signatures
that represent defective DNA mismatch repair (Figs. 5b and 5c). The
SBS17b mutation signature was shared by the S-I and S-III subtypes
(Fig. 5a, c), which displayed an exclusively high frequency of T >G
nucleotide substitution. The SBS1 signature was specifically identified
in the S-I subtype, which showed spontaneous or enzymatic deami-
nation of 5-methylcytosine (Fig. 5a). The S-II subtype exclusively
exhibited the mutation signature of APOBEC cytidine deaminase (the
SBS2 signature) (Fig. 5b). Themutation signature of “deficiency in base
excision repair due to inactivating mutations in NTHL1” (the
SBS30 signature) was specifically detected in the S-III subtype (Fig. 5c).
To further characterize subtype-specific genomic features, we sepa-
rately conducted somatic interaction analyses in different AEG sub-
types.We identified 21, 12, and 19 co-occurrencemutated gene pairs in
the S-I, S-II, and S-III subtypes, respectively (Fig. 5d–f).Moreover, 2 and
4mutually exclusivemutated gene pairswere found in the S-II and S-III
subtypes, respectively. In particular, CSMD1 and ANKRD36C genes
showed significant mutation co-occurrence across patients in the S-I
AEG tumor subtype (Fig. 5d and Supplementary Fig. 13a). Co-occurring
mutations of theMUC4 and CPED1 genes were specifically identified in
the S-II subtype (Fig. 5e and Supplementary Fig. 13b). Mutations in
FAT4 and PRKDC genes showed significant co-occurrence across AEG
patients in the S-III subtype (Fig. 5f and Supplementary Fig. 13c). In
addition, RYR2 and TTN were found to be exclusively mutated in the
S-III AEG subtype (Fig. 5f and Supplementary Fig. 13d). Apart from
being distinctive features among different AEG subtypes, co-occurring
or exclusive mutations also implicate potential therapeutic strategies
that pharmacologically target both genes or either gene of the related
gene pair. Furthermore, knownoncogenic pathways were examined in
AEG tumors. The most frequently mutated oncogenic pathways in all
subtypes were the “TP53”, “RTK-RAS”, and “Hippo” pathways (Fig. 5g).
Although gene mutations in the “RTK-RAS” pathway were found in
over half of the samples for individual subtypes, remarkably different
sets of geneswere affected in distinct subtypes (Fig. 5h). In conclusion,
AEG subtypes showed clearly distinguishable genomic characteristics
that might suggest different etiologic mechanisms and precision
treatments for individual subtypes.

Immune infiltration in AEG tumors
To investigate the heterogeneity of the tumor microenvironment in
AEG tumors, we performed cell type deconvolution analysis based on
RNA-seq data. The xCell algorithm was employed to infer the relative
cell abundance of 41 different cell types (seeMethods). The infiltration
of some cell types showed significant differences between the three
AEG subtypes, such as regulatory T cells and fibroblasts, but none of
them have associations with clinicopathological features of AEG

patients (Fig. 6a). The S-II AEG tumor samples showed lower abun-
dance of gamma delta T cells, regulatory T cells, and plasmacytoid
dendritic cells, whereas they had higher infiltration of fibroblasts,
lymphatic endothelial cells, and microvascular endothelial cells, com-
pared to those of the S-I and S-III subtype (Supplementary Fig. 14).
Comparisons of cell abundances between tumor and NAT samples in
each subtype revealed pervasive changes in cell abundances across
various cell types (Fig. 6b). Compared to the corresponding NAT
samples, tumors in the S-II subtype had the least number of cell types,
while the S-III subtype had the most cell types that showed alterations
in cell abundance, especially the increase in lymphoid and myeloid
cells. Some types of cells exhibited dysregulated abundances in all AEG
subtypes. For example, the abundance of activated dendritic cells
(aDCs) showed a significant increase in tumor samples of all three AEG
subtypes (Fig. 6c). The abundance of fibroblasts was significantly
decreased in the S-III subtype (FDR = 2.6E−4, Student’s t test) but
showednoobvious changes in tumor samples from the S-I (FDR =0.48,
Student’s t test) and S-II (FDR =0.98, Student’s t test) subtypes
(Fig. 6d). Compared to samples in the S-I and S-II subtypes, our H&E
analysis also revealed a decrease in fibroblast abundance of the S-III
subtype (Fig. 6e). Given that fibroblasts may limit the immune cell
infiltration to exert the immunosuppressive role in cancer41, this
observation may partly explain that AEG patients in the S-I and S-II
subtype had worse prognosis than those in the S-III subtype. Further-
more, we examined the expression changes in immune checkpoint
genes, which were retrieved from a previous study42. Some immune
checkpoints, such as CEACAM1, CD276, PLEC, HLA-DRB1, and LAIR1,
were consistently up-regulated in all three subtypes (Fig. 6f). Subtype-
specific dysregulation of immune checkpoints, such as the upregula-
tion of CD200 and downregulation of TNFSF14 in the S-II subtype, was
also observed.We further evaluated the associations between FBXO44
and immune cells or checkpoints. The high expression of FBXO44was
found associated with the low infiltration of Th2 cells and CD4+ Tem
cells (Supplementary Fig. 15a, b), and also correlated with the high
expression of immune checkpoints TNFRSF14, TNFRSF25, CD40, and
VTCN1 (Supplementary Fig. 15c, d). Our analysis revealed the hetero-
geneity of tumor microenvironment infiltration and immune check-
points, which suggested potential common and subtype-specific
immunotherapy strategies for AEG patients.

Phosphoproteomic characterization of AEG tumors
We next investigated the alterations of phosphorylation modifica-
tions and kinase activity in AEG tumors. Differential phosphoryla-
tion analysis identified 4932 sites with increased phosphorylation
(fold change > 1.5 and FDR < 0.05) and 3146 sites with decreased
phosphorylation (fold change < 0.67 and FDR < 0.05) in tumor
samples (Fig. 7a and Supplementary Data 10). Furthermore, sites
with differential phosphorylation were identified in each subtype,
revealing 1930, 601, and 2111 sites with increased phosphorylation
and 1472, 645, and 1580 sites with decreased phosphorylation in the
S-I, S-II, and S-III subtypes, respectively (Supplementary Data 11).
The differentially phosphorylated proteins in the S-I and S-II sub-
types were enriched in nuclear transport and cell organization,

Fig. 3 | Proteomic subtypingofAEG tumors. aHeatmap showing thedifferentially
expressed proteins among the three subtypes. Tiling bars above the heatmap show
the distribution of different clinicopathological characteristics among the three
subtypes. P, Fisher’s exact test. b Kaplan–Meier survival curve comparing patients
in different subtypes (n = 40 for S-I, n = 23 for S-II, n = 40 for S-III). The hazards ratio
(HR) with 95% confidence interval (CI) is also shown. c Volcano plot showing the
difference in subtype-specific mutated genes. P, Fisher’s exact test. d The differ-
ences in integrated protein abundances of hallmarks comparing tumor and NAT
samples in each subtype. e Comparison of the integrated abundance of “activity of
G2M checkpoint” among three subtypes (n = 40 for S-I, n = 23 for S-II, n = 40 for S-
III). P, two-sided Wilcoxon’s rank-sum test. f Comparison of the integrated

abundance of “activity of MYC targets” gene set among the three subtypes (n = 40
for S-I, n = 23 for S-II, n = 40 for S-III). P, two-sided Wilcoxon’s rank-sum test.
g Twelve signature proteins that are significantly associated with patient survival.
The heatmap on the left shows the relative abundance of signature proteins in
tumor and paired NAT samples of each subtype. The forest plot on the right shows
the prognostic score for each protein in multivariate Cox regression analysis. The
middle points indicate hazard ratios. The endpoints represent lower or upper 95%
confidence intervals. Red indicates unfavorable proteins, while blue indicates
favorable proteins. P, multivariate Cox proportional-hazards. In e and f, each box
represents the IQR andmedian of integrated abundance in each subtype, whiskers
indicate 1.5 times IQR.
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FBXO44−).P, log-rank test. eCell proliferation assays of FBXO44OEorKDOE19 and
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f Transwell invasion assays of FBXO44 OE or KD OE19 and SK-GT-4 cell lines (n = 3
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sponding controls at different time points after injection. i Representative biolu-
minescent images of mice bearing orthotopic OE19 tumors harboring FBXO44 OE
or FBXO44 KD or their corresponding controls at different time points post
implantation. j Representative images of liver metastasis in mice bearing ortho-
topic OE19 tumors. In e–g, error bars represent mean ± SDs.
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whereas those in the S-III subtype were enriched in chromatin
modification and organization (Fig. 7b). A large proportion (35.5%)
of differentially phosphorylated sites that were identified in all AEG
tumor samples showed no obvious dysregulation in all subtypes
(Supplementary Fig. 16a). Specifically, 2040 sites with increased
phosphorylation and 1078 sites with decreased phosphorylation
exhibited no significant changes in all three subtypes (Supple-
mentary Fig. 16b). The kinase activities were then interpreted based
on the differentially phosphorylated sites in each AEG subtype.
Kinase-substrate enrichment analysis was performed to detect

enriched kinases in different subtypes. Different AEG subtypes
were enriched for distinct lists of kinases, and the same kinases
showed different levels of activities in the S-I, S-II, or S-III subtypes
(Fig. 7c). CDK2 andCDK7were highly enriched in all three subtypes.
The S-I subtype specifically showed enrichment of IKBKB and
PRKDC. HIPK2 kinase was exclusively enriched in the S-II subtype,
while CHEK2 and AURKB were specifically enriched in the S-III AEG
subtype. Based on the correlations of known kinase-
phosphosubstrate pairs (see Methods), we separately constructed
the kinase-phosphosubstrate regulatory networks in three AEG
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proteomic subtypes (Fig. 7d–f and Supplementary Data 12). In both
S-I and S-III subtypes, CDK1 exhibited the most significant correla-
tions with its phosphosubstrates (Fig. 7d, f). CDK2 showed sig-
nificantly positive correlations with 18 and 28phosphosubstrates in
the S-I and S-III subtypes, while no remarkable correlations were
detected in the S-II subtype (Fig. 7e). We observed only one
remarkable kinase-phosphosubstrate pair in the S-II subtype,

wherein CSNK2A1 was significantly associated with the phosphor-
ylation of Occludin S408 (P = 3.5E−2). Significant correlations of
some kinases were found in specific subtypes, such as ATR in the S-I
subtype and MAPK3 in the S-III subtype. Conclusively, our analysis
revealed differences in kinase-phosphosubstrate regulatory net-
works between different subtypes and suggested potential perso-
nalized responses to clinical therapeutics for AEG patients.

Fig. 6 | Immune infiltration across different proteomic subtypes. a Heatmap
showing the relative abundance of different cells across samples of the three AEG
subtypes. The Kruskal–Wallis Rank Sum test was used to compare the differences
between subtypes. P, Kruskal–Wallis rank sum test. b The difference in the relative
abundance of different infiltrating cells in the three AEG subtypes. FDR, Wilcoxon’s
rank-sum test. c Comparisons of aDC abundance between AEG tumor and NAT
samples in the S-I, S-II, and S-III subtypes (n = 40 for S-I, n = 23 for S-II, n = 40 for
S-III). FDR, Wilcoxon’s rank-sum test. d Comparisons of fibroblast abundance

between AEG tumor and NAT samples in the S-I, S-II, and S-III subtypes (n = 40 for
S-I, n = 23 for S-II, n = 40 for S-III). FDR, Wilcoxon’s rank-sum test. e H&E analysis of
tumor cells, lymphoid cells, myeloid cells and fibroblasts across three AEG sub-
types. Scale bars used for 0×, 40×, and 200× magnification were 1, 500, and
100μm, respectively. f The differential significance of the protein expression of
immune checkpoints across the three AEG subtypes. In c and d, each box repre-
sents the IQRandmedianof the relative cell abundance innormalor tumor samples
of each subtype, whiskers indicate 1.5 times IQR.
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Fig. 7 | Phosphoproteomic analyses in three AEG subtypes. a Volcano plot
showing the differential significance of phosphorylation sites. Red circles
represent sites with increased phosphorylation (FDR < 0.01 and log2(fold
change) > 1) and blue circles indicate downregulated phosphorylation sites
(FDR < 0.01 and log2(fold change) < −1). b Enriched biological processes of

differentially phosphorylated sites in each subtype. c Kinase enrichment of
differentially phosphorylated sites in each AEG tumor subtype. P, Fisher’s
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phosphosubstrate regulatory networks in tumors of the S-I (d), S-II (e), and
S-III (f) subtypes.
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Discussion
AEG is a gastroesophageal cancer whose incidence has notably risen in
recent decades. However, there has been a lack of molecular classifi-
cation and systematic characterization for AEG, which prevents the
development of effective therapeutic strategies2,13. Our study repre-
sents the attempt at proteomics-based multi-omics profiling for AEG
tumors, including genomics, transcriptomics, proteomics, and phos-
phoproteomics. We presented the proteogenomic alterations in AEG
tumors and classified AEG into three different subtypes based on
proteomics data. These threeAEG subtypes significantly differ in terms
of clinical prognosis and molecular alterations.

It is well recognized that molecular subtyping has greatly
improved our understanding of inter- and intra-tumor heterogeneity
and promoted the development of personalized oncotherapy15,43,44.
Based on proteomics data, three different AEG subtypeswere identified
in our study. Patients with the S-I subtype have the shortest survival,
whereas those with the S-III subtype have the longest survival. Strati-
fication of patients based on survival time will help with precise clinical
management and intervention strategies. Furthermore, we compared
molecular features among these AEG subtypes. We identified signature
proteins that exhibited exclusive high expression in specific subtypes,
which could be used for subtype differential diagnosis and as potential
targets of personalized treatments. Of these signature proteins, some
were found to be significantly associated with AEG tumor progression.
For example, FBXO44 was specifically upregulated in the S-II subtype,
and its high expression is closely related to a poor prognosis in AEG
patients. We experimentally validated that FBXO44 could promote the
proliferation and metastasis of AEG tumor cells in vitro and in vivo. A
recent study demonstrated that FBXO44 is an essential repressor of
DNA replication-coupled repetitive elements in human cancer40. The
same study also showed that FBXO44 inhibition could enhance the
response to anti-PD-1 therapy in immunocompetent mice bearing 4T1
cell-derived tumors. Combining our observations in AEG tumors, these
results suggest that FBXO44 inhibition might overcome anti-PD-1
resistance in AEG tumors, especially for patients with the S-II subtype.

It is known that molecular alterations occurred frequently in
tumor samples, but the specific alterations of proteome in AEG tumor
have not yet systematically investigated. Pairwise comparisons of
tumor and NAT around tumor sites are common in many multi-omics
studies in gastric or colon cancer18,26,27. By comparing to the normal
samples, we identified differentially expressed proteins and altered
biological processes in AEG tumor. Our analysis presented a compre-
hensive view of proteomic alterations in AEG tumors, and further
investigation on their functions andmolecularmechanisms in AEGmay
provide promising drug targets for this disease. The normal samples
were also used to identify subtype-specific alterations. In our study, all
NAT samples were collected from regions within ~2 cm around the
corresponding AEG tumor sites. Paired tumor-NAT samples were
derived from the same patients. To reduce the effect of inter-patient
heterogeneity and identify subtype-specific tumor differences, we
separately compared tumor with NAT samples in each AEG subtype.

In the hallmark gene set analysis, the “pancreas beta cell” gene set
showed a significant decrease in AEG tumor samples, especially in the
S-III subtype. A large number of adult stem or progenitor cells residue
in the epithelium of gastrointestinal organs, which is a source of
renewable insulin+ cells45,46. The pancreas and gastrointestinal organs
are developed from adjacent embryonic domains47. Moreover, native
antral endocrine cells and pancreatic β cells share high molecular
similarity, and Ariyachet et al. demonstrated that antral stomach cells
couldbe reprogrammed intopancreaticβ cells in vivo48. Therefore, the
changes of “pancreas beta cell” gene set observed in our study might
reflect changes in the epithelium. Further investigations are needed to
examine our conjecture.

We examined the expression changes in immune checkpoint
genes to screen potential immunotherapy targets of different AEG

subtypes, which were not necessarily associated with prognosis. We
observed that some of the markers may be related to the prognosis,
indicating that patients of the S-III subtypemay have a better response
rate and treatment effect to tumor immunotherapy. Specifically, the
expression of CD27 in the S-III subtype was significantly higher than
that in the other types, while the expression of VTCN1 in the S-III
subtype was significantly lower than that in the other types. CD27,
which belongs to the tumor necrosis factor receptors, is a co-
stimulatory immune checkpoint. CD27 has been demonstrated to
participate in the regulation of generating and maintaining T cell
immunity. Evidences have shown that CD27was able to promote T cell
function or dysfunction by regulating the production of IL-249,50.
VTCN1, also known as B7-H4, is an immune checkpoint molecule that
negatively regulates immune responses and is known to be over-
expressed inmany human cancers51. VTCN1 negatively regulates T cell
immune response and promotes immune escape by inhibiting the
proliferation, cytokine secretion, and cell cycle of T cells52. However,
further studies areneeded to confirm the specific roleof thesemarkers
in the immune microenvironment of AEG.

Protein kinases have been developed as operable drug targets in
the treatment of cancer53,54. We identified hundreds of differentially
phosphorylated sites in each AEG subtype, which could be utilized as
possible subtype-specific drug targets. Kinase enrichment and kinase-
phosphosubstrate relations were also evaluated in all AEG subtypes.
Our analysis revealed shared and subtype-specific kinase enrichment
and kinase-phosphosubstrate regulatory networks. These results sug-
gest thatdrugs targeting different kinasesmight be effective in distinct
AEG subtypes (for example, casein kinase II subunit alpha (CSNK2A1)
could be a target in the S-II subtype). We hope that these target can-
didates could be experimentally and clinically explored to benefit
patients with AEG tumors in the near future.

In conclusion, the multidimensional analysis in this study repre-
sents an advancement in the understanding of the molecular altera-
tions and possible oncological mechanisms of AEG tumors. Although
some of our findings need further biological and clinical validation, as
the proteomics-based multi-omics characterization of AEG, these data
and observations open prospective paths for biological interrogation
and therapeutic exploration. Our study may also serve as a valuable
resource for future drug discovery and precision clinical practice for
patients with AEG tumors.

Methods
Collections and preparation of clinical specimen
This study included samples derived from 103 patients from the Cancer
Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital) from April 2009 to April 2018. The Research Ethics
Committees of Zhejiang Cancer Hospital approved the study (No. IRB-
2021-288) and all patients provided written informed consent. The
informed consent form clearly informs the patients that all clinical
information such as age, sex, and TNM staging will be used for aca-
demic research and publication. These patients were all newly diag-
nosed patients with AEG who underwent surgical resection and had
received no prior treatment for this disease, including chemotherapy,
radiotherapy, targeted therapy, or biological therapy. Patients who
were found to have two or more malignancies were excluded.

Patients in this cohort ranged from 40 to 87 years old; the cohort
included 81males and 22 females, 4 cases in stage I, 24 cases in stage II,
69 cases in stage III, and 6 cases in stage IV. We included 27 Siewert
type I, 31 Siewert type II, and 45 Siewert type III AEG patients. More
detailed clinical information of individual patients, including age, sex,
smoking, and drinking status, date of surgery, Lauren type, Borrmann
classification, grade of differentiation, tumor size, tumor-node-
metastasis (TNM) staging, and survival status and time, are listed in
the Supplementary Data 1. Pathological staging was based on the
eighth edition of the American Joint Committee on Cancer’s Staging
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System. Tumor tissues and paired NATs were collected from the same
patients at surgical resection. Of note, NAT samples were collected
from regions within ~2 cm around the corresponding tumor sites. The
sample size was approximately 0.5×0.5 cm, and four to five tumor
specimens and NATs were collected for most cases. For genomic,
proteomic, and phosphoproteomic analyses, tissue specimens
endured cold ischemia for less than 30min prior to freezing in −80 °C
refrigerators. For transcriptomic analysis, tissue specimens were
soaked in RNAprotective solution at 4 °C overnight, and then frozen in
−80 °C refrigerators. Histologic sections obtained from the top and
bottom portions of each specimen were reviewed by a senior board-
certified pathologist to confirm the tissues as tumors or NATs. The top
and bottom sections had to contain an average of 60% tumor cell
nuclei with less than 20% necrosis to be deemed acceptable for
this study.

Protein extraction and tryptic digestion
A total of 103 AEG tumor tissues and paired NATs were analyzed by
proteomics and phosphoproteomics profiling. The samples were
taken out from the −80 °C freezers and total proteins were extracted
from each sample. In particular, approximately 20–60mg of tissue
sample was placed into a mortar that was pre-cooled with liquid
nitrogen and fully ground to a powder under liquid nitrogen. Four
volumes of lysis buffer (1% Triton X-100, 1% protease inhibitor, 1%
phosphatase inhibitor) were added to the sample powder of each
group for ultrasonic lysis. The debris was removed by centrifugation at
12,000× g at 4 °C for 10min. Finally, the supernatantwas collected and
transferred to anewcentrifuge tube and theprotein concentrationwas
determined using the BCA protein assay (BCA Protein Assay Kit,
Pierce). For digestion, the same amount of protein was extracted from
each sample, and the volume of each group was adjusted with lysate.
Then, 20% trichloroacetic acid was added slowly and precipitated at
4 °C for 2 h. The samples were centrifuged at 4500 × g for 5min, the
supernatant was discarded, and the precipitate was washed with pre-
cooled acetone three times. After drying the protein pellets, triethyl-
ammonium bicarbonate buffer was added at a concentration of
200mM, and the pellet was ultrasonically dispersed. Then, trypsin was
added at a ratio of 1:50 (protease:protein; m/m) to hydrolyze the
proteins at 37 °C overnight. Dithiothreitol (DTT, 5mM) was added as
the reducing agent at 56 °C for 30min. Finally, iodoacetamide (IAA,
11mM) was added and incubated at room temperature in the dark
for 15min.

Phosphorylation modification enrichment
The peptides were dissolved in an enrichment buffer solution (50%
acetonitrile/0.5% acetic acid). The supernatant was transferred to the
pre-washed immobilized metal affinity capture (IMAC) material,
placed on a rotating shaker, and incubated by gentle shaking. The
IMACmicrospheres with enriched phosphopeptides were collected by
centrifugation, and the supernatant was removed. To remove non-
specifically adsorbed peptides, the IMAC microspheres were sequen-
tially washed with 50% acetonitrile/6% trifluoroacetic acid and 30%
acetonitrile/0.1% trifluoroacetic acid. To elute the enriched phospho-
peptides from the IMAC microspheres, an elution buffer containing
10% NH4OH was added, and the enriched phosphopeptides were
eluted with vibration. The supernatant containing phosphopeptides
was collected and lyophilized for LC-MS/MS analysis.

Liquid chromatography-mass spectrometry (LC-MS) analysis
The tryptic peptides were dissolved in solvent A (0.1% formic acid, 2%
acetonitrile in water) and directly loaded onto a homemade reversed-
phase analytical column (25-cm length, 100μm i.d.). Liquid gradient
settings for proteomic analysis: Peptides were separated with a gra-
dient from 6% to 24% solvent B (0.1% formic acid in acetonitrile) over
70min, 24% to 35% in 14min, further climbing to 80% in 3min, and

then holding at 80% for the last 3min, all at a constant flow rate of
450nL/min on a NanoElute UHPLC system (Bruker Daltonics). Liquid
gradient settings for phosphoproteomic analysis: Peptides were
separatedwith a gradient from 2% to 22% solvent B (0.1% formic acid in
acetonitrile) over 50min, 22% to 35% over 2min, further climbing to
80% over 4min, and then holding at 80% for the last 4min, all at a
constant flow rate of 450 nL/min on a nanoElute UHPLC system (Bru-
ker Daltonics). Then, the peptides were subjected to a capillary source
followed by timsTOF Pro (Bruker Daltonics) mass spectrometry. The
electrospray voltage applied was 1.7 kV. Precursors and fragments
were analyzed at the time-of-flight (TOF) detector, with anMS/MS scan
range from 100 to 1700m/z. The timsTOF Pro was operated in parallel
accumulation serial fragmentation (PASEF) mode. Precursors with
charge states of 0–5 were selected for fragmentation, and 10 PASEF-
MS/MS scans were acquired per cycle. The dynamic exclusion was set
to 30 s/24 s (proteomic analysis/phosphoproteomic analysis).

Protein database searching
The resulting tandem mass spectrometry data were processed using
the MaxQuant search engine (v.1.6.6.0)55. Tandem mass spectra were
searched against the human UniProt database56 (20,366 entries,
downloaded on May 9, 2020) concatenated with a reverse decoy
database. Trypsin/P was specified as a cleavage enzyme allowing up to
2 missing cleavages. The mass tolerance for precursor ions was set as
20ppm in the first search and 20ppm in themain search, and themass
tolerance for fragment ions was set as 20 ppm. Carbamidomethyl on
Cys was specified as a fixed modification, and acetylation on the pro-
tein N-terminal, oxidation on Met, and phosphorylation on Ser, Thr,
and Tyr were specified as variable modifications. The quantitative
methodwas set as label free quantitative (LFQ), and the FDR threshold
for protein identification and peptide-spectrum match (PSM) identifi-
cation was set as 1%. The protein group intensities are provided in
Supplementary Data 13.

Normalization of proteomic and phosphoproteomic data
The iBAQ intensities for proteomics and phosphoproteomics data of
206 samples (103 paired tumors and NATs) were extracted from the
MaxQuant result files. A 10,148 × 206 matrix was generated to repre-
sent the expression of particular proteins across samples, and a
37,773 × 206 expression matrix was obtained for particular phos-
phorylation sites. The proteomics and phosphoproteomics data were
normalized following a previous study34. More specifically, expression
matrixes were then subjected to quantile normalization by using the
normalized quantile functions implemented in the limma R package
(version 3.46.0, R version 4.0.2)57. Next, log2-transformation of the
normalized iBAQ intensities was calculated for the following quanti-
tative analyses. In addition, all missing values were imputed with the
minimum values across individual expression matrixes. The limma
package was also adopted to compute the difference in protein and
phosphorylation abundances between tumor andpairedNAT samples.
Specifically, the difference was statistically evaluated by employing a
simple linear model and moderated t-statistics by the empirical Bayes
shrinkage method.

Whole-exome sequencing
WES was performed for paired tumor tissues and NATs of 94 AEG
cases. Genomic DNAwas isolated from tumor tissues andNATs using a
DNeasy tissue kit (Qiagen, Hilden, Germany). The concentrations of
genomic DNA samples were determined by using the Qubit dsDNA BR
Assay (ThermoFisher Scientific). TheDNA integrity was determined by
1% agarose gel electrophoresis. Genomic DNA samples of 1-3 µg were
sheared by a Bioruptor® Pico Sonication System (Diagenode SA, Bel-
gium), and an Agilent 2100 Bioanalyzer (Agilent Technologies) was
used to assess DNA fragment sizes of approximately 250bp. These
whole-genomic libraries were subsequently prepared by the
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SureSelectXT Target Enrichment System for Illumina Paired-End Mul-
tiplexed Sequencing Library kit (Agilent Technologies). The whole-
exome sequence was captured by SureSelectXT Human All Exon V6
(Agilent Technologies) and quantified by Qubit, Agilent 2100 Bioana-
lyzer, and qPCR (KAPA Library Quantification Kit KR0405). The final
libraries were sequenced for paired-end 150 bp using the Illumina
NovaSeq 6000 Sequencing System (Illumina Inc., San Diego, CA, USA)
at LC-Bio Technology Co., Ltd. Adapters and low-quality reads (q
quality score < 20) were removed from raw WES reads by using fastp
software (version 0.21.0)58. Then, BWA software (version 0.7.17)59 was
utilized to align filtered reads to the human reference genome
(GRCh38). Alignments were subjected to Picard tools (http://
broadinstitute.github.io/picard/) to identify and mark duplicate
reads. Next, local realignment was performed to correct potential
alignment errors around indels. Prior to variant calling, base quality
score recalibration was performed to reduce systematic biases. Then,
somatic SNVs and InDels were jointly called by Mutect2 (version
4.1.9.0)60 and Strelka2 (version 2.9.10)61. Only variants that passed both
quality filtering steps were used in the follow-up analysis. The Variant
Effect Predictor (VEP) tool62 was utilized to fetch biological informa-
tion of the variant set. Called mutations with annotation information
are supplied in Supplementary Data 2.

mRNA sequencing
mRNA sequencing (RNA-seq) was performed in paired tumor tissues
and NATs of 83 AEG cases. Total RNA was isolated from the tumor
tissues and NATs in RNA protective solution using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) following the manufacturer’s proce-
dure. The RNA amount and purity of each sample were quantified by
using a NanoDrop ND-1000 (NanoDrop, Wilmington, DE, USA). The
RNA integrity was assessed by an Agilent 2100 with RIN> 7.0. For
mRNA sequencing, the library was prepared on 1μg of DNase I-treated
total RNA using a TruSeq kit (Illumina), and 150-bp paired-end
sequencing was performed on an Illumina HiSeq X Tenmachine at LC-
Bio Technology Co., Ltd. (Hangzhou, China) following the vendor’s
recommended protocol. Raw sequencing RNA reads were first trim-
med to remove low-quality bases and reads by using Trimmomatic
software (version 0.39)63 with default parameters. The filtered reads
were then aligned to the human reference genome (GRCh38) by using
the splice-aware aligner HISAT2 (version 2.2.1)64. Alignment results
were subjected to gene quantification with gene annotation from
GENCODE (version 35)65 by adopting StringTie software (version
2.14)66. Gene expression levels were normalized in the unit of tran-
scripts per million mapped reads (TPM). Genes with expression levels
higher than 0.1 TPM in at least one sample remained for downstream
analysis. Raw gene counts are provided in Supplementary Data 14.

Hallmark gene set analysis
The hallmark gene sets were retrieved from the Molecular Signatures
Database (MSigDB)67. These fifty gene sets were refined from a wide
range of biological processes by reducing both variation and redun-
dancy. The integrated abundance of proteins in these hallmarks was
then calculated in each sample by utilizing the GSVA R package (ver-
sion 1.38.2)68. A normalized protein expression matrix was used in the
calculation.

Proteomic subtype identification in AEG tumor samples
The non-negative matrix factorization (NMF) algorithm, which is a
popular approach to effectively distinguish groups with different
molecular features15,34,69, was employed to identify AEG subtypes from
the protein expression profiles of 103 AEG tumor samples. In parti-
cular, the consensus cluster method implemented in the NMF R
package (version 0.23.0)70 was utilized to identify the distinct pro-
teomics patterns among individual samples. First, the proteomics
profile was filtered before NMF analysis to remove proteins that were

detected in less than 25% of the samples, leaving 9783 proteins. Then,
the variation coefficient of each protein across all samples was calcu-
lated, and the top 25% of most variable proteins (2445) were used for
unsupervised consensus clustering. Next, the NMF algorithm was
performed to estimate the optimal rank in a given range from 2 to 5
using 200 interactions. A rank of 3 was selected to run the NMF clus-
tering in 200 interactions. Missing values were imputed with the
minimum value in our proteomic dataset.

Identification of signature proteins in each subtype
To identify the specific molecular alterations in our proteomic sub-
types, we compared the protein abundances between tumor samples
in individual subtypes with those in tumor and NAT samples of the
other subtypes. The statistical significance was estimated by the
empirical Bayes shrinkagemethod implemented in the limma package
as described above. In each subtype, a protein that showed remarkably
higher abundances than all NAT samples and tumor samples in the
other subtypes was considered a signature protein.

TCGA gene expression analysis
The gene expression profiles of 18 different cancer types in the TCGA
cohort with paired tumor and normal adjacent samples were retrieved
from the Genomic Data Commons data portal71 (GDC). In each cancer
type, the normalized expression matrix (in TPM unit) was adopted to
perform differential expression analysis by using paired Student’s t
test (as implemented in the R software). Genes with |fold change| ≥ 1.5
and FDR <0.05 were regarded as statistically significant.

Survival analysis
The overall survival time was compared between different groups by
using the log-rank test implemented in the survival package (version
3.2.3, https://CRAN.R-project.org/package=survival). The survival
curves were generated by using the Kaplan–Meier method in the
survminer R package (version 0.4.9, https://CRAN.R-project.org/
package=survminer). Except for the analysis of subtypes, tumor
patients were divided into high- and low-abundance groups by using
themedian abundances of individual proteins, phosphorylation sites or
genes. Hazard ratios with 95% confidence intervals were calculated
from the Cox proportional hazards regression analysis. Clinical vari-
ables, including age, sex, smoking history, alcohol history, Siewert type,
and tumor stage, were used in the Cox regressionmultivariate analysis.

Protein-protein interaction network analysis
Thehumanprotein–protein interactions (PPIs)were obtained from the
STRING database (v11.5)72. Differentially expressed proteins (DEPs)
were mapped to PPIs to generate the DEP PPI network in AEG. Single
nodes were removed from the network. We obtained a PPI network of
3,923 nodes and 79,088 edges. The Cytoscape (version 3.9.0)
software73 was used to visualize the network. The Cytoscape plugin
cytoHubba74 was utilized to calculate the degree, closeness, and
betweenness of all nodes in the PPI network.

Tissue microarray (TMA) construction and immunohistochem-
istry analysis
A total of 251 formalin-fixed, paraffin-embedded AEG tissues and cor-
responding NATs from Jan 1, 2009 to Dec 31, 2017 were collected in
Zhejiang Cancer Hospital. Two pathologists independently selected the
most representative tumors and paired NATs, and TMAswere produced
as previously described75. Immunohistochemical staining of serial TMAs
was carried out as previously described75. After treating with 3% H2O2/
methyl alcohol solution for 10min at room temperature, 5% normal goat
serum buffer was used to block the tissue at 37 °C for 30min. Slides
were then incubated with primary antibodies at 4 °C overnight. After
washing, the slides were incubated with biotin labeled goat anti-rabbit
IgG and HRP-conjugated streptavidin at 37 °C for 1 h. Immunoreaction
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was visualized by diaminobenzidine (DAB) (Cat#ZLI-9065, ZSGB-BIO
Corp., Shanghai, China). After DAB staining, all tissues were counter-
stained with hematoxylin (Cat#ZLI-9609 ZSGB-BIO Corp., Shanghai,
China) dehydrated and then blocked. The FBXO44 (1:300) antibody was
purchased from Proteintech (Chicago, USA). Two experienced pathol-
ogists independently evaluated the slides. Brown-stained cells were
considered positive. The expression of FBXO44 was assessed using the
H-score system. The formula for the H-score was as follows:

H score =
X

IS ×APð Þ ð1Þ

where IS represents the staining intensity and AP represents the per-
centage of positively stained tumor cells. TheH-score ranged between
0 and 12. An IS between0 and 3was assigned for the intensity of tumor
cell staining (0 for no staining; 1 for weak staining; 2 for intermediate
staining; 3 for strong staining). AP depended on the percentage of
positively stained cells as follows: 0 (0%), 1 (1–25%), 2 (26–50%), 3
(51–75%), and4 (76–100%). The scorewas assignedusing the estimated
proportionof positively stained tumor cells. A score≥6was considered
positive, and <6 was considered negative.

Cell lines and cell culture
Human AEG cell lines, including OE19 (Cat#CBP60495, OE19 was
established in 1993 from a 72-year-old male patient with gastric cardia
adenocarcinoma76) and SK-GT-4 (Cat#CBP60462, SK-GT-4 was estab-
lished in 1989 from the primary tumor of an 89-year-old Caucasian
male with an adenocarcinoma of the distal esphagus77,78), were
obtained from Cobioer Biosciences Co., Ltd. (Nanjing, China). OE19
and SK-GT-4 cells were cultured in RPMI 1640medium (Kino Biological
and Pharmaceutical Technology Co., Ltd, Hangzhou, China) contain-
ing 10% fetal bovine serum (FBS, Gibco, Grand Island, USA) and 1%
penicillin/streptomycin (Kino Co., Ltd., Hangzhou, China) at 37 °C
under 5% CO2 in a cell culture incubator. These two cell lines were
identified by Short Tandem Repeat, and bacterial and fungi con-
tamination test were negative.

Colony formation assays
FBXO44 knockdown (shFBXO44) and corresponding negative control
(shCtrl) cells and FBXO44 overexpression (FBXO44) and correspond-
ing vector cells were seeded in 6-well plates (500 cells/well) and cul-
tured for 14 days with fresh medium. Thereafter, the cells were
subjected to fixation and crystal violet (Solarbio, China) staining.
Visible colonies (with >50 cells) were counted to determine the clo-
nogenic potential of these cells.

Transwell invasion assays
For invasion assays, the upper surface of the membrane was covered
by a layer of Matrigel (BD Biosciences, USA). Then, approximately
5 × 104 OE19 and SK-GT-4 (Vector, FBXO44, shCtrl, and shFBXO44)
cells were suspended in 200 µL serum-free medium and inoculated in
the upper compartment of the transwell chamber (Corning, USA).
Furthermore, 500 µL of complete medium containing 20% FBS was
added to the lower chamber. After incubation for 48h, the cells on the
upper surface of the cell membrane were removed with cotton swabs,
and the remaining cells were washed with PBS, stained with crystal
violet (Solarbio, China), and photographed and analyzed under a
microscope at 200× magnification (ix71, Olympus, Japan).

Wound healing assays
For wound healing assays, approximately 2 × 106 OE19 and SK-GT-4
(Vector, FBXO44, shCtrl and shFBXO44) cells were seeded onto 6-well
plates. Then, three fields of vision were randomly selected for each
group and photos were taken at 200× magnification under an optical
microscope (ix71, Olympus, Japan) at 0 h and 12 or 24 h after wound
induction.

Mutation signature analysis
To characterize the patterns of nucleotide substitutions, the trinu-
cleotideMatrix function implemented in the maftools R package
(version 2.6.05)79 was used to extract the matrix of nucleotide sub-
stitutions in each AEG proteomic subtype. The nucleotide substitution
matrix was then decomposed to generate mutation signatures by
classifying the immediate bases surrounding mutated bases into
96 substitution classes. Each identified mutation signature was com-
pared to the COSMIC SBS signatures80 by calculating the cosine
similarity.

Identification of somatic interactions
Some genes were mutually or concomitantly mutated in individual
samples. The somaticInteractions function implemented in the maf-
tools R package was employed to detect the mutually exclusive or co-
occurring gene pairs. In particular, the pair-wise Fisher’s exact test was
used to identify significant gene pairs with mutual or co-occurring
mutations.

Bioluminescence imaging
In vivo bioluminescence imaging was carried out by using a cooled
CCD camera system (IVIS Imaging System, PerkinElmer, CA, USA) to
observe tumor growth. Briefly, normal saline containing 15mg/mL D-
luciferin (Art.No.40901ES03, Yeasen Corp., Shanghai, China) was
intraperitoneally injected into mice at 150mg/kg body weight. These
mice were placed in the light-tight chamber of the CCD camera system
accompanying 2% isoflurane anesthesia. For luminescent image
acquisition, an integration time of 1 to 60 sand binning factors of 4was
used. Signal intensity was measured according to the flux of all
detected photon counts from the region tumor area using the Living
Image software package (Xenogen Corp., Alameda, CA, USA).

Hematoxylin–eosin staining and immunohistochemistry
Paraformaldehyde-fixation, ethanol dehydration, transparency with
xylene, and paraffin-embedding were carried out for all tissues. A
hematoxylin-eosin (H&E) staining kit (Art. ZLI-9609 ZSGB-BIO Corp.,
Shanghai, China) was used to stain the tissue slices. The histological
changes in the tumor tissueswereobservedwith amicroscope at 200×
magnification. For immunohistochemistry staining, 4-μm tissue slides
were treated with 1mM EDTA buffer (pH = 9.0) for antigen retrieval.
The samples were incubated with the anti-FBXO44 antibody (Cat. No.
10626-1-AP) from Proteintech (Chicago, IL, USA). They were then
incubated with biotin-labeled goat-rabbit IgG and horseradish
peroxidase-conjugated streptavidin for 1 h. They were then photo-
graphed with an inverted microscope at 200× magnification.

Estimation of infiltrating cell abundance
The abundances of different infiltrating cell types were calculated by
using xCell (https://xcell.ucsf.edu/)81 based on transcriptomic data. In
the 64 cell types curated by the xCell method, we removed those that
were not relevant in AEG tissues, such as hepatocytes, keratinocytes,
and osteoblast. We then removed those cell types that had a xCell
score of 0 across all samples. A total of 41 cell types were involved in
subsequent analysis, including 10 stromal cell types (adipocytes,
astrocytes, fibroblasts, preadipocytes, pericytes, lymphatic [ly] endo-
thelial cells, microvascular [mv] endothelial cells, smooth muscle,
endothelial cells, and myocytes), 9 lymphoid cell types (central
memory CD4+ T cells [CD4+ Tcm], effector memory CD4+ T cells [CD4+

Tem], CD4+ memory T cells, regulatory T cells [Treg], gamma delta
T cells [Tgd], T helper type 1 cells [Th1], T helper type 2 cells [Th2],
naïve B cells, and plasma cells), 11 myeloid cell types (basophils, den-
dritic cells [DC], macrophages, M1 macrophages, M2 macrophages,
mast cells, activated dendritic cells [aDC], conventional dendritic cells
[cDC], immature dendritic cells [iDC], plasmacytoid dendritic cells
[pDC], and monocytes), 7 stem cell types (platelets, common
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lymphoid progenitor [CLP], common myeloid progenitor [CMP],
granulocyte-macrophage progenitor [GMP], hematopoietic stem cells
[HSC], megakaryocyte-erythroid progenitor [MEP], and mega-
karyocytes) and 4 other cell types (epithelial cells, mesangial cells,
neurons, and sebocytes). Briefly, xCell inferred cell types based on
gene signatures that were extracted from 1822 pure human cell type
transcriptomes by a curve fitting approach. The xCell scores (relative
abundances) were calculated in each sample (Supplementary Data 15)
andwere comparedbetweendifferent groups by using Student’s t test.

Kinase-substrate enrichment analysis
The kinase-substrate enrichment analysis (KSEA) was conducted by
using the KSEAapp R package (version 0.99.0)82 with known kinase-
substrate pairs derived from PhosphoSitePlus® (PSP)83 and NetworKIN
3.084. Kinase-substrate pairs with a score of more than 1 were used in
the enrichment analysis. In each subtype, Spearman correlation coef-
ficients between different kinase proteins and paired phosphosub-
strates were calculated to build the kinase-phosphosubstrate network.

Establishment of stable FBXO44 overexpression and knock-
down cell lines
Human FBXO44-shRNA and FBXO44-overexpression lentiviral vectors
were constructed, validated, and supplied by Shanghai Genechem
Chemical Technology Co., Ltd. (Genechem, Shanghai, China). For
FBXO44 silencing, among the three designed FBXO44 siRNA target
sequences tested, the target sequence with the best silencing effi-
ciency was: CCAGCAGAAGAGCGATGCCAA. After annealing, oligonu-
cleotides were cloned into the AgeI/EcoRI sites of Luc-tagged GV344
lentivirus vectors (Genechem, Shanghai, China). After identification of
the correct sequence and lentivirus packaging, OE19 and SK-GT-4 cells
were infected at a multiplicity of infection (MOI) of 10 for 24 h. For
FBXO44 overexpression, the cDNA of FBXO44 was sub-cloned using
Taq DNA polymerase (SinoBio Biltech Co. Ltd., Shanghai, China) and
inserted into the BamHI/AgeI sites of Luc-tagged GV260 lentivirus
vectors (Genechem, Shanghai, China). Forward primer: AGGTCGACTC
TAGAGGATCCCGCCACCATGGCTGTGGGGAACATCAAC, reverse pri-
mer: CTTCCATGGTGGCGACCGGTACGGGCAGCGGGGGCCCGATGGT
GATG. After identification of the correct sequence and lentivirus
packaging, OE19 and SK-GT-4 cells were infected at an MOI of 10
for 24 h.

Xenograft and orthotopic mouse models of AEG
In accordance with the protocols for experimentation on animals
(National Institutes of Health Publication No. 85-23, revised 1996), the
animal experiments conducted were approved by the Institutional
Animal Care and Use Committee of Zhejiang Chinese Medical Uni-
versity (The Ethics Committee stipulates that the xenograft and
orthotopic tumor volume of mice should not exceed 2000 mm3, and
our experiments meet the ethical requirements.). The nude mice
(male, 4 weeks old) were raised in the laboratory for a week before the
experiment. Mice were fed in the Specific Pathogen Free (SPF) barrier
center at the animal experimental center of Zhejiang Chinese Medical
University, under standard conditions of temperature (25 ± 2 °C) and
humility (50 ± 5%) in a 12 h light/12 h dark cycle with normal drink and
food. A total of 5 × 106 OE19 (Vector, FBXO44, shCtrl and shFBXO44)
cells were injected subcutaneously to establish subcutaneous xeno-
graft tumor models in nude mice, 6 mice in each group. The body
weight, living status, and tumor size of nudemicewere recorded. After
5 weeks of observation, the mice were put into the carbon dioxide
anesthesia box, the carbon dioxide valve was then open, and when the
animal gradually loses consciousness, the carbon dioxide concentra-
tion was increased to 100% for 2min, and then followed by cervical
dislocation. The nudemice were sacrificed, and tumors were frozen at
−80 °C until use. For the orthotopic mouse model, subcutaneous
tumorsgrown in nudemicewere harvested and resected under aseptic

conditions. Necrotic tissues were removed, and viable tissues were cut
with scissors and minced into 1–2mm3 fragments. Before implanta-
tion, themicewere anesthetizedby an intraperitoneal injectionof0.3%
pentobarbital sodium (25μl/g body weight) (Sigma, Steinheim, Ger-
many). A 10–15mmmidline incision was made in the upper abdomen,
and the stomach was carefully exposed. Part of the serosal membrane,
approximately 2mm in diameter, in the middle of the greater curva-
ture of the stomach was mechanically injured with a scalpel. A tumor
piece was then fixed onto the injured site of the serosal surface with
medical OB glue. The stomach was then returned to the peritoneal
cavity, and the abdominal wall and the skin were closed with sutures.
The remaining steps were the same as those in the xenograft mouse
model experiments.

Statistical analysis
Statistical analysis and data visualization in this study were performed
by using R software (R Foundation for Statistical Computing, Vienna,
Austria; http://www.r-project.org). Unless otherwise specified, all tests
were two-tailed, and a P value or FDR <0.05was considered to indicate
statistical significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The proteomics and phosphoproteomics data were deposited in the
ProteomeXchange database85 with dataset identifiers PXD030667 and
PXD030725, respectively. The WES and RNA-seq data were deposited
in the Sequence Read Archive (SRA) database under the accession
number PRJNA788008. The gene expression profiles, mutation, and
CNV datasets of TCGA cohorts were retrieved from the Genomic Data
Commons (GDC) data portal (https://portal.gdc.cancer.gov/). Soft-
ware andpublicly available resources used in this studywere described
in the Methods section. Other results generated in this study can be
found in the Supplementary data. Source data are provided with
this paper.

Code availability
Scripts and code that were used for data analysis and visualization
were deposited in https://github.com/lishenglilab/AEG_Proteomics.
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