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Emissions and fate of organophosphate
esters in outdoor urban environments

Timothy F. M. Rodgers 1, Amanda Giang 1,2 , Miriam L. Diamond3,4,
Emma Gillies 1 & Amandeep Saini 5

Cities are drivers of the global economy, containing products and industries
that emit many chemicals. Here, we use the Multimedia Urban Model (MUM)
to estimate atmospheric emissions and fate of organophosphate esters (OPEs)
from 19 global mega or major cities, finding that they collectively emitted
~81,000 kg yr−1 of ∑10OPEs in 2018. Typically, polar “mobile” compounds tend
to partition to and be advected by water, while non-polar “bioaccumulative”
chemicals do not. Depending on the built environment and climate of the city
considered, the same compound behaves like either a mobile or a bioaccu-
mulative chemical. Cities with large impervious surface areas, such as Kolkata,
mobilize even bioaccumulative contaminants to aquatic ecosystems. By con-
trast, cities with large areas of vegetation fix and transform contaminants,
reducing loadings to aquatic ecosystems. Our results therefore suggest that
urban design choices could support policies aimed at reducing chemical
releases to the broader environment without increasing exposure for urban
residents.

Cities are hotspots of human dynamism, culture, and industry, con-
taining more than half of the world’s population and generating over
80% of global GDP1. This concentration of people, products, and
activities means that cities act as emissions sources for many chemi-
cals, exposing urban residents, surrounding communities, and eco-
systems to high levels of many chemical pollutants2. Understanding
the dynamics of chemical emissions and fate in cities is therefore
essential for reducing chemicals exposure, and helping us build “Sus-
tainable Cities and Communities” (United Nations Sustainable Devel-
opment Goal 11).

The control of persistent organic pollutants (POPs), for example
through the Stockholm Convention3, has focused on chemicals with
persistent, bioaccumulative, and toxic (PBT) properties4. More
recent work has recognized that although persistent, mobile, and
toxic (PMT) organic chemicals do not bioaccumulate, they also pose
a hazard, as they are not easily removed from water through tradi-
tional sorptive treatment processes and are therefore able to

contaminate surface, ground, and drinking water resources5,6. By
definition, a less bioaccumulative substance will be more hydrophilic
and mobile in water. Regulations aimed at controlling the use and
release of PBT substances are therefore much less effective for PMT
substances5. This can be one cause of “regrettable substitution,”
whereby chemical manufacturers respond to regulations around PBT
substances by using chemicals that are less bioaccumulative, yet
have PMT characteristics. One example of this phenomenon was the
replacement of the flame retardant polybrominated diphenyl ethers
(PBDEs) after their listing by the Stockholm Convention in 2009 and
20177. Organophosphate esters (OPEs) were used as drop-in repla-
cements for PBDEs in many commercial products, including the
more soluble chlorinated OPEs, some of which are PMT
substances5,8–10. OPEs have been found to undergo long-range
transport, to be persistent in the environment, and to have serious
health impacts on exposed populations, leading them to be called
regrettable substitutes for PBDEs11.
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OPEs are ubiquitous contaminants found in cities across theworld
at high levels in urban air12–14 and water15,16, with large (1–2 orders of
magnitude) variations in air concentrations observed between cities12.
These large concentration differences arise from differences in both
emissions and in the fate of the compounds within cities. Chemical
emissions in cities come from a wide variety of sources. Point-source
emissions originate from industrial and manufacturing processes,
while diffuse emissions originate from OPEs used in products.
Depending on the chemical and the location, either point-source or
diffuse emissions can dominate17,18. This wider variety of sources
makes estimating OPE emissions difficult, with uncertainties that span
orders of magnitude18–20. In places with large manufacturing bases
such as Beijing, China, a combination of emissions from OPE produc-
tion and manufacturing may be responsible for the majority of
emissions21. In other areas where manufacturing plays a smaller role,
such as Toronto, Canada, diffuse sources may dominate8.

Urban environments tend to increase chemical mobility through
the water. Urbanization is typified by large areas of impervious sur-
faces, which reduce the ability of natural sorptive processes (such as
infiltration through a riverbank) that would otherwise capture
contaminants22. The large area of impervious surfaces in urban envir-
onments accumulates an organic surface film23 that further enhances
the transport of semi-volatile organic compounds (SVOCs) from the
atmosphere to surface compartments2,24. The films capture gas- and
particle-phase SVOCs that are transferredby rainwater to soils and into
urban waterways25. Thus, cities are important starting points for the
global long-range transport of chemicals through air and water8,26. A
changing climate is also affecting how chemicals move through the
environment27,28, by promoting more release to warmer air, more
water-borne transport in locations experiencing greater precipitation,
and more atmospheric transport in locations experiencing drought.

Despite the importance of cities as sources of many chemicals,
differences in chemical fate between urban environments have not
been well-studied. Here, we address this gap by combining a unique
dataset from the Global Atmospheric Passive Sampling (GAPS)-Mega-
cities network12 with the Multimedia Urban Model (MUM)8,24 to inves-
tigate the emissions and fate of OPEs in 19mega ormajor cities around
theworld. The goals of this studywere to: (1) Estimate the emissions of
OPEs in the 19GAPS-Megacities locations, (2) Investigate the sources of
those emissions, (3) Investigate how built-environment, physico-
chemical properties, and climatic factors influence the fate of chemi-
cals in different urban environments, and (4) Provide
recommendations for policy or engineering solutions that could
reduce chemicals emissions from cities.

Results
Air emissions estimation and model evaluation
We estimated aggregate air emissions by back-calculating the emis-
sions required tomaintain the reported air concentrations from the 19
cities under the GAPS-Megacities study12, using an instantiation of
MUM parameterized for each city across the ~3-month sampler
deployment period (Fig. 1).

Overall, we estimated that the 19 cities in our study emitted
81,000 kg yr−1 ∑10OPEs (Fig. 2) to the air in 2018. Estimated emissions
varied by nearly 40-fold between cities. London had the largest emis-
sions at ~39,000 kg yr−1, followed by Bogotá at ~13,000 kg yr−1, while
Sydney, Kolkata, and Istanbul all had <100 kg yr-1 of ∑10OPE emissions.

On a compound-specific basis (Supplementary Table 1 contains
the names and identifiers for all compounds modeled in this study),
emissions of tris (1-chloro-2-propyl) phosphate (TCIPP) were the lar-
gest, at ~53,000 kg yr−1, followed by tris(2-chloroethyl)phosphate
(TCEP), at ~15,000. Together, these two compounds accounted for
~85% of all estimated ∑10OPE emissions. In every city, either TCIPP or
TCEPhad the largest emissions, and combined they comprised 48–91%
of emissions in each city.

Based on the comparisons presented here and the full MUM
uncertainty analysis of ref. 8, our emissions estimates have approxi-
mately an order of magnitude uncertainty in either direction for each
city. The 2018 ∑10OPEs predicted emissions were similar to previous
estimates, which were available for the city of Toronto and for Beijing
at a provincial level. In Toronto, the 2018 emissions were ~45% lower
than the emissions predicted by ref. 8. for 2010 using the samemodel,
with most of the difference caused by the lower air concentrations
used here. In Beijing, our estimates for the municipal area were ~50%
lower on an area-normalized basis than the provincial estimates of
ref. 21. for 2018. Their estimated air concentrations were close to those
input here toback-calculate the emissions,meaning that thedifference
in emissions intensity was likely caused by different estimations of
chemical fate within the modeled domain. Further, our predicted

Fig. 1 |Modeling framework.A Schematicdiagramof theMultimediaUrbanModel
(MUM) showing the seven compartments (upper air (UA), lower air (LA), urban film
(F), vegetation (V), soil (Soil), water (W), and sediment (Sed)); inter-compartmental
transport processes (solid arrows, D values (mass/time) with compartment sub-
scripts); emissions to air; transformation processes (dashed arrow, DR); and
advective transport out of the system (Dadv). Bi-directional processes are shown
with double-headed arrows, with the larger arrow showing the typical direction of
net mass transport. B Flowchart showing the model parameterization, where FAVs
refer to final adjusted values. C Flowchart showing the model application for an
individual city. The tree, grass tufts, clouds, and city skyline were generated with
the assistance of DALL·E 289.

Fig. 2 | Map showing 2018 ∑10 organophosphate ester (OPE) air emissions from
the 19 Gaps-Megacities locations. Emissions were calculated using administrative
boundaries. The base map shows global land cover from Copernicus Global Land
Service60 overlaying country borders from the Global Administrative Data Map82.
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concentrations inmedia other than air were generallywithin a factor of
100 of published measurements in those samemedia (Supplementary
Fig. 1 and Supplementary Results S1), comparable to the accuracy of
predictions of remote air concentrations made using the BETR-Global
model for PBDEs19 and to the agreement between predicted and
measured soil concentration across China for OPEs21.

Identifying drivers of OPE emissions
One of our central goals was to assess whether we could identify the
sources or sectors that contribute to OPE emissions, and if we could
use our results to develop proxies for OPE emissions in the absence of
measured inventories.We, therefore, correlated the log10-transformed
emissions flux (log10 kgm−2 yr−1) with several proxies for emission
sources (Supplementary Fig. 4 and Supplementary Table 3). For
instance, we used gross domestic product (GDP, 2015 $ at purchasing
power parity)29 and population30 to estimate broad-based emissions

from in-use products, and we used sector-specific estimates of
anthropogenic greenhouse gas emissions31 to estimate contributions
from various industrial sectors.

Our results suggested that at a global scale, most OPE emissions
originate from numerous complex, diffuse sources, rather than from
specific manufacturing or production processes. The strongest single
correlation was with ∑GDP in the modeled area, which explained 36%
of the variation (measured by r²) for the log10 ∑10OPEs, driven by
correlations (r² of 0.31–0.19, p <0.05) for, in descending order, tris(3-
methylphenyl) phosphate (TmCP), tributyl phosphate (TnBP), TCEP,
TCIPP and tris(1,3-dichloroisopropyl) phosphate (TDCIPP) (Supple-
mentary Fig. 4). Most individual correlations between emissions and
sector-specific proxies were weak (p >0.05, Supplementary Table 3).
For TCIPP, which is used extensively in building insulation32,33, diffuse
emissions from buildingmaterials appeared to be amajor source, with
log10 emissions moderately correlated with the percentage of

Fig. 3 | Influenceof the built-environment on∑10organophosphate ester (OPE)
fate. A City-space figure showing the dominant chemical fate process for the
∑10OPEs with their built-environments described by the surfaces vs film-vegetation
indices. Contour colors show the dominant fate process, with the intensity showing
the proportion of total emissions undergoing that process (as labeled). Points show
where the 19GAPS-Megacities locations fit on these axes; thepoint color represents
the 2018 dominant fate process in each city. B ∑10OPE fate diagrams for Cairo,

Bogotá, and Kolkata, respectively, for 2018. Dashed lines represent transformation
processes and solid lines transport processes. Emissions (kg yr−1) are shown
entering the lower-air compartment and fate process values are given as the % of
total emissions. Values shown on each figure may not sum to 100 as only larger
processes are shown. The trees, grass tufts, clouds, and city skylines were gener-
ated with the assistance of DALL·E 289.
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greenhouse gas emissions (% of CO2 equivalent kgm−2 s−1) from the
“energy for buildings” and the “solvents and other products use” (a
broad-based measure of in-use products) categories (r² = 0.28 and
0.35, respectively). Supplementary Results S2 contains additional
information on the correlations, including Supplementary Table 3with
all regression statistics.

Fate of organophosphate esters in outdoor urban environments
Our results showed that contaminant fate processes hada large impact
on environmental concentrations, and therefore both the magnitude
and the pathways for human and ecosystem exposures. Our sensitivity
analysis (Supplementary Fig. 3 and Supplementary Table 3) indicated
that there were three groups of parameters, which collectively con-
trolled contaminant fate in outdoor urban environments: those

representing the built environment, physicochemical properties, and
climate. We investigated the relationships among these groups of
parameters by running the model for several scenarios across a city-
space which represented different cities by their “sparsity index” and
“film-vegetation index”. As described in the Methods, we built these
two indices to represent three critical built-environment drivers of
chemicals fate: the city’s footprint (Acity, m²), the area factor of the
vegetation compartment (AFveg,AV/Acity, m

2m−2), and the area factor of
the urban film compartment (AFfilm, AF/Acity, m

2 m−2. We defined this
“sparsity index” (m2 m−2) with Eq. (3):

Sparsity Index = log
Acity footprint

Afilm +Avegetation

 !
ð1Þ

Fig. 4 | City-space diagrams showing the influence of physicochemical prop-
erties on organophosphate ester (OPE) fate. Dominant chemical fate processes
forA tris(2-chloroethyl)phosphate (TCEP) and B triphenyl phosphate (TPhP) using
the average city parameterization, C TCEP with the vegetation reaction half-life (T1/
2,V) slowed by a factor of 10 and D TCEP with the film reaction half-life (T1/2,F)
quickened by a factor of 100. Points represent the 19 GAPS-Megacities locations;

the color of each point represents the dominant fate process for that chemical in
each city using its 2018 parameterization. Contour colors represent the dominant
fate process in each region, with the intensity of the proportion of total emissions
undergoing that process (as labeled in each region). Note that reaction in soil was
the dominant process for TPhP in twocities but does not showon the contour plots
using the “average” parameterization.
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whereAj represents the area of compartment j inm². The second index
explored the nature of those surfaces.We defined this “film-vegetation
index” with Eq. (4):

Film� Vegetation Index = log
Afilm

Avegetation

 !
ð2Þ

First, we looked at the influence of the built-environment alone by
running our model using a synthetic “average” city, with the model
parameters (outside of those in the sparsity and film-vegetation indi-
ces) and the input concentrations for each of the OPEs set to their
mean values across the 19 cities (Fig. 3A). Next, we looked at the
influence of physicochemical properties by contrasting the fate of a
polar PMT-like compound, TCEP,with a non-polar PBT-like compound,
triphenyl phosphate (TPhP), across the same average city-space and
for scenarios exploring transformation half-lives. Finally, we probed
the influence of climate by running the model across the city-space
with the average city climate replaced by composite “low-deposition”
and “high-deposition” climates for the PMT-like and the PBT-like
compound.

Influence of the built environment
Across our city-spacediagram(Fig. 3A), citieswith a high sparsity index
have fewer depositional surfaces, while cities with a low sparsity index
have more surfaces. The film-vegetation index describes the nature of
those depositional surfaces. For cities with a film-vegetation index >0,
the area of the urban film is greater than the area of vegetation, and
vice-versa.

∑10OPE fate varied substantially between three city archetypes:
“Sparse,” “Densely vegetated,” and “Densely urbanized,” represented
by Cairo, Bogotá, and Kolkata, respectively (Fig. 3B, Supplementary
Figure 5 shows the ∑10OPE fate diagrams for all 19 cities, and SI
Figs. S6–S15 show the fate diagrams for each compound across all 19
cities). In sparse cities with fewer depositional surfaces (Fig. 3A, blue-
shaded contours), such as Cairo (Fig. 3B), ∑10OPE fate was dominated
by air advection from the city to its surrounding region. In our dataset,
Cairo was the only city where the area of film and vegetation surfaces
was lower than the area of the city’s footprint, due to the large area of
bare-ground, and this led to ~94% of the ∑10OPEs emissions remaining
in the air compartment and either undergoing primary transformation
or being blown down-wind.

In cities with many surfaces (low sparsity index) like Bogotá
(vegetation) and Kolkata (urban film), deposition played a muchmore
significant role, with up to 93% of emitted chemicals deposited to
surfaces within Bogotá’s city limits. The fate of the compounds
deposited was then determined by the nature of the depositional
surfaces. In “densely vegetated” cities (Fig. 3A, green-shaded con-
tours), represented by Bogotá (Fig. 3B), deposition to and subsequent
transformation in the vegetation compartment dominated chemical
fate. Plants are able to take-up and metabolize some OPEs34–36, so the
vegetation compartment here acted to fix the compounds in place and
transform them. In densely-vegetated Bogotá, 39% of overall OPEmass
was transformed in the vegetation compartment, while 14% was pre-
dicted to be washed off into the soil. Further, we predicted that 24% of
overall atmosphericOPEemissionswould either beburied in the soil or
infiltrate into groundwater, highlighting an important risk with PMT
chemicals.

In densely urbanized cities (Fig. 3A, purple-shaded contours) with
very high impervious surface coverage, like Kolkata (Fig. 3B), OPE fate
was dominated by deposition to film followed by wash-off through
stormwater and subsequent advection from the city to the surround-
ing aquatic ecosystem. Thus, water advection accounted for the fate of
~44% of emissions, with 42% lost via wind advection. This is less than
the >56% water advection that would be predicted using the char-
acteristics of the average city, due in part to the physicochemical

properties of the OPEs released in Kolkata and in part to its climate, as
will be explained below.

Influence of physicochemical properties
We compared the fates of individual OPEs to assess the influence of
physicochemical properties, using TCIPP and TPhP as chemicals with
representative mobile and bioaccumulative behavior, respectively
(Fig. 4A, B and S1 Figs. S2–S11 show the base-case fate of each com-
pound). Low KOW, soluble PMT-like compounds such as TCEP required
fewer surfaces for deposition to dominate due to their higher solubi-
lities leading tomore atmosphericwash-out. Conversely, for thehigher
KOW, lower solubility PBT-like compounds, represented here by TPhP,
less efficient scavenging from precipitation meant that more surfaces
were required for atmospheric deposition to take place. Thus, air
advection dominated across almost all cities, with water advection
being considerably less important than for the PMT-like compounds,
as expected.

For OPEs and other compounds with shorter transformation half-
lives in vegetation (i.e., that were susceptible to phytotransformation),
plants acted as fixing and transforming surfaces, reducing the con-
centration of OPE parent compounds that either remained in the air
compartment or were exported to aquatic ecosystems. Although
direct atmospheric transformation products of OPEs can be more
persistent and toxic than the parent compounds37, plants have been
shown to rapidly transform the predominantly triester OPE parent
compounds primarily through direct dealkylation to diester products,
or through hydroxylation to hydroxylated OPEs38. Subsequent trans-
formation of the diester products has been observed for the non-
chlorinated OPEs3. This continued metabolism suggests that plant
transformation may be able to reduce the overall persistence of non-
chlorinated OPEs and their transformation products, thereby lowering
the overall hazard posed by OPEs deposited to plants. By contrast, for
the chlorinated OPEs, the lack of continued metabolism indicates that
the transformation products may continue to be problematic. For two
cities (Bogotá andMexico City), the reaction in the soil dominated the
overall fate of TPhP, following chemical deposition to vegetation and
subsequent wash-off to the soil, as TPhP is less susceptible to trans-
formation in vegetation than in soil.

The amount of transformation in the vegetation compartment
was sensitive to the modeled transformation half-life, meaning that
compounds that are only slightly less susceptible to phyto-
transformation are unlikely to be transformed by plants, and for those
compounds, plants will be less effective at fixing and transforming
contaminants rather than mobilizing them. Slowing the vegetation
transformation half-life (T1/2,V) by a factor of 10 (to represent hypo-
thetical compounds more resistant to or slower at transformation)
removed plant transformation as a dominant process (Fig. 4C shows
the city-space diagram for TCEP under these conditions), with most of
the mass deposited to plant surfaces either re-volatilizing to air and
leaving the city through air advection, orwashing through to soil to the
water compartment and then advecting downstream; for some com-
pounds, this also increased transfer to groundwater.

By contrast, the urban film mobilized OPEs by enhancing their
transfer to the water compartment and increasing loadings to aquatic
ecosystems. The urban film consists of a mixture of organic matter,
soot, and deposited atmospheric particles that accumulate over time,
thus giving it complex chemical characteristics25,39,40. Surface-
mediated chemical reactions on urban films or particles can be
important for some chemicals40,41, but OPEs are generally believed to
have up to order-of-magnitude lower reaction rates when particle-
bound due to the ability of particles or atmospheric water to shield
OPEs from hydrolysis37,42,43.

Fate in the film compartment was less sensitive to the transfor-
mation half-life (T1/2,F) than fate in the vegetation compartment, as a
similar 10x decrease in T1/2,F did not change the dominant fate
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processes across the city-space diagrams. However, increasing T1/2,F by
100x (likely a maximum rate, although the reaction rate in the urban
film is poorly constrained) led to a transformation in the film com-
partment dominating (Fig. 4D). Thus, the film compartment is more
likely to transfer chemicals to water rather than fix and
transform them.

Influence of climate
Inter-city climatic variabilitywasmainly responsible for the differences
seen between the “average” cities (contour lines) and the fate in indi-
vidual cities (filled-in circles) in Figs. 3, 4. Across the city-space, a low-
deposition climate was warmer, drier, and windier, with a higher pla-
netary boundary layer height, and cities with this climate tended to be
dominated by air advection (Fig. 5A, B). A high-deposition climate was
cooler, wetter, and calmer, with a lower ceiling, and cities with this

climate tended to be dominated by vegetation reaction and water
advection (Fig. 5C, D). The low-deposition climate was parameterized
using the 5th percentile lowest precipitation rate observed across the
19megacities and the95thpercentile highestwindspeed, temperature,
andplanetary boundary layer height, while the high-deposition climate
was parameterized inversely.

The fate of even the same chemical in the samebuilt environment
was substantially different between the low-deposition and the high-
deposition climates (Fig. 5). Thismeant that, dependingon the climate,
traditionally waterborne PMT-like chemicals such as TCEP could be
advected via air rather than water, and traditionally sorptive PBT-like
chemicals such as TPhP could become water-borne contaminants.
Under the warmer, windier, and drier low-deposition climate, advec-
tion via air woulddominate across almost all of the cities (Fig. 5A, B) for
both the soluble PMT-like compound TCEP and the sorptive PBT-like

Fig. 5 | City-space diagrams showing the influence of climate on OPE fate. Fate
of A TCEP and B TPhP using the low-deposition city parameterization. Fate of
CTCEPandDTPhPusing the high-deposition city parameterization, asdescribed in
the main text. Points represent the 19 GAPS-Megacities; the color of each point
represents the dominant fate process for that chemical in each city using its SSP3-

7.0 2100 parameterization, with white outlines highlighting those that changed
from the 2018 baseline. Contour colors represent thedominant fate process in each
region, with the intensity of the proportion of total emissions undergoing that
process (as labeled in each region).
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compound TPhP. By contrast, in the cooler, wetter, and calmer high-
deposition climate, water advection and vegetation reaction were
predicted to dominate across all the cities for TCEP, and water
advection dominated for most (~12/19) of the megacities for TPhP
(Fig. 5C, D).

The “SSP3-7.0” projected 2100 climatic differences between a
more aggressive climate-change mitigation pathway with low emis-
sions (SSP1-2.6) and a less aggressive mitigation pathway with higher
emissions (SSP3-7.0) did not substantially change projected chemical
fate across the conceptual city-space using the average city. Localized
changes did, however, change the dominant fate processes for indi-
vidual cities (colored circles with a white border, Fig. 5).

Discussion
First, our results confirm that cities are important sources of OPE
emissions. Further, we found that emissions of OPEs likely dwarfed
emissions of the PBDEs that they replaced. The population of the 19
megacities presented here represents ~13% of the global population in
cities with a population larger than 500,0001. We estimated ∑10OPE
emissions of between3.8–7000mgcapita−1. Extrapolating thesevalues
to the global urban population implies that cities with a population of
>500,000 could emit 0.88–140 (mean of 16) kt yr−1 of ∑10OPEs. This
compares with a total of 9.3–25 (mean of 16) kt of PBDEs estimated to
be emitted since production began in the 1970s19.

Second, emissions across cities appeared to be driven more by
diffuse, economy-wide processes than individual manufacturing sec-
tors, as represented by proxies. We identified that a city’s total GDP
was the overall best proxy for OPE emissions. This indicates that OPE
emissions come from a profusion of complex, distributed sources,
making engineered solutions on manufacturing facilities unlikely to
have much impact on overall OPE emissions.

Third, our results showed that both the built environment and
climate strongly influenced chemical fate. Strikingly, the difference in
the fate of a single chemical between cities with different climate and
built environment factors was of a similar magnitude to the difference
between a PMT-like and a PBT-like chemical in the same environment.
Chemicals management tools and regulatory approaches generally
screen chemicals for hazard traits (such as bioaccumulation or mobi-
lity) using their physicochemical properties, and the tools used to
support chemicals management regulations often consider a single
evaluative environment, such as is the case for the OECD Tool44 or the
evaluative multimedia environment in the Estimations Program Inter-
face (EPI) Suite of software tools45. Our results indicate that in order to
take a precautionary approach, regulatory support tools should con-
sider that in different plausible emissions environments, the same
chemical may appear to bemobile or bioaccumulative. To account for
this influence of climate and the built environment on chemical fate,
more weight could be placed on persistence and toxicity as hazard
traits than on mobility and bioaccumulation.

Fourth, our results indicate that densely urbanized, sparsely
vegetated cities in non-arid environments are extremely efficient at
mobilizing chemicals to water through stormwater, and this means
thatmore chemicals are likely to be found in stormwater thanmight be
expectedbased onphysicochemical properties alone. Recentworkhas
highlighted the need for more green infrastructure to treat a wide
variety of pollutants22. Our results suggest that diverting stormwater
runoff from directly entering receiving bodies could significantly
reduce aquatic loadings. Depending on the local context, this green
infrastructure could range from engineered systems like bioretention
cells to a simpler redirection of stormwater from rooves to, for
example, gardens or other vegetated areas. Encouragingly, sorption-
based green infrastructure technologies are effective for compounds
with log KOW> ~3.846, meaning that for many of the more hydrophobic
chemicals mobilized by cities (that would not be released to water in
non-urban environments), green infrastructure should be an effective

way to decrease loadings to aquatic ecosystems. One additional note
of optimism is that our results suggest that increasing the amount of
green space in a city can increase a city’s urban metabolism, directly
removing chemical contaminants from the air and prevent them from
being washed into the water, at least for those compounds that phy-
totransform into less toxic products.

Finally, the processes governing OPE emissions and fate in urban
areas have significant implications for human and ecosystem expo-
sure. Both emissions and urban design levers could therefore affect
these exposures, though further research is needed on the impacts of
different interventions. People are exposed to OPEs mainly via diet,
dust ingestion, and dermal absorption (for toddlers); and via diet,
indoor air inhalation, and dermal absorption (for adults); with
drinking water a less studied but potentially significant pathway for
the mobile chlorinated OPEs47. Designing our built-environments to
favor certain processes over others will therefore involve compli-
cated tradeoffs between exposures to different groups, and will
require further investigation. For instance, as most food production
occurs outside of cities, processes which act to retain OPEs in urban
areas are likely to reduce human exposure via diet. However, if these
processes simply mobilize OPEs to surface water, they will increase
human exposure through drinking water, especially for the chlori-
nated OPEs, which are poorly removed by water treatment
systems46,48,49 and thereforemay accumulate in water cycles5. Aquatic
ecosystems are believed to be sensitive to certain OPEs50, so moving
OPEs from the atmosphere to water would also increase environ-
mental damage. Further research to better understand these trade-
offs will allow us to design cities to better “metabolize” OPEs and
other contaminants, preventing exposure for people and ecosystems
within and outside of urban areas. Ultimately, our results suggest
that supplementing policies that reduce sources of emissions with
careful urban design to fix and transform (or metabolize) those
chemicals we cannot eliminate provides the best pathway toward
building healthier, more sustainable cities.

Methods
Model approach
The “Multimedia Urban Model”24 (MUM) is a multimedia fugacity-
modeling tool that accounts for urban contaminant dynamics in a
steady-state, city-scale modeling domain (Fig. 1). It has been used to
estimate levels of PAHs, PCBs, and PBDEs51,52. We used a version of the
model that was parameterized for PMTs and used to estimate the
emissions of OPEs from Toronto8. MUM follows the fugacity (f, Pa)
multimedia modeling approach popularized by Mackay53.

In this approach, the environment is broken into different
compartments (e.g., air or water), and the concentration (C, mol
m-3) of a chemical in a compartment is defined as C = f*Z, where Z
(mol m−3 Pa−1) is the fugacity capacity. The fugacity capacity of air
is defined as ZA = 1/RT, where R (J mol−1 K−1) is the ideal gas con-
stant and T (K) the temperature. The fugacity capacities of the
other compartments are derived from the fugacity capacity of air
using the partition coefficient (Kjk for two phases j and k) between
air and that compartment. For instance, the fugacity capacity of
pure water is ZW = ZA/KAW, where KAW is the unitless air-water
partition coefficient. Most environmental compartments are not
made of pure substances, so the bulk fugacity capacity for a given
compartment is calculated as the volumetrically-weighted sum of
the fugacity capacities of the individual pure substances that are
assumed to be at chemical equilibrium within that compartment.
For instance, in MUM the fugacity capacity of bulk air (ZA,B)
consists of pure air (ZA), pure water (ZW), and aerosols (Zq) so that
ZA,B = ZA × VFA + ZW × VFW + Zq * VFq, where the volume fraction for
compartment j is denoted by VFj. MUM consists of eight bulk
compartments (Fig. 1): the lower air, upper air, water, soil, sedi-
ment, vegetation, and film. The full equations for each
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compartment’s fugacity capacity can be found in the code
archived in our data repository54, or in ref. 8.

MUM is a “level III” multimedia model, meaning that it is at tem-
poral steady-state but that the different compartments are not at
chemical equilibrium53. Chemical transport between compartments is
modeled using “D values” (Djk, mol Pa−1 h−1) which define mass trans-
port rates (Njk, mol h−1) between compartments j and k as Njk = f ×Djk.
The overallD values between compartments are found by the addition
of different transport processes. At steady-state, the mass-balance
equations for each compartment, consisting of D values, fugacities,
and sources to each compartment j (sj, mol hr−1) can be combined into
a single system of equations. For an air-water system, this would look
like Eq. (3):

D~f =~s = ∣
�DT ,A DWA

DAW �DT ,W
∣ � ∣ f A

f W
∣= ∣

sA
sW

∣ ð3Þ

Where the total D values leaving each compartment j are denoted by
DT,j. Solving this systemof equations,where theD values and inputs are
known, gives the fugacities in each compartment, allowing con-
centrations, masses, and mass transport to be calculated directly. We
also used the model to back-calculate air emissions from measured
concentrations. In this case, we first calculated the fugacity of the
lower air compartment as fA =CA/ZB,A, then moved all terms including
fA to the right-hand side of the equation and the unknown emissions
sources to air to the left-hand side, then solved the resulting matrix to
provide the emissions to the lower air compartment and the fugacities
of the other compartments. The full equations for each compartment’s
D values can be found in the code archived in our data repository54, or
in ref. 8.

Model parameterization
We parameterized the model for each of the 19 cities in the GAPS-
Megacities network using a combination of remotely-sensed and
locally available data. Datasets were processed using a combination of
the numpy55, xarray56 and rioxarray57 python packages, QGIS58, and
Google Earth Engine;59 all of the code used in this analysis is available
from the lead author’s GitHub and our Data Repository. Our data
repository54 contains the values that were used as inputs to themodel,
the processed geospatial datasets that were used in this paper, or the
code that can be used to obtain them. All continuous variables were
clipped to the required city’s model boundary using QGIS, taking
either the mean value or the sum as appropriate.

We used the Copernicus Global Land Services 100m Epoch 2018
land cover60 as a basis to parameterize the dimensions of the model
compartments, with the ground-area calculated as the total area of the
model boundary multiplied by the percentage of pixels for each land
use, using water for water, bare-ground plus the ground-area of
vegetation for soil (representing soil underneath vegetation), all
vegetation types as vegetation and built-up area for the urban film.We
estimated the surface area of the vegetation using the leaf-area index
(m² upwards-facing leaf-area per m² ground) multiplied by the
ground-area. For the urban film, we used an analogous “impervious
surface index” (ISI), defined as the ratio of the total surface area of
impervious surfaces (e.g., building walls, roofs, roads, etc.), multiplied
by the total built-up area. We were able to find detailed building
footprints and heights for eight cities: Buenos Aires61, Sydney62,
Toronto63, Warsaw64, Madrid64, New York65, São Paulo66, and London64.
For each of these cities, we calculated the impervious surface area for
each building as the perimeter multiplied by the average building
height plus thebuilding footprint area. Fordatasets thatwereprovided
in raster format, we first converted the building footprints to a vector
formatwithone vector object per building. Theprocesseddatasetwith
all eight cities is available in vector form from our data repository. We
calculated the ISI for eight city administrative areas, five 5 km buffer

areas, and two 15 km buffer areas where we could find detailed infor-
mation on building heights and footprints. For the other city bound-
aries, we predicted the ISI using linear regression (r² = 0.78, p <0.01)
with the “built-up area density” (number of people per m² built-up
area), a commonmetric of urban density67 that we found provided the
most stable predictions of ISI (Supplementary Fig. 4).

We obtained data on the leaf-area index, relative humidity (esti-
mated from the dewpoint and surface temperature), windspeed (used
to calculate the advective flow rate in the upper and lower air com-
partments), precipitation rate, and temperature from the Copernicus
ERA5 Land ECMWF reanalysis dataset68. The height of the planetary
boundary layer was used as the top of the upper air compartment, and
was obtained from the Copernicus ERA5 ECMWF dataset69. We used a
fixed height of 50m for the height of the lower air as in ref. 8. We
obtained river flow rates from the GLOFAS ERA5 reanalysis (choosing
the pixel or sum of pixels that appeared to accumulate each city’s
flow)70, and river depths from ref. 71. These were used to parameterize
the flow rate and depth of the water compartment, with the area taken
from the land cover dataset. In the air compartment, total suspended
particle (TSP) concentrations were obtained from observed aerosol
concentrations. Generally, TSP was not available so we used empirical
relationships72 to derive TSP from PM10 or PM2.5, using the largest size-
fraction for which data were available. Some notable sources include
the SPARTANnetwork73 and theAirNowplatform fromUSEmbassies74.
If no other data were available, we used a global PM2.5 dataset by ref.

75.
All of the particulate matter data used is available in the Data
Repository.

For chemical-specific parameters, where available, we used the
recommended final adjusted values (FAVs) from ref. 76. that incorpo-
ratedmeasured and in silico estimations. We also calculated new FAVs
for triethyl phosphate (TEP), tripropyl phosphate (TPrP), and tributyl
phosphate (TnBP). Several of the OPE FAVs from Rodgers et al76.
included KOA measurements made using an indirect technique that
may show bias for more polar compounds77–79. As the FAV method
adjusts the parameters of all of a compound’s physicochemical prop-
erties based on their agreement, this bias in one property could pro-
pagate to all of the property values for a compound. An advantage of
the Bayesian FAV method is that the prior distributions can be para-
meterized to incorporate our understanding of the uncertainty around
the inputs in a transparent, reproducible manner. Since the indirect
method is thought to produce KOA values that are biased low, we re-
calculated the FAVs for these compounds with a skew-normal dis-
tribution on the log KOA prior, increasing the probability that the
model would adjust the KOA values upwards. We parameterized the
polyparameter linear free energy relationships (ppLFERs) used by the
model with Abraham’s solvation parameters from the UFZ-LSER
Database80. All of the physicochemical data used is available in the
Data Repository.

To reflect differences between anthropogenically-driven shared
socioeconomic pathways (SSP) and their influence on OPE fate in
urban areas, we ran the model for an “SSP3-7.0” scenario using the
back-calculated base-case emissions along with the projected differ-
ence in the temperature, windspeed and precipitation between the
SSP1-2.6 and SSP3-7.0 scenarios in 2100. Data were obtained from the
curated, quality-controlled CMIP6 projections available on the
Copernicus Data Store81. We calculated ensemble-average decadal
averages for 2041-2050 and 2091-2100 from all available model runs
for each variable.

Model application, sensitivity, and scenario analyses
Weparameterized and applied themodel in several differentmanners,
depending on the intended purpose. First, we back-calculated the
emissions from the measured air concentrations. For this, we para-
meterized the model using the averaged values of the leaf-area index,
relative humidity, rain rate, windspeed, planetary boundary layer
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height, and temperature across the ~3-month sampler deployment
period at each location and annual-average values for 2018 for all other
values. A key assumption of the model was that the air concentrations
measured by the passive air samplers were representative of the urban
areas across the sampling period. To test the applicability of this
assumption, we ran the model using three different model boundaries
(using the administrative boundary82, and with a radius of 5 or 15 km
from the sampling location) and compared the results for the emis-
sions flux (kgm−2) of each boundary. The modeled emissions for each
of the boundary areas were within ± 2x of each other (Supplementary
Table 2), well within our ± order-of-magnitude overall uncertainty,
indicating that the fate processes within the city remained similar at
different scales, and providing confidence that themodel results could
be extrapolated over a larger domain. Our estimates of total emissions
used the cities’ administrative boundaries under the assumption that
those boundaries represented a cohesive unit across which emissions
sources and fatewere similar, while regressionswith emissions proxies
used the emissions flux (kgm−2 yr−1) from the 15 km buffer radius.

Second, to compare contaminant fate between cities, we ran the
model using annual-average values for the sampler deployment year
of 2018 with the estimated annual emissions described above to
remove the influence of seasonality and show average differences
between cities. We justify this because although air concentrations
are known to vary in the course of a year83,84, emissions of OPEs are
thought to be driven more by the intensity of local sources than by
seasonal effects, such as increases in vapor pressure at higher
temperatures83,85. As discussed in Supplementary Results S2, we
generally found that the factors indicated by our sensitivity analysis
to control contaminant fate were poorly correlated with our esti-
mated emissions, supporting the assumption that local sources
controlled emissions was valid.

Third, to reflect differences between anthropogenically-driven
shared socioeconomic pathways (SSP) and their influence on OPE fate
in urban areas, we ran the model for an “SSP3-7.0” scenario using the
back-calculated base-case emissions along with the projected differ-
ence in the temperature, windspeed and precipitation between the
SSP1-2.6 and SSP3-7.0 scenarios in 2100. Data were obtained from the
curated, quality-controlled CMIP6 projections available on the
Copernicus Data Store81. We calculated ensemble-average decadal
averages for 2041–2050 and 2091–2100 from all available model runs
for each variable.

Fourth, we explored the influence of different parameters on the
fate of chemicals across the “city-space” represented by different
urbanenvironments. For this, wedefined two indices basedon the area
of urban film and of vegetation within a city. The first index defines
how the built-environment impacts chemical deposition within a city.
We defined this “sparsity index” (SI, m² m−²) with Eq. (3):

SI = log
Acityfootprint

Afilm +Avegetation

 !
ð3Þ

Where Aj represents the area of compartment j in m². The second
index explored the nature of those surfaces. We defined this “film-
vegetation index” (FVI) as Eq. (4):

FVI = log
Afilm

Avegetation

 !
ð4Þ

For these scenarios we back-calculated emissions to a composite
“average” city, consisting of the mean values for the city-specific vari-
ables not included in the SI and the FVI, targeting the mean con-
centration of each OPE across the 19 cities. We also conducted limited
scenario analyses to test the response of the model to certain para-
meter sets. First, we tested the influence of the half-lives in the film and
vegetation by multiplying the default value by 10 and 0.01,

respectively. Then,we tested the influence of climate by constructing a
“low-deposition” scenario where the windspeed, temperature, and
planetary boundary layer values were set to the 95th percentile across
the 19 megacities, and the precipitation rate was set to the 5th per-
centile; and a “high-deposition” environment where the windspeed,
temperature, and planetary boundary layer values were set to the 5th
percentile across the 19 megacities, and the precipitation rate was set
to the 95th percentile. For each scenario, we ran themodel for 1000 SI
values between −0.8 and 0.8, and for 1000 FVI values between −1.5 and
2.75, for a total of 1,000,000 model runs per scenario with the joblib
v1.1 python package86. To generate the figures we plotted the magni-
tude of the largest fate process for mass leaving each city using a
contour plot inmatplotlib. The code to produce theseplots is available
in the archived version of our Data Repository.

Finally, we performed a model sensitivity analysis focused on the
differences between cities to elucidate trends that control the fate of
OPEs in different urban environments. We used the Elemental Effects87

method to characterize MUM’s sensitivity as it can identify non-
monotonic, discontinuous interactions between variables. Although
MUM is based on a system of linear equations, the parameters used to
calculate the fugacity capacity can be non-linear and non-monotonic.
We parameterized the range of values explored in the sensitivity ana-
lysis using the average location-specific values across cities and the
observed inter-city ranges plus 10% on each side, a hypothetical che-
mical with average physical-chemical properties, and the observed
ranges between chemicals plus 10% on each side, and the input
probability distribution functions presented in ref. 8. The Data Repo-
sitory contains the parameterization for each input variable that was
tested.

Correlations with emissions proxies and controls
To investigate the sources driving OPE emissions, we correlated the
log10 transformed emissions flux using the 15 km² boundary area with
various potential emissions proxies (such as GDP), and controls (such
as temperature). Following initial correlations to reduce the number of
variables, we correlated the emissions against the percentage of built-
up area, bare area, and vegetated area for each city60, the average
temperature in each city across the sampler deployment period68, the
total population in each city30, global GDP and GDP per capita29,88, and
against total and sector-specific CO2 emissions from the Emission
Database for Global Atmospheric Research (EDGAR)31, which we used
as proxies for emissions of OPEs from specific economic sectors. The
extracted proxy and control values we used for each city are available
in our Data Repository.

Data availability
The data used and generated in this study have been deposited in the
Borealis Data Repository with the DOI 10.5683/SP3/KT1DG5 (https://
doi.org/10.5683/SP3/KT1DG5)54.

Code availability
The model and code used in this study are available either as a per-
manent version from this article’s Data Repository (https://doi.org/10.
5683/SP3/KT1DG5)54 or from a repository on the lead author’s Github
(https://github.com/tfmrodge/FugModel), which also contains a
tutorial for running the model.
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