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A maximum-entropy model to predict 3D
structural ensembles of chromatin from
pairwise distances with applications to
interphase chromosomes and structural
variants

Guang Shi 1,3 & D. Thirumalai 1,2

The principles that govern the organization of genomes, which are needed for
an understanding of how chromosomes are packaged and function in eukar-
yotic cells, could be deciphered if the three-dimensional (3D) structures are
known. Recently, single-cell imaging techniques have been developed to
determine the 3D coordinates of genomic loci in vivo. Here, we introduce a
computational method (Distance Matrix to Ensemble of Structures, DIMES),
based on the maximum entropy principle, with experimental pairwise dis-
tances between loci as constraints, to generate a unique ensemble of 3D
chromatin structures. Using the ensemble of structures, we quantitatively
account for the distribution of pairwise distances, three-body co-localization,
andhigher-order interactions. TheDIMESmethod canbe applied to both small
and chromosome-scale imaging data to quantify the extent of heterogeneity
and fluctuations in the shapes across various length scales. We develop a
perturbation method in conjunction with DIMES to predict the changes in 3D
structures from structural variations. Our method also reveals quantitative
differences between the 3D structures inferred fromHi-C and thosemeasured
in imaging experiments. Finally, the physical interpretation of the parameters
extracted from DIMES provides insights into the origin of phase separation
between euchromatin and heterochromatin domains.

In little over a decade, a variety of experimental techniques, combined
with computational tools and physical modeling, have greatly con-
tributed to our understanding of chromatin organization in numerous
cell types and species1–9. These studies have paved the way toward a
deeper understanding of the relationship between genome structure
and gene expression10–14. The commonly used experimental

techniques could be broadly classified as sequence-based or
microscopy-based. The former include the Chromosome Conforma-
tion Capture (3C)15 and its variants, including Hi-C16 and Micro-C17,
which in concert with high-throughput sequencing provide
population-averaged data for the contact matrix or contact maps
(CMs)18,19. The elements of the CM are the average probabilities that
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two loci separatedby a given genome length (s, a linearmeasure) are in
spatial proximity. In order to reveal the cell-to-cell chromatin varia-
tions in chromatin conformations, single-cell Hi-C (scHi-C) or similar
techniques have also been developed20–24. These studies, along with
methods that utilize a combination of Hi-C and imaging techniques25,
reveal the statistical and heterogeneous nature of chromatin organi-
zation. In addition, methods like SPRITE26 and genome architecture
mapping (GAM)27,28, which avoid the ligation step in Hi-C9, have also
revealed the organization of chromosomes, including features that are
missed in conventional Hi-C methods, such as the higher-order con-
tacts that go beyond pairwise interactions. How to utilize the data
contained in the CM to directly reconstruct an ensemble of the three-
dimensional structures of the genome is a difficult inverse problem.
Data-driven approaches29–38 have been advanced to solve the compli-
cated Hi-C to 3D structure problem (see the summary in ref. 39 for
additional related studies and ref. 40 for a comprehensive overview of
the existing methods).

The imaging-based technique is the most direct route for deter-
mining the 3D chromosome structures41–43. In combination with the
fluorescence in situ hybridization (FISH) technique44, imaging experi-
ments have enabled direct imaging of the position of the genomic loci
at the single-cell level. The FISH experiments have revealed global
genome organization principles, such as the chromosome territories
(CT)44. Recently developed multi-scale multiplexed DNA FISH-based
imaging methods25,45–52 have further advanced the field, which has
resulted in measurements of the spatial positions of many loci for a
large number of cells, thus providing not only glimpses of the struc-
tures over a large length scale but also a quantitative assessment of the
fluctuations in the cell-to-cell conformations. For instance, the imaging
method was used to obtain the locations of ~65 loci in a 2-megabase-
pair (Mbp) region for chromosome 21 (Chr21)47 for a large number of
cells. More recently, the method was further improved to image over
~900 targeted loci spread uniformly across the entire chromosome
scale (≈242 Mbp for Chr2) and over 1000 genomic loci across all 23
chromosomes51. Compartment features, long-range interactions
between loci, and the distribution of the radius of gyration could be
directly visualized or calculated using the coordinates of the imaged
loci, thus providing direct quantitative information on the nuances of
genome organization. Although the resolution in the imaging techni-
quewill doubtless increase in the future, currentlyHi-Cbasedmethods
provide higher resolution at the CM level but not at the 3D structural
level. Thus, by combining the experimental data from a variety of
sources and computational methods unexpected insights about
chromosome organization could be gleaned.

Here, we introduce a method, DIMES (from DIstance Matrix to
Ensemble of Structures), that utilizes the mean distance matrix (DM)

between loci as input to generate an ensemble of structures using the
maximumentropy principle. The data in the two studies47,51 are used to
quantitatively validate the DIMESmethod. In order to demonstrate the
predictive power of the method, we used DIMES to determine the
changes in the organization (expressed asCM) from structural variants
(inversion) onChr1 from themouse cell line and the effect of single loci
deletion on Chr2 from IMR90 cell line. Our approach, when applied to
Hi-C (using the HIPPS method53) and imaging data, reveals important
differences between the two methods in the finer details of the
structural ensemble of Chr21.

Results
Formulating DIMES using the maximum-entropy model
We developed the DIMES method, which utilizes imaging data, to
generate an ensemble of 3D chromosome conformations. The input
for our theory is the pairwise distances between the genomic loci
(Fig. 1). We seek to find a joint distribution of positions of loci, P({xi}),
which is consistent with the squared mean pairwise distance
h∣∣xi � xj ∣∣

2i= hr2ij, expi, where hr2ij, expi is the experimentally measured
average squared distance between two loci i and loci j. One could also
use the average distance instead of the average squared distance as
constraints. However, constraining average squared distances is
computationally more efficient because the resulting maximum-
entropy distribution is a multivariate Gaussian distribution which
allows fast sampling.

In general, there aremany, possibly infinite, number of suchP({xi})
which satisfy the constraints. Using the maximum entropy
principle54,55, we can find a unique distribution PMaxEnt({xi}) whose dif-
ferential entropy is maximal among all possible distributions. We
should point out that the maximum entropy principle has been pre-
viously used in the context of genome organization56–58, principally to
learn the values of the unknown parameters in a chosen energy func-
tion deemed to be appropriate for describing chromosome organiza-
tion. Recently, it was shown that the maximum-entropy distribution
with the constraints of contact frequency can bemapped to a confined
lattice polymer model in ref. 59. The Lagrange multipliers that enforce
the constraints are interpreted as the contact energies in the Hamil-
tonian of the polymer with the position of each monomer occupying
the lattice sites. Here, we use the pairwise distances as constraints and
derive the corresponding maximum-entropy distribution from which
the 3D structures may be readily obtained.

The maximum-entropy distribution PMaxEnt({xi}) is given by,

PMaxEntðfxigÞ=
1
Z
exp �

X
i<j

kij ∣∣xi � xj ∣∣
2

 !
, ð1Þ

Fig. 1 | Schematic flowchart for DIMES. Either imaging (measurements of chro-
matin loci coordinates) orHi-C data (contactmap)may beused to compute or infer
the mean pairwise distance matrix, which is used as constraints to determine the
maximum-entropy distribution PMaxEnt. The parameters, which we refer to as the

connectivity matrix K, in the PMaxEnt, are obtained through an optimization proce-
dureusing either iterative scaling or gradient descent algorithm, as explained in the
“Methods” and Supplementary Note 1. The ensemble of structures (coordinates of
chromatin loci) can be randomly sampled from the distribution PMaxEnt.
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where Z is the normalization factor, and kij’s are the Lagrange
multipliers that are determined so that the average value
h∣∣xi � xj ∣∣

2i= hr2ij, expi. It can be shown that PMaxEnt({xi}) is a multivariate
normal distribution (see “Methods”). In addition, it can be proven that
for any valid r2ij, exp, there exists a unique set of kij (see “Methods”). The
values of kij can be determined using an iterative scaling algorithm60 or
a gradient descent algorithm (see “Methods” and Supplementary
Note 1). For later reference, we define the matrix with elements kij’s as
K. Note that Eq. (1) has the same form as the Boltzmann distribution of
the generalized Rouse model (GRM) with kij ≥0, which has been
applied to reconstruct chromosome structure by fitting to the Hi-C
contact map61,62. However, it is important to point out that Eq. (1) is
derivedunder themaximumentropyprinciple, which does not assume
the thermal equilibrium condition of the system.

The three steps in the DIMES to generate an ensemble of chro-
mosomestructures are: (1)Wecompute the targetmean squared spatial
distancematrix fromexperimentalmeasurements of the coordinates of
genomic loci. (2) Using an iterative scaling or gradient descent algo-
rithm, we obtain the values of kij’s tomatch the experimental measured
hr2ij, expi. (3) Using the values of kij, the coordinates of the 3D chromo-
somestructures canbe sampled fromPMaxEnt({xi})—amultivariate normal
distribution. The details of the procedures are described in “Methods”.

Validating DIMES
In order to demonstrate the effectiveness of DIMES, we first used the
experimental data47 in which the authors reported, using a highly
multiplexed super-resolution imaging approach, coordinates of about
65 individual loci for the 2-Mbp segment for Chromosome 21 (Chr21)
from four different cell lines (IMR90, K562, HCT116, and A549). Using
the calculated mean spatial distance matrices from the reported
coordinates as targets, we determined kij (Eq. (1)), which allowed us to
generate an ensemble of structures for this 2-Mbp segment. For all cell
lines, the mean spatial distance matrices computed from the recon-
structed ensemble of structures almost perfectly match the target
distance maps (Fig. 2a, b and Supplementary Fig. 9). In addition, we
also applied the DIMES to the chromosome-scale data (see a later
section), and achieved the same level of accuracy.

We then perform cross-validation of the DIMES method. This is
done as follows: a randomly chosen fraction of pairwise distances
from the distance map is deemed to be missing data. The resulting
distance map containing the missing data is then used as input for
DIMES. It is important to note that the missing data is not used to
update kij. Finally, the predicted distances for the missing data are
compared with the values obtained from the full distance map.
Figure 2c–f compare the input distance maps with missing data and
the full predicted distance maps. Remarkably, DIMES quantitatively
predicts pairwise distances for the missing data even if only 10% of
the distance map is used. Together, these results demonstrate that
the model is effective in producing 3D structures that are consistent
with the experimental input and is robust with respect to
missing data.

Distribution of pairwise distances
Next, we tested if DIMES could recover the properties of the genome
organization that are not encoded in the mean spatial distances. We
focused on reproducing the distributions of pairwise distances, which
can be calculated because pairwise distance data are available for a
large number of individual cells. It is worth emphasizing that the input
in the DIMES method is the mean spatial distance, which does not
contain any information about the distributions.

To quantitatively measure the degree of agreement between the
measured and calculated distance distributions using DIMES, we
compute the Jensen–Shannon divergence (JSD), defined as,
(D(p∣∣m) +D(q∣∣m))/2 where p and q are two probability vectors and
D(p∣∣m) is the Kullback–Leibler divergence. The JSD value is bounded
between 0 and 1. A zero value means that the two distributions are
identical. For each loci pair (I, j), we calculated the JSD, thus generating
the JSDmatrix. Figure 3a shows the JSDmatrix, and Fig. 3b displays the
histogramof all the calculated JSDs. The average valueof JSDs ismerely
0.02, which shows that the overall agreement between the calculated
and measured distributions of distances is excellent.

Upon closer inspection of Fig. 3b, we find that the values of JSDs
are not randomlydistributed.We choose twopairswith relatively large
and small JSD values. Comparison between the experimental and

Fig. 2 | Effectiveness of DIMES in matching the targets generated using
experimental imaging data. Comparison between the mean spatial distances
computed from the reconstructed structures and the experimental data in cell
lines: IMR90 (a), K562 (b), A549 (Supplementary Fig. 10a), and HCT116 (Supple-
mentary Fig. 10b). The upper panel shows side-by-side comparisons of the distance
matrices, and the lower panel displays the scatter plot between individual pairwise

distances rij’s. The Pearson correlation coefficient is near unity (>0.99) for all of the
cell types which shows the accuracy of the DIMES method. c–e Comparison
between input distance map with missing data (lower triangle) and the full pre-
dicted distance map (upper triangle). A percentage of pairwise distances in the
distancemap are randomly chosen and set to bemissing data (displayed in white).
f rij for missing data versus the predicted values. The black line has a slope of unity.
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calculated P(rij) for one pair with JSD = 0.08 (Fig. 3c) and with = 0.009
(Fig. 3d) shows that the dispersions are substantial. The pair with
JSD = 0.08 (Fig. 3c) samples distances that far exceed the mean value,
which implies that there are substantial cell-to-cell variations in the
organization of chromosomes47,51. The percentage of the subpopula-
tions, associated with different distances, can in principle be inferred
by deconvolution of the full distance distribution63.

Co-localization of three loci and biological significance
We next asked if the method accounts for higher-order structures,
such as three-way contacts, discovered in GAM27,28 and SPRITE

experiments26 and imaging experiments47, and predicted by the
theory64,65. First, we computed the probability of co-localization of loci
triplets, πijk(a) = Pr(rij < a, rik < a, rjk < a) where a is the distance thresh-
old for contact formation (rij < a implies a contact). To make a quan-
titative comparisonwith experiments, we also computed πexp

ijk ðaÞ using
the experimental data. We then calculated the Pearson correlation
coefficient, ρ, between πexp

ijk ðaÞ and πsim
ijk ðaÞ. Figure 4a shows that the

degree of agreement between experiment and theory is best when a is
in the range of 200–400nm. We chose a = 300 nm at which ρ is a
maximum. The scatter plot ofπDIMES

ijk versusπexp
ijk (Fig. 4a) is in excellent

agreement with ρðπDIMES
ijk ,πexp

ijk Þ≈0:99.

Fig. 3 | Comparison between the calculated and measured P(rij). a The
Jensen–Shannon divergence (JSD) matrix computed from experiments (top half)
and usingDIMES (bottomhalf). The scale on the right shows that themaximum JSD
value is ≈only 0.12, thus establishing the effectiveness of DIMES in calculating the

P(rij). b Histogram of the JSD. c Comparison between P(rij) for the pair (29.1 Mbp,
29.4 Mbp) for the experiment and the model (corresponding to the red dot in (a)).
dSameplot as in (c) but for thepair (28.8Mbp, 29.1Mbp),whichcorresponds to the
green dot in (a).

Fig. 4 | Comparison of three-way contacts predicted by DIMES with ima-
ging experimental data. a (Left) Pearson correlation coefficient, ρðπexp

ijk ,πmodel
ijk Þ

versus a, where a is the threshold distance for contact formation. πexp
ijk (πDIMES

ijk ) are
the probabilities of co-localization of three loci (i, j, k), defined as
πijk = Pr(rij < a, rjk< a, rik< a). (Right) Plot of πDIMES

ijk versus πexp
ijk for a = 300nm at

which the ρðπexp
ijk ,πDIMES

ijk Þ is a maximum. b Comparison between the heatmaps for
πexp
ijk (lower triangle) and πDIMES

ijk (upper triangle) for i = 11. The scale on the right
gives π11,j,k. c Same as (b) except it compares Zexp

ijk (lower triangle) ZDIMES
ijk .

Zijk = (πijk − μ(πijk))/σ(πijk) where μ(πijk) =∑m,n,qδ(∣j − i∣∣k − j∣ − ∣m − n∣∣n − q∣)πmnq/
∑m,n,qδ(∣j − i∣∣k − j∣ − ∣m − n∣∣n − q∣), and σ(πijk) is the standard deviation. The Z11,j,k
scale is on the right. d Scatter plot of ZDIMES

ijk versus Zexp
ijk for i = 11. e Three individual

chromosome conformations with the constraint that loci (1, 11, 31) be colocalized
(a = 300nm). f (Top) Mean distance map for cell-line IMR90 with 10 triplet sets
(orange circles) with 10 largestZijk values. (Middle) Same as theorange circles in the
top panel, but plotted horizontally for easier comparison with the bottom panel.
(Bottom) The CTCF Peak track plotted using Chip-seq data69.
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The good agreement is also reflected in the Fig. 4b, which com-
pares the heatmaps πexp

ijk for i = 11 (lower triangle) and the heatmap for
πDIMES
ijk with i = 11 (upper triangle). Due to the polymeric nature of the

chromatin, the absolute valueofπijkmaynot be instructive becauseπijk

is usually highest when the three loci i, j, k are close along the
sequence. To normalize the genomic distance dependence, and cap-
ture the significance of the co-localization of triplets, we calculated
the Z-score for πijk defined as Zijk = (πijk − μ(πijk))/σ(πijk) where
μ(πijk) =∑m,n,qδ(∣j − i∣∣k − j∣ − ∣m − n∣∣n − q∣)πmnq/∑m,n,qδ(∣j − i∣∣k − j∣ − ∣m −
n∣∣n − q∣), and σ(πijk) is the corresponding standard deviation. Positive
Z-score implies that the corresponding triplet has a greater probability
for co-localizationwith respect to the expected value. As an example, a
comparisonof the Z-scores forZexp

ijk andZDIMES
ijk in Fig. 4c for i = 11 shows

excellent agreement. The scatter plot in Fig. 4d of ZDIMES
ijk versus Zexp

ijk
shows that the triplet of loci with index (1, 11, 31) has the highest value
of Zijk both in the experimental data and the predictions based on
DIMES. Three randomly selected individual conformations with
(1, 11, 31), colocalized within distance threshold a = 300nm (Fig. 4e)
adopt diverse structures, attesting to the heterogeneity of chromo-
some organization25.

To demonstrate the biological significance of the triplet with Zijk
values, we overlay 10 sets of three-way contacts with 10 largest Zijk
values on the mean spatial distance map (Fig. 4f, with orange circles
representing the triplet loci). Interestingly, the three-way contacts are
localized on the boundaries of the Topologically Associating Domains
(TADs)66,67, which are enriched with CTCF motifs66,68. Comparing the
location of the triplets and the CTCF peak track (plotted using Chip-
seq data69) we find that the spatial localization of the triplets is highly
correlated with the CTCF peaks. This implies that the CTCF/cohesin
complex has a tendency to co-localize in the form of triplets or pos-
sibly higher-order multiplets, which is consistent with the recent
experimental studies demonstrating the presence of foci and clusters
of CTCF and cohesin in cells70,71.

Higher-order structures
Because the DIMES method is quantitatively accurate, we could probe
higher-order chromatin structures. To this end, we considered three
aspects of chromatin organization, which can be calculated directly
from the coordinates of the Chr21 loci.

TAD-like patterns in a single cell. Imaging experiments47 show that
even in a single cell, domain-like or TAD-like structures may be dis-
cerned, even in inactive X chromosomes whose ensemble Hi-C map
appears to be featureless72. These signatures are manifested as TAD-
like patterns in the pairwise distancematrix (see the left panels for two
cells in Fig. 4B in ref. 47). Similar patterns are observed in the individual
conformation generated by DIMES as well (Supplementary Fig. 1). We
then compute the boundary probabilities47 of individual genomic loci
using experimentally measured structures and the structures gener-
ated by DIMES. Figure 5a shows that DIMES captures the profile of
boundary probabilities nearly quantitatively. Interestingly, such TAD-
like structures are present even in ideal homopolymer structures
(Supplementary Fig. 3). We surmise that the intrinsic features of fluc-
tuating polymer conformations contribute to such TAD-like struc-
tures. These structures are dynamic in nature because they are a
consequence of fluctuations. The specific interactions which distin-
guish chromosomes from an ideal homopolymer counterpart lead to
the statistically preferred distributions of these TAD-like structures
rather than being random.

Size and shapes. Using the ensemble of Chr21 structures, we won-
dered if the radius of gyration (Rg) and the shape of the genome
organization could be accurately calculated. We determined the Rg

distribution, P(Rg), and the shape parameter κ273,74, for the Chr21 in the
28–30 Mbp region. The results (Fig. 5b, and Supplementary Fig. 10)

show that the model achieves excellent agreement with the experi-
ment, both for P(Rg) and P(κ2).

Given the excellent agreement, it is natural to ask whether the
DIMESmethod can capture the size and shape on finer scales. To shed
light on this issue, we calculated the distribution of Rg and κ2 (P(Rg; i, j)
and P(κ2; i, j)) for every sub-segment (i loci to j loci) over the 2-Mbp
region. Inorder to assess the accuracy of thepredictions,we calculated
the JSD between PDIMES(Rg; i, j) and PexpðRg ; i,jÞ, and between Pexpðκ2; i,jÞ
and PDIMES(κ2; i, j). On the finer scale, there are deviations between cal-
culations based on DIMES and the experiment. The JSD heatmap
(Fig. 5c) for all pairs i and j shows that the deviation is not uniform
throughout the 2-Mbp region. We picked two regions that show good
agreement (red segment) and poor agreement (blue segment) in
Fig. 5c. Direct comparison of P(Rg) and P(κ2) for these two segments is
presented in Fig. 5d. For the blue segment, both the predicted P(Rg)
and P(κ2) have less dispersion than the experimental data. This sug-
gests that the heterogeneity observed in experiments is even greater
than predicted by the DIMES method. For the red segment, the pre-
dicted and experimentally measured are in good agreement. Visual
inspection of Fig. 5c suggests that the discrepancy is localized mostly
in the TAD regions, whichmight be due to the dynamic nature of these
sub-structures.

Ensemble of structures partition into clusters. We then compared
the overall distributions of the ensemble of calculated structures with
experiment data. To do this, we first performed t-SNE to project the
coordinates of each conformation onto a two-dimensional manifold
using the distance metric, Dmn,

Dmn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

X
i,j

rðmÞ
ij � rðnÞij

� �2s
ð2Þ

where rðmÞ
ij and rðnÞij are the Euclidean distances between the ith and jth

loci in conformations m and n, respectively. Based on the density of
the t-SNE projections (shown as contour lines in Fig. 6), it is easy to
identify two peaks, implying that the space of structures partition
into twomajor clusters. The points are then clustered into twomajor
clusters (orange and blue) using Agglomerative Clustering with the
Ward linkage75. The percentage of cluster #1 (orange) in the
experiment is 36%, which is in excellent agreement with the value
(34%) predicted by the DIMES method. We display a representative
structure with the lowest average distance to all the other members
in the same cluster for the two clusters in Fig. 6. Based on our
analyses of the experimental results (conformations on the left in
Fig. 6), the representative structure belonging to cluster #1 (in blue)
is more compact compared to the one in cluster #2 (in orange). The
same trend is found in the DIMES predictions (conformations on the
right in Fig. 6).

We also computed the mean distance maps from all the con-
formations from each cluster (shown on the left and right side in
Fig. 6). The distancemaps show that the structures in cluster #2 adopt
a dumbbell shape whereas those belonging to cluster #1 exhibit no
such characteristic. The quantitative agreement between the distance
maps from the experiment and the model is excellent.

Structures of the 242-Mbp-long Chr2
We extend the DIMES method to chromosome-scale imaging data in
order to compare with the recent super-resolution imaging experi-
ments, which reported coordinates of 935 loci genomic segments with
each locus being 50-kbp long spanning the entire 242-Mbp Chr2 of
Human IMR90 cell51. Note that there are spaces between the loci that
are not imaged. We computed the average squared distance matrix
from the measured coordinates and then used DIMES to generate an
ensemble of structures. Figure 7a compares the experimental and
calculated mean distance matrices using the DIMES method (Fig. 7a).
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As before, the agreement is excellent (see also Fig. 2). A few randomly
chosen conformations from the ensemble are shown in Supplemen-
tary Fig. 2a, demonstrating that there are large variations among the
structures. Experimental single-cell distance maps (Supplementary
Fig. 8a) show that similar variations are also observed in vivo. DIMES
reproduces the distributions of pairwise distances at large length
scales (Supplementary Fig. 8b).

In addition to recovering the experimental data, our approach
produces genomic distance (s) dependent effective interaction
strengths between the loci, which gives insights into the organization
of Chr2 on genomic length scale. Because the parameters in the DIMES
are kij’s, which could be interpreted as effective “interaction” strengths
between the loci, we asked if the K matrix encodes for the A/B com-
partments (the prominent checker-board pattern in Hi-C experiments

Fig. 6 | Phase space structureof the 2-MbpChr21organization. t-SNEprojections
are calculated from the conformations and the agglomerative clustering results.
Individual conformation is projected onto a two-dimensionalmanifold using t-SNE.
Contour lines of thedensity of t-SNEprojections are shown to reflect the underlying

clusters of the conformations. The conformations naturally partition into two
clusters (cluster #1 and cluster # 2 marked by blue and orange, respectively). A
representative conformation from each cluster and the mean distance map com-
puted from the conformations belonging to each cluster are also displayed.

Fig. 5 | TAD-like structures and shape characteristics of Chromosome 21.
a Comparison of boundary probabilities between experimental imaging data and
prediction from DIMES. Boundary probability measures the probability that a
genomic locus acts as a single-cell domain boundary. b Comparison of P(Rg)
between the experiment and the DIMESpredictions. P(Rg) is the probability density
distribution of the radius of gyration Rg for the 28–30 Mbp region of Chr21.
Comparison of P(κ2) where κ2 is the shape parameter is shown in Supplementary

Fig. 10. c The heatmaps of the JSD of the distribution of Rg and κ2 between the
experiment and the calculations. Each element (i, j) in the heatmap is the value of
JSD for the segment that starts from ith loci and ends at jth loci. Red and blue lines
represent two such segments. d Comparison of P(Rg) and P(κ2) between the pre-
dictions using DIMES and those calculated using experiments for the segments
marked in (c). The blue (red) dot on the left corner of each sub-figure indicates the
locations of the segments.
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indicating phase separation between euchromatin and hetero-
chromatin) observed in the distance matrix. (Although kijs may not
represent the actual strength associated with interactions between i
and j, we use this terminology for purposes of discussion.) Note that kij
can be either negative or positive, with a negative (positive) value
representing the effective repulsion (attraction). The lower triangle in
Fig. 7b shows thematrixK. We then computed the correlationmatrix ρ
from kij (see Supplementary Note 2 for details), which is shown in the
upper triangle in Fig. 7b. The corresponding principal component
dimension 1 (PC1) of ρ is shown in the top panel in Fig. 7b. The negative
(positive) PC1 corresponds to A (B) compartments. The results in
Fig. 7b show that the A/B compartments can be inferred directly from
K, indicating that the parameters in DIMES correctly capture the
underlying characteristics of the genome organization on all genomic
length scales.

Given that the A/B type of each genomic loci are unambiguously
identified, we then computed the histogram of kij and genomic-
distance normalized hkijðsÞi= ð1=ðN � sÞÞPN

i<j δðs � ðj � iÞÞkij for A-A, B-
B, and A-B interactions. The results show that the mean A-B interac-
tions are repulsive (negative 〈kij(s)〉) whereas A-A and B-B interactions
are attractive (positive) (Fig. 7c). This finding explains the compart-
ment features observed in the Hi-C data and the distance maps. Fur-
thermore, we find that, on an average, A-A interactions are more
attractive than B-B interactions (Fig. 7c), which seems counterintuitive
because of the general lore that heterochromatin (formed by B locus)
appears to be denser than euchromatin (composed of locus A) in
microscopy experiments41. On the other hand, the same analysis on
Chromosome 21 shows opposite results, with the B-B interactions
being stronger on an average than A-A interactions (Supplementary
Fig. 4b). The genomic-distance normalized 〈k(s)〉 also shows that over
the range of 2–10 Mbp, 〈k(s)〉 for B-B is consistently stronger than that
forA-A (Supplementary Fig. 4c, d). The results for Chr2 andChr21 show
that the comparison between the strength of A-A and B-B interactions
is possibly chromosome-dependent. As we noted in a previous study8,
what is important is that the Flory χ = (ϵAA + ϵBB − 2ϵAB)/2 is positive to
ensure compartment formation. Here, ϵAA, ϵBB, and ϵAB, are the inter-
action energy scales involving A and B.

The genomic-distance normalized 〈kij(s)〉 for Chr2 shows that all
the interaction pairs have the highest value at s = 1—a manifestation of
the polymeric nature of chromatin fiber. Beyond s = 1, all pairs have
negative k(s), indicating repulsive interaction on a small length scale.
At s ≈ 5 Mbp, k(s) for all pairs develop positive peaks. At length scale
s > 10 Mbp, the B-B interactions decay as s increases whereas

s-dependent A-A interactions fluctuate around a positive value. In
addition, the histograms of kij (Fig. 7c) suggest that the average dif-
ferences among A-A, B-B, and A-B interactions are small
(〈kAA〉 =0.0014,〈kBB〉 =0.0005, 〈kAB〉 = −0.0009), which is consistent
with the recent liquid Hi-C experiment76. In summary, the results in
Fig. 7 demonstrate that the application of DIMES to large-length-scale
imaging data explains the origin of compartments on large length
scales. More importantly, the calculated values of kij provide insights
into interactions between the genomic loci on all length scales, which
cannotbe inferred solely fromexperiments. Surprisingly, but in accord
with experiments76, the differences in the strengths of interaction
between the distinct loci are relatively small.

Besides demonstrating the efficacy of DIMES in determining the
ensemble of structures accurately, the calculated kijs explain micro
phase segregation of active (A) and inactive (B) loci. It is a surprise that
phase separation between A and B emerges from the calculated kijs,
without a polymer model with an assumed energy function. Because
kijs canbe calculatedusing either theHIPPS53 or theDIMESmethod, the
differences in compartment formation (segregation between A and B
loci) in various chromosomes can be quantitatively inferred.

Applications
Impact of genomic rearrangement on 3D organization. It is known
that the 3D organization of chromosomes can change substantially
upon genomic rearrangements, such as duplication (increases the
length of the genome), deletion (decreases the genome length), or
inversion (shuffling of genome sequence while preserving the length).
Both deletion and duplication are drastic genomic changes that
require recomputing the K using either contact53 or distance maps. In
contrast, the inversion is a gentler perturbation, and hence the chan-
ges in chromosome folding compared to the wild type (WT) can be
calculated by treating it as perturbations applied to the K for the WT.

Once theWTK is calculated, a perturbationmethodcouldbeused
to determine the variations in the ensemble of genome structures. In
particular, we asked whether the 3D structural changes upon rear-
rangement in the genomic sequence couldbe predicted by accounting
for the corresponding changes in kij. For instance, inversion (Fig. 8a)
would correspond to an inversion on the K (see Supplementary
Note 3). For illustration purposes, we applied our method to the
experimental Hi-C maps for the WT and a variant with an inversion77.
To apply DIMES to the two constructs, we first converted the contact
probability to the mean spatial distance using the scaling relation
hriji=Λp�1=α

ij where we take α = 453. Figure 8a shows excellent

Fig. 7 | Features of theChr2organization. aThe average distancematrix between
the experiment (lower triangle) and the DIMES (upper triangle) shows excellent
agreement. b The connectivity matrix K, whose elements are kij (lower triangle),
and the correlation matrix ρ (upper triangle) computed from K. The top track
shows the principal component dimension 1 (PC1) computed using principal

component analysis (PCA) from ρ. A(B) compartments correspond to negative
(positive) PC1. c Histogram of kij for A-A, B-B, and A-B. d Genomic-distance
normalized hkijðsÞi = ð1=ðN � sÞÞPN

i<j δðs � ðj � iÞÞkij for A-A, B-B, and A-B. 〈kij(s)〉
are shown for s between 0 and 233 Mbp (left) and for between 0 and 10
Mbp (right).
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agreement between the experimentally measured Hi-C contact map
with inversion and the one predicted by the combined HIPPS-DIMES
approach. Themore drastic structural variants (deletion and insertion)
require applying the HIPPS or the DIMES method directly to the
mutated CMs or DMs.

Structural integrity is determined by loci at the CTCF anchors and
A/B boundary. Does the deletion of every single locus have the same
effect on the 3D structures? To answer this question, we first investi-
gated the effect of deletion of CTCF/cohesin anchors by applying
DIMES to Chr21 28–30 Mbp region47. The method for deletion of a

single locus is described in Supplementary Note 3. The 3D structural
changes are quantified using the Perturbation Index (PI),

PI =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i<j
ðheriji � hrijiÞ2

� �
=
XN

i<j
heriji2r

ð3Þ

where herijis is the WT average distance between loci i and j and 〈rij〉s
are changed values after locus deletion. PI profile along the 2-Mbp
region and the Chip-seq data for CTCF are shown in Fig. 8b top and
middle panels. More importantly, on an average, the PI profile
exhibits higher values closer to the CTCF Chip-seq peaks (Fig. 8b

Fig. 8 | Predictions for structural variants. a Experimentally measured Hi-C
contact map for the 1.1-Mb homozygous inversion for Chr1 from themouse cell
line E11.5 (lower triangle). The position of the segment that is inverted is shown
on the track in the top panel. The predicted contact map using DIMES with the
perturbation on the WT Hi-C data (see main text and Supplementary Note 3) is
shown for comparison (upper triangle).bTop: Perturbation Index (PI) forChr21
28–30 Mbp. Middle: Chip-seq data for CTCF. Bottom: average value of PI as a
function of genomic distance from CTCF Chip-seq peaks. Average PI values up

to 150 kbp on either side of CTCF Chip-seq peaks are calculated at 30 kbp
resolution. PIbase = 0.2. c An example of the contact map with a single locus
deletion (upper triangle) for Chr2 from the IMR90 cell line. The toppanel shows
a track plot of the perturbation index (PI) computed using Eq. (3). d Plot of
principal component dimension 1 (computed from ρ) versus the logarithm of
theperturbation index. A, B, andA/Bboundaries aremarked.Histogramsof PC1
and the logarithm of the perturbation index are shown on the top and side,
respectively.
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bottom panel), demonstrating that the genomic loci associated with
CTCF anchors have a more significant effect on the 3D structures
upon their deletion.

We then probe the prediction of locus deletion for Chr2 imaging
data51 (Fig. 8c). The PI profile along Chr2 (Fig. 8c top panel) shows that
there are large variations among the individual loci, suggesting that
deletion of some genomic locus have a larger impact on the 3D
structures thanothers. To ascertain whether the variations in the PI are
associated with the known chromosomal structural features such as
A/B compartments, we compared the values of PI with the principal
component dimension 1 (PC1) which are computed from correlation
matrix ρ (Fig. 8d). The loci with PC1 close to zero are interpreted as the
A/B boundaries. We find that, statistically, the boundary elements
between A/B compartments have higher PI values, indicated by the
basin near lnðPIÞ= � 1, whereas elements inside theA/B compartments
have lower PIs lnðPIÞ≈� 2. From this finding, we propose that
boundary loci are most important in maintaining chromosome struc-
tural integrity.

Comparing Hi-C and imaging experiment. Although there are sev-
eral scHi-C experiments, the majority of the studies report Hi-C data
as ensemble averaged contact maps. On the other hand, super-
resolution imaging experiments directly measure the coordinates of
loci for each cell. It is unclear how the chromosome structures
inferred from Hi-C differ from the ones directly measured in imaging
experiments. We compare the Hi-C data1 and the imaging data51 for
Chr2 from the IMR90 cell line. Both the HIPPS and the DIMES
methods first convert the contact probability pij to mean spatial
distance 〈rij〉 using hriji=Λp�1=α

ij . We determined the value of
Λ ≈0.36μm and α ≈ 5.26 by minimizing the error between the dis-
tances inferred from Hi-C and the experimental measurements from
imaging experiments, χ = ð2=NðN � 1ÞÞPN

i<j ðhrHi�C
ij i � hrImaging

ij iÞ2. Fig-
ure 9a compares the mean distance matrix inferred from Hi-C using
the HIPPS method and the one computed using the coordinates
directly measured in the imaging experiment. Visual inspection
suggests that the distance matrix inferred from Hi-C shows stronger
compartmental patterns compared to the imaging result even
though on an average the mean pairwise distances rij’s obtained from
the twomethods are in good agreement with each other (Fig. 9b). We
also find that the locations of A/B compartments obtained from both
the experimental methods are in excellent agreement (Fig. 9c).

Although the positions of the A/B compartments obtained from
bothHi-C and imaging data agreewith eachother, it is unclearwhether
these two methods could be used to generate 3D structures that are
consistent with each other. To ascertain the 3D structures inferred
from Hi-C data and the imaging experiments are consistent with each
other, we calculated Qk and Fk53; Qk measures the degree of spatial
mixing between A and B compartments.

Qk =
1
N

X
i

∣nAði; kÞ=~nA � nBði; kÞ=~nB∣, ð4Þ

where k is the number of the nearest neighbors of loci i. In Eq. (4),
nA(i; k) and nB(i; k) are the number of neighboring loci belonging to A
compartment and B compartment for loci i out of k nearest neighbors,
respectively [nA(i; k) + nB(i; k) = k]. With N =NA +NB, the expected
number of k neighboring loci in the A compartment with random
mixing is ~nA = kNA=N and ~nB = kNB=N where NA and NB are the total
number of A and B loci, respectively. With k≪N, perfect mixing would
result in Qk =0, and Qk ≠0 indicates demixing between the A and B
compartments.

The function, Fk, not unrelated to contact order, quantifies the
multi-body long-range interactions of the chromosome structure. We

define Fk as,

Fk =
1

kNF0,k

X
i

X
j2miðkÞ

∣j � i∣ ð5Þ

where k again is the number of nearest neighbors andmi(k) is the set of
loci that are k nearest neighbors of loci i; F0,k = (1/2)(1 + k/2) is the value
of Fk for a straight chain. Eq. (5) implies that the presence of long-range
interaction increases the value of Fk. In bothQk and Fk, k is the number
of nearest neighbors for a given locus.

Figure 9 d shows that, compared to the results obtained through
imaging, the Hi-C method overestimates the extent of long-range
interactions, and underestimates the spatial mixing between A and B
compartments, which is reflected in the shift of the distribution of
P(Qk) and P(Fk) (we chose k = 8 without loss of generality). We also
computed the interactions profiles of A-A, B-B, and A-B in the same
fashion as shown in Fig. 7c, d from the Hi-C data. The Hi-C data
suggest that the B-B interactions are more attractive than A-A, which
is the opposite of the results obtained from the imaging data. Fur-
thermore, the extracted 〈k(s)〉 for s between 0 and 10 Mbp differs in
the two methods (Figs. 9f and 7d). The Hi-C data suggest that the
interactions within the range of s between 0 and 10 Mbp are attrac-
tive (Fig. 9f) whereas the imaging data suggest that interactions for
s≲ 5 Mbp are repulsive, and become attractive for larger s
values (Fig. 7d).

Next, we compared the Hi-C and imaging techniques at a smaller
scale. To this end, we applied HIPPS/DIMES to Hi-C data for Chr21
28–30Mbp from the IMR90 cell line1. Supplementary Fig. 6a shows the
comparison between the mean distance matrix inferred from Hi-C
using HIPPS/DIMES method and that calculated from imaging data.
The scatter plot between rImaging

ij and rHi�C
ij (Supplementary Fig. 6b)

shows a higher degree of agreement compared to Chr2 (Fig. 9b). We
then compute Fk and its distribution P(Fk), which shows good agree-
ment between Hi-C and imaging data (Supplementary Fig. 6c). These
results show that structures inferred from Hi-C and imaging have a
higher degree of agreement on the length scale of Mbp compared to
the scale of the whole chromosome.

Discussion
We have developed a computational method (DIMES) that solves
the following inverse problem: how to generate the three-
dimensional conformations from the experimentally measured
average distance matrix? First, applications to genome data on a
length scale of a few TADs and on the scale of the whole chro-
mosome, show that DIMES correctly reproduces the pairwise dis-
tances. Second, we demonstrate that DIMES accurately accounts
for the higher-order structures beyond pairwise contacts, such as
the three-body interactions, radius of gyration, shapes, and the
clustering of structures. These results for Chr21 on 2-Mbp and the
entire 242-Mbp Chr2 agree quantitatively with multiplexed super-
resolution data, thus setting the stage for a wide range of appli-
cations. Third, we also demonstrate that the DIMES accurately
predicts the changes in the structures due to structural variants.
We believe that this is a key prediction because the results for the
wild type suffice to predict 3D structures, thus eliminating the
need to do additional experiments.

Implications of the DIMES method
Ourmethod is based on themaximumentropy principle, which is used
to find the optimal distribution over the coordinates of chromatin loci
that are consistent with experimental data. With the choice of the
average squared pairwise distances as constraints, the maximum-
entropy distribution has a special mathematical structure. The dis-
tribution in Eq. (1) shows that: (1) It is amultivariate normaldistribution
whose properties are analytically known. Thus, finding the values of
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parameters kij does not require simulations but only an optimization
procedure. (2) It has the same mathematical structure as GRM78,79 if
one sets 1/kBT = 1. Hence, all the properties of the GRM63 also hold for
Eq. (1). This analogy provides a physical interpretation of kij, allowing
us to explain phase separation between A and B compartments with-
out appealing to polymer models.

Interpretation of kij’s
We wondered whether kij’s could be decomposed into two additive
terms representing the polymer component and epigenetic compo-
nent, kij∈αβ = k0(i, j) + ke(α, β); k0(i, j) is the polymer contribution to kij
which only depends on i and j. ke(α, β) is the epigenetic contribution to
kij that only depends on epigenetic types, e.g., ke(A,A), ke(B,B), and

Fig. 9 | Structural organization calculated from Hi-C and imaging data.
a Comparison between the mean distance matrix inferred from Hi-C contact map
(lower triangle) and the experimental measured average distance matrix (upper
triangle) for Chr2 from the cell line IMR90. The distance scale is given on the right.
b Direct comparison of pairwise distances, hrImaging

ij i versus hrHi�C
ij i. Each dot

represents a pair (i, j). Dashed line, with a slope of unity, is a guide to the eye.
cPrincipal component dimension 1 (PC1) for imaging andHi-C data. The correlation
matrix is computed from the connectivity matrix K, and then PCA is performed on

the resulting correlation matrix. d Scatter plot of Qk(k = 8) and Fk(k = 8) for 1000
conformations. The conformations are randomly chosen from the total of ~3000
conformations measured in the imaging experiment (green). For Hi-C, 1000 con-
formations are randomly generated using HIPPS/DIMES (red). eHistogramof kij for
A-A, B-B, and A-B. kijs are obtained using Hi-C contact map. f Genomic-distance
normalized hkijðsÞi= ð1=ðN � sÞÞPN

i<j δðs � ðj � iÞÞkij for A-A, B-B, and A-B. 〈kij(s)〉 are
shown for s between 0 and 233 Mbp (left) and for between 0 and 10 Mbp (right).
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ke(A, B). Assuming thatkij∈αβ= k0(i, j) + ke(α, β) holds, by averaging over
s = ∣i − j∣, it follows that 〈kAA(s)〉 − 〈kAB(s)〉, 〈kAA(s)〉 − 〈kBB(s)〉, and
〈kBB(s)〉 − 〈kAB(s)〉 are independent of s. Supplementary Fig. 7 shows
that these quantities fluctuate approximately around constant values
for 60 Mbp < s < 200 Mbp. This result suggests that, to a first
approximation, the parameters kij’s may be decoupled into contribu-
tions from polymer connectivity and that arising from epigenetic
states in an additive manner.

Predictive power of DIMES
One could legitimately wonder about the utility of DIMES, espe-
cially if future imaging techniques generate the coordinates of
individual loci at high resolution. Of course, if this were to occur
then it would make all computational approaches as well as Hi-C
experiments for genome organization irrelevant. However, what is
worth noting is that by using the DIMES method one can also pre-
dict the 3D structures of structural variants accurately. These
applications show that the DIMES method accurately accounts for
the data generated by high-resolution imaging experiments for the
WT. With the WT kij’s at hand, certain mutational effects could be
predictedwithout having to repeat the imaging experiments, which
may not become routine for the foreseeable future. Such high-
throughput calculations, which can be performed using DIMES,
would be particularly useful when analyzing cancer data from dif-
ferent tissues. We believe this is the major advantage of our com-
putational approach.

Methods
Maximum-entropy distribution
In this section, we first show that

PMaxEntðfxigÞ=
1
Z
exp �

XN
i<j

kij ∣∣xi � xj ∣∣
2

 !
, ð6Þ

which is the starting point in theDIMESmethod (see themain text), is a
multivariate normaldistribution. In the above equation,xi = [x1i, x2i, x3i]
are the 3D coordinates of the ith locus.Wewrite Eq. (6) in amatrix form,

PMaxEntðfxigÞ=
1
Z

Y
p

exp XT
pKXp

� �
, ð7Þ

where Xp = ½xp1,xp2, � � � ,xpN �T , subscript p∈ (1, 2, 3) denotes the three
spatial dimensions, and N is the total number of loci. The connectivity
matrix, K, is given by,

Kij = kij , if i≠ j andKii = �
X
j≠i

kij : ð8Þ

Eq. (7) is a product of three multivariate normal distributions with
covariance matrix Σ = −K+ and mean 0, i.e., Xp ∼N ð0,ΣÞ for p = 1, 2, 3
(N ð0,ΣÞ is the multivariate Gaussian distribution). K+ is the Moore-
Penrose inverse (pseudoinverse) of K. Note that Moore-Penrose
inverse ensures that, even if Σ is not full rank, the distribution is
properly defined. In DIMES, Σ has exact one zero eigenvalue, which
corresponds to the zero mode (center of the system).

Note that for PMaxEnt({xi}) to be a normalizable probability density
distribution, it is known that Σ has to be positive semidefinite (Σ ≥0). Σ
with zero eigenvalue (not full rank) corresponds to the degenerate
case, which is expected for a system that is translationally invariant.
Hence, it is necessary thatKbenegative semidefinite. If kij ≥0 for all i, j,
as is the case for the Generalized Rouse Model63,78, K can be proven to
be negative semidefinite. Even if kij < 0 for some i, j, K can still be
negative semidefinite. This means that negative kij values are allowed
as long as the matrix K remains semidefinite.

Next, we prove that there exists a unique set of kijs that satisfy the
set of constraints, which in our problem is specified the average
squared pairwise distances, h∣∣xi � xj ∣∣

2i= hr2iji. The constraints could
be measured or calculated.

The distribution of coordinates of the loci is given by Eq. (6).
Following the derivation in our previous work53,63, we have,

hr2iji=3ω2
ij ð9Þ

where ω2
ij =Σii +Σjj � 2Σij , and Σ = −K+. Note that the whole set of

equations ω2
ij =Σii +Σjj � 2Σij has the same number of unknown vari-

ables (Σij) as the number of equations, which leads to a unique solution
for Σij given the values of hr2iji. We may obtain K in principle using
K = −Σ+. Because Σ is unique, so is K.

Note that this also shows that K can be obtained directly
without any optimization procedure. However, there are three
issues associated with this method. First, this involves a matrix
inversion operation, which is usually numerically unstable for a
large matrix. Second, if the target pairwise distance matrix is not
a proper distance matrix (for example it does not satisfy triangle
inequality) then the resulting Σ is not positive semidefinite, which
would result in an invalid distribution (Eq. (7)). Third, the direct
calculation does not allow for regularization (see Supplementary
Note 1), which is needed in practice.

Calculating the mean squared pairwise distance matrix from
experiment data
If the input data is direct measurements of the 3D coordinates of
certain loci in the chromatin, then the mean squared pairwise dis-
tances between all pairs are computed as,

hr2iji=
1
M

Xm=M

m= 1

∣∣xðmÞ
i � xðmÞ

j ∣∣2 ð10Þ

where xðiÞ
i and xðiÞ

j are the 3D coordinates of i and j loci in themth single
cell and M is the total number of cells for which measurements
are made.

If the input data is the Hi-C contact frequencies, then the mean
squared pairwise distances between all the pairs are computed using53,

hr2iji= Λp�1=α
ij

� �2 ð11Þ

where Λ sets the length scale and α determines the power-law relation
between spatial distances and contact probability. In practice, we
choose α = 4 if it is not determined experimentally. The value of Λ can
only be determined when the length scale of the system is known. For
instance, if the average radius of the gyration of the system is known,Λ
couldbedetermined bymatching the average radius of the gyration of
the chromosome from themodel with the known value. In practice, we
simply set Λ = 1 if not explicitly specified. Note that the structures
obtained with Λ = 1 can be simply rescaled.

Optimization
Let us denote the target mean squared pairwise distances as
hr2ij, expi � aij . The updating scheme for the values of kij in the iterative
scaling method80 is,

kijðt + 1Þ= kijðtÞ+
γP

i<jhr2ijiðtÞ
ln

hr2ijiðtÞ
aij

ð12Þ

t is the step number, and hr2ijiðtÞ is the value of mean squared distance
between loci i and j with parameters kij(t) at step t. The value of the
constant learning rate, γ, is chosen to be γ = 10 because it gives good
convergence speed while ensuring that the result converges.
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For gradient descent (GD), the updating scheme for kij is,

kijðt + 1Þ= kijðtÞ � γ hr2ijiðtÞ � aij

h i
ð13Þ

where γ is the constant learning rate.
For both of these two methods, the value of hr2ijiðtÞ needs to be

evaluated. In DIMES, the fact that the maximum-entropy dis-
tribution is a multivariate normal distribution allows us to com-
pute hr2ijiðtÞ directly using the Eq. (9). With values of kij(t), the
matrix K(t) is constructed according to Eq. (8). Then, the
matrix Σ(t) is calculated using Σ(t) = −K+(t) where K+(t) is the
Moore-Penrose inverse of K(t). Finally, hr2ijiðtÞ is computed
using hr2ijiðtÞ=3 ΣiiðtÞ+ ΣjjðtÞ � 2ΣijðtÞ

h i
.

Once the values of hr2ijiðtÞ are obtained, the values of kij are
updated using Eq. (12) for iterative scaling or Eq. (13) for GD.

Generation of structures
After T number of iteration steps, a reasonably converged K(T) is
obtained. Denote K ≡K(T). To generate an ensemble of structures, we
sample the distribution givenbyEq. (7). Following the derivation in our
previous work53,63, the coordinates of loci, Xp (p denotes the three
spatial dimensions), can be computed as a linear combination of
normalmodes,Xp =VTRpwhereRp are the normalmodes.V is obtained
by eigendecomposition of K, i.e., VKVT =Ω = diag(ω1,ω2,⋯ ,ωN). Each
component of the normal modes, Ri,p, is a Gaussian random variable
with distributionN ð0,� ω�1

i Þ. Note that different Ri,p are independent
of each other.

The procedures used to generate an ensemble of structures
involve the following steps:
(a) Perform eigendecomposition of K. Obtain V and the eigenvalues

ω1,ω2,⋯ ,ωN.
(b) Drawa total ofN randomnumbers fromdistributionsN ð0,� ω�1

i Þ
for i = 1, 2,⋯ ,N. Denote these random numbers as R1,R2,⋯ ,RN.

(c) Define R= ½R1,R2, � � � ,RN �T . Compute X using X =VTR.
(d) Repeat (b) and (c) two more times, each for a spatial dimension.

Finally, we obtain X1,X2,X3, representing the x, y, and z coordi-
nates of N number of loci.

(e) Repeat (b) - (d)M times, resulting in a total number ofM randomly
sampled 3D structures.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. The Multiplexed FISH imaging data
used in this study are publicly available from the GitHub repository at
https://github.com/BogdanBintu/ChromatinImagingand Zenodo
repository81 at https://zenodo.org/record/3928890#.Yizd1xDMKFF.
The Hi-C data used in this study are publicly available from the GEO
database under accession numbers [GSE92294] and [GSE63525].

Code availability
The code for the DIMESmethodpresented in this work and its detailed
user instruction can be accessed at the GitHub repository https://
github.com/anyuzx/HIPPS-DIMES82. The data analysis is performed
using Python 3.9 in Jupyter Lab. The Python packages used in data
analysis are Scipy, Numpy, and Pandas.

References
1. Rao, S. S. et al. A 3D map of the human genome at kilobase reso-

lution reveals principles of chromatin looping. Cell 159,
1665–1680 (2014).

2. Giorgetti, L. et al. Predictive polymer modeling reveals coupled
fluctuations in chromosome conformation and transcription. Cell
157, 950–963 (2014).

3. Finn, E. H. & Misteli, T. Molecular basis and biological function of
variability in spatial genome organization. Science 365,
eaaw9498 (2019).

4. Nichols, M. H. & Corces, V. G. Principles of 3D compartmentaliza-
tion of the human genome. Cell Rep. 35, 109330 (2021).

5. Jerkovic’, I. & Cavalli, G. Understanding 3D genome organization by
multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22,
511–528 (2021).

6. Barbieri, M. et al. Complexity of chromatin folding is captured by
the strings andbinders switchmodel. Proc. Natl Acad. Sci. USA 109,
16173–16178 (2012).

7. Zhang, B. & Wolynes, P. G. Topology, structures, and energy land-
scapes of human chromosomes. Proc. Natl Acad. Sci. USA 112,
6062–6067 (2015).

8. Shi, G., Liu, L., Hyeon, C. & Thirumalai, D. Interphase human chro-
mosome exhibits out of equilibrium glassy dynamics. Nat. Com-
mun. 9, 3161 (2018).

9. Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-
dimensional organization of genomes: interpreting chromatin
interaction data. Nat. Rev. Genet. 14, 390–403 (2013).

10. Rao, S. S. et al. Cohesin loss eliminates all loop domains. Cell 171,
305–320.e24 (2017).

11. Chen, H. et al. Dynamic interplay between enhancer–promoter
topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

12. Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal
uncoupling between genome topology and gene expression. Nat.
Genet. 51, 1272–1282 (2019).

13. Delaneau, O. et al. Chromatin three-dimensional interactions
mediate genetic effects on gene expression. Science 364,
eaat8266 (2019).

14. Zuin, J. et al. Nonlinear control of transcription through enhancer-
promoter interactions. Nature 604, 571–577 (2021).

15. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromo-
some conformation. Science 295, 1306–1311 (2002).

16. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range
interactions reveals folding principles of the human genome. Sci-
ence 326, 289–293 (2009).

17. Hsieh, T.-H. S. et al. Mapping nucleosome resolution chromosome
folding in yeast by Micro-C. Cell 162, 108–119 (2015).

18. Bonev, B. &Cavalli, G.Organization and function of the 3Dgenome.
Nat. Rev. Genet. 17, 661–678 (2016).

19. Yu, M. & Ren, B. The three-dimensional organization of mammalian
genomes. Annu. Rev. Cell Dev. Biol. 33, 265–289 (2017).

20. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in
chromosome structure. Nature 502, 59–64 (2013).

21. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin
reorganization at oocyte-to-zygote transition. Nature 544,
110–114 (2017).

22. Stevens, T. J. et al. 3D structures of individualmammalian genomes
studied by single-cell Hi-C. Nature 544, 59–64 (2017).

23. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods
14, 263–266 (2017).

24. Tan, L., Xing, D., Chang, C.-H., Li, H. & Xie, X. S. Three-dimensional
genome structures of single diploid human cells. Science 361,
924–928 (2018).

25. Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in
spatial genome organization. Cell 176, 1502–1515.e10 (2019).

26. Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape3D
genome organization in the nucleus. Cell 174, 744–757.e24 (2018).

27. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by
genome architecture mapping. Nature 543, 519–524 (2017).

Article https://doi.org/10.1038/s41467-023-36412-4

Nature Communications |         (2023) 14:1150 12

https://github.com/BogdanBintu/ChromatinImaging
https://zenodo.org/record/3928890#.Yizd1xDMKFF
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92294
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
https://github.com/anyuzx/HIPPS-DIMES
https://github.com/anyuzx/HIPPS-DIMES


28. Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome
architecture. Nat. Rev. Genet. 21, 207–226 (2019).

29. Duan, Z. et al. A three-dimensional model of the yeast genome.
Nature 465, 363–367 (2010).

30. Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. Genome
architectures revealed by tethered chromosome conformation
capture and population-based modeling. Nat. Biotechnol. 30,
90–98 (2011).

31. Rousseau,M., Fraser, J., Ferraiuolo, M. A., Dostie, J. & Blanchette, M.
Three-dimensional modeling of chromatin structure from interac-
tion frequency data using Markov chain Monte Carlo sampling.
BMC Bioinformatics 12, 414 (2011).

32. Zhang, Z., Li, G., Toh, K.-C. & Sung,W.-K. 3D chromosomemodeling
with semi-definite programming and Hi-C data. J. Comput. Biol. 20,
831–846 (2013).

33. Hu, M. et al. Bayesian inference of spatial organizations of chro-
mosomes. PLoS Comput. Biol. 9, e1002893 (2013).

34. Varoquaux, N., Ay, F., Noble,W. S. &Vert, J.-P. A statistical approach
for inferring the 3D structure of the genome. Bioinformatics 30,
i26–i33 (2014).

35. Lesne, A., Riposo, J., Roger, P., Cournac, A. & Mozziconacci, J. 3D
genome reconstruction from chromosomal contacts.Nat. Methods
11, 1141–1143 (2014).

36. Tjong, H. et al. Population-based 3D genome structure analysis
reveals driving forces in spatial genome organization. Proc. Natl
Acad. Sci. USA 113, E1663–E1672 (2016).

37. Oluwadare, O., Zhang, Y. & Cheng, J. A maximum likelihood algo-
rithm for reconstructing 3D structures of human chromosomes
from chromosomal contact data. BMC Genomics 19, 161 (2018).

38. Wang, H., Yang, J., Zhang, Y., Qian, J. & Wang, J. Reconstruct high-
resolution 3D genome structures for diverse cell-types using FLA-
MINGO. Nat. Commun. 13, 2645 (2022).

39. Hua, N. et al. Producing genome structure populations with the
dynamic and automated PGS software. Nat. Protoc. 13,
915–926 (2018).

40. Oluwadare, O., Highsmith, M. & Cheng, J. An overview of methods
for reconstructing 3-D chromosome and genome structures from
Hi-C data. Biol. Proced. Online 21, 7 (2019).

41. Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and
compaction in interphase and mitotic cells. Science 357,
eaag0025 (2017).

42. Boettiger, A. & Murphy, S. Advances in chromatin imaging at
kilobase-scale resolution. Trends Genet. 36, 273–287 (2020).

43. Li, Y. et al. Nanoscale chromatin imaging and analysis platform
bridges 4D chromatin organization with molecular function. Sci.
Adv. 7, eabe4310 (2021).

44. Cremer, T. & Cremer, C. Chromosome territories, nuclear archi-
tecture and gene regulation inmammalian cells.Nat. Rev. Genet. 2,
292–301 (2001).

45. Wang, S. et al. Spatial organization of chromatin domains and
compartments in single chromosomes. Science 353,
598–602 (2016).

46. Cattoni, D. I. et al. Single-cell absolute contact probability detection
reveals chromosomes are organized bymultiple low-frequency yet
specific interactions. Nat. Commun. 8, 1753 (2017).

47. Bintu, B. et al. Super-resolution chromatin tracing reveals domains
and cooperative interactions in single cells. Science 362,
eaau1783 (2018).

48. Nir, G. et al. Walking along chromosomes with super-resolution
imaging, contact maps, and integrative modeling. PLoS Genet. 14,
e1007872 (2018).

49. Szabo, Q. et al. TADs are 3D structural units of higher-order chro-
mosome organization in Drosophila. Sci. Adv. 4, eaar8082 (2018).

50. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at
single-cell resolution. Nature 568, 49–54 (2019).

51. Su, J.-H., Zheng, P., Kinrot, S. S., Bintu, B. & Zhuang, X. Genome-
scale imaging of the 3D organization and transcriptional activity of
chromatin. Cell 182, 1641–1659.e26 (2020).

52. Liu, M. et al. Multiplexed imaging of nucleome architectures in
single cells of mammalian tissue. Nat. Commun. 11, 2907 (2020).

53. Shi, G.&Thirumalai, D. FromHi-Ccontactmap to three-dimensional
organization of interphase human chromosomes. Phys. Rev. X 11,
011051 (2021).

54. Jaynes, E. T. Information theoryandstatisticalmechanics.Phys. Rev.
106, 620–630 (1957).

55. Pressé, S., Ghosh, K., Lee, J. & Dill, K. A. Principles of maximum
entropy andmaximumcaliber in statistical physics. Rev. Mod. Phys.
85, 1115–1141 (2013).

56. Pierro, M. D., Zhang, B., Aiden, E. L., Wolynes, P. G. & Onuchic, J. N.
Transferable model for chromosome architecture. Proc. Natl Acad.
Sci. USA 113, 12168–12173 (2016).

57. Farré, P. & Emberly, E. A maximum-entropy model for predicting
chromatin contacts. PLoS Comput. Biol. 14, e1005956 (2018).

58. Lin, X., Qi, Y., Latham, A. P. & Zhang, B. Multiscale modeling of
genomeorganizationwithmaximumentropyoptimization. J. Chem.
Phys. 155, 010901 (2021).

59. Messelink, J. J. B., van Teeseling, M. C. F., Janssen, J., Thanbichler,
M. & Broedersz, C. P. Learning the distribution of single-cell chro-
mosome conformations in bacteria reveals emergent order across
genomic scales. Nat. Commun. 12, 1963 (2021).

60. Malouf, R. A comparison of algorithms for maximum entropy
parameter estimation. In COLING-02: The 6th Conference on Nat-
ural Language Learning 2002 (CoNLL-2002) (2002).

61. Treut, G. L., Képès, F. & Orland, H. A polymer model for the quan-
titative reconstruction of chromosome architecture from HiC and
GAM data. Biophys. J. 115, 2286–2294 (2018).

62. Shinkai, S. et al. PHi-C: deciphering Hi-C data into polymer
dynamics. NAR Genom. Bioinform. 2, lqaa020 (2020).

63. Shi, G. & Thirumalai, D. Conformational heterogeneity in human
interphase chromosome organization reconciles the FISH and Hi-C
paradox. Nat. Commun. 10, 3894 (2019).

64. Liu, L., Zhang, B. & Hyeon, C. Extracting multi-way chromatin con-
tacts from Hi-C data. PLoS Comput. Biol. 17, e1009669 (2021).

65. Harju, J., Messelink, J. J. & Broedersz, C. P. Physical models for
chromosome organization to predict multi-contact statistics. Pre-
print at bioRxiv https://doi.org/10.1101/2022.05.17.492279 (2023).

66. Dixon, J. R. et al. Topological domains in mammalian genomes
identified by analysis of chromatin interactions. Nature 485,
376–380 (2012).

67. Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of
chromosome organization. Mol. Cell 62, 668–680 (2016).

68. Ong, C.-T. & Corces, V. G. CTCF: an architectural protein bridging
genome topology and function. Nat. Rev. Genet. 15,
234–246 (2014).

69. Zhang, J. et al. An integrative ENCODE resource for cancer geno-
mics. Nat. Commun. 11, 3696 (2020).

70. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF
and cohesin regulate chromatin loop stability with distinct
dynamics. eLife 6, e25776 (2017).

71. Zirkel, A. et al. HMGB2 loss upon senescence entry disrupts geno-
mic organization and induces CTCF clustering across cell types.
Mol. Cell 70, 730–744.e6 (2018).

72. Cheng, Y., Liu, M., Hu, M. & Wang, S. TAD-like single-cell domain
structures exist on both active and inactive X chromosomes and
persist under epigenetic perturbations.Genome Biol. 22, 309 (2021).

73. Aronovitz, J. & Nelson, D. Universal features of polymer shapes. J.
Phys. 47, 1445–1456 (1986).

74. Dima, R. I. & Thirumalai, D. Asymmetry in the shapes of folded
and denatured states of proteins. J. Phys. Chem. B 108,
6564–6570 (2004).

Article https://doi.org/10.1038/s41467-023-36412-4

Nature Communications |         (2023) 14:1150 13

https://doi.org/10.1101/2022.05.17.492279


75. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272 (2020).

76. Belaghzal, H. et al. Liquid chromatin Hi-C characterizes
compartment-dependent chromatin interaction dynamics. Nat.
Genet. 53, 367–378 (2021).

77. Bianco, S. et al. Polymer physics predicts the effects of structural
variants on chromatin architecture.Nat. Genet. 50, 662–667 (2018).

78. Bryngelson, J. D. & Thirumalai, D. Internal constraints induce loca-
lization in an isolated polymer molecule. Phys. Rev. Lett. 76,
542–545 (1996).

79. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics, Vol. 73
(Oxford University Press, 1988).

80. Darroch, J. N. & Ratcliff, D. Generalized iterative scaling for log-
linear models. Ann. Math. Stat. 43, 1470–1480 (1972).

81. Su, J.-H., Zheng, P., Kinrot, S., Bintu, B. & Zhuang, X. Genome-scale
imaging of the 3D organization and transcriptional activity of
chromatin. Cell 182, 1641–1659 (2020).

82. Shi, G. & Thirumalai, D. anyuzx/HIPPS-DIMES: v1.25. Zenodohttps://
doi.org/10.5281/zenodo.7531310 (2023).

Acknowledgements
We thank Davin Jeong and Sucheol Shin for several pertinent comments
on the work. This work was supported by a grant from the National
Science Foundation (CHE 19-00033, D. T.) and the Welch Foundation
through the Collie-Welch Chair (F-0019, D. T.).

Author contributions
G.S. and D.T. designed research; G.S. and D.T. performed research; G.S.
and D.T. analyzed data; G.S. and D.T. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-36412-4.

Correspondence and requests for materials should be addressed to
Guang Shi or D. Thirumalai.

Peer review information Nature Communications thanks Bogdan Bintu,
Kevin Van Bortle, and the other, anonymous, reviewer(s) for their con-
tribution to the peer review of this work. Peer reviewer reports are
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-36412-4

Nature Communications |         (2023) 14:1150 14

https://doi.org/10.5281/zenodo.7531310
https://doi.org/10.5281/zenodo.7531310
https://doi.org/10.1038/s41467-023-36412-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants
	Results
	Formulating DIMES using the maximum-entropy model
	Validating DIMES
	Distribution of pairwise distances
	Co-localization of three loci and biological significance
	Higher-order structures
	TAD-like patterns in a single cell
	Size and shapes
	Ensemble of structures partition into clusters
	Structures of the 242-Mbp-long Chr2
	Applications
	Impact of genomic rearrangement on 3D organization
	Structural integrity is determined by loci at the CTCF anchors and A/B boundary
	Comparing Hi-C and imaging experiment

	Discussion
	Implications of the DIMES method
	Interpretation of kij’s
	Predictive power of DIMES

	Methods
	Maximum-entropy distribution
	Calculating the mean squared pairwise distance matrix from experiment data
	Optimization
	Generation of structures
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




