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Loss of phosphatase CTDNEP1 potentiates
aggressive medulloblastoma by triggering
MYC amplification and genomic instability

Zaili Luo 1,11, Dazhuan Xin1,11, Yunfei Liao1,11, Kalen Berry1, Sean Ogurek1,
Feng Zhang1, Liguo Zhang1, Chuntao Zhao1, Rohit Rao1, Xinran Dong 2, Hao Li2,
Jianzhong Yu2, Yifeng Lin2, Guoying Huang2, Lingli Xu1, Mei Xin 1,
Ryuichi Nishinakamura3, Jiyang Yu 4, Marcel Kool5,6, Stefan M. Pfister5,7,
Martine F. Roussel 8, Wenhao Zhou 2 , William A. Weiss9,
Paul Andreassen 1,10 & Q. Richard Lu 1,10

MYC-driven medulloblastomas are highly aggressive childhood brain tumors,
however, the molecular and genetic events triggering MYC amplification and
malignant transformation remain elusive. Here we report that mutations in
CTDNEP1, a CTD nuclear-envelope-phosphatase, are the most significantly
enriched recurrent alterations in MYC-driven medulloblastomas, and define
high-risk subsets with poorer prognosis. Ctdnep1 ablation promotes the
transformation of murine cerebellar progenitors into Myc-amplified medullo-
blastomas, resembling their human counterparts. CTDNEP1 deficiency stabi-
lizes and activates MYC activity by elevating MYC serine-62 phosphorylation,
and triggers chromosomal instability to induce p53 loss and Myc amplifica-
tions. Further, phosphoproteomics reveals that CTDNEP1 post-translationally
modulates the activities of key regulators for chromosome segregation and
mitotic checkpoint regulators including topoisomerase TOP2A and check-
point kinase CHEK1. Co-targeting MYC and CHEK1 activities synergistically
inhibits CTDNEP1-deficient MYC-amplified tumor growth and prolongs animal
survival. Together, our studies demonstrate that CTDNEP1 is a tumor sup-
pressor in highly aggressive MYC-driven medulloblastomas by controlling
MYC activity andmitotic fidelity, pointing to a CTDNEP1-dependent targetable
therapeutic vulnerability.

Medulloblastomas (MBs), which arise from cerebellar neural pro-
genitor cells, are themost commonmalignant childhoodbrain tumors,
and featurehigh genomic instability1. Basedongene expression and/or
DNA methylation profiling MBs are classified into four major sub-
groups: Wingless (WNT), Sonic Hedgehog (SHH), Group 3 (G3), and
Group 4 (G4), with intertumoral heterogeneity within each
subgroup2–4. Dysregulation of the WNT and hedgehog (HH) pathway
has been implicated in WNT and SHH subgroup tumors, respectively,

while MYC-driven G3-MB, which comprises ~17% of G3-MBs, has the
worst prognosis and is associated with amplification and over-
expression of the c-MYC oncogene (MYC)1,5–8. Patients with G3-MB
tumors often relapse following therapy, exhibit metastases, and
eventually succumb to the disease3. Currently, targeted therapeutics
for the G3-MB tumors are lacking in part due to the incomplete
understanding of tumorigenic mechanisms and clinical correlates of
genetic alterations. Although large-scale genomic studies have
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identified many somatically mutated genes in G3-MB tumors, candi-
date cancer genes that triggerMYC activation and amplification aswell
as their underlying regulatory circuitries remain poorly defined.

MYC activation or overexpression has been shown to induce
genomic instability that is linked to tumor initiation9–11 including
tumorigenesis in murine G3-MBs from cerebellar progenitor cells12,13.
Currently, regulatory networks that control MYC activation and
transformation of neural precursors into the most aggressive MYC-
driven G3 MBs are poorly understood. Recent genomic studies have
identified candidate mutations in MB subgroups3,4,14, however, no
presumptive mutations in the MYC gene itself have been found in
patients. Recent studies show that MYC protein stabilization and
compartmentalization at the nuclear periphery are critical for MYC
oncogenic activity, in part mediated through phosphorylation at the
critical serine-62 (p62-MYC)15–17. In addition, global proteomes and
phospho-proteomes indicate that post-translational modifications of
MYC such as phosphorylation are associated with poor outcomes in
G3 MBs18. However, at present, the genetic and molecular pathways
that regulate MYC activity or MYC amplifications during G3 MB
tumorigenesis remain elusive. In this study, by integrating analyses of
newly diagnosed MBs and publicly available cohorts for recurrent
genetic alterations, we found that CTDNEP1, encoding a CTD nuclear
envelope-enriched phosphatase (a.k.a Dullard)19–21, is the most sig-
nificantly mutated genes within G3-MBs compared with other MB
subgroups4,14. Mutations or low CTDNEP1 expression levels define a
subset of highly aggressiveMYC-drivenMBs and predict poor patient
outcomes. Notably, ablation of Ctdnep1 activates MYC oncogenic
activity and induces the genomic instability, leading to p53 loss and
Myc overexpression or amplifications to promote the transformation
of cerebellar progenitors into aggressive Myc-amplified MBs. We
further show that CTDNEP1 modulates activities of key mitotic
checkpoint regulators for maintaining genomic stability. Thus, our
study provides important evidence showing that mutation in a single
gene CTDNEP1 promotes MYC activation and amplifications for G3-
MB tumorigenesis, revealing a CTDNEP1 phosphatase-dependent
targetable vulnerability in the highly aggressive MYC-driven MB
tumors.

Results
CTDNEP1 mutations are most significantly enriched in aggres-
sive G3-MBs and correlated with MYC amplification and poor
prognosis
To identify the genetic alterations in aggressive MBs, we analyzed
whole-exome sequencing data of newly diagnosed MBs cohort from
East Asia22 and combined with the publicly available MB cohorts4,5,7,14

to catalog recurrent somatic mutations. We identified a set of
somatic mutations with high frequency among G3 MB samples
(n = 209), including mutations in SMARCA4 (16 patients, 7.7%),
CTDNEP1 (15 patients, 7.2%), KBTBD4 (14 patients, 6.7%), KMT2D (13
patients, 6.2%), and KMT2C (9 patients, 4.3%) (Fig. 1a), which is in
keeping with previous reports3,4,23. However, among the recurrent
somatic mutations in the publicly available MB cohorts, we found
that CTDNEP1 mutations are most significantly enriched in G3 MBs
compared with other MB subgroups (Fig. 1b and Supplementary
Fig. 1a). In addition, CTDNEP1 mutations occur most frequently in
MBs compared to other CNS tumor types (Supplementary Fig. 1b),
and CTDNEP1 expression is lower in MB tumors than normal brain
and cerebellar tissues (Supplementary Fig. 1c). Among the MBs from
the available cohorts, 19 CTDNEP1 somatic mutations were identified.
Themajority of patients identified with CTDNEP1mutations (15 out of
19) had been diagnosed with G3-MBs, with no or low frequency in
patients with WNT (1 out of 19), SHH (0 out 19), or G4 subgroup (3
out of 19) MBs (Fig. 1c). Moreover, CTDNEP1 mutations were mainly
distributed in the critical Dullard-like phosphatase domain or resul-
ted in truncations of this domain (Fig. 1d), suggesting that these

mutations may be associated with CTDNEP1 loss-of-function (LOF).
We confirmed the somatic CTDNEP1 mutations in a set of G3 MBs
(Supplementary Fig. 2a, b).

We observed loss-of-heterozygosity (LOH) of the other allele of
CTDNEP1 on Chr17p in the majority of the G3 MBs carrying CTDNEP1
mutations (11 out of 12; Supplementary Fig. 2c–f), while LOH was not
detected in the normal apparent peri-tumoral tissue in the same
patient (Supplementary Fig. 2c). In contrast, in G4 MBs, which do not
have high MYC levels24, CTDNEP1 mutations were detected in only
three G4 MBs (3 out of 173) with one tumor showing i17q (Supple-
mentary Fig. 2g). The CTDNEP1 expression level was lower in Chr17p-
deletedMBs compared to those with balanced Chr17p in G3 or G4MBs
and SHH or WNT MBs (Supplementary Fig. 3a–c).

To examine the relation of MYC amplification and CTDNEP1
mutations to genomic alterations in G3 MB tumors, we analyzed the
copy number variation from the available cohorts3,14,22,24. In G3MBs, we
found that CTDNEP1 mutations significantly co-occurred with MYC
amplification, copy number gains onChr8p, Chr8q, Chr17q, andChr1q,
as well as the loss of Chr17p, while the mutually exclusive events
included gain of Chr7p or Chr7p and loss of Chr16q or Chr10q (Fig. 1e
and Supplementary Fig. 2c, d). The co-occurrence of isochromosome
17q (i17q) and Chr8q gain was observed in both CTDNEP1-mutated and
MYC-amplified MBs (Fig. 1e and Supplementary Fig. 2e, f). Together,
these observations indicate that CTDNEP1 mutation is correlated with
MYC amplification and genomic instability in G3-MB tumors.

Due to variable expression levels, we stratified the MB cohorts
from publicly available datasets3,4,23 into patient populations with high
and low CTDNEP1 expression across MB subgroups (Supplementary
Fig. 3d), and found that lowerCTDNEP1 expression level was correlated
with significantly decreased overall survival in SHH-, G3- and G4-MB
cohorts (Fig. 1f and Supplementary Fig. 3e), except for the WNT sub-
group, although few CTDNEP1 mutations were present in SHH and G4
MBs. Based on the survival data3,4,23, patients carrying CTDNEP1
somatic mutations exhibited a worse prognosis than those with
CTDNEP1wildtype alleles in G3MB tumors withoutMYC-amplification,
but similar to those with MYC-amplification (Fig. 1g). Among G3 MB
tumors, the patients with both CTDNEP1 mutation and MYC amplifi-
cation showed the poorest prognosis when compared with those with
the CTDNEP1mutation orMYC amplification alone (Fig. 1g). Together,
these observations suggest that the prevalence and clinical impact
resulting fromCTDNEP1mutations or lowexpressiondefine a subset of
highly aggressive G3-MBs.

CTDNEP1 deficiency promotes MB tumor cell growth
To determine the effect of CTDNEP1 deficiency on tumor cell growth,
we inhibited CTDNEP1 expression in different G3-MB tumor cells with
orwithoutMYC amplification using lentiviral shRNAs. InMYC-amplified
human G3-MB cell lines D425 and MB-004 (Supplementary Fig. 4a)25,
CTDNEP1 knockdown resulted in an increase in cell proliferation
measured as EdU or BrdU incorporation assays (Fig. 2a, b and Sup-
plementary Fig. 4b) and cell growth rates (Fig. 2c and Supplementary
Fig. 4c). In addition, by using a soft agar assay, we found that silencing
of CTDNEP1 resulted in a higher clonogenic capacity in non-MYC
amplified G3MB cells (D283)25 (Fig. 2d) andMYC amplifiedD425 cells25

(Supplementary Fig. 4d). Moreover, CTDNEP1 knockdown led to sig-
nificant increases in tumor sphere formation in both MYC amplified
(D425) and non-MYC amplified (D283) G3-MB cell lines (Fig. 2e, f). Cell-
cycle analysis using flow cytometry revealed that CTDNEP1 deficiency
also increased the proportion of these G3 MB cells in S phase (Fig. 2g,
h). These results indicate that CTDNEP1 deficiency promotes the pro-
liferation of G3-MB cells in vitro.

To assess the in vivo effect of CTDNEP1 inhibition on tumor for-
mation, D425 or D283 MB cells with or without CTDNEP1 knockdown
were subcutaneously transplanted into NOD SCID gamma (NSG)mice.
The sizes of tumors derived from CTDNEP1-deficient cells were much
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larger than those from control shRNA-treated cells (Fig. 2i, j). In addi-
tion, knockdown of CTDNEP1 in patient-derived MB-004 cells accel-
erated tumor growth and shortened animal lifespan in an orthotopic-
engrafted model (Fig. 2k, l). Thus, the loss of CTDNEP1 promoted
tumor growth of both MYC-amplified and non-MYC-amplified G3-MB
cells in xenografts, suggesting a tumor-suppressive role for CTDNEP1
in G3-MBs.

To investigate the effect of CTDNEP1 overexpression on tumor
cell growth, we transduced D425 MB cells with a lentivirus
overexpressing CTDNEP1. CTDNEP1-overexpression resulted in a
reduction of the growth rate of D425 cells in vitro (Fig. 2m). In
addition, tumors in mice xenografted with CTDNEP1-overexpressing
D425 cells were smaller than those grafted with control vector-
transduced D425 cells (Fig. 2n), suggesting that CTDNEP1

overexpression inhibits tumor cell growth. Together, these obser-
vations suggest that CTDNEP1 has a tumorgrowth suppressive
activity in G3-MB cells.

CTDNEP1 depletion leads to activation of MYC signaling
pathway
To further determine the potential mechanisms underlying the tumor
suppressive effects of CTDNEP1, we performed transcriptome profil-
ing of D425 MB cells transduced with control shRNAs and shCTDNEP1
RNAs. We identified a set of genes that were significantly altered (>1.5-
fold change,p <0.01) inCTDNEP1-depleted cells (Fig. 3a, b).Among the
most upregulated genes were those pertinent to tumor progression,
including the signature genes for G3 MBs (e.g., NRL, NR2E3, and
RORB)3,26 and candidate MYC-targeted genes (e.g., RPL21, CAV3, GDNF,
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Fig. 1 | Prevalence and clinical impact of recurrentmutations of CTDNEP1 inG3
MBs. a Frequency of known and recurrent genetic variants in pediatric G3 MBs.
b The significance enrichment plot of somatic recurrent mutated genes in G3-MB
compared with other MB subgroups. P values were calculated based on Fisher’s
exact test and were then adjusted for multiple testing by Bonferroni correction
methods. c Frequency of CTDNEP1 LOF variants in different MB subgroups.
d Somatic CTDNEP1 mutation profile in patients with MBs. fs, Frameshift.
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GPR27, TIMP3, and SLC35G2)27 (Fig. 3a, b). In addition, the genes asso-
ciated with NOTCH signaling (e.g.,HES1, GATA3, andMAGEA1) and cell
migration (e.g., ICAM1, NELL2, CD40, SLIT2, and SPINT2) were also
upregulated upon CTDNEP1-knockdown (Fig. 3a, b). In contrast, the
downregulated genes were associated with normal neural

development (Fig. 3a). Markedly, gene set enrichment analysis
(GSEA)28 indicated that the upregulated genes showed strong enrich-
ment in transcriptomic profiles ofMYC-pathway target genes (Fig. 3c).
These observations suggest that depletion of CTDNEP1 results in MYC
signaling activation. Consistently, the analysis of human G3-MB
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D425 (lower) cells transduced with shCtrl or shCTD. h percentage of cells at

different cell-cycle stages (n = 3 independent experiments), ns: no significance.
i, j Left: representative photographs of tumors from mice transplanted sub-
cutaneously with 1 × 106 shCtrl and shCTD-treated D425 (i), or D283 (j) cells. Right:
weights of tumors as means ± SD (n = 4 mice per group for i and n = 3 mice for j).
k, l Representative hematoxylin/eosin staining of the cerebellum from the mice
transplanted with shCtrl and shCTDNEP1-transduced MB-004 cells (k) and their
survival curves (l; n = 6 animals/group). Log-rank test. Dash circles indicate the
tumor tissues. Scale bars: 1mm.m Left: Immunoblots of CTDNEP1 overexpression
(OE) in D425 cells. Right: cell proliferation as monitored by WST-1 in control and
CTD-OE D425 cells. n = 3 independent experiments, two-way ANOVA. n Left: pho-
tographs of tumors from mice transplanted subcutaneously with control or
CTDNEP1-overexpressing D425 cells. Right: Weights of tumors (n = 4 animals per
group). The data are presented as mean values ± SD. Two-tailed Student’s t test for
a, b, d–f, h–j, n. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-36400-8

Nature Communications |          (2023) 14:762 4



transcriptomic profiles4 revealed that CTDNEP1-mutated MBs exhib-
ited a similar expression pattern with MYC-high or -amplified MBs
(Supplementary Fig. 4e). Together, these observations suggest that
CTDNEP1 deficiency leads to MYC upregulation or activation of the
MYC oncogenic pathway.

CTDNEP1 phosphatase activity loss leads to MYC stabilization
and phosphorylation at Ser62
Despite the increase in MYC target expression in CTDNEP1-deficient
cells, MYC mRNA levels were not substantially altered in D425 tumor

cells treated with shCTDNEP1 RNAs (Fig. 3d), suggesting that CTDNEP1
might regulate MYC signaling post-translationally. Western blotting
analysis indicated that there was an increase of protein levels in MYC
and pS62-MYC, which leads to MYC stabilization and functional
activation29, in the CTDNEP1-knockdown cells (Fig. 3e). Given that
CTDNEP1 encodes a nuclear envelope-enriched serine/threonine pro-
tein phosphatase19,30 (Supplementary Fig. 5a), we hypothesized that
CTDNEP1 activity destabilizes MYC via removal of the phosphate from
S62, which is critical for MYC oncogenic activity at the nuclear
periphery15–17. To examine MYC stability, we treated tumor cells with a
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protein synthesis inhibitor cycloheximide (CHX) and found that both
MYCandp-S62-MYC levels remainedhigher in theMYC-amplifiedD425
and non-MYC amplified D283 cells with CTDNEP1 knockdown than
control-treated cells (Fig. 3f and Supplementary Fig. 5b, c). These data
suggest that CTDNEP1 depletion leads to an increase in MYC stability
and oncogenic activity.

To determine whether dephosphorylation of MYC at S62 is cata-
lyzed by CTDNEP1, we generated constructs carrying amutation at the
codon D67 (D67N) or D69 (D69N) required for CTDNEP1 phosphatase
activity19. Furthermore,weconstructed an expression vector carrying a
G3-MB patient-derived CTDNEP1 mutation L72H to examine the
impact of the disease-relevant mutation on CTDNEP1 activity. Three
residues (D67, D69, andL72) are highly conserved in the catalyticmotif
DXDX(T/V) among the phosphatase protein family (Fig. 3g). The
phosphatase activity of affinity-purified wild-type and CTDNEP1
mutant proteins was assessed using p-nitrophenyl phosphate as a
substrate19. The wild-type enzyme catalyzed dephosphorylation of
p-nitrophenyl phosphate, but none of the CTDNEP1 mutants did
(Fig. 3h), suggesting that the CTDNEP1 mutants are defective in
phosphatase activity.

We next co-expressed CTDNEP1 or its activity-deficient mutants
along with MYC, and found that overexpression of CTDNEP1, but not
the mutants, increased MYC degradation (Fig. 3i). Importantly, in fur-
ther support of its potential role in regulating MYC levels by depho-
sphorylating it at S62, CTDNEP1 overexpression did not alter the
stability of the non-phosphorylatable MYC-S62E mutant (Fig. 3i). To
confirm that CTDNEP1 dephosphorylates MYC, CTDNEP1 and its
mutants D69N and L72Hwere incubated with the lysates of D425 cells,
which express a high level ofMYC. p-S62-MYC levels were substantially
reduced in the presence of wildtype CTDNEP1 but were not altered in
the presence of these CTDNEP1 mutants (Fig. 3j). Consistently, over-
expression of CTDNEP1 in D425 cells substantially downregulated the
levels of MYC and p-S62-MYC (Fig. 3k). In addition, co-
immunoprecipitation assays indicated that CTDNEP1 was associated
with MYC in a complex in D425 G3 cells transduced with the lentivirus
expressing CTDNEP1 (Fig. 3l). These observations indicate that
CTDNEP1 may interact with and dephosphorylate MYC at S62 to reg-
ulate MYC stability.

CTDNEP1 phosphatase activity regulates MYC expression in
nucleus and nuclear membrane
To investigate the dynamics of nucleoplasmic and nuclear membrane-
associatedMYC in relation to the phosphatase activity of CTDNEP1, we
found that overexpression of wildtype CTDNEP1 led to a decrease in
MYC levels in the nucleus (Supplementary Fig. 6a, b) and p-S62 MYC
levels in both nucleoplasmic and nuclear membrane (Supplementary
Fig. 6c, d). In contrast, expression of the phosphatase-activity-deficient
CTDNEP1-D69N did not substantially affect the expression levels of
MYC and p-S62 MYC in the nucleoplasm (Supplementary Fig. 6a–d).

To determine whether CTDNEP1 can directly interact and co-
localize with MYC and p-S62 MYC at the nuclear periphery, we per-
formed the proximity ligation assay (PLA) in HeLa cells, which have
been used as a cell system to examine theMYC expressionor p62-MYC
localization16. Expression of HA-tagged CTDNEP1 was mainly localized
around the nuclear envelope/periphery (Supplementary Fig. 6a–d),
consistent with enrichment of CTDNEP1 at the nuclear envelope as
previously reported19. PLA assays indicated co-localization of CTDNEP1
with MYC and p-S62 MYC at the nuclear periphery (Supplementary
Fig. 6e, f). Moreover, we detected an increase in the co-localization of
phosphatase-activity-deficient CTDNEP1-D69N with MYC and p-S62-
MYC on the nuclear periphery compared with wildtype CTDNEP1
(Supplementary Fig. 6e, f), consistent with our observation that the
defects in CTDNEP1 phosphatase activity resulted in an increasedMYC
S62 phosphorylation and stabilization. Together, these data suggest
that CTDNEP1 activity can be executed at least in part at the nuclear

periphery and regulates the expression levels of nucleoplasmic and
nuclear membrane-associated MYC protein and p-S62 MYC.

Deletion of Ctdnep1 induces neural progenitor transformation
into MYC-driven G3 MB tumors
To gain insight into the role of CTDNEP1 in MB tumorigenesis in vivo,
we knockedoutCtdnep1 inneural stem/progenitor cells (NPCs) inmice
by breeding Ctdnep1flox/flox mice20 with a Nestin-Cre line31 to generate
Ctdnep1flox/flox; Nestin-Cre mice referred to here as Ctdnep1-cKO mice
(Fig. 4a). Strikingly, all Ctdnep1-cKOmice died before postnatal day 40
(Supplementary Fig. 7a), and the cortex and cerebellum of the animals
lacking Ctdnep1 were significantly smaller compared with controls
(Supplementary Fig. 7b, c). We observed an increase of DNA damage
responses (marked by γH2AX) and apoptosis (marked by cleaved
caspase 3) in the cerebellar progenitor cells during embryonic devel-
opment in Ctdnep1-cKO animals (Supplementary Fig. 7d), suggesting
that Ctdnep1 deletion results in DNA damage and cell death in a
population of cerebellar progenitors during development.

The smaller size and increase of cell death in the cerebellum of
Ctdnep1-deficient animals suggests that CTDNEP1 may control cere-
bellarNPCdevelopment. Todetermine the effect ofCtdnep1deficiency
onNPC growth, we isolated cerebellarNPCs from control andCtdnep1-
cKO mice on postnatal day 4. Ctdnep1-cKO NPC spheres appeared
smaller than wildtype NPCs during early stages in culture, which is
potentially due to apoptosis in a population of mutant cells, however,
the growth of Ctdnep1-cKO NPCs rapidly accelerated and exhibited
substantially higher proliferation rate than control NPCs at late stages
e.g., at 60 days in culture (DIC 60) compared with the early stage DIC
10 (Fig. 4b, c). This suggests that a population of Ctdnep1-deficient
NPCs acquired a growth advantage at the later stages.

To evaluate the capacity of Ctdnep1-cKO NPCs to cause tumor-
igenesis, we orthotopically transplanted the luciferase-expressing
NPCs from control and Ctdnep1-cKO mice into the cerebella of NSG
mice. No tumors formed in mice transplanted with control NPCs, but
the animals transplanted with Ctdnep1-cKO NPCs at DIC 60 developed
tumors in the cerebellum with full penetrance (14 of 14 mice), as
detected by bioluminescence analyses (Fig. 4d). The tumors had a
large cell/anaplastic (LC/A) morphology (Fig. 4e) and resemble that
observed in human MYC-driven G3 MB32. The animals transplanted
with Ctdnep1-cKO NPCs had a short lifespan and died around 90 days
post-transplantation (Fig. 4f). To evaluate the tumorigenicity of
Ctdnep1-deficient neoplastic cells, we transplanted primary neoplastic
cells from allografts at varying cell doses into secondary recipients
orthotopically and generated tumors with full penetrance (Supple-
mentary Fig. 8a, b), suggesting that Ctdnep1-deficient neoplastic cells
are tumorigenic and enable aggressive MB formation.

Immunohistochemical characterization indicated that cells in the
tumors derived from Ctdnep1-cKO NPCs had a significantly higher
proliferative rate than normal cerebellar regions, as assayed by Ki67
(Fig. 4g). In addition, these tumors exhibited strong expression of the
oncogenic factor MYC and p-S62 MYC as well as stem cell/progenitor
marker Nestin, but weak staining for the astrocytic marker GFAP
(Fig. 4g), which are characteristics similar to previously described G3-
MB mouse models12,13. Notably, Ctdnep1-deficient NPCs transplanting
from early-stage culture (e.g., DIC 15) into nude mice propagated into
the same type of tumors with MYC overexpression (Supplementary
Fig. 8c, d). Together, these results suggest that a population of NPCs
acquires the tumorigenic potential in the absence of Ctdnep1.

Since the loss-of-function p53 cooperates with MYC over-
expression to promote the formation of G3-like MB12,13, we then
transduced freshly isolated NPCs from Ctdnep1-cKO animals with ret-
roviruses expressing dominant-negative p53 (DNp53). The Ctdnep1-
cKO NPCs transduced with DNp53 after 24 hr were transplanted into
the cerebellum of NSGmice and were able to form G3 MB-like tumors
(6 out 8) in allografts orthotopically with upregulation of MYC and
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pS62 - MYC expression and Ki67+ proliferative cells (Supplementary
Fig. 8e–h), while DNp53-transduced wildtype NPCs did not form
tumors, suggesting that p53 loss-of-function enhances the tumori-
genic potential of Ctdnep1-deficient NPCs.

Transcriptomic analysis indicated that Ctdnep1-cKO tumor cells
had higher levels of G3-MB signature genes (e.g., c-Myc and Npr3)33

than NPCs from normal cerebella (Fig. 4h). Principal component ana-
lysis showed that the gene profiles of Ctdnep1-cKO tumor cells had a
closer relationship to those ofmurineMYC-drivenG3-MB tumors from
NPCs (e.g.Myc/Trp53−/− andMyc_Gfi1MBmodels)12,13,34 than those from

astrocyte progenitors (Sox2+ Myc model)35, SHH-MB tumors (e.g.
SmoM2 OE and Ptch1 models)36,37 or normal cerebella (Fig. 4i). In
addition, the expressionprofile ofCtdnep1-cKO-tumor cells exhibited a
greater similarity to that of MYC-driven G3 MB mouse models when
compared with Ctdnep1-cKO NPCs and control NPCs (Fig. 4i). To fur-
ther define the subgroup of Ctdnep1-cKO tumors, we compared the
signature genes of human MB subgroups3 to those of Ctdnep1-cKO
tumors. The Ctdnep1-cKO tumors more closely resembled the human
MYC-amplified G3-MB than non-MYC-amplified G3-MBs and other
human MB subgroups4,32 (Fig. 4j). Ctdnep1-cKO-tumors exhibited a
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higher correlation score than Ctdnep1-cKO NPCs when compared with
human group 3MB (Fig. 4j). Together, these observations indicate that
Ctdnep1-loss-induced mouse MBs resemble the aggressive human
MYC-driven MBs.

To further investigate how loss of Ctdnep1 drives gene expression
profiles that underlie the development of aggressive MBs, we exam-
ined the genomic landscape and chromatin accessibility byperforming
ATAC-seq (Assay for Transposase-Accessible Chromatin using
sequencing)38 and observed alterations in accessible chromatin sites in
the absence of Ctdnep1 (Supplementary Fig. 9a). At the early stage DIC
10, chromatin accessibility at the Myc locus in Ctdnep1-cKO NPCs was
comparable to wildtype NPCs (Fig. 4k). However, we observed strong
ATAC-seq peak signals in the regulatory regions of the MYC locus in
Ctdnep1-cKO NPCs at the late stage DIC 60 and Ctdnep1-cKO tumors
compared to control NPCs (Fig. 4l). This suggests an increase of open
chromatin accessibility for MYC expression in Ctdnep1-deficienct cells
at the late tumorigenic stage but not at the early stage. In addition,
gene loci associated with G3-MB (e.g., Kcnj2, Ccnd1, and Tgfb3) were
more accessible in the Ctdnep1-cKO NPCs, whereas the accessibility of
genes that regulate normal chromosome segregation (e.g., Kif2c,
Kif18a, and Espl1) was reduced (Supplementary Fig. 9b, c). These data
suggest that Ctdnep1 loss promotes tumorigenic programs at least
partially through the activation of MYC-driven G3 oncogenic
pathways.

Sustained Ctdnep1 deletion results in p53 downregulation and
MYC upregulation during malignant transformation
Analysis of transcriptome profiling revealed that the expression levels
of bothMYC and p53 pathway genes were upregulated inCtdnep1-cKO
NPCs at early stage (DIC 12) compared to wild-type NPCs (Fig. 5a, b).
MYC upregulation alone has been shown to induce DNA damage,
activation of DNA damage responses, and cell death39,40. Consistent
with this, we observed an upregulation of DNA damage-related mar-
kers, γH2A.X and p53, in Ctdnep1-cKO NPCs at the early stage and in
developing cerebella in mice (Fig. 5c, d). Similarly, acute Ctdnep1
ablation in NPCs resulted in an activation of a DNA damage response
marker γH2A.X and followed by an upregulation of cell death assayed
by cleaved-caspase 3 (Supplementary Fig. 10), suggesting that acute
Ctdnep1 deletion induces DNA damage and cell apoptosis.

When examining Ctdnep1-cKO NPC tumorigenic cells at the late
stage (DIC60),we found that, despite upregulationofMYC targets, the
p53 pathway was downregulated compared with wild-type cerebellar
NPCs (Fig. 5e). qRT-PCR analysis confirmed the downregulation of p53
pathway genes (e.g., Trp53, Noxa, and p21)41 and upregulation of MYC
pathway genes (e.g., c-Myc, Nfkb2, and Slc6a15)42 in Ctdnep1-cKO NPCs
at DIC 60 (Fig. 5f). Consistently, western blot analysis indicated an
upregulation of MYC and p-S62 MYC, while p53 was progressively
downregulated in the Ctdnep1-cKO NPCs over the course of tumori-
genic transition in culture (Fig. 5g).

To determine if MYC is essential for hyperproliferative growth in
the Ctdnep1-cKO tumor cells, we knocked down Myc utilizing a lenti-
viral shRNA and found that depletion of c-Myc strongly reduced the
growthofCtdnep1-cKO tumor cells (Fig. 5h), suggesting that tumor cell
growth mediated by Ctdnep1-deficiency is dependent upon MYC
levels. Together, these observations indicate that sustained Ctdnep1
deficiency induces the activation of MYC signaling, which can further
downregulate the p53 tumor suppressor43, leading to malignant
transformation of neural progenitors.

Loss of Ctdnep1 induces p53 loss and Myc amplification
MYC upregulation together with p53 loss has been shown to induce
chromosome instability and enables cell survival with DNA
damage40,44–46. Our transcriptome profiling analysis indicated a
downregulation of mitotic sister-chromatid segregation pathway in
Ctdnep1-cKO tumor cells (Fig. 4h). We then analyzed chromosome

segregation during mitosis via DAPI staining in Ctdnep1-ablated and
wild-type NPCs and observed a substantial increase in chromosome
segregation defects such as lagging or bridging chromosomes in
Ctdnep1-ablated NPCs compared to control NPCs (Fig. 5i). Con-
sistently, karyotype analysis showed that the majority of the Ctdnep1-
ablated NPCs evaluated at DIC 45 (approximately 55%) exhibited
aneuploidy, including triplication of chromosome 15 carrying theMyc
gene (Supplementary Fig. 11a). In addition, the frequency of chromo-
somal aneuploidy increased in Ctdnep1-ablated NPCs at the late stage
e.g., DIC 70 (Fig. 5j). The observations suggest that Ctdnep1 depletion
leads to chromosome mis-segregation and aneuploidy, which is gen-
erally associated with a poorer prognosis47,48, and may drive the
aggressive nature of Ctdnep1-deficient MBs.

To further confirm the Myc-locus-specific amplification, we per-
formed whole genome sequencing (WGS) analysis and found that the
Myc gene locus was amplified in late-stage Ctdnep1-cKO NPC and
Ctdnep1-cKO-tumor cells, alongwithTrp53gene loss-of-heterozygosity
(Fig. 5k). Notably, the fluorescent in situ hybridization (FISH) assays
detected six and four Myc amplicons in the majority of Ctdnep1-cKO
tumor cells (17/20) and Ctdnep1-cKO NPCs (14/20) at DIC 70, respec-
tively, comparedwith the normal twoMyc gene copies in control NPCs
(Fig. 5l). The strongest Myc amplicon signals at metaphase were
detected in two rearranged chromosomes in Ctdnep1-cKO NPCs and
Ctdnep1-cKO tumor cells (Fig. 5l, yellow arrows). These data indicate
that Ctdnep1 deletion leads to Myc amplifications and chromosomal
aneuploidy at least in part through focal copy number gain, consistent
with elevatedMYC amplicons in humanG3MB49. Consistent withMYC-
induced deregulation of cell mitosis50, we found that MYC over-
expression alone increased anaphase chromosomemis-segregation in
D283 cells but did not alter CTDNEP1 levels (Supplementary
Fig. 11b–d), indicating that MYC elevation results in aberrant mitotic
phenotypes in MB cells.

To determine the potential sequence over time of Myc amplifi-
cation versus p53 loss-of-function, we performed qRT-PCR analysis at
different time points and found that Trp53 expression was down-
regulated after DIC 24 in Ctdnep1-cKO NPCs (Supplementary Fig. 12a),
while at the later stage, an increase inMyc expression, was detected in
Ctdnep1-cKO NPCs (Supplementary Fig. 12b, c). These data suggest
that Trp53 downregulation might occur prior to Myc gene over-
expression or amplification during the transformation of Ctdnep1-cKO
NPCs, alongside with the activation of MYC signaling caused by
Ctdnep1 loss. Thus, CTDNEP1 loss-of-function or deficiency leads to
chromosome instability and aneuploidy, leading to p53 loss and Myc
amplification during MB tumorigenesis.

CTDNEP1 post-translationally modulates the activities of key
mitotic checkpoint regulators
To better understand how CTDNEP1 lossmay promote tumorigenesis,
we sought to use proteomes to identify CTDNEP1 downstream inter-
acting effectors through protein-protein interactions aside from the
MYC protein. For this purpose, we performed immunoprecipitation
with an antibody to CTDNEP1 and analyzed co-precipitated proteins
from HEK293 cells by mass spectrometry. We identified 195 CTDNEP1
binding proteins, which regulate cell-cycle transition, RNA splicing,
chromosome segregation/organization, and DNA repair processes
(Fig. 6a). Co-immunoprecipitation assays validated the interaction
between CTDNEP1 and a set of candidate binding partners such as
TOP2A and SPRK1 in addition toMYC in a complex in D425G3-MB cells
(Fig. 3l and Supplementary Fig. 13a).

While little is known of CTDNEP1 substrate specificity as a protein
phosphatase, we further sought to identify CTDNEP1 effects on
phosphorylation, either direct or indirect, which could be related to
tumorigenesis. Towards this end, we performed label-free mass
spectrometry51 of wild-type and Ctdnep1-cKO NPCs at early-passage
Ctdnep1-cKO NPCs to identify the upregulated phosphorylated
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proteins. When compared with control NPCs, nearly 3236 phos-
phorylated peptides, corresponding to 1365 proteins (fold changes >5;
p <0.05), were detected at significantly higher levels in Ctdnep1-cKO
NPCs (Fig. 6b). Phospho-MYC peptides were not detected in the early-
passage Ctdnep1-cKO NPCs, which might be due to a lower level of
p-MYC prior to the MYC amplification seen at later stages (Fig. 5g).
Gene ontology (GO) analysis indicated that the upregulated phospho-
proteins are associated with cell-cycle progression and chromosome
segregation (Fig. 6c). These proteins include critical regulators of
chromosome decatenation and mitotic checkpoints for proper chro-
mosome segregation such as DNA topoisomerase TOP2A and
NCD8052,53; MCM2, which promotes DNA replication54; cell-cycle reg-
ulators SRPK1 and CDK1-3, which are serine-threonine protein kinases
that regulate the G2-M transition and mitotic progression55; and the
cell-cycle inhibitor RB1, which regulates transcription and the G1-S
transition and is repressed by phosphorylation56 (Fig. 6d and Supple-
mentary Fig. 13b–d).

We identified approximately 31 proteins as candidate direct tar-
gets or substrates of CTDNEP1. They were the CTDNEP1-binding

proteins, and their phosphorylation were upregulated in Ctdnep1-cKO
NPCs as compared to control NPCs (Fig. 6e). GO analysis showed the
enrichment of processes critical for chromosome segregation and
chromatin remodeling among the candidate proteins regulated by
CTDNEP1 (Fig. 6f). These proteins interacted with CTDNEP1 and their
phosphorylation was upregulated in CTDNEP1-deficient cells, sug-
gesting that they are candidate direct substrates of CTDNEP1. Western
blot analysis confirmed the increase in phosphorylation of a set of
candidate CTDNEP1 substrates in Ctdnep1-cKONPCs including TOP2A,
CDK1, and SRPK1 (Fig. 6g), which regulate DNA replication, mitosis,
RNA splicing, and chromosome separation53,57,58.

To investigate the effect of CTDNEP1 depletion on the phos-
phorylation of mitosis-associated proteins in MB cells, we examined
the MPM2 epitopes that mark the phosphorylation of multiple M-
phase-mitosis-promoting regulators during themitotic metaphase39,59.
Western blot analysis of control and CTDNEP1-knockdown in D425 G3-
MB cells and SHH-MB DAOY cells indicated that CTDNEP1 depletion
increased levels ofmitotic phospho-proteinsmarkedbyMPM2 (Fig. 6h
and Supplementary Fig. 14a), along with MYC upregulation. In
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addition, consistentwith activationofDNAdamage responses induced
by Ctdnep1 loss, we detected an increase in phosphorylation of a cri-
tical mitotic checkpoint kinase CHEK1 (p-CHEK1), which responds to
DNA damage and regulates cell-cycle checkpoint signaling for cell
survival60,61, in CTDNEP1-depleted MB cells and Ctdnep1-cKO NPCs
(Fig. 6g, h). These results suggest that CTDNEP1 loss activates mitosis-
associated checkpoint regulators tomaintainmitotic homeostasis and
cell survival.

To further determine the potential role of the CTDNEP1 effectors
in genomic stability, we examined the activities of candidate
CTDNEP1 substrates such as mitotic regulators CDK1, a key cell-cycle
regulator62, and SRPK1, a serine/arginine protein kinase important for
mitosis, chromatin reorganization, and tumor growth63, by con-
structing the vectors expressing phospho-mimetics, SRPK1-S51D and
CDK1-T14E/Y15D (CDK1-ED), given that Y15 phosphorylation was also
identified in our phospho-proteomic analysis. We found that over-
expression of phosphomimetics, CDK1-ED or SRPK1-S51D, increased
chromosomal abnormalities such as chromosome lagging and brid-
ging at anaphase (Supplementary Fig. 14b, c). This supports a func-
tional importance for CTDNEP1-regulated phosphorylation states of
these putative substrates in maintaining proper chromosome segre-
gation and genomic stability. Thus, our proteomics and phospho-
proteomics suggest that CTDNEP1 modulates key regulators of chro-
mosomedecatenation andmitotic checkpoints formaintaining proper
chromosome segregation and mitotic homeostasis.

Co-targeting MYC and CHEK1 effectively inhibits the growth of
MYC-driven MB tumors
Since MYC and CHEK1 activities are upregulated in response to
mutation or loss of CTDNEP1 to promote cell growth and survival, we
hypothesize that co-targeting of MYC and CHEK1 may inhibit the
growth of CTDNEP1-deficient G3 tumors. We first utilized the BET
inhibitor JQ1 and CDK7 inhibitor THZ1, both of which were shown to
inhibit MYC expression64,65 and reduce cell proliferation in MB cells66.
Indeed, treatment with JQ1 or THZ1 resulted in inhibition of Ctdnep1-
cKO tumor cell proliferation (Fig. 7a and Supplementary Fig. 15a). JQ1
treatment also decreased MYC expression and elevated apoptosis
marked by cleaved-caspase 3 (Fig. 7b). In view of upregulation of DNA
damage repair and activation of p-CHEK1 for cell survival in Ctdnep1-
deficient cells, we then treated Ctdnep1-cKO tumor cells with pre-
xasertib, a selective inhibitor of the checkpoint kinaseCHEK1 currently
under multiple clinical trials; prexasertib disrupts DNA replication and
prevents DNA damage repair, causing cell death by replication
catastrophe67,68. This treatment similarly inhibited cell growth of
Ctdnep1-deficient tumor cells (Fig. 7c). Importantly, combined JQ1 and
prexasertib treatment of Ctdnep1-cKO tumor cells at reduced doses
was more effective than either single agent (Fig. 7d). To determine if
the effects of the two drugs on cell growth are synergistic, we applied
the Bliss model to calculate synergy scores69 and classified the Bliss
score >10 as synergistic69. The combined treatment with JQ1 and pre-
xasertib elicited synergistic effects on the net cell growth in Ctdnep1-
cKO tumor cells across a range of concentrations (Fig. 7e). To further
determine the selectivity of the treatment on the growth of wildtype
and CTDNEP1-deficient tumor cells, we treated control or CTDNEP1-
knockdown D283 or MB-004 cells with JQ1 and prexasertib. CTDNEP1
knockdown substantially increased the sensitivity of cells to drug
combination treatment compared with control cells (Supplementary
Fig. 15b–d), suggesting that this combined treatment more selectively
inhibits the growth of CTDNEP1 deficient tumor cells.

To assess the potential of MYC, CHEK1, or both for treating
Ctdnep1-deficient tumors in vivo, we treated NSG mice orthotopically
transplanted with Ctdnep1-cKO tumor cells daily with a single dose of
JQ1 (50mg/kg) or in combination with prexasertib (2mg/kg), both of
which are blood-brain barrier penetrant70–72, from day 45 to 60 post-
transplantation. The mice bearing Ctdnep1-cKO NPC tumors treated

with both JQ1 and prexasertib had an increased lifespan compared to
the mice treated only with JQ1, prexasertib, or vehicle (Fig. 7f). The
combined treatment also resulted in an increase in tumor cell death
compared to vehicle or JQ1 treatment only (Fig. 7g, h), suggesting that
the combined JQ1 and prexasertib treatment induces cell apoptosis to
inhibit tumor growth.

To examine the effect of inhibition of MYC and CHEK1 on the
growth of human G3MB tumor cells, we treated MYC-driven D425MB
cells with JQ1 or prexasertib individually or in combination. Similarly,
combined treatment synergistically enhanced inhibition of D425 cell
growth in vitro (Fig. 7i and Supplementary Fig. 15e, f), and prolonged
animal survival in orthotopic xenografts with D425 cells compared to
vehicle or single drug treatment alone (Fig. 7j). In addition, combined
MYC and CHEK1 inhibition substantially inhibited the cell growth in
other MYC-amplified MB-004 and murine Myc-driven G3-like MB cells
(Supplementary Fig. 15g), while the non-MYC-amplified cell lines such
as D283 and DAOY were less sensitive to the combined treatment
(Supplementary Fig. 15h). In contrast, treatment with inhibitors
(galunisertib or LY‐364947) of TGF‐β receptor signaling73, which was
elevated CTDNEP1-deficient NPCs (Fig. 5a), did not significantly alter
the growth of Ctdnep1-cKO NPCs (Supplementary Fig. 15i, j). Together,
these data suggest that combined inhibition of MYC and CHEK1
activities had a selective antitumor effect in G3-MB cells with CTDNEP1
deficiency or MYC amplification.

Discussion
Although recent genome-wide studies have provided insight into
somatically altered genes in MBs, identification and functional vali-
dation of cancer subtype specific-driving mutations remains enig-
matic.MYC amplifications are a hallmark of highly aggressive G3 MB,
yet the somatic mutations that trigger this phenomenon have
remained poorly understood. By integrating the transcriptomic and
genomic profiles fromour newly diagnosed and publicly availableMB
cohorts3,4,22,24, we found that CTDNEP1 mutations, which present
predominantly in MYC-driven MBs, define a specific subset of
aggressive MB tumors. In contrast to many mouse models of MYC-
driven G3 MB which require MYC overexpression and additional loss
of p53 function12,13, here we demonstrate that ablation of a single
gene, Ctdnep1, is sufficient to trigger MYC signaling activation and
MYC overexpression or amplifications, while promoting malignant
transformation of cerebellar NPCs into MYC-driven MB tumors.
CTDNEP1-deficiency-induced tumors resemble the histopathological,
transcriptomic, and clinical features of human G3 MB counterparts,
suggesting that CTDNEP1 is a potent tumor suppressor in the highly
aggressive MYC-driven G3 MBs.

MYC has been shown to tether to the nuclear pore specifically in
cancer cells74, and the enrichment of activating pS62-MYC at the
nuclear periphery promotes its stability andoncogenic activity15–17. Our
proximity ligation assays indicate that CTDNEP1 is able to interactwith
MYC and p-MYC at the nuclear periphery, suggesting that CTDNEP1
might regulate MYC activity directly, although CTDNEP1 may also
regulate MYC oncogenic activity through other indirect pathways.
Exactly how CTDNEP1 binding regulates MYC oncogenic activity
remains to be determined. Nonetheless, we find that clinically-
identified mutations in CTDNEP1 disrupt its phosphatase activity,
resulting in an increase of pS62-MYC and MYC stabilization. Thus, our
data suggest that the nuclear-envelope-enriched CTDNEP1 phospha-
tase activity might at least in part curtail the MYC protein level and its
oncogenic activity.

MYC-driven G3MBs include tumors with MYC pathway activation
and MYC overexpression or amplification, exhibiting a core attribute
of MYC signaling activation. In addition to the observation that half of
CTDNEP1-deficient patients have MYC amplifications, we found that
CTDNEP1 deficiency results in an increase in MYC stability and acti-
vation of MYC signaling. These data indicate that CTDNEP1 mutations
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or deficiency may augment MYC oncogenic activity through MYC
signaling activation and MYC amplification, suggesting that CTDNEP1
loss-of-function mutations might be generally relevant to MYC-driven
G3MB. Notably, since CTDNEP1mutations or deletions have also been
identified in other cancers (Supplementary Fig. 16), CTDNEP1 might
play a broader role in cancer formation serving as a molecular link
regulating MYC activity and expression across different cancer types.

Ctdnep1 ablation in Nestin+ NPCs causes extensive cell death in
the developing brain, which may contribute to animal death prior to
tumor formation, suggesting that additional genetic, epigenetic, and
other molecular events are necessary prior to full transformation. We
observed an increase in DNA damage responses and p53 upregulation
at the early stage in response to Ctdnep1 ablation in NPCs, suggesting
that acute Ctdnep1 deletion may induce DNA damage and p53
upregulation-mediated cell apoptosis. However, a population of
Ctdnep1-ablated cerebellar NPCs at later stages exhibit p53 down-
regulation, acquire chromosomal aneuploidy and Myc amplification,

and are eventually transformed into MYC-driven MB tumors. Down-
regulationofp53appears to occur during selection of cloneswithMYC
activation or upregulation, which represses p53 expression43. Con-
sistent with this, we show that p53 loss-of-function by overexpressing
dominant-negative p53 can accelerate the tumorigenesis of freshly
isolated Ctdnep1-deficient NPCs in allografts. Yet, it remains to be
defined whether CTDNEP1 can directly target p53. Nonetheless, we
found that sustained CTDNEP1-depletion can induce genome
instability and aneuploidy at a late passage of Ctdnep1-cKO NPCs,
resulting in p53 downregulation and Myc amplification, which have
been shown to promote oncogenic transformation75,76. These obser-
vations suggest that CTDNEP1-loss-induced MYC activation and the
subsequent p53 deficiencymight contribute toMYCamplification, and
that CTDNEP1 might regulate the MYC pathway through both direct
and indirect mechanisms (Fig. 8).

Intriguingly, all tumors from patients with CTDNEP1 mutations
appeared to exhibit loss-of-heterozygosity (LOH) for the other allele of
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CTDNEP1. This suggests that CTDNEP1 may exhibit bi-allelic inactiva-
tion in patient tumors, which is typical of many tumor suppressors77,78.
Since CTDNEP1 and TP53 are tightly linked on chromosome 17p, one
copy of TP53 might be lost along with an allele of CTDNEP1. CTDNEP1
loss-of-function due to mutation in the other allele could drive
increased proliferation and genome instability due to MYC upregula-
tion. Importantly, independent LOH for TP53, subsequent to CTDNEP1
loss-of-function, could further promote transformation and tumor-
igenesis by resulting in deficient cell-cycle arrest and apoptosis in cells
with increased DNA damage and genomic instability79,80.

Our studies provide experimental evidence demonstrating that
clinically relevant mutations in CTDNEP1 promote MYC-driven G3-MB
tumorigenesis by inducing MYC activation, genomic instability, and
mitotic infidelity. While the exact mechanisms underlying chromo-
some instability and MYC amplification caused by mutations in
CTDNEP1 remain to be determined, increased MYC oncogenic activity
in CTDNEP1-deficent cellsmay trigger genomic instability, which could
potentially lead to MYC gene amplification9–11. Our data indicate that a
potential key target of CTDNEP1 is MYC, which can be regulated by
CTDNEP1-catalyzed dephosphorylation of S62, resulting in MYC sig-
naling activation. In addition, CTDNEP1 may also regulate genomic
stability in an MYC-independent manner by maintaining proper DNA
replication andmitotic exit. Our unbiased proteomic analyses identify
a set of potential CTDNEP1-interacting effectors, including mitotic
regulators critical forDNA replication, chromosomedecatenation, and
mitotic checkpoints such as TOP2A, MCM2, CDK1, SRPK1, and
RB153,56,57. Importantly, we found that overexpression of phospho-
mimetics of candidate CTDNEP1 targets such as CDK1-ED or SRPK1-
S51D induced genomic instability and mitotic errors, consistent with a
role of CTDNEP1 for mitotic fidelity in other contexts81. Given that
transient genomic instability can drive tumorigenesis82, our data sup-
port the possibility that CTDNEP1 regulates the activity of mitotic
regulators, including MYC, to maintain genomic stability at least in
part through the effects on their post-translational modifications.

Thus, the tumor suppressor activity ofCTDNEP1maybe exerted inpart
by inhibiting MYC activity while maintaining cell-cycle homeostasis
and genomic stability.

Given increased chromatin accessibility at the Myc locus only in
late-stage Ctdnep1-ablated NPCs, our data indicate these two events,
MYC stabilization and Myc amplifications due to the gain of Myc
amplicons induced by CTDNEP1 loss, occur in a sequence that may
eventually drive the increased MYC overexpression and NPC trans-
formation through a positive feedback loop. Our data indicate that the
growth of Ctdnep1-deficient tumor cells depends onMYC levels, which
is in keeping with a critical role of MYC in tumor cell proliferation and
chromosome instability40,44–46. Thus, the loss of CTDNEP1 not only
leads to increased MYC levels by stabilizing it, but also provides a
selective advantage to cells that canexpress even greater levels ofMYC
due to increased copy numbers and chromatin accessibility (Fig. 8).

Our data showing upregulation of MYC and CHEK1 may present a
potential therapeutic vulnerability. Importantly, LOH of CTDNEP1 in
the tumor may increase the therapeutic window for combined treat-
ment with MYC and CHEK1 inhibition. Such a dual inhibitory strategy
could be especially beneficial in the treatment of MYC-driven MB,
given that elevated MYC levels have been shown to sensitize cancer
cells to the inhibition ofmitosis and checkpoint signaling by increasing
apoptosis65,83, since CHEK1 signaling activation is correlated with cell
survival and poor prognosis in MYC-driven MB84. We find that
JQ1 suppresses MYC transcription and can synergize with CHEK1 inhi-
bitor prexasertib to suppress tumor growth more effectively than
either single agent alone, while prolonging survival in the animals
bearing CTDNEP1-deficient MYC-amplified MB tumors. Notably, pre-
xasertib is currently being evaluated in clinical trials, including the
treatment of pediatric malignancies54,67,68. Patients with MB tumors
such as highly aggressive MYC-driven MB commonly have DNA repli-
cation stress and pronounced DNA damage responses, resulting in
upregulation of checkpoint signaling85. Prexasertib treatment may
induce cell apoptosis by inhibiting the repair of DNA damage caused
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Fig. 8 | A schematic model for G3 MB transformation induced by CTDNEP1-
deficiency.CTDNEP1 depletion ormutation in neural stem/progenitor cells (NPCs)
results inMYC activation along with DNAdamage and increased p53 levels, leading
to apoptosis at the early stages. However, a population of CTDNEP1-deficient NPCs
acquires the selective fitness advantage to survive by inducing p53 loss or down-
regulation and triggers genomic instability and aneuploidy with Myc gene

amplifications. Together with p53 loss andMyc amplification, the increased CHEK1-
mediated DNA damage repair andmitotic checkpoint signaling further contributes
to the transformation of CTDNEP1-deficient NPCs into malignant G3-like MBs.
Targeting MYC and mitotic checkpoint signaling with JQ1 and prexasertib,
respectively, inhibits the growth of the CTDNEP1-deficient G3-like MBs.
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by CTDNEP1 deficiency. Thus, combined targeting of MYC and
checkpoint regulators such as CHEK1 might serve as a therapeutic
means to improve outcomes in treatment of aggressive G3 MBs with
CTDNEP1-deficiency. Further, these vulnerabilities underscore a critical
role ofCTDNEP1 in suppressingmalignant transformation of the highly
aggressive G3 MBs by inhibiting MYC oncogenic activity while main-
taining mitotic fidelity and genomic stability.

Methods
Animals
Mice carrying Ctdnep1 floxed alleles (Acc. No. CDB0564K) were
generated as described20. Ctdnep1f/f mice were crossed with mouse
lines carrying Cre recombinase driven by the nestin promoter (Nes-
tin-Cre+/−) to generate Ctdnep1-cKO (Ctdnep1f/f; Nestin-Cre+/−) and
controls (Ctdnep1f/+; Nestin-Cre+/− or Ctdnep1f/f). In this study, mice of
either sex (male and female) were analyzed, and littermates were
used as controls unless otherwise indicated. Mouse strains were
generated andmaintainedon amixedC57BL/6; CD-1 background and
fed (4 or lessmice per cage) in a vivarium. Immunodeficient NOD scid
gamma (NSG) mice were provided by Cincinnati Children’s Hospital
Medical Center (CCHMC) animal core. Mice were housed at room
temperature (20–23 °C) with a 12-h light–dark cycle set with lights on
from06:00 to 18:00 and with humidity between 30–80%. The animal
studies were approved by the IACUC (Institutional Animal Care and
Use Committees) of the Cincinnati Children’s Hospital Medical Cen-
ter, USA. For euthanasia of neonates and adult mice, we performed
CO2 overdose followed by cervical dislocation. Animal survival end-
point is the date of the animal that died or was euthanized according
to animal use guidelines. Animals were removed from the study and
were harvested when they exhibited >20% decrease in body weight
based on the IACUC protocol. The limits of endpoints were not
exceeded in any of the experiments. All studies complied with the
animal use guidelines and ethical regulations.

MB tumor data, CTNDEP1 mutation, and survival analysis
The use of tumor samples was approved by individual institutional
review boards (IRB) fromCincinnati Children’s Hospital and Children’s
Hospital of Fudan University. All data of newly diagnosed medullo-
blastoma tumors of the Asian cohort and subgroup analysis (89 tumor
samples) were described in the previous study22. To identify inde-
pendent CTNDEP1 mutations in publicly available datasets from
reported cohorts4,5,7,14,23, CBTTC cohort (https://cbttc.org/), and the
Asian cohort, we performed quality control (QC) based on the unique
patient IDs and clinical information including gender (male and
female), age, tumor subgroup, andhistological subtype, aswell as copy
number variation (CNV) features, to ensure the removal of sample
duplicates among different cohorts and identify individual patients
with CTNDEP1 mutations.

For the survival analysis based on CTDNEP1 expression, in view of
the unequal expression CTDNEP1 in each subgroup, we plotted the
density curves of MB cohorts (total 612 MBs) from publicly available
datasets for CTDNEP1 expression and survival analysis and found that
the patient density across differentMB subgroups is enriched between
CTDNEP1 expression levels 7.67 and 7.98 (log2 intensity) (Supple-
mentary Fig. 3d). We, therefore, set up the threshold that 35% highest
expression samples were stratified into the high group (log2 intensity
>7.98) and the 35% lowest expression samples as the low group (log2
intensity <7.67) for all MB samples (total 612 MBs) from publicly
available datasets3 for CTDNEP1 expression and survival analysis.
Namely, the highest 35% and lowest 35% patient populations are
established as the cutoff to compare patient survival within two sub-
groups for all patients or each subgroup. Overall survival curves were
plotted with the Kaplan-Meier method and compared by using a two-
sided log-rank test.

DNA methylation array processing and CNV analysis
MB sample DNA methylation profiling was performed using the Infi-
nium CytoSNP-850K v1.2 BeadChip array (EPIC 850K array) according
to the manufacturer’s instructions (Illumina). The subtypes of human
MB samples were defined based on published annotations5,7. All DNA
methylation analyseswere processed in R v.3.3.0 (RDevelopment Core
Team, 2016) and the detailed information was described previously4.
MB clusters were defined as WNT, SHH, G3, and G4 based on classifi-
cation using previously described 48CpG signatures5,7. CNV analysis of
the MB from 850K methylation array data was performed using the
conumee Bioconductor package v.1.4.0. A set of 10 control samples
methylation array data displaying a balanced copy-number profile was
used for normalization.

Primary NPC isolation and culture
Primary cerebellar NPCs were isolated according to the previous
report86 with minor modification from Ctdnep1-cKO (Ctdnep1f/f;Nestin-
Cre+/−) and control mice, which carry a Rosa26:ccGFP reporter. Briefly,
isolated cells were cultured in complete NPC medium (Neurobasal
medium containing B27 supplement, N2 supplement, 2mM L-gluta-
mine, 20 ng/ml EGF, 20 ng/ml bFGF, 2mg/ml Heparin and 50μg/ml
BSA). NPC spheres were dissociated at a diameter of 100–200μm and
were changed with complete NPC medium every 3 days to maintain
cellmetabolic activity.Wedefined three stagesofNPCs invitro culture,
including: early stage (1–20 days in culture), mid-stage (21–50 days in
culture), and late-stage (>51 days in culture). In addition, freshly iso-
lated NPCs from Ctdnep1-cKO animals were also transduced with ret-
roviruses expressing dominant-negative p53 and transplanted into the
cerebellum of NSG mice.

Cell line culture
Medulloblastoma cell lines D425, D283, D458, and DAOY were
obtained from American Tissue Culture Collection (ATCC, Rockville,
MD, USA). MB-004 and murine G3 MB lines were provided by Dr.
Martine Roussel. Cells were cultured inDMEM/F12mediawith 10% FBS,
2mM L-glutamine, and 1% Penicillin/Streptomycin. HeLa, U2OS, and
HEK293T cells lines from ATCC were maintained in DMEM with 10%
fetal bovine serum, 2mM L-glutamine, and 1% penicillin/l streptomycin
at 37°C in an atmosphere of 5% CO2. To investigate chromosomal
stability, we used U2OS cells as they are a widely used cell model for
verifying the functional effect of targets on chromosome segregation
as described in the previous studies87,88.

Vectors, RNA interference, QPCR, and lentivirus production
Wildtype CTDNEP1 and mutant D67N, D69N, and L72H were cloned
with Myc-tag into a pLVX-puro vector (Addgene). c-Myc and mutant
S62E, D62A were amplified and then cloned into pcDNA3.1-3xFLAG-
CMV. shRNAs against CTDNEP1 were designed at https://rnaidesigner.
thermofisher.com/rnaiexpress/ (Supplementary Data 1) and then
cloned into pGreen-puro vector. siRNA targeting CTDNEP1 or control
siRNA was ordered from Sigma-Aldrich (www.sigmaaldrich.com,
siRNA ID: SASI_Hs01_00188422 and SASI_Hs01_00188427). siRNA
interfering CTDNEP1 was performed using Lipofectamine RNAiMAX
Transfection Reagent (Qiagen) according to the manufacturer’s
instructions. For theQPCR, 1μgRNAwasused to generate the 1st stand
of the cDNA using iScript Reverse Transcription Supermix (BioRad,
#1708 841). QPCR was performed using SYBR green PCRmix (BioRad)
and the primers as listed (Supplementary Data 1).

To produce lentiviruses, HEK293T cells were co-transfected with
shRNA or GFP vector packaging using Lipofectamine 3000 reagent
(Life Sciences). Supernatants were collected and filtered at 48 and
72 hr following transfection. Viral supernatant was concentrated by
centrifugation at 25,000 rpm for 2 hr at 4°C and used to infect cells
(MOI = 5) overnight in the presence of 10μg/mL polybrene. Cells were
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selected and maintained with puromycin (2μg/ml). Gene expression
was verified by western blot or real-time PCR.

Cell proliferation, colony formation, and neurosphere forma-
tion assays
Cell proliferation was measured by CCK-8/WST-1 or EdU assays. For
EdU assays, we used the Click-iT™ Plus EdU Cell Proliferation Kit for
Imaging (Invitrogen). After EdU incubation, cells were fixed with 4%
paraformaldehyde andpermeabilizedwith 0.3% TritonX-100, and EdU
detection was performed according to the manufacturer’s instruc-
tions. Nuclei were counterstainedwith Hoechst 33342 reagent. At least
500nuclei were counted in triplicate, and the number of BrdU-positive
nuclei was recorded. For colony-formation assays, Ctrl and shRNA-
infected cells were seeded in six-multiwell plates. After 2 weeks, cells
were fixed with 4% PFA and stained with crystal violet. For neuro-
spheres, 1000 cells/ml were seeded in low attachment 96-multiwell
plates in DMEMwith neurospheremedium as previously described13,89.
The number of neurospheres was counted and captured images after
10–15 days.

Tissue processing, antibodies, immunostaining, and
immunoblotting
Mouse brains were dissected and fixed overnight in 4% (w/v) paraf-
ormaldehyde and processed for cryosectioning or paraffin embedding
and sectioning described previously8. Briefly, for the immunostaining,
cryosections or pre-deparaffinized tissue sections were firstly blocked
1 h by block solution [PBS with 5% v/v normal goat serum (Sigma-
Aldrich) and 0.3% v/v Triton X-100) and incubated overnight in pri-
mary antibodies diluted in antibody dilution solution [PBS with 5% v/v
normal goat serum (Sigma-Aldrich)]. After washing with PBS 5 times,
sections were then either incubated overnight with the biotinylated
goat anti-mouse IgG antibody (Vector Laboratories, BA-9200), fol-
lowed by using the ABC avidin/biotin method to visualize staining
signals under light microscopy with the peroxidase/diaminobenzidine
(DAB) method, or incubated with corresponding fluorophore-
conjugated secondary antibodies (donkey anti-rabbit IgG Alexa Fluor
488, Jackson ImmunoResearch, Cat#711-545-152, 1:500; donkey anti-
mouse IgG Alexa Fluor 488, Jackson ImmunoResearch, Cat#711-545-
150, 1:500; donkey anti-rabbit IgG Alexa Fluor 594, Jackson Immu-
noResearch, Cat#711-585-152, 1:500; donkey anti-mouse IgG Alexa
Fluor 494, Jackson ImmunoResearch, Cat#711-585-150, 1:500), and
DAPI (Millipore Sigma; Cat#D9542, 300nM) under fluorescent
microscopy.

For cell immunostaining, spheres were fixed with 4% PFA for
10min and washed five times with PBS and dehydrated with 30%
sucrose overnight, then blocked with OCT frozen embedding media
(CRYO-4; Polarstat Inc.) and cryosectioned at 12μM thickness. For
adherent cells, cells were planted on the coverslips and fixed with 4%
PFA for 10min and washed five times with PBS. Then placed the sec-
tions or coverslips with cells in blocking solution for 30min. We
incubated primary antibodies in blocking solution with proper dilu-
tions and stained cells for 1 h at room temperature. For BrdU staining,
cells or tissue sections were denatured with 0.1 N HCl for 1 h in 37 °C
water bath. After denaturation, sections were neutralized with 0.1M
Borax, pH 8.5 (Sigma) for 10min. Sections were washed with 1× PBS
three times andblockedwith 5%normal donkey serum (Sigma-Aldrich)
in wash buffer for 1 h at room temperature. Mouse-anti BrdU (BD
Bioscience, 1:500) antibody was used to label BrdU overnight at 4 °C.
DAPI counterstain was included in the final washes before the samples
were mounted in Fluoromount G (SouthernBiotech) for microscopy.
Tissue or cell images were quantified in a blinded manner. All
immunofluorescence-labeled images were captured using a Nikon
C2 + confocal microscope.

Primary antibodies used were: Nestin (Mouse, Abcam;
Cat#ab22035, 1:500), Ki67 (Rabbit, Thermo Fisher; Cat#MA5-14520,

1:1000), BrdU (Mouse, BD Bioscience; Cat#347580, Abcam;
Cat#ab6326, 1:500), Cleaved Caspase 3 (Rabbit, Cell Signaling;
Cat#9661, 1:500), c-Myc (Rabbit, Cell Signaling; Cat#5605 S, 1:1000),
γH2A.X (Rabbit, Cell Signaling; Cat# 9718 S, 1:1000), p53 (Rabbit, Cell
Signaling; Cat# 2524 S, 1:1000), p-S15 p53 (Rabbit, Cell Signaling;
Cat#9284, 1:1000), GAPDH (Mouse, Thermo Sci; Cat# 39–8600,
1:5000), phosphor-Ser/Thr-Pro MPM2 (Mouse, Millipore Sigma;
Cat#05-368, 1:1000), p-S62 c-Myc (Rabbit, Abcam; Cat#ab51156,
1:1000), p-S1525 TOP2A (Rabbit, Cedarlanelabs; Cat#E-AB-21933,
1:1000), TOP2A (Rabbit, Proteintech; Cat#20233-1-AP, 1:1000), p-S317
Chk1 (Rabbit, Cell Signaling; Cat#12302, 1:1000), Chk1 (Rabbit, Pro-
teintech; Cat#25887-1-AP, 1:1000), Cdc2 (Rabbit, Cell Signaling;
Cat#9116 T, 1:1000), p-T14 Cdc2 (Rabbit, Cell Signaling; Cat#2543 S,
1:1000), SRPK1 (Rabbit, BD biosciences; Cat#611072, 1:1000), HA-Tag
(Mouse, Cell Signaling; Cat#2367, 1:1000), DYKDDDDK-Tag (Mouse,
Thermo Fisher, Cat# MA1-91878, 1:1000), Phosphor-Ser/Thr (Rabbit,
Abcam; Cat#ab117253, 1:1000) and GFAP (Goat, Santa Cruz; Cat#sc-
6170, 1:500). All immunofluorescence-labeled images were acquired
on a Nikon C2 confocal microscope.

ForWestern blot, cells were lysedwith RIPA lysis buffer (Millipore,
20–188) supplemented with cOmplete phosphatase and protease
inhibitor cocktail (MilliporeSigma/Roche 11836153001). Protein con-
centration of each sample was determined by BCA assay using the BCA
kit (Thermo Fisher, 23227) according to the manufacturer’s instruc-
tions, and equal amounts were loaded and separated by 12% SDS-PAGE
gel. PVDF membrane (Millipore) was used for gel transfer and the
membrane was probed with primary antibodies as indicated, followed
by secondary antibodies conjugatedwith biotinylated goat anti-mouse
IgG antibody (H+ L) (Vector Laboratories, BA-9200). The signal was
detected with SuperSignal West Pico/Femto Chemiluminescent Sub-
strate (Thermo Scientific, 34577).

Anaphase, mitotic exit, karyotype analysis, and FISH
experiment
For anaphase analysis of the culturedNPCs, all cells were planted in the
coverslips precoated by poly-L-lysine (Sigma-Aldrich, St. Louis, MO,
P5899) at 100μg/ml 30mins and coated with laminin (Sigma-Aldrich,
St. Louis, MO, L4544) at 50μg/ml for 30mins. For capturing the ana-
phase, NPCs were synchronized at the G2-M boundary by nocodazole
(Sigma-Aldrich, St. Louis, MO, M1404) at 100 ng/ml for 4 h and
released to a fresh medium and continued to culture 10–60mins.
Coverslips were fixed with 4% PFA for 15mins at 5min interval and
stained with DAPI for DNA contents.

For mitotic exit assays, prometaphase-arrested cells were
obtained by performing a double thymidine (2mM; Sigma-Aldrich, St.
Louis, MO) block (18 hr each, separated by a 6 hr incubation in fresh
medium) followed by release into fresh medium containing nocoda-
zole (100μg/ml; Sigma-Aldrich, St. Louis, MO) and incubation for 12 or
14 h. Release from prometaphase arrest was obtained by washing
detached cells twice with PBS and twice with fresh medium, followed
by incubation in freshmedium. Cells in G1 were obtained after 120min
incubation fromprometaphase release. Theprobes formouseMyc and
chromosome15 (RP23-275E10)werepurchased fromEmpireGenomics
for Fluorescence In Situ Hybridization (FISH). FISH experiments and
G-band karyotype analysis of mouse NPCs and tumors were analyzed
by Cincinnati Children’s Hospital histology core (https://www.
cincinnatichildrens.org/service/d/diagnostic-labs/cytogenetics).

Western blotting
Tumor tissues were lysed in modified RIPA buffer (50mM Na-Tris, pH
7.4, 150mM NaCl, 1% (v/v) NP-40, 0.25% sodium deoxycholate, 1mM
dithiothreitol, 10mM NaF, 1mM active sodium vanadate, 1mM PMSF
and 1× a cocktail of cOmplete protease inhibitors (Roche Applied
Science) and centrifuged at 17,000× g. for 15min at 4 °C. After the
determination of protein concentration (Bio-Rad), the lysates were
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separated by 4–12% SDS-PAGE. Bands were visualized with secondary
antibodies conjugated to horseradish peroxidase (Bio-Rad) and ECL
western blotting detection reagents (Pierce) per the manufacturer’s
instructions.

Proteomic profiling
CTDNEP1 binding protein was analyzed by immunoprecipitation for
CTDNEP1-myc in CTDNEP1 enforced expression HEK293T cells and
followed by mass spectrometry at the Fudan University core facility.
Phospho-proteome were processed according to protocols adapted
from previous studies90 and performed using label-free quantitative
proteomics technology (Clinproteomics Co., Ltd).

Transplantation of Ctdnep1-deficient tumors and drug treat-
ment in vivo
Ctdnep1-deficient Tumors cells were subcutaneously injected into
eight-week-old female athymic BALB/c nude mice or NSG mice.
Tumorswill be harvested after 6–10weeks and quantified. 1 × 105 NPCs
in a 5μl with 2μl matrigel were stereotactically injected into the NSG
mouse cerebellum. Animals were monitored weekly and euthanized
when they showed signs of brain tumor. The mouse brain tissue with
tumor was embedded in paraffin and sectioned at a thickness of 5μm
for H/E and immunohistochemistry assays. Ctdnep1 cKO tumors
exhibit the large cell/anaplastic morphology observed in MYC-driven
Group 3MB, which was confirmed by a neuropathologist Dr. Christina
Fuller. The NSGmice with Ctdnep1-cKO NPC tumors in the cerebellum
were randomized into different groups and administered Prexasertib
(15mg/kg) and/or JQ1 (50mg/kg) or vehicle (10% DMSO in 10% HP-β-
Cyclodextrin, Sigma) on alternating days via intraperitoneal injection
for 14 days64.

Whole genome sequencing (WGS) and single nucleotide variant
calling and copy number variations (CNV) analysis
WGS-derived raw image files were processed by DNBseq basecalling
Software for basecalling with default parameters and the sequence
data of each individual is generated as paired-end reads as FASTQ
format. Single nucleotide variant analyses conducted using the Gen-
ome Analysis Tool Kit (GATK)(https://gatk.broadinstitute.org/hc/en-
us). Briefly, the fastq data files from mouse WGS were mapped to
mouse genome (mm10) by Burrows-Wheeler Aligner (BWA) in the
GATK4module. HaplotypeCaller was used to call the single nucleotide
variants (SNV) and insertion deletions (Indel). All variants were
removed the SNPs and then annotated byANNOVAR. CNVswere called
using SOAPcnv software. Based on the result of SOAP alignment, the
depth of eachbase should be calculated and standardized by themean
depthof its chromosome to calculate the copynumber variation. CNVs
were detected by the following steps: (1) DNA sequences were sepa-
rated into fragments according to the depth of each base from the
alignment results; (2) The P value was calculated for each fragment to
estimate its probability to be a CNV; (3) The fragments that passed the
criteria (fragment length longer than2 kb,P value < =0.35,meandepth
less than 0.5 or >2.0) were kept as CNVs. The mapped bam files from
WGS were used for CNV analysis. We followed the somatic copy
number variation pipeline fromGATK4 CNV (https://github.com/ding-
lab/gatk4wxscnv). The final segment ratio files with CNV type anno-
tation for all NPC and tumor samples were further annotated by
AnnotSV.

Phosphatase and cell cycle assays
The phosphatase activity of CTDNEP1 was analyzed using p-NPP (para-
nitrophenyl phosphate, Sigma) as described19. Briefly, 5μg CTDNEP1
and itsmutations plasmids were introduced into 1 × 106 293 T cells and
the CTDNEP1 proteins were purified by immunoprecipitation using
anti-Myc-tag-beads (Sigma and Cat# A7470). The reaction mixture
(20μl) contained 50mM Tris-acetate (pH 5.5), 10mM MgCl2,

0.5–50mM p-NPP, and CTDNEP1 proteins incubated at 37 °C for
20min. 80μl of 0.25N NaOH was added to stop the reaction. Release
of p-NP (para-nitrophenol) was determined by measuring the absor-
bance at 410 nm.

For the dephosphorylation of c-Myc, we added the CTDNEP1
proteins purified by Myc-affinity beads to the 50μl D425 cell lysate
which contained Tris-acetate and MgCl2 incubated 1 h and the phos-
phorylation of c-Myc was determined by immunoblotting.

For cell-cycle analysis, the CycleTEST™ PLUSDNAReagent Kit (BD
340242) used to stain cell nuclei according to the manufacturer’s
instructions. Flowcytometrywas conductedusingBDFACSCanto Flow
Cytometer. Raw data were analyzed using FlowJo software. The his-
togram of cell-cycle distribution was generated from at least 10,000
events per sample.

RNA-seq and differential gene expression analysis
Total RNA was extracted from fresh cells or frozen tissue using TRIzol
(ThermoFisher) and purified by RNeasy kit (www.qiagen.com). Quality
of total RNA for each sample was checked on an Agilent Bioanalyzer
2100 RNA Nano chip (Agilent). RNA samples with RNA integrity num-
bers at least 7 were used for library preparation (polyA enrichment)
and sequencedbyNovogene (https://en.novogene.com/) or BGI (www.
bgi.com) with 150 base pair paired-end reads.

To examine transcriptomic differences, cDNA reads were aligned
to hg19 for human cells or mm10 for mouse cells using TopHat2
alignment to generate bam files42. Unnormalized gene read counts
were generated using Cufflinks (http://cole-trapnell-lab.github.io/
cufflinks/). Differentially expressed genes were normalized and ana-
lyzed using the Cuffdiff.

Assay for transposase-accessible chromatin using sequencing
(ATAC-Seq)
ATAC-seq assays were performed as previously described38. Briefly, we
isolated nuclei of ~50,000 cells in a cold lysis buffer (10mM Tris-HCl,
pH 7.4, 10mMNaCl, 3mMMgCl2, 0.1% IGEPALCA-630). After spinning
down at 500 × g for 10min at 4 C, nuclei were resuspended in trans-
position mix containing TD (2× reaction buffer), TDE1 (Nextera Tn5
Transposase) at 37 °C for 30min. Immediately following transposition,
DNA were purified using a Qiagen MinElute PCR Purification Kit.
Transposed DNA fragments were subsequently amplified and the
amplified library was purified using Qiagen MinElute PCR Purification
Kit. Libraries were generated using the Ad1_noMX and barcoded pri-
mers andwere amplified for 11 total cycles. Libraries were purifiedwith
AMPure beads (Agencourt) to remove contaminating primer dimers
and were sequenced on the Illumina HiSeq 2500 with 75 bp single-
end reads.

Reads of ATAC-seq data were aligned to rn5 genomeusing Bowtie
with the following options:–best–chunkmbs 200 (http://bowtie-bio.
sourceforge.net). Peak calling was performed using Model-based
analysis of MACS version 2.12 (https://github.com/ taoliu/MACS) with
specific parameters without the prebuilt model:–shift 75–extsize
150–nomodel–call-summits–nolambda– keep-dup all -p 0.01, to call
peaks, which extend and shift the fragments to get the region cut by
the Tn5 sites. We calculated the peak_RPKM, then GSEA (v2.2.0) was
used to analyze the enrichment of signature gene sets.

Statistical and survival analysis
All analyses in this research were performed using Microsoft Excel,
GraphPad Prism 8 (San Diego California, https://www.graphpad.com)
or RStudio (https://www.rstudio.com/ and R v.3.4.0). We use the “cor”
function in R to calculate the Pearson correlation coefficient. Asso-
ciation between CNV and somatic mutational events were performed
using Fisher Exact Test (R), FDR was used to adjust multiple tests. The
Fisher’s exact test was used to determine the significance of gene
mutations that are specifically enriched inG3-MB comparedwith other
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MBsubgroups. Statistical significancewas determinedusing two-tailed
Student’s t tests as indicated. One-way ANOVA test was performed by
multiple comparisons following Turkey’s ranking tests when compar-
ing multiple groups. Data are shown as mean± SD (error bars). Values
of p <0.05 denoted a statistically significant difference. Quantifica-
tions were performed from at least three experimental groups in a
blinded fashion. Then valuewas defined as the number of experiments
that were repeated independently with similar results. No statistical
methodswereused topredetermine sample sizes, but our sample sizes
are similar to those generally employed in the field. No randomization
was used to collect all the data, but data were quantified with blinding.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All high-throughput data generated in the paper are deposited in the
NCBI Gene Expression Omnibus (GEO). The accession number is
GSE145921. Themass spectrometry proteomics datasets are deposited
in ProteomeXchange (Identifier: PXD019067). Source data are pro-
vided with this paper.

Code availability
No custom code was used in this study. Open-source algorithms were
used as detailed in analysis methods, including Enrichr (https://
maayanlab.cloud/Enrichr/), Galaxy (https://usegalaxy.org/), GSEA
(https://www.gsea-msigdb.org/gsea/index.jsp), AltAnalyze (http://
www.altanalyze.org/) and Toppgene (https://toppgene.cchmc.org/),
Tophat (http://tophat.cbcb.umd.edu), Genome Analysis Tool Kit
(GATK) (https://gatk.broadinstitute.org/hc/en-us), ToppGene Suite
(https://toppgene.cchmc.org/), reference genome mm10 (https://
hgdownload.soe.ucsc.edu/downloads.html).
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