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Cartography of Genomic Interactions
Enables Deep Analysis of Single-Cell
Expression Data

Md Tauhidul Islam 1 & Lei Xing 1

Remarkable advances in single cell genomics have presented unique chal-
lenges and opportunities for interrogating a wealth of biomedical inquiries.
High dimensional genomic data are inherently complex because of inter-
twined relationships among the genes. Existing methods, including emerging
deep learning-based approaches, do not consider the underlying biological
characteristics during data processing, which greatly compromises the per-
formance of data analysis and hinders the maximal utilization of state-of-the-
art genomic techniques. In this work, we develop an entropy-based carto-
graphy strategy to contrive the high dimensional gene expression data into a
configured image format, referred to as genomap, with explicit integration of
the genomic interactions. This unique cartography casts the gene-gene inter-
actions into the spatial configuration of genomaps and enables us to extract
the deep genomic interaction features and discover underlying discriminative
patterns of the data. We show that, for a wide variety of applications (cell
clustering and recognition, gene signature extraction, single cell data inte-
gration, cellular trajectory analysis, dimensionality reduction, and visualiza-
tion), the proposed approach drastically improves the accuracies of data
analyses as compared to the state-of-the-art techniques.

Recent advances in high-throughput genomic techniques have led to
profound new discoveries in biomedicine1–6. Alongside these break-
throughs, how to accurately discern patterns from the high dimen-
sional (HD) and large-scale gene expression data presents a ubiquitous
challenge across applications7–10. Up to now, analytical techniques,
such as dimensionality reduction, discriminant analysis, Bayesian
classification, decision-tree, and neural networks, have been used to
process theHDdata and build predictivemodels for various tasks such
as classificationand regression11–16. Unfortunately, these techniques fall
short in extracting the most discriminative features and often yield
sub-optimal results in various biomedical applications.

Biologically, it has long been recognized that gene-gene inter-
actions play a significant role in various cellular processes and
provide a unique basis to discriminate cell types and states17–19.
These interactions have not, however, been utilized explicitly for
discovering distinct patterns in genomic systems. An underlying

challenge in integrating the information into the data processing
pipeline arises from the way that the measured gene expression
data are organized. In practice, a vector or matrix (Fig. 1a) repre-
sents a convenient but not themost informative way to present a set
of gene expression data.When the data are presented in this format,
the information of gene-gene interactions are buried in the
expression matrix, which disables us from gaining comprehensive
insights into genomic interplays and utilizing the information to
facilitate downstream data analyses. In this work, we introduce the
concept of genomap and provide a cartographic framework to
enable the extraction of genomic interaction features for high
performance data analysis. We configure the genomap of a cell by
placing individual genes into a two-dimensional (2D) grid based on
the attributes of their interactions in high dimension. To a certain
extent, the construction of a genomap here is analogous to the
reconstruction of biomedical images (such as CT and MRI) from
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unconfigured sensory data, in which the measured data are trans-
formed into semantically meaningful images that can be better
perceived by a human or computer agent20,21. We demonstrate that,
with the introduction of the genomap, the correlations in genomic
data can be exploited effectively by deep learning to greatly facil-
itate the downstream applications.

In the proposed cartography, we first compute the gene-gene
interaction matrix of the dataset by maximizing the entropy of the
genomic system (see Methods). To maximally reflect the gene-gene
interaction information of the system through a 2D spatial configura-
tion of genes, we transform the dataset into a series of cell-specific
genomaps by optimizing a transport function. As the possible ways of
gene placement into a 2D grid for a cell is a factorial of the number of
involved genes, a robust optimization of the transport function is
imperative to reliably construct a genomap. In general, a genomap
possesses the basic characteristics of an image with the pixelated
configuration manifesting the gene-gene interactions (Fig. 1a) and
provides a comprehensive representation of the gene expression data.
After the construction of the genomaps, we extract the configurational
features of the genomic interactions by using an efficient convolu-
tional neural network (CNN) named genoNet (see Fig. 1b and Meth-
ods). In this way, deep correlative features of the genes are extracted
effectively from the data for subsequent decision-making. We show
that, for a wide variety of applications, including cell clustering and
recognition, gene signature extraction, single cell data integration,
cellular trajectory analysis, dimensionality reduction, and visualiza-
tion, the proposed approach substantially outperforms the state-of-
the-art methods. The proposed technique presents a unique paradigm
for analyzing genomic data or other forms of tabular data and pro-
mises to broadly impact data science.

Results
Genomap enables extraction of configurational features of
gene-gene interactions for highly accurate recognition of
cell types
The potential of genomap is first illustrated by using Tabula Muris
(TM) scRNA-seq dataset (transcriptomics of 20 mouse organs, con-
taining 55 different cell classes listed in Supplementary Fig. S3)22. The
gene expression data of 54,865 cells, each with 19,791 genes, were
analyzed. In Fig. 2, we show genomaps of 100 cells belonging to 10
representative classes (genomaps of the remaining 45 classes are
presented in Supplementary Fig. S2). Note that the first and last five
rows in Fig. 2 correspond to normal and stem cells, respectively, and
their genomaps appear very differently. Within each category, the
genomap pattern also varies from class to class. For example, for
keratinocyte cells (1st row), the genes with high expressions are posi-
tioned in a doughnut-shaped circular region close to the boundary of
the map. Interestingly, the high expression genes of another skin cell,
the epidermal basal cell (2nd row), also appears in a doughnut shape.
However, the expressions of the genes inside the doughnut are higher.
For another example, in immature B-cells (last row), the genes with
high expressions showup in the central region,whereas the geneswith
low expressions occupy the entire remaining space. It is worth noting
that the genomapof the epidermal basal cell (2nd row) is similar to that
of the bladder urothelial cell (3rd row). Although these two types of
cells are from different parts of the body (skin and bladder), they both
belong to the category of basal cell and share similar biological char-
acteristics. Another interesting similarity is observed between the
genomaps of granulocytopoietic and promonocyte cells, which
represent different branches of stem cell development when the GM-
CSF enzyme is present. On the other hand, the genomaps appear
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differently for cells of different functions, such as hepatocytes from
the liver (4th row) and duct epithelial cells from the breast (5th row).

Genomap also provides insights into the cellular developmental
process. For example, B cells undergo 6 stages as they develop: lym-
phoid progenitor cells, early pro-B cells, late pro-B cells, large pre-b
cells, small pre-B cells, and finally immature B cells. From the geno-
maps of pre-pro B-cells (8th row), late-pro B cells (9th row), and
immature B cells (last row) in Fig. 2, we observe that the genes on the
two concentric circles are highly expressed in both pre-pro and late-
pro B cells. However, the gene expression levels at the center are very
low in the former case, but increase to higher values in the late-pro B
cells. At the last stage (i.e., immature B-cells), the genes at the center
exhibit very high expression values while the two concentric rings
fade away.

It is intriguing that the difference in the genomaps of many cell
types is so obvious that they can be identified visually even without
deep learning. Our genoNet (see Methods) analyses of the genomaps
are presented in the supplementary along with the results obtained
using ten representative existing methods (Supplementary Fig. S4).
The classification accuracy of our approach reaches 93%, which is 6%,

and 21% higher than that of Cell-ID23 and SingleR24 methods,
respectively.

We now showcase our approach by analyzing the ischemic sen-
sitivity dataset, a very large dataset that is part of the human cell atlas25

(seeMethods for data description). In this dataset, the sequenced cells
are from three important human organs - lung, esophagus and spleen.
The genomaps of the cells from the lung are shown in Fig. 3. Again,
different genomap patterns are observed for different classes of cells.
The uniform manifold approximation and projection (UMAP)26 visua-
lizations of the raw data for the three organs are shown in Fig. 4(a),
where it is seen that the data classes are not well-separable. However,
with the use of genomaps and genoNet, the data classes are better
separated at the fully connected layer (Fig. 4(b)) for both training and
testing data. The classification results of different methods are shown
in Fig. 4(c). Remarkable accuracies of 88%, 96% and 85% are achieved
by our approach for the lung, esophagus and spleen datasets,
respectively, which are at least 5% higher than the best performer
among the existing techniques. Furthermore, our approach shows
sustained superior performance even with reduced size of training
datasets. To illustrate this, we analyze the performance of different
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Fig. 2 | Genomaps of 100 cells belonging to 10 different classes from Tabula Muris dataset. Each row in the figure corresponds to a class. For each class, the 10 cells
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techniques when only 30% and 50% of the total data are used for
training. The classification results shown in Supplementary Fig. S7
clearly demonstrate the superiority of the proposed approachover the
existing methods. Noteworthy, the performance of our technique
drops only by 2–3% for the study with 30% of total data for training,
whereas the decrease in classification accuracy of all other techniques
(except ACTINN27 and Vec2image28) is at least 7%.

A scRNA-seq dataset profiled from mouse T cells29 is used to
further demonstrate the success of the proposed approach. Elyahu
et al. used scRNA-seq andmultidimensional protein analyses to profile
thousands of CD4 T cells obtained from young and old mice. The
UMAPvisualization of the rawdata is shown in Fig. 5a, inwhich the data
classes are notwell-clustered.We converted the data to genomaps and
our genoNet analysis shows that all seven classes are now well sepa-
rated at the fully connected layer (Fig. 5a). The classification accuracy
of our approach is 87%, which is at least 17% higher than the state-of-
the-art Cell-ID technique, 10% higher than SingleR, and 5% higher than
ACTINN and Vec2image (Fig. 5b). To support the notion that genomap

is the key driver for high-performance classification, results of geno-
map+ACTINN and 1D expression+genoNet are also included in Sup-
plementary Fig. S5.

Genomap-based analysis outperforms the state-of-the-art tech-
nique in discovering cell-specific and class-specific gene sets
The proposed cartography approach is able to accurately find gene
sets characterizing specific cells and cell types. To achieve this, we
compute the class-activation map by using GRAD-CAM30 for the
genomaps of TM dataset shown in Fig. 2. The class-activation maps
are shown in Fig. 6, in which the genes that aremost important to the
genoNet decision-making have higher values. The findings here are
validated by using an independent experimental technique called sci-
ATAC-seq, which measures the gene activity by quantifying the
chromatin accessibility in a single cell31. We compute the average
gene activity scores from sci-ATAC-seq dataset in five types of cells,
which are common between the TM dataset and sci-ATAC-seq data-
set. The gene activity scores for the marker genes of B cells, T cells
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Fig. 3 | Genomaps of 100 cells belonging to 10 different classes from ischaemic
sensitivity dataset acquired from the lung. Each row in the figure corresponds to
a class. For each class, the 10 cells show very similar patterns of genomap. As
examples, in mature B cells (2nd row), the genes in a circular ring close to the

boundary have high expressions whereas the genes in other areas have low
expressions. On the other hand, in naive B-cells (3rd row), the genes in a circular
region close to the center have very high expressions. Here, the lowest gene
expression value is denoted by blue and the highest value is denoted by yellow.
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and hematopoietic (HP) cells namelyCD3D,CD3E,CD79A, CD79B, and
CD34 in sci-ATAC-seq data are shown in Supplementary Fig. S8
(a-left). For benchmarking, the importance scores of the genes in
different cells are also computed by the Cell-ID technique23, and the
results are shown in (a-right) along with the genomap findings in
(b-left). It is seen that both Cell-ID and our approach show higher
activities of CD3D and CD3E genes in T cells and CD79A and CD79B
genes in B cells. This is reasonable as CD3D, CD3E and CD79A, CD79B
are established markers for T cells and B cells, respectively31. How-
ever, our approach shows much lower activities of these genes in
other cells such as Monocyte, NK cell and HP cells, which aligns well
with the ground truth sci-ATAC-seq data. Again, our approach out-
performs Cell-ID when their performances are compared with the

ground truth sci-ATAC-seq data in terms of cosine similarity (Sup-
plementary Fig. S8 (b-right)).

Genomap affords a fine-tuning framework for accurate inte-
gration of scRNA-seq data acquired with different technologies
Single cell data integration, which denotes the process of projecting
gene expression data from different sequencing technologies or pro-
tocols to a common subspace, aims to mitigate measurement specific
bias so that all the data from different measurements can be utilized
synergistically fordownstream inferences32–34.With the integration, for
example, a model trained on one set of scRNA-seq data can be applied
to analyze another dataset(s) obtained under different condition(s).
The decision-making process of our approach based on the Genomap
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construction and genoNet analysis depends primarily on the interac-
tions among the genes, which is less susceptible to the experimental
protocols and provides an efficient framework for single cell data
integration. To demonstrate this advantage, we choose five human
pancreatic datasets fromtheworksof Segerstolpe et al.35, Baron et al.36,
Muraro et al.37, Xin et al.38, and Wang et al.39. The datasets were
acquired using SMART- Seq2, inDrop, CEL-Seq2, and SMARTer scRNA-
seq technologies, respectively. After pre-aligning the datasets by
canonical correlation analysis (CCA) from Seurat32, the gene expres-
sions are converted into five sets of genomaps. A genoNet model is
then trained by using four sets of genomaps and the model is applied
to classify the fifth set of genomaps. The results are shown in Fig. 7a–c
along with the state-of-the-art techniques: Seurat v332, Harmony33, and
online iNMF34. From the UMAP visualizations of the results colored by
the batch type (Fig. 7a), it is seen that Seurat, Harmony and online
iNMF integrate the datasets to some extent. In our integration,most of
the data are well-mixed and the effect of batch type is greatly reduced
on the UMAP visualization. The same visualizations colored by the
actual cell classes are shown in Fig. 7b. Our approach findsmost of the
15 clusters in the dataset, with better cluster quality than other tech-
niques. From the label transfer efficiency barplot shown in Fig. 7c, it is
seen that our model leads to an accuracy of 97% for Segerstolpe
dataset, whereas other methods can at best reach an accuracy of 89%.
Improved performance is also obtained for other combinations of the
datasets (see the last two columns of Fig. 7c and Supplementary
Fig. S10).

Genomap enables cellular trajectory mapping with highest
fidelity
We select a scRNA-seq dataset containing cells at different stages
throughout embryogenesis of a proto-vertebrate (sea squirt)40. In
total, 90,579 cells from 10 different development stages were
sequenced. The t-distributed stochastic neighbor embedding (t-SNE)41,
UMAP, and PHATE14 visualizations of the raw data are shown in Fig. 8a.
It is seen that in the t-SNE and UMAP visualizations, the data are clus-
tered and show no cell trajectories. In unsupervised PHATE

visualization, while some branchings of the cell development are
observed, the transitions of different stages are not clearly reflected in
these figures. No trajectory can be seen in the results of supervised
PHATE42. We created the genomaps for the cells and trained the
unsupervised genoNet model (see Methods). The PHATE visualization
of genoNet features at the final fully connected layer of the genoNet
model is displayed in (a-2nd row last column). Continuous trajectories
are seen for different branches. The transitions of cellular stages at
different timepoints aremoredistinct in comparison to the competing
techniques. Quantitative comparisons between the existing PHATE
and our unsupervised approach are shown in (b) in terms of DEMaP14

index. A higher DEMaP index for the proposed approach indicates that
the genomap embedding preserves the characteristics of HD data
better than other techniques.

Genomap offers accurate unsupervised dimensionality reduc-
tion, visualization, and clustering of HD data
The superiority of the proposed approach in dimensionality reduction,
visualization, and clustering analysis is demonstrated by using a
scRNA-seq dataset profiled from mouse retinal bipolar cells (BCs)43.
From a population of 27,499 BCs, Shekhar et al. identified 15 types,
including two new types of neurons, by leveraging the class specific
gene signatures. Our analytic tool can also be utilized to find the data
classes. For this purpose, we converted the data from Shekhar et al. to
genomaps and applied unsupervised genoNet to reduce the data
dimension and extract underlying features for the above tasks. The
t-SNE, linear discriminant analysis (LDA)44, Siamese network45, and
supervised and unsupervised UMAP visualizations of the raw data are
shown in Fig. 9a. It is seen that several data classes such as BC3B and
BC4 are inseparable. The t-SNE and UMAP visualizations on the data
embeddings from the fully connected layer of the genoNet are shown
in (b),where it is seen clearly thatmost of the data classes becomewell-
separated (major improvements in cluster separation are indicated by
arrows). The quantitative comparison among different techniques in
terms of clustering accuracy, adjusted Rand (AR), Silhouette, and
normalizedmutual information (NMI) indices are shown in (c). Louvain

Fig. 5 | Analysis of T cell landscape dataset. (a left) UMAPvisualizations of the raw
data. (amiddle and right) UMAP visualizations of features from the fully connected
layer of the genoNet for the training and testing datasets. Major improvements in
cluster separation are indicated by arrows. Color legends of the data classes are

added in Supplementary Fig. S23. b Classification accuracies of the genomaps with
the proposed approach and existing techniques. Source data are provided as a
Source Data file.
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technique46,47 was employed for clustering the embeddings from dif-
ferent methods. It is seen that the visualizations from the genoNet
embeddings achieve much higher cluster quality scores than the
competing methods.

Discussion
How to discover patterns and gain insights from HD data with ever-
increasing size, dimensionality and complexity represents a common
theme in modern data science, especially in genomics and biomedi-
cine. Traditionally, these data are expressed in a vector or matrix form
and processed by direct embedding them into a low dimension
through either an analytical (e.g., principal component analysis
(PCA)48, t-SNE, UMAP, and kernel PCA) or data-driven (e.g., variational
autoencoder (VAE)49, feature-augmented embeddingmachine (FEM)50,
and Siamese network45) approach. Unfortunately, none of these
approaches explicitly takes the underlying discriminant biological
characteristics of the dataset into consideration. Rather than amend-
ing the traditional techniques, here we take a radically different route
to transform the data into a configured format, which enables us to
extract the configuration features of the genomic interaction for

various applications. The proposed cartography technique overcomes
the fundamental limitations of the traditional approaches that have
frustrated efforts to extract themost discriminative information in the
system. Our results show that the configurational features of the
genomaps provide valuable contextual cues for us to gain a better
understanding of the genomic system and build predictive models
with dramatically improved performance51–56. With a synergistic use of
deep learning, the proposed approach shows significant potential for
high performance processing of HD data. Given the exquisite insights
provided by the genomap and its remarkable performance, the tech-
nique should be valuable for uncovering new and potentially unex-
pected biological discoveries in the future.

How to maximize the utility of a given set of data for robust
decision-making has been the holy grail of big data research57–59. In an
image, single or multiple concepts (i.e., high-level collective informa-
tion) can be conveyed by a group of adjacent pixels. In contrast, a
group of data values in a table usually does not possess any collective
information by default. As shown in this work, tabulated data can often
be better represented in image format with the data interactions cas-
ted into the pixelated configuration. Genomap bridges the gap
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between tabular and image datasets and allows us to take advantage of
existing image processing toolkits for better data analysis. In reality,
there are numerous ways to convert a set of genomic data to 2Dmaps.
The gist of genomap is to lay out the genes in such a way that the
interactive information among the genes are maximally conveyed. In
general, genes interactwith eachother in complex fashions and can be
characterized by a gene-gene interaction network in high
dimension18,19. To a large extent, the genomap represents an optimal
projection of the interactions to a 2D space. It should be noted that
while genomaps can also be created in other dimensions (such as 3D as
demonstrated in Supplementary Fig. S6), previous studies show that
the ratio of performance to computational effort is better with a 2D
CNN model60,61.

The proposed cartography approach provides a unique compu-
tational paradigm of high performance genomic data analysis. The
potential of the strategy is demonstrated by a broad spectrum of
applications, including cell recognition, single cell data integration,
cellular trajectory analysis, gene signature extraction, dimensionality
reduction, clustering and visualization tasks. However, the technique
can also be applied to many other important problems. Furthermore,

the concept of reconfiguring tabulated data into an image is quite
general and we envision that the technique will find valuable applica-
tions in dealing with HD data across disciplines, such as healthcare,
finance, and physical sciences. We note that there were a few attempts
in the literature to convert gene expression data into images for deep
learning28,62–64. In these methods, however, an image is usually made
heuristically by projecting the HD data onto a 2D plane without any
explicit constraint(s) on the spatial locations of the genes. As an
example, In vec2image28, t-SNE (or other) embedding method is used
to create the images. As a result, similar genes get clustered under the
assumption of t-distribution without explicit constraints on their spa-
tial positions for maximizing entropy. Therefore, many genes located
in the outer region of the clusters have fewer neighbors than those
located in the center of the cluster. The same is true for those non-
clustered (i.e., isolated) genes. The reduction of the number of
neighbors to many genes deteriorates the information extraction
efficiency of the CNNs (because of the limited receptive field of CNN).
In contrast, the genomap here is established on a solid theoretical
foundation with the goal of finding the optimal spatial configurational
representation of the gene-gene interactions of the system. Thus, as

Fig. 7 | Integration of the single cell datasets obtained by using five different
measurement protocols. In (a) UMAP visualizations of embeddings resulted from
different integration techniques (Seurat, Haromony, Online iNMF, and genomap
+genoNet) are shown. Data of different measurement protocols are denoted by

different colors. In (b), the sameUMAP visualizations of the embeddings are shown
with the cell classes denoted by different colors. (c) Label transfer accuracy of
different integration techniques (left to right-Segerstolpe, Baron, and Muraro
datasets). Source data are provided as a Source Data file.
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shown in a variety of applications in the Results section, the deep
analysis of genomaps leads to discoveries of highly distinctive patterns
of complex genomic data and provides a potentially useful analytic
technique. Theoretical analyses of the information content of geno-
maps and images fromothermethods are presented in supplementary
section 2 (Supplementary Fig. S1 and Table S1).

We compared the performance of the proposed approach with
different state-of-the-art techniques in different applications. In all our
studies, we used 70% of the data for training and the rest for testing,
which is a standard practice in machine learning. It should be
emphasized that the advantage of our approach over existing ones is
evenmore pronounced in the case of smaller datasets (supplementary
Fig. S7). On another note, as exemplified in Supplementary
Figs. S11–S16, where the number of cells as a function of the involved
class is plotted, most biological datasets are highly imbalanced. The

superior performance of our approach as demonstrated in the Results
for these difficult classification tasks is of particular importance and
shows its potential for practical applications. Note that, for computa-
tional efficiency, in all our studies, we used genoNet with a simple
architecture (see Supplementary Table S2 and Methods). Generally,
the performance of genoNet can be further improved by adding more
convolutional layers. For example, for the TM dataset, genoNet with 2
and 3 convolutional layers improves the classification accuracy by
0.6% and 0.9%, respectively. More complex CNNs (such as Xception65,
GooLeNet66, and DenseNet67) would generally provide comparable or
slightly improved performance due to deeper feature extraction (see
Supplementary Fig. S9 for an example of Xception analysis of the TM
data), but at the cost of dramatically increased computational burden.
For example, for the TM dataset, genoNet with a single convolutional
layer takes 148 seconds to finish training 150 epochs on a computer
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Fig. 8 | Cellular trajectory analysis of proto-vertebrate dataset by using dif-
ferent techniques. (a-1st row) t-SNE and UMAP visualizations of the data. (a-2nd
row, first and second columns) Unsupervised and supervised PHATE visualizations
of the data. (a-2nd row, last column) PHATE visualization of the embedding from

the unsupervised genoNet. In contrast to the results of existing techniques, the
transitions of cells from initial grastula to larva are quite evident in the visualization
of the proposed approach. (b) DEMaP computed from embeddings of different
techniques. Source data are provided as a Source Data file.
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with Intel Core i9 CPU, 128GB RAM, and NVIDIA RTX A5000 GPU,
whereas Xception, GoogLeNet, and DenseNet require more than
8 hours for the same task. It should be noted that the computational
overhead for genomap calculation is rather small. For example, a
dataset containing 10,000 cells and 1000 genes is processed in only
61 seconds on the aforementioned computer.

Wenote that, in the constructionof genomaps, only two-way gene-
gene interactions are considered68. However, the probability of higher
order interactions is generallymuch lower and this issue is discussed in
detail in section 1 of the supplementary. In creating the genomaps,
following the common practices in single-cell RNA-seq analysis69, we
selected 5–10% highly variable genes from the datasets. However, we

Fig. 9 | Dimensionality reduction, clustering, and visualization of the retinal
bipolar cells by different techniques. a t-SNE, LDA, Simaese network, and unsu-
pervised and supervised UMAP visualizations of the raw data. b t-SNE and UMAP
visualizations of the embeddings from unsupervised genoNet. Major improve-
ments in cluster separation are indicated by arrows. c Quantitative comparison of

cluster quality of embeddings from different techniques in terms of accuracy, AR,
Silhouette and NMI indices (from left to right panels). The bar heights denote the
mean values of the indices for for 1000 different initializations of Louvain clus-
tering. GSNE and GMAP denote the t-SNE and UMAP embedding obtained from
genoNet features. Source data are provided as a Source Data file.
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note that genomap performance becomes better whenmore genes are
included in the analysis (see Supplementary Table S4). For a very large
number of genes (such as more than 10000), the genomaps may be
very sparse and the performance of the proposed approach may be
compromised because of the inefficiency of genoNet to capture the
relationship between different genes. However, in such cases, PCA or
other dimensionality reduction methods (such as non-negative matrix
factorization (NNMF)70, multi dimensional scaling (MDS)71, and FEM50)
can be applied on the dataset and genomaps can be created from the
principal components (or components from other methods). Results
for one such case of genomaps created from different numbers of
principal components computed from the comprehensive classifica-
tion of retinal dataset are reported in Supplementary Table S5.

Gene expression profiling powered by advanced data analytic
methods is becoming increasingly essential in biomedical research. In
this work, we have presented a systematic strategy for deep feature
extraction from the deluge of genomic data. We have shown that the
integration of sophisticated gene-gene interactions into data proces-
sing pipelines presents a unique opportunity to radically improve
analytic performance. With the construction of genomaps and
the effective use of deep learning, the proposed approach shows sig-
nificant potential in discovering unique data patterns and gaining
useful insights into various biological systems. Finally, we emphasize
that the proposed cartography approach is broadly applicable to deal
with HD data involving not only gene expressions but also tabular data
across different disciplines.

Methods
Overview
To reconfigure the gene expression vector of a cell into a 2Dgenomap,
we first obtain the pairwise interaction strengthmatrix thatmaximizes
the entropy of the data. We then place the genes in a 2D grid in such a
way that their pairwise interaction is preserved maximally. We utilize
the optimal transport optimization (minimization of Gromov-
Wasserstein discrepancy between interaction-space of genes and
Euclidean space of 2D grid) to solve the problem efficiently.

Theory
Let us assume thatwehave adataset,x 2 Rm×n fromanexperiment on
mnumber of cells (each cell hasnnumber of genes). Our objective is to
restructure the n genes of each cell into a 2D grid of size p × q, p × q ≥ n
to maximize the entropy of the data.

Entropy. Entropy is frequently used in information theory to measure
the information content of a system. Mathematically, entropy mea-
sures the uncertainty associated with a random variable or a random

system72. The entropyH(X) (see Table 1 for details of the notations) of a
discrete random variable X can be written as

HðX Þ= �
X
x2X

pðxÞ logpðxÞ, ð1Þ

where pðxÞ=PðX = xÞ, x 2 X , denotes the probability mass function
(pmf) of the randomvariableX, andX is afinite set (such as {1, 2,…, })73.
The entropy has been used for analyzing the interaction among attri-
butes in biological and other datasets in the literature74–76.

Pairwise interaction of genes. The expression data of the i-th gene in
m cells can be written as a vector xi = x1

i , . . . , x
m
i

� �
). For n number of

genes, we have n vectors x1,…, xn. Our goal is to restructure the genes
in each cell in such a way that maximizes the entropy of the gene
expression vectors68

H = �
X
x

pðxÞ lnpðxÞ

subject to the constraints

X
x

pðxÞ= 1:

The probability mass function for the gene expressions, which
maximizes the system entropy is given by a multivariate Gaussian
distributionparametrizedby themean 〈x〉 and the covariancematrixΩ
as follows77:

pðx; hxi,ΩÞ= ð2πÞ�n=2 det ðΩÞ�1=2 exp � 1
2
ðx� hxiÞTΩ�1ðx� hxiÞ

� �
:

Here, the covariance matrix is defined as:

Ωij = hxixji � hxiihxji, ð2Þ

where

xi

� �
=

1
m

Xm
k = 1

xk
i ,

and

hxixji=
1
m

Xm
k = 1

xk
i x

k
j :

Table 1 | List of notation

Symbol Explanation Symbol Explanation

H Entropy X Random variable

m Number of cells n Number of genes

p(x) = P(X = x) Probability mass function of X Ω Covariance matrix

ρ Interaction strength between genes GW Gromov-Wasserstein discrepancy

C Scaled interaction matrix �C Distance matrix of 2D grid points

T Coupling matrix L Loss function

xi Expression level of i-th gene L 4-way tensor of the loss function

u Relative importance of genes v Relative importance of grid locations

p Number of rows in 2D grid q Number of columns in 2D grid

⊤ Transpose operation E Optimal transport function

ϵ Regularization parameter τ Step size in Sinkhorn iteration

i, j, k, l Index variables f1, f2, h1, h2 Functions

w* Optimal regression coefficient vector e Residual
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The pairwise interaction strength between xi and xj can now be
computed from the covariance matrix as follows77:

ρij =
� Ω�1ð Þijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω�1ð Þii Ω�1ð Þjj
p if i≠ j,

1 if i= j:

8<
: ð3Þ

Genomap construction. The problem of constructing genomaps, i.e.,
optimally placing n-genes to n positions of the 2D grid of p × q (n ≤
p × q) can be written as Gromov-Wasserstein discrepancy between the
scaled pairwise interaction strength matrix C of n genes and the dis-
tancematrix (�C) of the 2D grid space. Both thematrices C and �C are of
size n × n. We define the Gromov-Wasserstein discrepancy between
matrices C and �C as follows78:

GWðC,�C,u,vÞ =def: min
T2Cu,v

EC,�CðTÞ, where EC,�CðTÞ =
def: X

i,j,k,‘

L Ci,k ,�Cj,‘

	 

Ti,jTk,‘:

ð4Þ

Here, the matrix T is a coupling between the two spaces on which
C and �C are defined,u and v are vectors containing relative importance
of the genes and the locations in the genomap. L here is a loss function
to account for the discrepancy between the matrices and defined as
the Kullback-Leibler divergence Lða,bÞ=KL ða∣bÞ =def:a logða=bÞ � a+b.
Introducing the 4-way tensor

LðC,�CÞ =def: L Ci,k ,�Cj,‘

	 
	 

i,j,k,‘

,

we have

EC,�CðTÞ= hLðC,�CÞ � T,Ti:

Here⊗ denotes the tensor-matrix multiplication as follows:

L� T =
def: X

k,‘

Li, j,k,‘Tk,‘

 !
i, j

: ð5Þ

Regularized Gromov-Wasserstein Discrepancy. For computational
efficiency, for large datasets, we utilize the following regularized
approximation of the initial GW formulation of eq. (4)78

GWεðC,�C,u,vÞ =
def:

min
T2Cu,v

EC,�CðTÞ � εHðTÞ, ð6Þ

where ε is a regularization parameter and the entropy ofT is defined as
HðTÞ =def:�Pn

i= 1, j = 1 Ti, jðlogðTi, jÞ � 1Þ. A projected gradient descent is
used to solve the non-convex optimization problem of eq. (6), where
both the gradient step and the projection are computed according to
the KL metric. Iterations of this algorithm are given by

T ProjKLCu,v T� e�τ ∇EC,�CðTÞ�ε∇HðTÞð Þ	 

, ð7Þ

where τ > 0 is a small step size, and the KL projector of any matrix K is

ProjKLCu,v ðKÞ =
def:

argmin
T02Cu,v

KL T0∣K
� �

: ð8Þ

In the special case τ = 1/ε, eq. (7) becomes

T T ðLðC,�CÞ � T,u,vÞ: ð9Þ

Proof of eq. (9) is available in ref. 78. Eq. (9) defines a computa-
tionally amenable algorithm, in which each update of T involves a
Sinkhorn projection denoted by T 78.

Computational speed up. If the loss can be written as

Lða,bÞ= f 1ðaÞ+ f 2ðbÞ � h1ðaÞh2ðbÞ ð10Þ

for functions f 1,f 2,h1,h2

� �
, then, for any T 2 Cu,v78,

LðC,�CÞ � T= cC,�C � h1ðCÞTh2ð�CÞ
>
, ð11Þ

where cC,�C is independent of T. Proof of eq. (10) is available in ref. 78.
Eq. (11) shows that for this class of losses, we can computeLðC,�CÞ � T
efficiently using only matrix/matrix multiplications. In our case, the
KL loss satisfies eq. (10) for f1(a) = a logðaÞ � a,f 2ðbÞ=b,h1ðaÞ=a,
and h2ðbÞ= logðbÞ.

Efficient computation of the interaction matrix. Computation of the
pairwise interaction matrix (eq. (3)) can be intensive because of the
inversion of the covariance matrix. Interestingly, the formulation of
the interaction strength between two genes (eq. (3)) is same as that of
their partial correlation79. An efficient way to compute the partial
correlation matrix (and thus interaction matrix) is to 1) solve the two
associated linear regression problems (shown below), 2) get the resi-
duals from the regression problems, and 3) calculate the correlation
between the residuals80. Let us assume that X and Y are random vari-
ables taking real values (denoting expression levels of two genes), and
let Z be the (n − 2)-dimensional vector-valued random variable
(denoting expression levels of all other genes). Let us also assume that
xi, yi and zi, i = 1,…,m denotes the independent and identically dis-
tributed m observations from some joint probability distribution of
the random variables X, Y and Z. If we want to find the relationship
between the random variables through regression, we have to find the
regression coefficient vectors w*

X and w*
Y such that

w*
X = argmin

w

Xm
i = 1

xi � w,zi
� �� �2( )

ð12Þ

w*
Y = argmin

w

Xm
i = 1

yi � w,zi
� �� �2( )

ð13Þ

with 〈w, v〉 the scalar product between the vectors w and v. The resi-
duals can then be computed as

eX ,i =xi � w*
X ,zi

� �
, ð14Þ

eY ,i = yi � w*
Y ,zi

� �
: ð15Þ

The partial correlation between X and Y can then be expressed as:

ρ̂XY �Z =
m
Pm

i= 1 eX ,ieY ,i �
Pm

i = 1 eX ,i
Pm

i= 1 eY ,iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Pm

i= 1 e
2
X ,i �

Pm
i= 1 eX ,i

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Pm

i= 1 e
2
Y ,i �

Pm
i = 1 eY ,i

� �2q :

ð16Þ

For independent 2-way (pairwise) interactions between X and Y (Z
has no effect on the interaction of X and Y), eq. (16) can be simplified as

ρ̂XY =
m
Pm

i= 1 xiyi �
Pm

i = 1 xi
Pm

i = 1 yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Pm

i = 1 x
2
i �

Pm
i = 1 xi

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
Pm

i = 1 y
2
i �

Pm
i= 1 yi

� �2q : ð17Þ

Implementation and parameter settings
Both Python and Matlab 2020a (MathWorks Inc., Natick, MA, USA)
were used to implement the genomap technique. The expression
values of the genes were standardized using z-score before converting
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to genomaps81. Sinkhornoptimizationwas used for datasets withmore
than 2500 selected genes. The value of ϵ in sinkhorn optimization was
considered from0.001 to 0.005, incrementing 0.001 at each step until
convergence. For smaller datasets (genenumber < = 2500), ϵwas set to
zero to compute the exact transport matrix. u and v were assumed to
have uniform distribution. Same values of p and qwere selected in our
analyses to make genomaps square-shaped. However, as found in our
analyses, genomaps with rectangular shape (p > q or p < q) performs
similarly to the genomaps with squared shape (see supplementary
Table S3). In cases, where n < p × q, the excess locations in genomaps
were set to zero. In this case also, the performance of genomap
remains unaltered (see Supplementary Table S3).

Four state of the art cell annotation techniques: Cell-ID, Vec2-
image, ACTINN and singleR and, twoclassification techniques: random
forest82 and SVM44, and three boosting classification techniques:
AdaBoost83, LPBoost84 and TotalBoost85 were used to benchmark the
proposed approach for cell recognition. All the parameters of the
boosting classification techniques were set to default values of
MATLAB. Cell-ID and SingleR was run using default settings instructed
by the authors. Vec2image method was used with default configura-
tions (t-SNE projection and images of 120 × 120 pixels). In ‘Random
map’, the 2D images were created by randomly placing the genes in a
2D grid. PHATE and UMAP were downloaded from the Github link
provided by the authors and run with the default settings. In case of
supervised PHATE, LDA, Siamese network and UMAP, the labels were
estimated by x-means86 clustering technique (similarly to genoNet).

Seurat, Harmony, Online iNMF, and Cell-ID methods were instal-
led in R using the instructions provided by the authors. The methods
were run using the default configurations. For single cell data inte-
gration using genomap, the datasets were pre-aligned using canonical
correlation analysis (from Seurat tool with default settings) and then
genoNet is used on it to create the integrated embedding. In com-
puting the cell-specific gene importance using Cell-ID, at first the
embedding was computed for both cells and genes. As instructed by
the authors, the distance between cells and genes is then computed to
obtain cell-specific genes. The inverse value of the distance between a
cell and the genes was used as the importance score of the genes in
that particular cell. For sci-ATAC-seq dataset, the expressions of CD3D,
CD3E, CD34, CD79A, and CD79B genes are averaged over all the cells of
a specific type (such as B andT cells) to obtain its activity score. For the
proposed approach, the class activation values of a gene in all the cells
of a specific type are averaged to obtain the activity score. The mean
activity scores from Cell-ID, our approach, and sci-ATAC-seq dataset
were thennormalized from0 to 1 over the cell types. For predicting the
cell labels from embeddings of Seurat, Harmony, and Online iNMF, a
k-nearest neighbor algorithm with 15 neighbors were employed34. In
Cell-ID(c), the gene signatures extracted for each cell c in a dataset D
are assessed through their enrichment against the gene signatures
extracted for each cell c’ in a reference dataset D’. Alternatively, Cell-
ID(g) takes advantage of a grouping of cells inD,whereper-groupgene
signatures are extracted and evaluated against the gene signatures for
each cell c in the query dataset D.

In the proposed genomap+genoNet analysis, the scRNA-seq data
was first converted into genomaps by the maximization of system
entropy without supervision. The genoNet was then trained in a
supervised fashion by using the generated genomaps. To benchmark
the genomap+genoNet approach, several supervised learning models
(such as Cell-ID, SingleR, random forest etc) were employed. In
establishing these benchmarking models, 70% and 30% of the data
were selected randomly for training and testing, respectively. In all our
analyses, following the common practice in bioinformatics
community69, we selected around 5–10% of the most variable genes
(see Supplementary Table S6) by using ‘dispersion’ as the ‘selection.-
method’ in ‘findvariablefeatures’ function of Seurat87. As demonstrated
in Supplementary Fig. S21, our proposed approach outperforms all

existingmethods for different number of highly variable genes (HVGs)
in cell trajectory analysis. For trajectory analysis, we used the default
configuration of PHATE with 100 principal components (PCs) in all
analyses. However, we have also included analyses with other numbers
of PCs (200 and 300) in the Supplementary Fig. S20 to demonstrate
the high performance of genomap+genoNet for different numbers of
PCs. For clustering analysis, we inputted the first 37 PCs into t-SNE and
UMAP for generating Fig. 9, and 20 PCs into UMAP for creating Fig. 5
following the original studies. For creating Fig. 4, we used the Python
codes from https://github.com/elo073/TissStab provided by the ori-
ginal authors. For generating the gSNE and gMAP results, we obtained
the features from the second last fully connected layer of the genoNet,
and then applied PCA with t-SNE and UMAP, respectively.

Creation of distance matrix for 2D grid positions of genomaps
and scaling of interaction matrix
For even number of rows/columns (p/q), the row (column) grid of 2D
genomap starts at � p

2 (� q
2) and ends at p

2 � 1 (q2� 1). For odd p/q, the

row (column) grid starts at � p�1
2 (� q�1

2 ) and ends at p�1
2 (q�12 ). The

location value inside the grid is computed as
ffiffiffiffiffiffiffiffiffiffiffiffi
i2 + j2

q
for location (i, j).

The matrix with the location values is then reshaped to a vector using
column-wise aggregation (the vector contains the first column, then
second column and soon). The pairwise Euclidean distance among the
first n positions of the vector is then computed to obtain the �C so that
there is a one-to-one relationship between genes and grid locations.
We fill the last p * q − n positions of geomaps with zero when n < p * q.
The interaction matrix ρ is scaled from 0 to 2 by subtracting from 1 to
obtain C. The value of C and �C for TM dataset are shown as heatmaps
and tables in Supplementary Figs. S17–S19.

Architecture and training details of genoNet
For all the classification in this paper, we used genoNet architecture
with 10 layers: input layer, 1 convolutional layerwith kernel size 3 and 8
channels, 2 relu layers, 3 fully connected layers, 1 dropout layer, soft-
max layer and classification layer (see Supplementary Table S2). We
implementedgenoNet inPyTorch88 framework.Mini-batch sizewas set
to 128 in all trainings. Shuffling was performed at every epoch in all
trainings. Adam optimizer with weight decay was used for network
optimization. Initial learning rate was fixed at 0.001 and weight decay
rate of 0.00001was used in all trainings. The number of neurons in last
fully connected (FC) layer of the supervised genoNet was set to 100
and of the unsupervised genoNet to 512. As unsupervised genoNet is
used for feature extraction, it final FC layer was set to a larger value
than the supervised genoNet. Maximum epoch was set to 150 for
training supervised genoNet. 30 epochs were enough for training the
unsupervised genoNet. The unsupervised genoNet was trained in the
same way as supervised genoNet with the data labels estimated using
x-means clustering86. The number of initial clusters were set at 10 and
the initial cluster centers were computed using k-means++89. For
genomap+genoNet analysis, at first genomaps are created from the
data and then genoNet is performed on the genomaps in supervised/
unsupervised format based on the task.

Computation of cosine similarity, accuracy, and cluster quality
indices
For calculation of NMI, accuracy, cluster quality indices, we at first
cluster the data intoNg classes (Ng is number of classes in ground truth
label) by Louvain clustering technique46,47. In Louvain clustering, a full
similarity graph is developed using the Euclidean distances among the
data points. A graph clustering with random initialization is then per-
formed to maximize the modularity of the graph46,47. We next find the
best map of cluster labels in comparison to the ground truth labels.
These cluster labels are then used to compute the indices. NMI is the
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normalized mutual information90 between the estimated labels and
true labels computed following the work of Becht et al.26. Accuracy is
the number of correctly found class labels divided by the total number
of class labels. The silhouette value91 is a measure of how similar a data
point is to its own cluster compared to other clusters. The silhouette
ranges from −1 to +1, where a high value indicates that the data is well-
clustered. Adjusted Rand (AR) index is computed using the formula
reported in the work of Hubert et al.92. Cosine similarity is computed

by x1x2
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1x1
T Þðx2x2

T Þ
p , where x1 and x2 are two gene expression vectors of

the same length and superscript T denotes the transpose of the vector.

Datasets
Tabula Muris (TM)22. This dataset represents a compendium of single-
cell transcriptomic data from the model organism Mus musculus that
comprises more than 100,000 cells from 20 organs and tissues of
mice. The dataset reveals the gene expression in poorly characterized
cell populations and enables a direct and controlled comparison of
gene expression levels in cell types shared between tissues, such as T
lymphocytes and endothelial cells from different anatomical
locations22. Two distinct technologies were used for acquisition of the
data: microfluidic droplet-based 30-end counting and the full-length
transcript analysis based on fluorescence-activated cell sorting. After
selecting the most variable 1089 genes, we constructed genomaps of
the cells and extracted different levels of features from the genomaps
for high performance classification (Fig. 2).

Ischaemic sensitivity of human tissue by single cell RNA seq25. This
study assesses the effect of cold ischaemic time on scRNA-seq data
from human tissues using 10x Genomics 30 scRNA-seq. The dataset is
from spleen, esophagus epithelium and lung parenchyma, three tis-
sues that had previously been reported to have differential sensitivity
to ischaemia25. Samples were collected into Hypothermasol FRS
hypothermic preservation media and dissociated fresh (as soon as
possible) or at 12h, 24h, 72h post onset of cold ischaemia in the donor.
Single cell and bulk RNA-seq data were generated at a series of time
points and whole genome sequencing was carried out for all the
donors. We used the datasets to show the efficacy of the proposed
approach in cell recognition (Fig. 4).

T cell landscape29. Age-associated changes in the functionality of CD4
T cells have been linked to both declined immunity and chronic
inflammation. For detailed characterization of CD4 T cell phenotypes
to explain these dysregulated functional properties, Elyahu et al. used
scRNA-seq andmultidimensional protein analyses to profile thousands
of CD4 T cells from young and old mice. It has been found from their
study that the landscape ofCD4Tcell subsets is verydifferent between
young and old mice. Three cell subsets, namely exhausted, cytotoxic,
and activated regulatory T cells (aTregs), appear rarely in young mice
and gradually accumulate with age. In our analyses, we created geno-
maps of the available 24,007 cells and extracted different levels of
features for accurate classification (Fig. 5).

Comprehensive single cell transcriptome lineages of a proto-
vertebrate. Studies of ascidian (sea squirt) embryos have high-
lighted the importance of cell lineages in animal development for
over 100 years. As simple proto-vertebrates, they are also used to
explore the evolutionary origins of novel cell types, such as cranial
placodes and neural crest in vertebrates. To build upon these
efforts, the authors in ref. 40 have determined comprehensive single
cell transcriptomes of Ciona intestinalis throughout embryogen-
esis. 90,579 cells from 10 different developmental stages were
examined, spanning the entirety of morphogenesis, from the onset
of gastrulation at the 110-cell stage to the hatching of swimming
tadpoles. This represents an average of over 12-fold coverage for

every cell at every stage of development, owing to the small cell
numbers that are a hallmark property of ascidian embryogenesis.
Single cell transcriptome trajectories were used to construct “vir-
tual” cell lineage maps and provisional gene networks for a variety
of cell types, including nearly 40 different neuronal subtypes
comprising the larval nervous system. In our analyses, we created
genomaps of the cells and used combination of unsupervised gen-
oNet and PHATE for cellular trajectory analysis (Fig. 8).

Comprehensive classification of retinal bipolar neurons43. The
dataset analyzed in this section is from a massively parallel scRNA-
seq profiled from a heterogeneous class of neurons, mouse retinal
bipolar cells (BCs)43. The motivation of the study is to characterize
and classify neuronal cells using gene expression data. From a
population of 27,499 BCs, Shekhar et al. identified 15 types of neu-
ron cells, including all types observed previously and two new
types. The experimental protocol is as follows: 1) retinas from Vsx2-
GFP43micewere dissociated, followed by fluorescence activated cell
(FAC) sorting for GFP+cells. 2) Single-cell libraries were prepared
using Drop-seq and sequenced. 3) Raw reads were processed to
obtain the digital expression matrix (genes cells). In our analyses,
we created genomaps of the neuron cells and used unsupervised
genoNet for dimensionality reduction, visualization and cluster-
ing (Fig. 9).

The number of cells and genes in raw datasets and used in gen-
omap analysis is added in Supplementary Table S6.

Statistics & Reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. There was no blinding. The analyses performed do not involve
evaluation of any subjective matters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current
study are available within the manuscript and supplementary. The
accession numbers of the used datasets are: Baron36 (GSE84133),
Muraro37 (GSE85241), Segerstolpe35 (E-MTAB-5061), Xin38 (GSE81608),
Wang39 (GSE83139), ischaemic sensitivity25 (PRJEB31843), TM22

(GSE109774). T cell landscape, proto-vertebrate transcriptomics, and
retinal bipolar neuron datasets were downloaded from single cell
portal of Broad institute with study number SCP490, SCP454, and
SCP3, respectively. Note that the user needs to register to the single
cell portal of Broad Institute with an email and a password. He/she can
then login into the portal with the email and password and download
the datasets. All other relevant data supporting the key findings of this
study are available within the article and its Supplementary Informa-
tion files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
Genomap implementation is available as a web-based computational
tools at http://analyxus.com/compute/genomap. Genomap imple-
mentation is alsoavailable as aCodeOcean capsule (https://doi.org/10.
24433/CO.0640398.v1). Its source codes can be found at https://
github.com/xinglab-ai/genomap(https://zenodo.org/badge/latestdoi/
589035404)93.
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