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Topological superconducting vortex from
trivial electronic bands

Lun-Hui Hu 1,2 & Rui-Xing Zhang 1,2,3

Superconducting vortices are promising traps to confinenon-AbelianMajorana
quasi-particles. It has been widely believed that bulk-state topology, of either
normal-state or superconducting ground-state wavefunctions, is crucial for
enabling Majorana zero modes in solid-state systems. This common belief has
shaped two major search directions for Majorana modes, in either intrinsic
topological superconductors or trivially superconducting topological materi-
als. Here we show that Majorana-carrying superconducting vortex is not
exclusive to bulk-state topology, but can arise from topologically trivial quan-
tum materials as well. We predict that the trivial bands in superconducting
HgTe-class materials are responsible for inducing anomalous vortex topologi-
cal physics that goes beyond any existing theoretical paradigms. A feasible
schemeof strain-controlledMajorana engineering and experimental signatures
for vortex Majorana modes are also discussed. Our work provides new guide-
lines for vortex-based Majorana search in general superconductors.

In condensed matter systems, the marriage of topology and electron
correlations allows for fractionalizing electronic degrees of freedom
into exotic non-Abelian quasiparticles such as Majorana zero modes
(MZMs)1,2. Research efforts in the past two decades have together
established superconductors (SCs) with certain topological properties
as the best venue for trapping and manipulating MZMs, with which
quantum information can be processed in a topologically protected
manner. For example, a topological SC (TSC) can host zero-
dimensional (0D) MZMs bound to either its geometric boundary3 or
the superconducting vortex4, a manifestation of the bulk-boundary
correspondence principle. This scenario has motivated enormous
research efforts in unconventional SCs and ferromagnet-SC
heterostructures5–8, where natural and artificial TSCs are believed to
exist, respectively. Remarkably, such a topological requirement can be
further relaxed for vortex-trapped MZMs if the bulk electronic band
structure, instead of the superconductivity itself, carries a nontrivial
topological index9,10. This spirit also inspires another intensive search
of topological-bandmaterials with intrinsic yet non-topological SC11–18,
withmany promising candidates discovered19–22. However, as far as we
know, the possibility of trappingMZMs in trivial s-wave SCs with trivial
electronic band structures has been rarely explored in the literature.

In this work, we show that a three-dimensional (3D) s-wave spin-
singlet SC, with certain non-topological normal states, is capable of
harboring Majorana-carrying topological vortices. This conclusion is
explicitly demonstrated in the superconducting phase of 3D Luttinger
semimetal (LSM)23 as a proof of concept, whose normal-state semi-
metallicity is of trivial topology. Topological superconducting vortex-
line states with either 0D end-localized MZMs or a 1D Dirac-nodal
dispersion are found to be ubiquitous in the vortex phase diagram of
LSMs, shedding new light on this 60-year-old classical band system.
The vortex-line topology here manifests a distinct origin from known
vortex Majorana theories9–17,24–28, most of which would require topo-
logical band inversion in the normal states. Furthermore, a tensile-
strained LSM is found to be a bulk-trivial yet vortex-exotic band insu-
lator, which harbors distinct topological vortex phases in the presence
of electron and hole dopings, respectively.

LSMs generally show up as the Γ8 quartet in HgTe-class materials,
where the inversionbetween Γ8 and Γ6 bands usually creates a zero-gap
topological insulator (TI). The composition of TI and LSM bands offers
a minimal exemplar to visualize the competition between topological
and trivial bulk bands for deciding the vortex topology. While a
topological-band-only analysis anticipates a Majorana-carrying Kitaev
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vortex, our new vortex paradigm predicts a Majorana-free topological
nodal vortex instead, further confirmed by our numerical simulations.
We propose the lattice strain effect as a promising control knob to
detect and engineer vortex MZMs in superconducting HgTe-class
materials. Experimental signatures of the proposed vortex topological
physics are discussed in detail. We conclude by highlighting the
potentially crucial role of low-energy trivial bands in deciding the
vortex topology in general SCs and further providing suggestions on
the ongoing Majorana search.

Results
Cn-symmetric vortex topology
We start with a general topological discussion on the superconducting
vortex-line states. A superconducting vortex in a 3D Bogoliubov-de
Gennes (BdG) system is a 1D line defect that traps low-energy Caroli-de
Gennes-Matricon (CdGM) bound states. Generated by an external
magnetic field B, the CdGM states disperse along kB∥B to form an
effective 1D system in symmetry class D, as described by a vortex-line
Hamiltonian hvort(kB). Throughout this work, we will denote ẑ as the
magnetic field direction for simplicity. Besides the built-in particle-
hole symmetry (PHS), hvort can additionally respect GB, a subgroup of
the 3D crystalline group G in the zero-field limit. The band topology of
hvort is protected by both PHS Ξ and GB.

We focus in this work on general s-wave spin-singlet super-
conductors, where GB is a n-fold rotation group Cn and every CdGM
state carries a Cn index Jz∈ {0, 1, 2,…, n − 1}, i.e., the ẑ-directional
angular momentummodulo n. CdGM states with different Jz labels are
decoupled from each other along kz and each Jz sector can be char-
acterized by its own 1D topological index. With an s-wave pairing, Jz 2
f0, n2g sectors are PHS invariant themselves and carry a Z2 Pfaffian
index νJz 2 f0, 1g3. Note that for systems with a non-s-wave pairing, the
PHS-invariant Jz sectors might be different from the above. When
νJz = 1, all Jz-indexed CdGM states constitute a 1D TSC phase that is
equivalent to a Kitaev Majorana chain, contributing to a Jz-labeled
vortexMZMon the sample surface.Wedub this gapped vortex phase a
Kitaev vortex. On the other hand, Jz and n − Jz form particle-hole con-
jugate sectors if Jz=2 f0, n2g and together carry a Z-type topological
index,

QJz
=nðvÞ

Jz
ð0Þ � nðvÞ

Jz
ðπÞ, ð1Þ

where nðvÞ
Jz
ðkz Þ counts the number of Jz-carrying CdGM states with

negative energy at kz. A derivation ofQJz
is provided in Supplementary

Note 1. Physically, QJz
indicates the number of pairs of Cn-protected

BdG nodal points along kz, signaling a band-inverted gapless vortex
state dubbed a nodal vortex. Kitaev and nodal vortices are elementary
building blocks to construct general Cn-protected vortex topological
phenomena.

We now demonstrate our classification scheme. For instance, the
C2 group possesses two PHS-invariant Jz sectors Jz =0 and Jz = 1, and a
general C2-invariant vortex can only harbor Kitaev vortices but not the
nodal ones. The vortex topology is then characterized by ν0,1, thus
being Z2 ×Z2 classified. When ν0 = ν1 = 1, a Majorana doublet emerges
in the surface vortex core and the two MZMs will not mix for carrying
distinct Jz labels. TakeC6 as another example, the ðZ2Þ2 =Z2 ×Z2 part is
contributed by the PHS-invariant sectors Jz =0 and Jz = 3, similar to that
in the C2 case. In addition, (Jz = 1, Jz = 5) and (Jz = 2, Jz = 4) form two pairs
of particle-hole conjugate sectors indicated byQ1 andQ2, so that only
nodal vortices can occur in these sectors. This leads to another Z×Z
contribution, promoting the classification of C6-symmetric vortices to
ðZ2Þ2 × ðZÞ2. We summarize the vortex topological classification and
characterization for all Cn groups in Table 1.

Notably, the protection of vortex-line topology is decided by
both the bulk crystalline symmetry group and the magnetic field
orientation. Thus, it is possible to realize distinct vortex topological

states in a single superconducting material by simply rotating the
applied magnetic field. This clearly implies the absence of an exact
one-to-one mapping between bulk-state and vortex-line topologies.
This observation motivates us to explore the possibility of topolo-
gical vortices inside a completely trivial SC, whose topological
triviality manifests in both its Cooper-pair and normal-state
wavefunctions.

Vortex topology from trivial bulk bands
Our target trivial-band system is a 3D Luttinger semimetal (LSM),
which is defined by a single fourfold degenerate quadratic band
touching at Γ23,29, i.e., the origin of the Brillouin zone (BZ). This band
degeneracy arises from a 4D double-valued irreducible representation
(irrep) Γ8 of point groups such as O,Oh, and Td. Unlike traditional
topological semimetals30–32, thepoint nodeof an LSMdoes not serve as
a topological quantum critical point between two distinct lower-
dimensional gapped topological phases, and is thus trivial in the
topological sense. Remarkably, such a trivial band set, together with
isotropic s-wave superconductivity, will give rise to nontrivial vortex
topologies, which we will show below.

The Γ8-bands are captured by the atomic basis

∣ΨΓ8
i= ð∣p + , "i, ∣p + , #i, ∣p�, "i, ∣p�, #iÞT with ↑,↓ denoting the elec-

tron spin and p± = px ± ipy orbitals. Under this basis, we consider a k ⋅ p
model Hamiltonian around Γ that respects inversion, time-reversal,
and around-ẑ-axis full rotation symmetries. In particular, HLSM =

λ1k
2γ0 +MðkÞγ5 + vzkzðkxγ45 + kyγ35Þ �

ffiffiffi
3

p
λ2ððk2

x � k2
yÞγ25 + 2kxkyγ15Þ.

Here,MðkÞ=m1ðk2
x + k

2
yÞ+m2k

2
z and the 4 × 4 γ-matrices are defined as

γ1 = σx⊗ sz, γ2 = σy⊗ sz, γ3 = σ0⊗ sx, γ4 = σ0⊗ sy, γ5 = σz⊗ sz with
γmn = −iγmγn and γ0 = σ0⊗ s0 the identity matrix. σ and s are
Pauli matrices denoting the orbital and spin degrees of freedom,
respectively. Without loss of generality, we set λ1 = 0 in the
following discussion, and the four bulk band dispersions are

E ± ðkÞ= ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 + 3λ
2
2Þk4

k + ð2m1m2 + v2z Þk2
zk

2
k +m

2
2k

4
z

q
with k2

k = k
2
x + k

2
y .

Therefore, HLSM describes a quadratic semimetal with different in-
plane and out-of-plane dispersions, serving as an anisotropic general-
ization of the conventional isotropic LSMmodel23,29. The isotropic limit

can be achieved with m1 = � 1
2m2 = λ2 and vz = � 2

ffiffiffi
3

p
λ2, leading to

E±(k) = ±2∣λ2∣k2 with k2 = k2
k + k

2
z . A dispersion plot for the isotropic LSM

phase is shown in Fig. 1a. The superconductivity of LSMs is described
by generalizing HLSM into a BdG form,

HBdG =
HLSMðkÞ � μ HΔ

Hy
Δ μ�H*

LSMð�kÞ

 !
, ð2Þ

whereμ is the chemicalpotential.HΔ = iΔðrÞγ13 describes an isotropic s-
wave spin-singlet pairing, makingHBdG carry a trivial bulk topology. A
superconducting vortex line centering at r =0 can be generated by
ΔðrÞ=Δ0 tanhðr=ξ0Þeiθ, with (r, θ) being the in-plane polar coordinates
and ξ0 the SC coherence length.

Table 1 | Vortex topological classification of Cn-invariant s-
wave spin-singlet superconductors

Symmetry C1 C2 C3 C4 C6

Classification Z2 Z2 ×Z2 Z2 ×Z ðZ2Þ2 ×Z ðZ2Þ2 × ðZÞ2

Invariant ν0 ν0;1 ðν0,Q1Þ ðν0,2,Q1Þ ðν0,3,Q1,2Þ
νJz 2 Z2 is a symmetry-indexed topological invariant signaling the presence (νJz =1) or absence
(νJz =0) of a Jz-labeled vortex Majorana zero mode (MZM). The Cn topological charge QJz

2 Z
characterizes the symmetry-protected vortex band crossings (i.e., a nodal vortex) near zero
energy. In principle, a vortex line is capable of carrying multiple 0D vortex MZMs and nodal
bands that donot interfere with eachother, as long as they are supported bydistinct topological
indices.
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The origin of topological vortex-line modes in LSMs can be
understood in a perturbative manner, which is schematically depicted
in Fig. 1. This is motivated by a key observation that the normal state
HLSMðkÞ=hð0ÞðkkÞ+hð1Þðkk, kz Þ with

hð0ÞðkkÞ=
0 �

ffiffiffi
3

p
λ2k

2
�

�
ffiffiffi
3

p
λ2k

2
+ 0

 !
� s0: ð3Þ

Here k± = kx ± iky. The unperturbed part h(0) describes two iden-
tical copies of 2D massless quadratic Dirac fermions, each of which
carries a 2πBerryphaseand is similar to those live inbilayer graphene33

and on the surfaces of topological crystalline insulators34,35. While a 2D
linear Dirac fermion carries a single vortex MZM9, we naturally expect
h(0) to support four vortex MZMs if going superconducting, with each
quadratic Dirac fermion contributing a pair of MZMs in Fig. 1c.

This conjecture is confirmed by exactly mapping the 2D vortex
problem of h(0)(k∥) to a 3D chiral topological insulator36, thanks to an
emergent chiral symmetryS of the system.This allowsus to exploit the
3D chiral winding number NS

37 to topologically quantify the zero
modes, with the spatial polar angle θ acting as an extra dimension in
addition to kx and ky. As discussed inMethods,we analytically calculate
NS =4, confirming these four vortex zero modes. We further simulate
the superconducting vortex of h(0)(k∥) on a large disc geometry to
numerically confirm the zero modes, and find that they are Jz-labeled.
In particular, two zeromodes form a PHS-related pair and carry Jz = ±1,
while the other two are both labeled by Jz =0.

Taking into account h(1)(k∥, kz), the four zero modes start to
hybridize, split, and disperse along kz. Crucially, we note that in
hð1Þ,MðkÞ=m1ðk2

x + k
2
yÞ+m2k

2
z features m1m2 = �2λ22 <0 for an iso-

tropic LSM. As we rigorously prove in Supplementary Note 3, a
negative m1 will send two zero modes with Jz = 0, 1 [i.e. colored in
black and green in Fig. 1c] to negative energy. Meanwhile, a positive
m2 will make sure the same zero modes to quadratically disperse

along kz, but with a positive mass. The PHS requires the other two
zero modes with Jz = 0, −1 to behave oppositely. As a result, the ori-
ginal quartet of zero modes evolves into two pairs of 1D inverted
CdGM bands, as numerically shown in Fig. 1e. The inverted bands
with Jz = ±1 feature a pair of rotation-protected band crossings,
forming a nodal vortex state. The Jz = 0 bands, however, will open up
a topological gap as the vz term of h(1) is included [see Fig. 1f], which
forms a Majorana-carrying Kitaev vortex. Moreover, this exotic
vortex-line physics holds in the isotropic limit as well, which we
confirm numerically by mapping out the vortex topological phase
diagram in Fig. 2. Therefore, we have managed to prove that a
superconducting anisotropic or isotropic LSM will simultaneously
carry topological Kitaev and nodal vortices, i.e., ν0 =Q1 = 1, despite
the trivial nature of its normal-state electron bands.

As a 4D irrep of the crystalline group, the quadratic band touching
of LSM is unstable against lattice strain effects. It is natural to ask about
the stability of the LSM-origined vortex topological phases under
strain-induced perturbations. Motivated by this, we consider to per-
turb the original LSM Hamiltonian with two different strain effects
describedbyH0

LSM = �Σstrγ5 +Σsbγ15. In particular, a positive (negative)
Σstr describes a uniaxial tensile (compressive) strain that reduces the
original O(3) symmetry to an around-ẑ continuous rotation symmetry
C∞. Meanwhile, Σsb further breaks C∞ down to a twofold rotation C2.
Both terms preserve inversion symmetry P = γ0 of the normal-state
Hamiltonian. In Fig. 2, we numerically map out the vortex topological
phase diagrams (VTPDs) as a function of μ,Σstr, and Σsb. This is
achieved by regularizing the vortex-inserted LSM Hamiltonian
(HLSM +H0

LSM) on a 80 × 80 square latttice and calculating its CdGM
energy spectrum along kz. As elaborated in Supplementary Note 4, the
VTPDs for lattice-regularizedmodels generally agreewell with thoseof
the continuummodels in a quantitative manner. Whenever the CdGM
gap closes at kz =0, the vortex-line topology will simultaneously
change.

= = 0Luttinger Semimetal Superconducting Vortex

Kitaev Vortex 
⊕

Nodal Vortex

= 0, > 0

< 0, > 0, = 0< 0, > 0, ≠ 0

a b c
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0 − 1 1 0

SC Bulk

SC Bulk
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SC Bulk
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Fig. 1 | Topological superconducting vortex in a Luttinger semimetal (LSM).
a shows the quadratic band touching around Γ point of a LSM. In (b), the super-
conducting (SC) pairing function Δ(x, y) is illustrated for the kz = 0 plane, where the
vortex phase winding is denoted by in-plane arrows surrounding the vortex core.
Four vortex zeromodes are expected to occur for LSMat kz =0 due to an emergent
chiral winding number. The vortex-line low-energy spectra Eqp/Δ0 are illustrated in
(c) form1 =m2 = vz =0with four zero-energy flat bands labeled by angularmomenta

Jz; and in (d) form1 = 0,m2 > 0, vz =0.Twopairsof vortexnodal bands showup in (e)
for vz =0,while only the ones formedby Jz = ±1 are symmetryprotected. Turning on
vz ≠0 will gap out the unprotected crossings within Jz =0 sector, as shown in (f),
leading to aKitaev vortex. Thefinal vortex state of anLSMconsists of a nodal vortex
coexisting with a Kitaev vortex. e, f are numerically simulated in a disk geometry
with band parametersm1 = � 1,m2 = 2,vk =

ffiffiffi
3

p
,vz = 2

ffiffiffi
3

p
,Δ0 =0:2.
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Let us start with the Σstr-μ VTPD in Fig. 2a with Σsb = 0. At the bulk-
band level, Σstr < 0 creates a new band inversion around Γ, leading to a
Dirac semimetal phasewith a pair of linearly dispersing 3DDirac nodes
on the kz axis38. Unlike Na3Bi or Cd3As2, this Dirac semimetal phase
does not feature any topological surface state, because of P = γ0.
Remarkably, the VTPD is governed by the coexistence of Kitaev and
nodal vortex phases (denoted as Kitaev⊕Nodal) for Σstr ≤0, as shown
in Fig. 2a. This agreeswithour analytical perturbation theory derived in
Supplementary Note 3, where a negative Σstr enhances the band
inversions of CdGM bands and thus stabilizes the Kitaev⊕Nodal
phase. Conversely, a positive Σstr would destabilize this phase at small
μ. Because Σstr > 0 energetically shifts the electron bands in the
opposite way, driving the system into a trivial band insulator. When μ
lies inside the band gap (∣μ∣<Σstr), the vortex-line topology is guar-
anteed to be trivial for having neither bulk nor surface states at the
Fermi level, further forming a fan-shaped trivial vortex regime as
confirmed in Fig. 2a. Strikingly, hole (electron) doping of this trivial
insulator will enable a topological Kitaev (nodal) vortex phase.

Switching on Σsb generally spoils symmetry protection of the
nodal vortex phase by introducing a topological gap for the CdGM
states. Due to the PHS and the remaining C2, this new gapped vortex
state necessarily carries a nontrivial Kitaev Z2 index ν1 = 1 in the
C2 = −1 sector. Therefore, this Σsb-induced Kitaev phase is topologically
distinct from the preexisting Kitaev vortex phase that carries ν0 = 1, a
manifestation of the C2-stabilized Z2 ×Z2 vortex topological classifi-
cation shown in Table 1.We thus dub a Kitaev vortex phase living in the
C2 = ± 1 sector a Kitaev± vortex phase, to highlight its symmetry-
eigenvalue label. For a fixed Σstr = 0:3 (i.e., the normal state is the trivial
insulator phase), we numerically map out the Σsb-μ VTPD, as shown in
Fig. 2b. Interestingly, the VTPD contains all four gapped vortex phases
dictated by the set of Z2 ×Z2 topological indices (ν0, ν1): trivial phase
with (0, 0), Kitaev+ phase with (1, 0), Kitaev− phase with (0, 1), and
Kitaev−⊕Kitaev+ phase with (1, 1). In Supplementary Note 2.3, we
numerically calculate the surface local density of states for both
Kitaev± vortex phases using the recursive Green’s function method39.
The existence of vortex Majorana zero mode for each phase is con-
firmed by the presence of a zero-bias peak at the vortex core center.
This unambiguously demonstrates how a variety of vortex-line topol-
ogies, as well as their accompanied Majorana modes, can arise from a
doped trivial-band insulator with s-wave superconductivity.

Material realization
The LSM-band physics has been experimentally established in HgTe-
class materials, including HgTe40, α-Sn38,41, pyrochlore iridates such as
Pr2Ir2O7

42, half-Heusler alloys such as LaPtBi43, etc. As shown in Fig. 3b,
the typical bulk-band structureofHgTe-classmaterials is well captured
by a six-band Kanemodel, which consists of a pair of s-type Γ6 electron
bands with Jz = ±1/2 and a quartet of p-type Γ8 hole bands with Jz = ±1/2
[light holes (LHs)] and Jz = ±3/2 [heavy holes (HHs)]. To achieve LSM
bands, the band order between Γ6 and LH-bands needs to be inverted
when compared to that in semiconductors such as CdTe. This band
inversionmakes Γ6 and LHs a typical TI band set, sitting right below the
Γ8 band touching (i.e., LSM). As a result, LSM and TI bands always
coexist near the Fermi level in HgTe-class materials, as shown in the
surface spectrum of HgTe in Fig. 3c.

Given the Dirac surface state in Fig. 3c, a direct application of the
Fu-Kane theory would immediately predict the existence of gapped
Kitaev vortex topology in the vortex phase diagram. Such a prediction,
however, is oversimplified for dropping both the HH band and the
relevant LSM physics. In addition to the TI-induced Kitaev vortex, we
expect the Γ8 quartet itself will contribute to one additional nodal
vortex state, as well as another Kitaev vortex state, following the ana-
lysis in Fig. 1. As a result, we predict that HgTe-class material will only
host a single nodal vortex instead of a Kitaev one, since

Kitaev vortex × 2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
TI� LSM

�nodal vortex|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
LSM

� nodal vortex|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
HgTe

: ð4Þ

Here, two Kitaev vortices annihilate each other topologically due
to their Z2 topological classification.

To verify Eq. (4), our strategy is to start with a TI-based vortex
system with well-defined Fu-Kane physics, and then gradually turn on
the LSM physics to explore the evolution of vortex topology. This
motivates us to define a generalized six-band Kane model with a new
coupling parameter κ, which serves as an effective measure of the
overall coupling strength between HH bands and the remaining TI
bands. In particular, we have

HKaneðκ,kÞ=
hTIðkÞ κTðkÞ
κTyðkÞ hHHðkÞ

� �
: ð5Þ

−10

−8

−6

−4

−2

0

−10

−8

−6

−4

−2

0
a b

Σ

Kitaev
⊕

Nodal

Nodal

Trivial

Kitaev

Σ

Kitaev−

Kitaev+

Trivial
Kitaev−

⊕

Kitaev+

Fig. 2 | Vortex topological phase diagrams (VTPD) of a strained LSM. Both
VTPDs are mapped out by calculating the vortex-state energy gap at kz =0, whose
logarithmic value is shown by the colors in (a) and (b). Vortex topology changes
whenever the vortex-state gap closes. a shows the VTPD as a function of Σstr and μ.
Specifically, the normal state is a topologically trivial insulator for Σstr > 0 and a

Dirac semimetal forΣstr< 0.b shows the VTPDas a function ofΣsb and μ, with a fixed
Σstr = 0:3 [white arrow in (a)]. The rotational symmetry breaking induced by Σsb
updates the nodal vortex in (a) to the Kitaev− vortex in (b). Here ±is used to
represent the eigenvalue of the twofold rotational symmetry. The model para-
meters for both calculations are the same as those in Fig. 1f.
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The TI bands are described by HTI = E + γ0 + E�γ12 + v=
ffiffiffi
6

p
ðkyγ24�

kxγ23 + 2kzγ25Þ. We also denote hHH = E8s0 and E± = (E6 ± E8)/2, with
E6 = Ec + λ3k2 and E8 = λ1k

2 � λ2ðk2
x + k

2
y � 2k2

z Þ. Controlled by κ, the
inter-band-coupling term is given by

TðkÞyffiffiffi
3

p
λ2

=
0 � vffiffi

6
p

λ2
k + �k2

+ 2kzk +

� vffiffi
6

p
λ2
k� 0 �2kzk� �k2

�

0
@

1
A: ð6Þ

Notably, the limitwith κ = 0 turns off all the couplings betweenHH
bands andTI bands,which is dubbed adecoupling limit. As κ increases,
LSM physics is gradually turned on among the Γ8 bands until it even-
tually reaches the isotropic limit of LSM at κ = 1, which is dubbed the
LSM limit.Without loss of generality,wechoose the realisticparameter
set of bulk HgTe40 in all our numerical simulations below. Other
members in the HgTe-class will have slightly different model para-
meters, whichwill only quantitatively, but not qualitatively,modify our
phase diagram of the topological vortices.

The VTPD of HgTe with an isotropic s-wave spin-singlet pairing is
mapped out as a function of κ and the chemical potential μ in Fig. 3a.
The vortex physics of HKaneðκ,kÞ is numerically simulated in a disk
geometry with the Bessel function expansion technique (see Meth-
ods). In the decoupling limit κ = 0, only the Kitaev vortex phase is
found in the VTPD for μ∈ [−0.69 eV, 0.22 eV], which exists around the
energy window of the topological gap between Γ6 and LH bands. Since
the TI physics dominates at κ =0, the appearance of a Kitaev vortex

agrees well with both the Fu-Kane theory and the π-Berry-phase cri-
terion in ref. 10. As we increase κ from zero, the Kitaev vortex region
expands rapidly24 and suddenly vanishes at κ = 0.779. This observation
of Kitaev-vortex cancellation matches our expectation in Eq. (4).

Meanwhile, a new topological region with the nodal vortex starts
to emerge at κ =0.314 and continues to expand as κ grows. Finally, in
the isotropic LSM limit with κ = 1 [i.e., the dashed line in Fig. 3a], only a
nodal vortex phase is found in the κ-μ VTPD for a large range of μ, in
excellent agreement with our prediction in Eq. (4). Nodal vortex dis-
persion with κ = 1 and μ = −0.15 eV is shown in Fig. 3d, which clearly
illustrates a pair of 1D Dirac points formed by the Jz = ±1 CdGM states.
We further find this nodal vortex state indicated by Q1 = � 1, con-
firming its topological stability. Note that Q1 = 1 in Fig. 1 is due to a
different parameter choice in the LSM model, which we elaborate in
Supplementary Note 2.1. Therefore, despite the fact that HgTe is a
zero-gapTI, our calculationpredicts a topological nodal phase to show
up in its superconducting vortices. This deviation from existing
TI-basedMajorana vortex paradigms is a direct consequence of trivial-
band-induced vortex topology.

Strain-controlled Majorana engineering
Given the richness of topological physics in the strain-controlled
VTPDs for LSM,we aremotivated to explore the physical consequence
of perturbing the six-band Kane-model system in Eq. (5) with similar
lattice strains. An experimentally relevant in-plane strain effect is
described by Hstr = diag ½0,0,Σstr,Σstr,� Σstr,� Σstr�38. This coincides
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Fig. 3 | Vortex phase diagram of HgTe. In (a), we show the phase diagram as a
function of inter-band coupling κ and the chemical potential μ, which includes
Kitaev vortex (small κ), Kitaev⊕ nodal vortex (intermediate κ), nodal vortex
(large κ) and trivial vortex. κ = 1 is the Luttinger semimetal (LSM) limit, which
recovers the realistic model parameters for HgTe (dashed black line). b, c Show
the bulk and (001) surface dispersions of HgTe based on a realistic six-band Kane
model, which clearly reveals the coexisting topological insulator (TI) and LSM

physics. In (d), the nodal vortex spectrum Eqp/Δ0 is calculated for the star loca-
tion in (a), with two bands carrying Jz = −1 (orange line) and Jz = +1 (green line)
crossing at zero energy. The strain-controlled topological phase diagram is
shown in (e) as a function of the strain strength Σstr and μ, where the critical strain
strength Σc is defined. f shows the scaling behavior of Σc as a function of Δ0. The
fitting function in the orange dashed line is exactly extrapolated to the origin.
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with the Σstr perturbation considered earlier for LSM, and we thus
adopt the same notation here.

In Fig. 3e, we numerically map out the VTPD as a function of the
strain parameter Σstr and μ. The LSM limit κ = 1 is imposed tomatch the
realistic parameters of HgTe. Similar to the scenario of LSM, a com-
pressive strain with Σstr < 0 creates a new band inversion between LH
andHHbands. This drives the Γ8 bands into a 3DDirac semimetal state
with a pair of linear Dirac nodes, coexisting with the Γ6-LH TI state38.
Interestingly, as shown in Fig. 3e, such a compressive strain will lead to
a rapid expansion of the nodal vortex region, while no Kitaev vortex
phase showsup for any value of μ, similar to the zero-strain limit. Thus,
a compressive strain appears to further stabilize the LSM-induced
vortex topological physics, instead of spoiling it, which agreeswith our
LSM-based VTPD in Fig. 2.

A tensile strain with Σstr > 0 allows LH and HH bands to detach
from each other. In this case, the HH bands behave as a set of trivial
bands floating inside the topological gap formed by Γ6 and LH bands,
without touching any of them. Notably, the TI surface state is now the
only electron state inside the strain-induced energy gap Eg ∼ 2Σstr

between LHs and HHs. Inside this energy window Eg, we expect an
emergence of the Kitaev vortex as required by the Fu-Kane paradigm.
Indeed, Fig. 3e shows a fan-shaped Kitaev-vortex dome for Σstr > 0,
exactly around Eg. Right below the Kitaev-vortex dome, the LSM-
induced nodal vortex state remains to be the dominating vortex phase.
Together with the Σstr-μ VTPD in the compressive region, we conclude
that the LSM-induced vortex topological physics is robust against the
lattice strain effect, even though the bulk LSM bands are not.

Remarkably, the Kitaev-vortex dome shows up only after a finite
positive critical strain Σc [i.e., the distance between two black dashed
lines in Fig. 3e]. While Fu-Kane theory predicts a Kitaev vortex region
for an arbitrarily small Σstr > 0, violation of the Fu-Kane theory occurs
when 0<Σstr < Σc. We remark that this interesting discrepancy arises
from the breakdown of the weak-pairing limit in our numerical
simulation, which, however, appears as a basic assumption in the Fu-
Kane theory. Specifically, the region where the Fu-Kane picture gets
violated in the Σstr-μ VTPD is also where both Σstr and μ are smaller
than the numerical value of SC order parameter Δ0 = 0.05 eV in our
calculation. Practically, the strong finite-size effect makes it chal-
lenging to scale the value ofΔ0 down to a realistic experimental value
(e.g., 1 meV) in our simulation. Therefore, it is exactly this finite-
pairing effect that allows us to deviate from the Fu-Kane theory.
When Σstr >Δ0, we start to approach the weak-pairing limit and this is
why theKitaev-vortex physics begins to showup, signaling a recovery
of the Fu-Kane physics.

To eliminate this finite-pairing effect and further test the limit of
the Fu-Kane theory, we carry out a careful scaling analysis of Σc as a
function of Δ0. As shown in Fig. 3f, the scaling relation fits nicely to a
simple quadratic relation that is well extrapolated to the origin with
Σc =Δ0 = 0,

Σc = χ1Δ0 + χ2Δ
2
0, ð7Þ

where χ1 = 0.59 and χ2 = 1.31meV−1. Physically, the scaling relation
implies a monotonic shrink of the Fu-Kane-violation region as the
pairing amplitude Δ0 decreases. When the weak-pairing limit is
reached at Δ0→0+, the Fu-Kane limit is fully restored with Σc→0+.
Crucially, we note that Δ0 is always small but finite in realistic
superconducting systems. For example, an experimentally relevant
Δ0 ~ 1meV will lead to Σc ~ 0.6meV following Eq. (7). This immediately
leads to two important experimental consequences:
(i) The absence of a Kitaev vortex in an unstrained HgTe generally

holds for any small but finite Δ0;
(ii) VortexMZMscanbe recovered via a strain control, and the critical

strain triggers Σc ~ 0.6meV is experimentally accessible38.

Experimental signatures
The Σstr-μ VTPD in Fig. 3e sheds light on the detection and manipula-
tion of vortex MZMs. By continuously tuning the strain from a com-
pressive type to a tensile type, the vortex of an electron-doped HgTe
(e.g., μ ~ 0.1 eV) will undergo a series of vortex topological phase
transitions, from Majorana-free nodal and trivial vortices to a
Majorana-carrying Kitaev vortex. Consequently, probing the local
density of state (LDOS) at the surface vortex core with a scanning
tunneling microscope (STM) will reveal a single transition at Σc, after
which a zero-bias peak (ZBP) emerges in the tunneling spectrum, as
schematically shown in the bottom panel of Fig. 4a.

While a nodal vortex does not carry MZMs, breaking the around-
axis rotation symmetry spoils the vortex nodal structure and further
leads to a Kitaev vortex18. Such a symmetry-breaking effect can be
feasibly generated by tilting the applied magnetic field B, or applying
an in-plane lattice strain Σsb following H0

LSM defined for LSM [i.e.,
replacing

ffiffiffi
3

p
λ2kxky with

ffiffiffi
3

p
λ2kxky +Σsb in Eq. (6)]. We note that most

HgTe-class materials respect either a space group F�43m (No. 216) or
Fd3m (No. 227), the highest-fold rotation symmetry of which is C3

along (111) direction. Perturbing HgTe-class systems with Σsb will
directly break C3 down to C1, which admits a singleZ2 index ν0. This is
crucially different from the fully rotational symmetric LSM considered
in the previous sections where Σsb:C∞↦ C2. Following our notation in
Fig. 2, we still denote the nodal-origined Kitaev vortex as Kitaev− and
the preexisting Kitaev vortex as Kitaev+ for convenience. However, one
should keep in mind that the Kitaev± vortex phases here are topolo-
gically indistinguishable due to the lack of C2 symmetry.

By tuning Σstr, we expect a Kitaev-trivial-Kitaev transition for a
finite Σsb. As schematically shown in the top panel of Fig. 4a, anMZM-
inducedZBP from theKitaev− vortexwillfirst vanish in the LDOSafter
entering the trivial phase, and will eventually reappear when the
Kitaev+ vortex is turned on. This transition for a fixed μ = 0.1 eV is
explicitly verified by numericallymapping out the VTPD as a function
of Σsb and Σstr, which we summarize in Fig. 4b. Here, we have reg-
ularized the strainedHgTemodel on a 50 × 50 2D square lattice, while
keeping kz a good quantum number. Δ0 = 0.1 eV is applied to elim-
inate any possible finite-size effect. We further numerically explore
the VTPD for a fixed Σsb = 0.2 eV by varying both μ and Σstr and have
observed the same Kitaev-trivial-Kitaev transition, as shown
in Fig. 4c.

Finally, we wonder if the Kitaev± phases in HgTe, despite their
topological equivalence, could be locally distinguished from each
other through surface LDOS measurements. Using the recursive
Green’s function method, we numerically calculate the spatial spin-
resolved surface LDOS D↑(r∥) and D↓(r∥) at a zero-bias voltage for the
strained HgTemodel in a semi-infinite geometry along the ẑ direction.
Open boundary conditions are imposed for both in-plane directions
with Nx =Ny = 35 and we have chosen Σsb = 0.2 eV, μ = 0.2 eV and
Δ0 = 0.2 eV for all calculations to eliminate the in-plane finite-size
effect. Here, r∥ = (x, y) and the vortex core center locates at rc = (18, 18)
in a unit of in-plane lattice constant ax = ay = 6.46Å. The spin-resolved
LDOS plots for a representative Kitaev− vortex phase [the white dot in
Fig. 4c] are shown in Fig. 4d–f. In particular,D↓(r∥) shows a greater ZBP
than that of D↑(r∥) at rc. In contrast, the zero-bias spin texture for the
Kitaev+ vortex phase [the white square in Fig. 4c] is exactly the
opposite, where the ZBP of D↑(r∥) is significantly higher than D↓(r∥) at
rc. Therefore, a state-of-the-art spin-polarized STM should be capable
of extracting the distinct spin patterns for the Kitaev± phases in HgTe-
class materials. We further note that the spin pattern for the Kitaev−
phase here is consistent with that of the Kitaev− vortex phase of LSM
[see Fig. 3 of Supplementary Note 2.3], agreeing with the fact that the
Kitaev− phase of the Kane model arises from the overall trivial LSM-
dominant bands. Observing the above wavefunction information,
together with strain-induced ZBP transitions, will provide rather
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compelling experimental evidence for the Majorana nature of these
topological vortices.

Discussion
We have demonstrated the possibility of topological nontrivial
superconducting vortices based on a set of topology-free electronic
bands. On the material side, we have established HgTe-class materials
as an unprecedented playground to study trivial-band-induced vortex
topology. We notice that intrinsic or proximity-induced super-
conductivity has already been observed in several members of this
material family, including HgTe/Nb heterostructure44, α-Sn/PbTe
heterostructure45,46, and half-Heusler alloys such as LaPtBi47, YPtBi48,
and RPdBi with R = Lu, Tm, Er, Ho49. Our theory will serve as important
guidance to detect, control, and engineer Majorana modes in these
candidate superconducting systems.

Our results further suggest several new guidelines for the ongoing
vortex-based Majorana search. First of all, we note that most
topological-band-based SC candidates have coexisting trivial bands
near the Fermi level, while most literature chooses to drop the trivial
bands to simplify the vortex topology analysis. Our finding, however,
suggests that trivial bands in a topological-band SC should have also
been in the spotlight, without which the Majorana interpretation of the
material could be fallacious. Second, we should not limit the Majorana-
oriented material search to intrinsic TSCs or topological-band SCs,

since Majorana vortices can exist in certain types of bulk-topology
irrelevant SCs as well. We hope that our work will motivate more the-
oretical and experimental research efforts under the spirit of Majorana
from trivial bands and further initiates a new journey of the Majorana
research in this largely uncharted territory, the trivial superconductors.

Methods
Bessel function expansion
TheBessel function expansion technique enables the calculation of the
vortex energy spectrum for continuummodels, whichwewill describe
below. In a rotation-symmetric disk or cylinder geometry, a BdG
HamiltonianHBdG is characterized by two good quantum numbers, z-
directional crystal momentum kz and z-component total angular
momentum Jz. In particular, the angular momentum operator is

Ĵz = ð�i∂θÞI2Nh × 2Nh
+ Jbasis + Jvortex, ð8Þ

where I2Nh × 2Nh
is the 2Nh-by-2Nh identity matrix withNh the dimension

of the normal-state Hamiltonian and (r, θ) denote the in-plane polar
coordinates. For the 4-band LSM (Nh = 4), we have

Jbasis = diag
3
2
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2
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Fig. 4 | Strain-controlled Majorana engineering of HgTe-class materials.
a Schematically shows the evolution of the local density of state (LDOS) at the
vortex core center as a function of bias voltage by tuning both the in-plane lattice
strain strength Σstr and the C3-symmetry-breaking perturbation Σsb. The Kitaev-
trivial-Kitaev transition with vortex Majorana zero mode (MZM) of a Kitaev vortex
in (a) is numerically verified by both mapping the Σstr-Σsb VTPD in (b) at a fixed
μ =0.1 eV, and the Σstr-μ VTPD in (c) at a fixed Σsb = 0.2 eV. The colors in (b) and (c)

represent the logarithmic value of the vortex energy gap at kz =0. The color map
plots of the spatial spin-resolved surface LDOS (a.u.=arbitrary units) at a zero-bias
voltage are numerically calculated for the Kitaev− vortex in (d–f) and the Kitaev+
vortex in (g–i), respectively. These two topologically equivalent Kitaev vortex
phases can be clearly distinguished by their distinct zero-bias spin textures as
shown in fwithD↑ <D↓ and iwith D↑ >D↓ at the vortex core center rc = (18, 18) in a
unit of in-plane lattice constants ax and ay.
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Here, Jvortex arises from the vortex phase winding,

Jvortex = diag � 1
2
,
1
2
,
1
2
,� 1

2
,� 1

2
,
1
2
,
1
2
,� 1

2

� �
: ð10Þ

Clearly, ½̂Jz ,HBdG�=0, and the BdG Hamiltonian matrix can be decom-
posed into Jz-labeled matrix blocks,

HBdG =
X
Jz

�HJz
ðr,θÞ: ð11Þ

As a result, we only need to solve HJz
ðr,θÞ∣ΦðJz , r, θÞ

�
=

E∣ΦðJz ,r,θÞ
�
, where a general energy eigenstate is Jz labeled and further

takes the following form,

∣Φð Jz , r, θÞ
�
= eiðJz�1Þθ½u1ð Jz � 1, rÞ,u2ðJz , rÞeiθ,

u3ð Jz � 2, rÞe�iθ,u4ð Jz + 1, rÞe2iθ, v1ðJz , rÞeiθ,
v2ð Jz + 1, rÞe2iθ, v3ð Jz � 1, rÞ, v4ðJz + 2, rÞe3iθ�T ,

ð12Þ

where both ui(n, r) and vi(n, r) with i = 1, 2, 3, 4 yield the following
expansions,

uðJz ,rÞ=
XN
j = 1

cj,Jzϕð Jz , r,αjÞ, ð13aÞ

vðJz ,rÞ=
XN
j = 1

c0j,Jzϕð Jz , r,αjÞ: ð13bÞ

Here, the normalized Bessel function is defined as

ϕðJz , r,αiÞ=
ffiffiffi
2

p

R
J Jz

ðαir=RÞ=J Jz + 1
ðαiÞ, ð14Þ

where J n is the Bessel function of the first kind. αi and R denote the ith

zero of J Jz
ðrÞ and the radius of the disk, respectively. c and c0 are

expansion coefficients that are yet to be numerically calculated. We
further note that in the polar coordinate system, the crystal momenta
k± = kx ± iky become

k + = eiθ �i
∂
∂r

+
1
r
∂
∂θ

� �
, ð15aÞ

k� = e�iθ �i
∂
∂r

� 1
r
∂
∂θ

� �
, ð15bÞ

which satisfy

k + ðeinθJ nðαrÞÞ= iαeiðn+ 1ÞθJ n+ 1ðαrÞ, ð16aÞ

k�ðeinθJ nðαrÞÞ= � iαeiðn�1ÞθJ n�1ðαrÞ: ð16bÞ

It is also easy to show that

k2
x + k

2
y

	 

einθJ nðαrÞ
h i

=α2 einθJ nðαrÞ
h i

: ð17Þ

The energy eigen-equation is now essentially a set of 1D radial
equations for fixed kz and Jz. In addition, the disk geometry with hard-
wall boundary conditions requires ∣ΦðJz , r, θÞ

�
to satisfy ui(r =R) =

vi(r =R) = 0. Notably, a Bessel functions with a large αi will oscillate
rapidly and we expect it to contribute little to the low-energy vortex-
bound states. Therefore, for a reasonably large N 2 Z>0, we can trun-
cate the zeros of the Bessel functions at αN, making the dimension of

each decoupled Hilbert subspace to be 8N. Physically, this truncation
can be interpreted as a Debye frequency cutoff around the Fermi
energy. Solving these radial equations leads us to the vortex-bound
states and their energy relations for a general vortex problem.

The vortex simulation of the LSMmodel in the continuum limit is
performed using the above Bessel function expansion technique with
Rdisk = 250. We further truncate the zeros of the Bessel function at
N = 250 and numerically confirm the validity of this truncation. As
discussed in Supplementary Note 4, the continuum model approach
agrees quantitatively with the discrete tight-binding model approach.

As for the 6-band Kane model (Nh = 6), a general vortex wave-
function that respects the rotation symmetry is given by

∣ΦKaneð Jz , r,θÞ
�
= eiJzθ½u1ð Jz ,rÞ,u2ð Jz + 1, rÞeiθ,

u3ð Jz , rÞ,u4ð Jz + 1, rÞeiθ,u5ðJz +2, rÞe2iθ,
u6ð Jz � 1, rÞe�iθ, v1ð Jz ,rÞ,v2ðJz � 1, rÞe�iθ,

v3ð Jz , rÞ, v4ðJz � 1, rÞe�iθ, v5ð Jz � 2, rÞe�2iθ,

v6ð Jz + 1, rÞeiθ�T ,

ð18Þ

where the components ui(Jz, r) and vi(Jz, r) with i = 1, 2,…, 6 can be both
expanded by the normalized Bessel functions, as we discussed earlier.
To eliminate the finite-size effect that is induced by a small Δ0, we
consider a large disk radius of Rdisk = 2100 in units of the in-plane
lattice constant. The truncation of the zeros of the Bessel function is
N = 385 and the dimension of Hilbert space in our simulation is
12N = 4620.

We finally remark on the particle-hole symmetry Ξ of ∣ΦðJz , r,θÞ
�
.

Starting from an eigenstate at kz = 0 with HJz
∣ΦðJz , r,θÞ

�
=

EJz
∣ΦðJz , r,θÞ

�
, we have

∣Φ0ð�Jz , r, θÞ
�
=Ξ∣ΦðJz , r, θÞ

�
, ð19aÞ

HJz
∣Φ0ð�Jz , r, θÞ

�
= � EJz

∣Φ0ð�Jz , r,θÞ
�
: ð19bÞ

Since our continuum models with isotropic s-wave spin-singlet
pairings feature a full rotation symmetry, the Jz =0 subspace HJz =0

is
the only sector that respects particle-hole symmetry, while a
Jz ≠0 subspace is related to the −Jz one via particle-hole symmetry.

Chiral winding number and vortex zero modes
We discuss the winding number argument to understand the exis-
tence of vortex zero modes of LSM in Fig. 1c. As shown in Supple-
mentary Note 2.2, it is suggestive to separate Eq. (2) into a direct sum
of two matrix blocks H0 = hΔ(k∥, θ)⊕ h−Δ(k∥, θ) and a perturbation
part H1(k∥, kz). In particular,

hΔðkk,θÞ = Δðcosθτxσ0 � sinθτyσz Þ
+ ~v � k2

x � k2
y

	 

τyσy +2kxkyτyσx

h i
:

ð20Þ

It is easy to check that hΔ(k∥, θ) respects an emergent chiral
symmetry

S = τzσ0, ð21Þ

which is independent of the sign of Δ. A stable vortex zero mode is
necessarily an eigenstate of S and carries a S = ± 1 label. Only zero
modes that are differently S-labeled can interact with each other and
get hybridized, while those carrying the same label cannot get
coupled.

Now hΔ(k∥, θ) manifests as an effective 3D Hamiltonian in the
symmetry class AIII, whose topological behavior is characterized by a
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chiral winding number NS 2 Z36. Physically, we have

NS =N+ 1 �N �1: ð22Þ

Here N ± 1 denotes the number of vortex zero modes that carry
S = ± 1. Evaluation ofNS can be achieved by noting thathΔ(k∥, θ) yields
an off-block-diagonal form, as a result of the chiral symmetry,

hΔðkk, θÞ=
0 Qðkk,θÞ

Qyðkk,θÞ 0

 !
, ð23Þ

with

Qðkk, θÞ=
Δeiθ ~vk2

�
�~vk2

+ Δe�iθ

 !
: ð24Þ

Then the chiral winding number can be written as

NS = � 1
24π2

Z
d2kdθϵμνρ Tr ½ðQ∂μQ

yÞðQ∂νQ
yÞðQ∂ρQyÞ�, ð25Þ

where μ, ν, ρ∈ {kx, ky, θ} and ϵμνρ is the Levi-Civita tensor. Applying
Eq. (25) to Eq. (24), we arrive at

NS = � 1
24π2

Z 2π

0
dφ
Z 2π

0
dθ
Z 1

0

48~v2Δ2k2

ð~v2k4 � Δ2Þ2
kdk

= � 1
24π2 ð2πÞ

2ð�12Þ=2:
ð26Þ

Similarly,NS =2 also holds for the other 4 × 4 block h−Δ since the
value of NS is independent of the sign of Δ. As a result, the net chiral
winding number for H0 is

N ðnetÞ
S =4, ð27Þ

indicating four robust zero-energy vortex-bound states with S = + 1.
Projecting H1(k∥, kz) onto the zero-mode basis will lead us to a
perturbative understanding of the nontrivial vortex topology in
superconducting LSM systems, as illustrated in Fig. 1. The zero modes
further serve as the basis for building an analytical perturbation theory
for the vortex-line Hamiltonian of LSM, as shown in the Supplemen-
tary Note 3.

Data availability
The datasets generated during this study are available from the cor-
responding author on reasonable request.

Code availability
The custom codes generated during this study are available from the
corresponding author on reasonable request.
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