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Application of high-throughput single-
nucleus DNA sequencing in pancreatic
cancer

Haochen Zhang 1,2, Elias-Ramzey Karnoub 2,3, Shigeaki Umeda 2,4,
Ronan Chaligné 5, Ignas Masilionis5, Caitlin A. McIntyre6, Palash Sashittal7,
Akimasa Hayashi 2,4,8, Amanda Zucker 2,4,9, Katelyn Mullen 1,2,
Jungeui Hong3,4, Alvin Makohon-Moore2,4,10 &
Christine A. Iacobuzio-Donahue 2,3,4

Despite insights gained by bulk DNA sequencing of cancer it remains chal-
lenging to resolve the admixture of normal and tumor cells, and/or of distinct
tumor subclones; high-throughput single-cell DNA sequencing circumvents
these and brings cancer genomic studies to higher resolution. However, its
application has been limited to liquid tumors or a small batch of solid tumors,
mainly because of the lack of a scalable workflow to process solid tumor
samples. Herewe optimize a highly automated nuclei extractionworkflow that
achieves fast and reliable targeted single-nucleus DNA library preparation of
38 samples from 16 pancreatic ductal adenocarcinoma patients, with an
average library yield per sample of 2867 single nuclei. We demonstrate that
this workflow not only performs well using low cellularity or low tumor purity
samples but reveals genomic evolution patterns of pancreatic ductal adeno-
carcinoma as well.

The field of single-cell genomics, since its advent about 10 years ago1,2,
has been striving to increase the throughput and resolution of cancer
research. Single-cell DNA sequencing (scDNA-seq) offers many
advantages over traditional “bulk” DNA-seq. Most importantly, it cir-
cumvents the issue of “mixed signals”3, i.e. the admixture of normal
and tumor cells, and/or of distinct tumor subclones. Solving the for-
mer allows for much higher sensitivity in calling rare genetic events,
which opens opportunities to validate and discover cancer-related
somatic mutations. Solving the latter allows for more confident iden-
tification of different clonal lineageswithin a single tumor,which could

inform understanding cancer evolution as well as targeted treatment
decisions.

Bulk sequencing of pancreatic ductal adenocarcinoma (PDAC) is
particularly problematic because of the high stromal content and low-
tumor cellularity which further lowers variant calling sensitivity4–6.
Present solutions include multiregional sampling to increase sensitiv-
ity for variants with low allele frequency7,8 or laser-capture tissue
microdissection to enrich for tumor content9,10, but they are laborious
and not amenable to high-throughput. With targeted single-cell
sequencing, because each cell is partitioned and PCR amplified
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individually, high-quality genomic data from a low percentage of
tumor cells could potentially be extracted from the background noise,
making it valuable for genomic studies of PDAC.

To date, several high-throughput single-cell partitioning systems
have been developed, includingmicrofluidic platforms, nanowells and
microdroplets, which have resulted in several reliable single-cell DNA
library preparation technologies11. Tapestri12,13, as a microdroplet-
based, targeted sequencing approach, allows for high cell throughput
(up to 10,000 cells per sample) and high coverage depth (>80X) of
genomic sites of interest, and is therefore suited for high-resolution
studies of key genetic variants within diseases. However, its use so far
has been limited to cell lines and liquid primary tumor samples, or a
small batch of solid tumor tissues at a time14–20. While methods to
quickly and effectively dissociate clean single nuclei suspensions from
solid tumor tissues have been extensively tested for single-nucleus
RNA-seq (snRNA-seq)21, they have not been applied for single-nucleus
DNA-seq (snDNA-seq) usage.

In this work, we optimize a snap-frozen tissue single nuclei
extraction workflow that yields high throughput in generating the
resulting snDNA libraries. Importantly, theworkflow takes <30min per
sample with minimal manual labor, thus ideal for processing large
batches of solid tumor samples. Coupling the snDNA data with bulk
whole exome sequencing (WES) or whole-genome sequencing (WGS)
data generated on the same samples, we are able to uncover single-cell
clonal relationships among key driver mutations.

Results
Optimizationofworkflow to extract and store single nuclei from
snap-frozen tissue
We recognized the need for a nuclei extraction workflow that has
reduced hands-on operation, sample resuspension times, and total
processing time, all of which hinder scalability and could potentially
cause between-sample inconsistency in quality (clumping, debris) and
final yields. Thus, we used an automated nuclei extraction machine22

for homogenizing frozen tissues into single nuclei suspensions. The
nuclei were then passed through a sucrose gradient to strip away
debris before microdroplet encapsulation. The entire procedure takes
~30min per sample and requires a single step of pelleting and resus-
pension (Fig. 1a; “Methods”). Although the resulting nuclei clumping
percentage and nuclei concentration varied across samples of differ-
ent starting sizes, cellularity and morphology, most primary pancreas
tumor samples of volumes ≥ 8 mm3, regardless of collection method
(resection vs autopsy), resulted in final nuclei suspensions with ≤10%
clumping and >2000 nuclei/µl suspended in > 35 µl buffer as input for
Tapestri (Fig. 1b). Exceptions were samples with particularly high fat/
stroma content or random technical errors, which either limited input
nuclei concentration or increased clumping rate as observed by
microscopy.

With this protocol, we prepared 38 snDNA libraries from 34 bio-
logically distinct snap-frozen PDAC samples from 16 patients. These
samples were purposely selected to represent primary tumors and
metastases, different tissue collection methods, and with varying
tumor purities (Fig. 1c; Supplementary Table 1). Eachwas analyzedwith
a custom 186-amplicon panel covering 93 frequentlymutated genes in
PDAC (Supplementary Table 2). Themean library yield of single nuclei
that passed quality control (“Methods”) was 2867 complete nuclei
(standard deviation = 1672.67). For context, two previous studies17,19

using primary acute myeloid leukemia (AML) cell suspensions for
Tapestri resulted in on average 5072 complete cells/sample (146 sam-
ples) and 6102 complete cells/sample (154 samples) in the final
libraries.

We next determined the extent to which extracted single nuclei
could be stored in suspension without affecting the yield. For two
different samples (PA04-2 and PA04-3) we cryopreserved a portion of
the extracted nuclei (“Methods”) then thawed these frozen nuclei

suspensions after 3 weeks and 14 weeks respectively as input for
snDNA-seq. This allowed us to compare both the nuclei morphology
and the resulting snDNA-seq results between freshly extracted and
cryopreserved nuclei of the same biological samples. We found that
the freeze-thaw-resuspension process had >80% recovery rate and
minimal change in nuclei morphology and clumping % (Supplemen-
tary Fig. 1a, b). Moreover, the final library yield did not decrease when
prepared with frozen nuclei; on the contrary, frozen nuclei gave
slightlyhigher yield than fresh nuclei for both samples (Supplementary
Fig. 1c). Frozen nuclei generated similar quality results as freshly
extracted nuclei as measured by sharing the majority of high-quality
variants (“Methods”) (Supplementary Fig. 1d, e), and having largely
linearly correlated pseudobulk variant allele frequency (VAF) for all
shared variants (Fig. 1d; Supplementary Fig. 1f). Forboth samples, fresh
and frozen nuclei revealed highly concordant genotypes as well
(Fig. 1e; Supplementary Fig. 1g).

While the doublet rate inherent to the Tapestri scDNA library
preparation method has been estimated to be 5–8% by its
manufacturer23, we sought to estimate the multiplet rate associated
with our entire workflow when using snap-frozen tissue. We selected
two samples from two distinct patients, each with a tumor population
characterized by a distinct driver mutation (TP53 p.C207Y vs. ARID1A
splice) that was orthogonally validated by bulk WES as well as inde-
pendent Tapestri runs. Similar sized pieces of each tissue sample were
mixed together and subjected to the entire nuclei extraction workflow
followed by snDNA library generation. Next, we assigned each cell to
the two originating tumors based on its genotype for the two driver
mutations. The number of barcodes that carried somatic variants from
both tumors are as shown in the Venn Diagrams (Fig. 1f). Using a
mixturemodel (Supplementary Methods) we derived the doublet rate
to be 3–5%.

As a PCR-based method, our snDNA library preparation is sub-
ject to technical noise introduced by uneven amplification of both
alleles in a cell (allelic dropout, ADO). To quantify the ADO rate
inherent to the workflow, we selected 19 of our samples which came
from resection of early-stage PDAC. We identified germline single-
nucleotide polymorphisms (SNPs) by comparing single-nuclei
sequencing results with bulk-sequencing results of matched normal
sample of the same patient, and calculated the mean ADO rate to be
19.6% (of 100 nuclei, 19.6 nuclei only have one of the two alleles)
(“Methods”) (Supplementary Table 3). However, we deem this as o-
verestimation as we observed obvious single-nucleus colocalization
pattern of ADO of SNPs on different chromosome arms, which
more likely suggests real copy number variation rather than
technical noise.

To determine the optimal sequencing depth (in this case, mean
reads per cell per amplicon) required to extract significant insights
from the snDNA-seq data, we selected two samples PA04-2-frozen and
PR05-3 that we deemed as over-sequenced (respectively, 278 million
and341million total readpairs; 168 and342mean reads/cell/amplicon)
and performed downsampling experiments by subsampling the raw
FASTQ files at intervals of 50 millions read pairs (Supplementary
Fig. 2a, b; SupplementaryTable4). The elbowpoint couldbe spotted at
roughly 100 mean reads per cell per amplicon for the proportion of
DNA read pairs assigned to cells, total number of barcodes captured,
and number of cells called (Supplementary Fig. 2c–e). However, the
proportion of tumor cells, as defined by the orthogonally validated
KRASmutation for each case, did not varymuch alongwith total depth
and mean depth per cell per amplicon (Supplementary Fig. 2f). This
indicates that the relative proportions of major clones and associated
biological insights could be robust to varying technical parameters
such as read depth and cell throughput. However, for the purpose of
rare clone discovery where cell throughput would be critical, the
results here suggest at least a mean depth of 100 is required for our
panel specifically.
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Validation against bulk-sequencing results
To validate the robustness of our method for detection of single-
nucleotide variants (SNVs), we selected 18 samples previously used for
bulk WES sequencing (“Methods”, Supplementary Data). When limiting
to variants present within the targeted panel, a strong concordancewas
noted between unfiltered variants called from frozen nuclei versus
those called by WES (Fig. 2a; Supplementary Fig. 4a). When we next

limited to filtered, higher-confidence variants from bulk (“Methods”),
there was virtually complete concordance (Fig. 2b). Moreover, despite
technical differences inherent toWES versus Tapestri (input tissue slice,
DNA library prep technology and sequencing depths) the bulk WES
VAFs and snDNA-seqpseudobulkVAFs for all sharedvariants, except for
those with ≤2 alternative reads in bulk WES results, were linearly cor-
related for the majority of samples (Supplementary Fig. 4b–d).
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We next sought to determine if our snDNA-seq approach can
detect subclonal copy number variations (CNVs). For this analysis we
used sample PA02-1 with known homozygous deletions of SMAD4 and
CDKN2A24. By calculating the single-cell per-amplicon (~200bp) ploidy
based on read counts (“Methods”), we were able to identify both
homozygous deletions (ploidy~0) in the neoplastic population despite
it comprising 28.5% of all cells (Fig. 2c, d; Supplementary Fig. 5a–d).

snDNA-seq is applicable to low-cellularity, low-tumor content
samples
Low cellularity and tumor content in certain clinical settings, such as
with fine needle aspirations, core needle biopsies or for PDAC in
general25, represent major hurdles for bulk-sequencing and hinder the
quality of resulting genomic information. We therefore tested our
workflow’s performance in such settings.

We identified one sample PA04-1 of a primary pancreas tumor
with both low-tumor cellularity (neoplastic cells occupying <50%
area of tissue section) and low overall cellularity due to high fat
content (Fig. 3a). Despite use of a tissue sample of similar size
(~8mm3) as others studied, we extracted a total of 30,000 nuclei,
much lower than the optimal number of 200,000 as input for
Tapestri. Ultimately, we captured only 479 nuclei in the final library,
approximately 6-fold lower than average. Nonetheless, both driver
gene variants (KRAS p.G12V, SMAD4 p.A39T) identified by bulk WES
of this same sample were identified with high-quality read data
(Supplementary Fig. 6a, b) and indicated 113 likely tumor cells (23.6%
of all) captured for this sample based on the presence of the clonal
KRAS variant (Fig. 3b, c).

With a second sample (PR04-1) of particularly low-tumor purity as
revealed by pathology review (Fig. 3d) and bulk sequencing (Fig. 3e),
Tapestri data identified 40 out of 3866 nuclei (1%) of this sample car-
rying at least one of KRAS p.G12V, TP53 p.R186H, or SMAD4 p.508D
(Fig. 3f, g). Again, the driver variants were genotyped with high-quality
read data (Supplementary Fig. 6c, d). Intriguingly, the single-nucleus
colocalization of the threemain drivers violated the assumption of the
infinite sites model: more than half of the nuclei carry the KRAS
mutation and among them, a subset carry SMAD4 and TP53, yet a
significant number of nuclei were wildtype for KRAS yet mutated for
SMAD4/TP53. If it were assumed that KRAS were mutated first and
SMAD4 and TP53 mutations followed, a likely explanation would be
that a subset of tumor cells lost their mutant KRAS allele through loss
of heterozygosity (LOH). Although ADO might factor in, similar pat-
terns observed in snDNA-seq results of two other samples of this case
(PR04-2, PR04-3) seemed to support the abovementioned theory
(Supplementary Fig. 6e, f). However, more rigorous statistical model-
ing is required for validation.

snDNA-seq identified twomutually exclusive clones bearing two
different KRAS mutations in the same PDAC patient
For a PDAC surgical resection case PR02, based on both MSK-
IMPACT sequencing (high-depth targeted sequencing) and bulkWES,
we identified that the major tumor clone carried the hotspot KRAS

p.G12D mutation; hints of a minor KRAS p.G12V clone existed but
were on the borderline of the technologies’ detection sensitivity
(Fig. 4a). Single-nucleus genotype heatmaps and Venn diagrams
(Fig. 4b–e) of multiregional samples PR02-3 and PR02-4 suggested
colocalization of the major KRAS p.G12D with another likely driver
TP53 p.C203Y, which signified the major tumor clone in this sample;
the minor KRAS p.G12V -bearing clone was mutually exclusive with
the above two drivers and did not colocalize with any known driver
genemutation at similar clonal frequency. In PR02-4, while themajor
clone consisted of 221 cells (6.12% of all cells), the minor clone was
only 12 cells (0.33% of all cells, Fig. 4e), further buttressing the
technology’s sensitivity. The minor KRAS p.G12V clone in both sam-
ples was substantiated with high-quality read data (Supplementary
Fig. 7a, b); digital droplet PCR (ddPCR) also proved the presence of
the KRAS p.G12V (Supplementary Fig. 7c). Pathology review did not
identify any apparent secondary neoplastic or metaplastic structure
(Fig. 4f). This observation aligns with several other studies6,26 in
suggesting that multiple KRAS genetic variants may coexist in one
patient’s PDAC precursor/tumor.

snDNA-seq identified complex clonal structures in a KRAS-
WT PDAC
The KRAS gene is mutated in >90% of all PDAC’s and signifies the
phenotype of MAPK-ERK pathway hyperactivation25. By bulk exome
sequencing of three spatially distinct samples of resected PDAC
PR01, we noted that this case was wild type for KRAS yet contained an
FGFR1 p.T50K mutation as well as two distinct TGFBR2 mutations
(p.M450I, p.A451G) on the same allele. Pathology review of the
samples’ H&E slides identified two well-isolated populations of PDAC
cells with distinct histological features. A population of PDAC cells
characterized as dilated glands with extensive stromawas exclusively
present in sample PR01-1 (Fig. 5a, left), while another population
characterized as small nests of tumor cells was exclusively present in
PR01-2 (Fig. 5a, right). Sample PR01-3 had both populations present
in the same tissue section. We performed snDNA-seq of all 3 samples
and discovered that the FGFR1 and TGFBR2mutations corresponded
to twomutually exclusive clones: sample PR01-1 had only the TGFBR2
double-mutated clone (Supplementary Fig. 8a), PR01-2 only the
FGFR1 mutated (Supplementary Fig. 8b), while PR01-3 contained
both clones that were mutually exclusive at the single-cell level
(Fig. 5b, c, Supplementary Fig. 8c). To determine the extent to which
these two clones were unique neoplasms versus subclones that
shared a common ancestor, we included all other high-quality coding
& non-germline variants to define a putative normal cell population
(Supplementary Fig. 8c, blue clone) and computed the median per-
amplicon ploidy within each clone (“Methods”). This revealed many
shared CNVs between the two clones that included allelic losses of
ARID1A, TGFBR2, FGFR1 and SMAD4 as well as a homozygous deletion
of CDKN2A (Fig. 5d, Supplementary Fig. 8c). Collectively these data
suggest that large-scale copy number aberrations preceded the for-
mation of the two distinct SNV clones and was likely the upstream
oncogenic event.

Fig. 1 | Frozen tissue single nuclei extraction workflow for snDNA-seq.
aOverview of frozen sample single nuclei extraction workflow for Tapestri snDNA-
seq. b Representative microscopic images of extracted single nuclei, stained with
Trypan blue (brightfield, BF), DAPI (fluorescence, FL). At least 3 representative
pictures were taken per sample and yielded similar results. c Technical and genetic
profile of each biologically distinct sample. A total of 38 samples were processed,
34 of which were biologically distinct samples from 16 unique patients. Genetic
profiles were based on bulk sequencing. d Pseudobulk (p-bulk) variant allele fre-
quency (VAF) comparisonof all 160 shared variants between librariespreparedwith
fresh vs frozen (3weeks) nuclei of sample PA04-2. Key drivers pre-identifiedbybulk
WES in this case are highlighted; regression line with 90% confidence interval is
drawn. e Single-cell genotype (HOM homozygous mutation, HET heterozygous

mutation, WT wildtype) heatmap of snDNA-seq libraries generated by fresh vs
frozen nuclei of sample PR04-2. Each row represents a bulk data-validated driver
variant of this case, while each column represents a single nucleus in the library.
The nuclei were sorted based on KRAS variant’s VAF in ascending order from left to
right. f Venn diagrams showing colocalization of genotypes belonging to two
separate tumor cell populations in one snDNA-seq library (two replicates shown);
the cells carrying both genotypes were identified as doublets. Nuclei suspension
extracted from two tumor samples from different patients weremixed and subject
to snDNA-seq. The two distinct tumor populations were identified by genotype for
their respective driver variants TP53 p.C207Y and ARID1A splice. Source data are
provided as a Source Data file.
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Fig. 2 | SnDNA-seq can capture SNV and CNV pre-identified by bulk-sequencing
with high sensitivity. a For 18 samples of the same bulk WES sequencing cohort,
histogram showing the number of unfiltered (“Methods”), coding variants called by
bulk (blue) and among them, the number detected by snDNA-seq (orange). b For
the same samples, histogram showing the number of filtered (“Methods”) variants
called by bulk (dark red) and among them, the number detected by snDNA-seq

(light red). Single-cell per-amplicon ploidy heatmap of select amplicons covering
chromosomes 9 (c) and 18 (d) of sample PA02-1. Each row represents one cell while
each column is one amplicon. Cells are divided intoKRAS-mutatedgroup (blue) and
3 normal groups (red, yellow, green) (“Methods”) and hierarchically clustered
within group. The amplicons spanning CDKN2A and SMAD4 genes are labeled.
Source data are provided as a Source Data file.
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snDNA-seq revealed stepwise evolution during PDACmetastasis
Through snDNA-seq of three multiregional samples of PDAC autopsy
case PA04 (one primary tumor sample, two liver metastases; the two
liver metastases each has two technical replicates) we identified
sequential steps leading to TGF-β inactivation in association with

cancer progression. We started from observing the raw single-nucleus
SNV genotype and per-amplicon read count data (Supplementary
Figs. 9, 10), wherewenoticed the gene SMAD4underwent several steps
of genomic evolution - two somatic SNV events and several asyn-
chronous focal deletion events, as represented by clone 2 and clone 4
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Fig. 3 | SnDNA-seq’s performance in limiting settings. a Representative hema-
toxylin and eosin (H&E) stained histology image of sample PA04-1, a sample of
particularly lowcellularity due to high fat content. At least 3 representative pictures
were taken per sample and yielded similar results. b Single-cell genotype (HOM:
homozygous mutation; HET: heterozygous mutation; WT: wildtype) heatmap of
sample PA04-1. A total of 479 captured single nuclei were sorted based on KRAS
VAF in ascending order from left to right. c Single-cell genotype (HOM: homo-
zygous mutation; HET heterozygous mutation, WT wildtype) heatmap of sample
PA04-1, zoomed in on 113 putative tumor cells, defined by the presence of KRAS

p.G12V/SMAD4 p.39T mutation. d Representative H&E histology image of sample
PR04-1. At least 3 representative pictures were takenper sample and yielded similar
results. e Bulk WES result of sample PR04-1. f Single-cell genotype heatmap of
PR04-1. A total of 3866 captured single nuclei are sorted based on KRAS VAF in
ascending order from left to right. Tumor cells, defined by the presence of KRAS
p.G12D/SMAD4 p.G508D/TP53 p.R136H mutations, cluster to the right and are
barely visible. g Single-cell genotype heatmap of PR04-1, zoomed in on 40 putative
tumor cells.
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in Supplementary Fig. 9 – which eventually resulted in clone 5 with
homozygousdeletion (homdel) of allSMAD4’s genomic region that our
panel covers. Therefore, we combined the homdel (ploidy=0) status of
SMAD4’s 8 amplicons with the genotype of 25 SNVs validated by bulk
sequencing, either germline or somatic, across 8061 single cells of all
three samples and applied a previously described single-cell multi-
layer, multi-state clustering method27 (Supplementary Methods).
Seven clusters were identified (Fig. 6a) and the inferred phylogeny
(Fig. 6b) generally aligned with the most popular model of PDAC

progression: driver SNV events occur first, large-scale CNV events
follow, and focal CNV events continue as tumor cells metastasize9. The
presence of the intermediate clusters 5 and 6 where SMAD4 was only
partially deleted compared to its end state (homdel on 7 of 8 ampli-
cons) in clusters 0 and 3 validated our observation of stepwise focal
deletion to SMAD4’s genomic regions (Fig. 6a, b). Absence of these
intermediate clones in the primary tumor (Fig. 6c) could also indicate
that these intermediate clones were selected out by the environment
at the primary site or the more evolved clone 0 reseeded from the

Fig. 4 | SnDNA-seq identified two mutually exclusive clones bearing two dif-
ferentKRASmutations inonepancreatic cancerpatient. aBulk-sequencing calls
of KRAS variants of patient PR02’s 4 multiregional primary tumor samples. Venn
diagram showing colocalization pattern of genetic variants TP53 p.C203Y, KRAS
p.G12D,KRASp.G12V in single nucleus of samples PR02-3 (b), PR02-4 (c). Single-cell
genotype (HOMhomozygousmutation, HETheterozygousmutation,WTwildtype)
heatmap of samples PR02-3 (d), PR02-4 (e, zoomed in on 300 cells where tumor

cells cluster). The KRAS p.G12D & p.G12V clone identities (above heatmaps) are
identified as cells having “HET” or “HOM” genotype of each variant and are colored
as labeled. Cells are hierarchically clustered based on the two KRAS variants’ single-
cell AF. KRAS p.G12V clone size was 57 cells in PR02-3, 17 cells in PR02-4.
f Representative H&E histology images of sample PR02-3. At least 3 representative
pictures were taken per sample and yielded similar results.
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metastasis sites; it could also be owing to the lower number of single
nuclei sampledwhichmade the smaller clones fall below the sensitivity
of SCG. Interestingly, clone 5,which diverged from themain lineage (as
assessed by clone size), was characterized by focal homdel of RREB1,
which is another important effector of the TGF-β-SMAD axis28. Unfor-
tunately, we were unable to resolve two minor yet important clones
identified by observing the raw data – the one with a second SMAD4
SNV and the one with homdel of all 8 amplicons of SMAD4) (Supple-
mentary Fig. 9, clone 4 and clone 5) – likely because their sizes were
too small for SCG to differentiate them from noise. Nonetheless, these
results together are in keeping with inactivation of cell-intrinsic TGFβ

signaling as a critical aspect of PDACmetastasis29–32, as well as ongoing
clonal selection for survival benefits25,33.

Discussion
In this study, we used two commercially available products to assem-
ble a highly automated workflow to generate Tapestri snDNA-seq
libraries from snap-frozen patient tissues. The workflow is fast, effi-
cient and can be applicable for high-throughput clinical and transla-
tional research. Additionally, we recognized the value of storing excess
single-nuclei suspensions for later use and verified a corresponding
workflow that was free from issues such as nuclei quantity loss, nuclear
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envelope damage, or nuclei clumping. Thisworkflow further illustrates
the ability to maintain information pertaining to relative VAFs com-
pared tomatchedWES data. Furthermore, while our custom panel was
not designed for identification of CNVs, specifically homozygous
deletions, we demonstrate the proof of principle that these events
could be identified with confidence. These encouraging results,

combined with the added information gleaned pertaining to co-
occurring and mutually exclusive genetic events, suggests this tech-
nology andworkflow is ideally suited to settings inwhich samples sizes
are small or limited.

A caveat of this snDNA-seq technology is that albeit its high cell
throughput, it is a targeted approach that focuses on a pre-designed
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panel of genes which might be insufficient for certain research ques-
tions that require unbiased study of the cancer exome/genome34–37.
This also implies a general challenge of single-cell research: because
the total library size is limited by sequencing cost and data processing
capacities, there is always a trade-off between the total cell throughput
and the amount of information one can extract from each single cell.

Sequencing depth, usually defined as the mean number of times
any nucleotide is read, is a straightforward and critical metric for bulk
sequencing- it can be easily controlled by adjusting the total sequen-
cing depth of a sample and decides the accuracy of estimating relative
clonal composition of SNVs based on variant allele frequencies (VAFs)
as well as the power of discovering rare SNV clones. Similarly, for
Tapestri we calculated depth as the mean number of reads per
amplicon per cell and determined the optimal depth. However,
because reads need to be first demultiplexed and assigned to indivi-
dual cell barcodes, and then undergo barcode quality control (QC or
“cell-calling”, “Methods”), the depth is affected by not only the total
read depth, but also the number of single cells that pass QC and the
proportion of reads assigned to these cells, which could be panel- and
sample-specific. For example, at the same total read depth, a sample
with more incomplete cells/nuclei (e.g. autopsy samples with high
necrosis rate) would have a lower percentage of reads assigned to
quality cells and therefore lower depth. The among-sample variation
can be easily observed in the “pipeline run metadata” column of Sup-
plementary Table 1. Therefore, it is difficult to precisely control depth
through altering the total depth; it might be advisable to sequence to a
total read depth that is economically feasible first, inspect the data,
and sequence more if needed.

Another caveat, in this instance related to our computational
analysis, is that the current variant calling pipeline for Tapestri applied
GATK HaplotypeCaller and enabled default read downsampling which
might be suboptimal for such high-depth single-cell data in a cancer
setting. We did not apply matched normal/panel of normal (PON)-
aided filtering in our pipeline; a benefit of this approach is that it
enabled us to see many germline variants that can be used for quality
control or phylogeny modeling, although this benefit is balanced by
outputs containing a large number of artifacts. Ultimately, to enable
novel somatic variant discovery a more robust variant calling pipeline
is needed to adapt to the noise profiles particular to this PCR-based
high-throughput single-cell DNA sequencing technology.

The field of single-cell transcriptomics began earlier than single
cell genomics, and accompanying analysis methods have been flour-
ishing in the past 5 years38,39. Single-cell transcriptome-oriented
methods, such as clustering or gene-set enrichment analysis, are
generally not optimal for targeted single-cell genomic data, where the
cell-cell difference is much smaller, often only on a small set of geno-
mic regions. The best method would be to rely on the ancestor-
descendent relationship between every pair of cells’ genomic
sequence and build single-cell phylogenies. Several models for the
evolution of SNVs in cancer have been developed to date40–46, but only
two45,46 have been constructed to also account for the frequent,
complex aneuploidy in cancer, one of which is directly applicable to
thedataset presented in thispaper46 but its accuracy is yet to be tested.
From the combined SNV and CNV data of case PR01’s multiregional
samples (Supplementary Fig. 8a–c), we saw many complex clonal
structures than could be defined by driver SNV events alone. Cluster-
ing single cells based on both SNV and CNV in PA04’s multiregional

samples, we were able to resolve stepwise evolution patterns in
metastatic PDAC, showing single-cell-level convergent evolution to
inactivating the TGF-β pathway, although at a limited resolution.
Therefore, bettermethods need to be developed and tested to analyze
this new dataset further.

Methods
Ethics statement
Use of samples used in this study was approved by the institutional
review board at Memorial Sloan Kettering Cancer Center (under pro-
tocols #15-149, #15-021) and Johns Hopkins Medicine.

Patient sample collection and preprocessing
Patient samples used in this study mainly consist of two categories-
multiregionally sampled surgical resection of primary pancreatic
cancer, and multiregionally sampled autopsy of metastatic pancreatic
cancer. Each participating patient provided written consent and was
not compensated. Detailed patient and sample information is sum-
marized in Supplementary Table 1.

For multiregional sampled surgical resections: treatment naïve
patients with tumors ≥2 cm on cross-sectional imaging were identified
preoperatively. A single cross-sectional piece of tumor was sampled
sequentially using a cartesian coordinate system with 0.6 cm × 0.6 cm
grid, with 3–5 samples obtained from each tumor. Adjacent normal
pancreas or duodenum was also collected. All samples were stored at
−80 °C until use.

For multiregional sampled autopsy: Tissues from three patients
were used. All patients had a premortem diagnosis of PDAC based on
pathological review of resected biopsy material and/or radiographic
and biomarker studies.

Tissue sections were cut from tissue blocks embedded in optimal
cutting temperature (OCT) compound, stained with hematoxylin and
eosin (H&E) and reviewed by a gastrointestinal pathologist (S.U.) to
estimate total cellularity, tumor purity and tissue quality. Specifically,
tumor puritywas estimated based on the ratio of tumor cell-occupying
2-D area against all area, and therefore might not conform with that
estimated from snDNA-seq result, which was defined as the ratio of
tumor nuclei (defined as carrying known driver SNVs from bulk
sequencing data) of all nuclei. Normal samples were reviewed to
confirm that no contaminating cancer cells were present.

Bulk WES, WGS library preparation, sequencing, and variant
calling
Genomic DNA was extracted from each tissue using the phenol-
chloroform extraction protocol or QIAamp DNA Mini Kits (Qiagen).
WGS,WES and alignment were performed by the Integrated Genomics
Operation and the Bioinformatics Core at Memorial Sloan Kettering
Cancer (New York, NY). Briefly, an Illumina HiSeq 2000, HiSeq 2500,
HiSeq 4000 or NovaSeq 6000 platformwas used to target sequencing
coverages of >60× for WGS samples and >150× for WES samples.

Sequencing reads were analyzed in silico to assess quality, cov-
erage, as well as alignment to the human reference genome (hg19)
using BWA. After read de-duplication, base quality recalibration and
multiple sequence realignment were completedwith the PICARD Suite
and GATK v.3.1; somatic single-nucleotide variants and
insertion–deletion mutations were detected using Mutect v.1.1.6 and
HaplotypeCaller v.2.4. Such a process generates the “filtered” variant

Fig. 6 | SnDNA-seq revealed stepwise evolution in a metastatic PDAC case.
a Single-cell genotyper (SCG)-inferred cluster information. Left panel: histogram
showing each cluster’s size (number of nuclei) in the 3-sample cohort. Clusters are
sorted based on size from top to bottom and assigned random colors tomaximize
heterogeneity. Middle panel: cluster CNV profile, represented by the homozygous
deletion (homdel) status of 8 SMAD4 amplicons. Right: cluster SNV profile, repre-
sented by the genotype of 25 bulk-validated germline and somatic mutations. The

4 somaticmutations (identified by bulk sequencing on the same tumor sample) are
colored red. b Cluster/clone phylogeny. Each cluster’s proportion in the cohort is
labeled next to cluster ID. Each cluster-defining genomic event is labeled on its
corresponding cluster. SNV events, as well as CNV events that affect them, are
colored pink. c Cluster composition in each of the three multiregional autopsy
samples of PA04. Technical replicates (fresh and frozen nuclei preparation) are
merged. Source data are provided as a Source Data file.
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list for every sample. Then, all variants of all samples of the same
sequencing cohort were pooled as a single list. Each sample’s BAM file
were used to compute “fillout” values (total depth, reference allele
counts, alternative allele counts) for each variant in the pooled list. An
alternate read > 2 filter was applied to trim down false positives. This
process aimed to rescue variants that were detected with high con-
fidence in multiregional sample #1 but with low confidence in multi-
regional sample #2 of the same patient; the output corresponded to
the “unfiltered” variant list.

Nuclei extraction from frozen tissue, counting, QC, sorting and
cryopreservation
Single nuclei fromOCT-embedded snap-frozen primary tissue samples
were extracted using the Singulator 100 machine (S2 Genomics) with
its extended nuclei dissociation protocol. After extraction, nuclei
solution was centrifuged at 800 × g for 5min in a swing bucket with a
reduced braking in a 0.25M Nuclei PURE Sucrose solution (Sigma-
Aldrich) to filter out debris.

Nuclei were stained with Trypan blue and manually inspected
under a brightfield microscope for clumping percentage, which was
estimated as the number of clumped particles out of all single par-
ticles within one field of view. Nuclei concentration was estimated by
DAPI staining on a Countess II FL automated cell counter.
Clumping percentage and nuclei concentration were both measured
≥ 2 times for each sample. A final concentration of 4000 nuclei/µl
suspended in 50 µl Mission Bio cell buffer was targeted per sample
prepared.

After up to 200,000 nuclei were taken for Tapestri library pre-
paration, the remaining nuclei were resuspended in Sigma Aldrich
Nuclei PURE storage buffer and immediately frozen on dry ice, before
being transferred to −80C freezer for long-term storage. If needed,
nuclei were thawed on ice until the solution was clear, and centrifuged
with the same settings as described above for pelleting and buffer
exchange.

Single-nuclei library preparation and sequencing
Nuclei were suspended in Mission Bio cell buffer at a maximum con-
centration of 4000 nuclei/µl, encapsulated in Tapestri microfluidics
cartridge, lysed and barcoded. Barcoded samples were then put
through targeted PCR amplification with a custom 186-amplicon panel
covering important PDAC mutational hotspots in our sample cohort
(Supplementary Table 2).

The 186-amplicon panel was designed based on curation of bulk
whole exome/genome sequencing data of PDAC samples collected by
the Iacobuzio lab. The goal was to cover as many likely driver SNVs
within our patient cohort as possible within a 200-amplicon limit,
which we set considering the economic cost and the purpose being
mostly proof of-principle for a variety of ongoing projects in our lab.
The driver SNVs/genes of interest were determined by querying sev-
eral public databases including OncoKB, Cancer Genome Interpreter
(CGI), cancer hotspots47, TCGA consensus driver gene list48 etc. using
Treeomics49 and LiFD50 that the Iacobuzio lab helped develop for
previous studies. In addition to the driver SNVs from above, we used
cBioportal51,52 to query additional frequently amplified genes in PDAC
(e.g. MYC) and added coverage for them as well.

PCR products were removed from individual droplets, purified
with Ampure XP beads and used as templates for PCR to incorporate
Illumina i5/i7 indices. PCR products were purified again, quantified
with an Agilent Bioanlyzer for quality control, and sequenced on an
Illumina NovaSeq. The minimum total read depth was determined by
the formula:

X = ðexpectednumberof nuclei calledÞ× ðnumber of ampliconsÞ
× ðtarget depthÞ � ðexpectedproportionof reads assigned tocellsÞ ð1Þ

We estimated expected number of nuclei called as (input nuclei
concentration) * 1 µl (e.g. an input suspension of 4000 nuclei/µl will
yield 4000 nuclei). The target depth was set at 100 reads per cell per
amplicon. The expected percentage of reads assigned to cells was set
at 0.5. However, due to parallelizing multiple samples on the same
lane, the total read depth could not be precisely controlled and
deviated from target for a few samples.

Single-nuclei DNA libraryquality control, cell-calling andvariant
calling
FASTQ files for single-nuclei DNA libraries were processed through
Mission Bio’s Tapestri pipelinewith default parameters. Briefly, it trims
adapter sequences, aligns reads to the hg19 genome (UCSC), assigns
reads to cell barcodes. The CellFinder module then filtered for bar-
codes corresponding to “complete cells/nucleus” based on total read
completeness (>8 * number of amplicons) and per-amplicon read
completeness (>80% data completeness for working amplicons, which
are defined as amplicons with > 0.2*mean of all amplicon reads per
qualified barcode). It next used GATK HaplotypeCaller to call variants
individually on each cell, and then GATK GenotypeGVCFs to jointly
genotype all cells using genotype likelihoods from the previous step.
The unfiltered VCF was parsed into an HDF5 file containing single-cell
variant and per-amplicon read count matrices compatible with
downstream analysis. A more detailed documentation of the pipeline
is available at: https://support.missionbio.com/hc/en-us/categories/
360002512933-Tapestri-Pipeline. In respect of Mission Bio’s request,
the pipeline code is not to be publicized because it contains proprie-
tary information per industry standard. However, the pipeline used in
the paper that demonstrated this scDNA-seq library preparation
technology53 is publicly available as a Github repository at https://
github.com/AbateLab/DAb-seq. Although we have not formally tested
that it performs identically as the Mission Bio pipeline, we believe it is
sufficient to replicate our results.

Single-cell genotyping and cell-variant pair filtering
The HDF5 file output from above was analyzedmainly byMission Bio’s
python-based analysis package Mosaic, with a modified genotyping
and variant filtering module. As shown in Supplementary Fig. 2, with a
single-cell variant call matrix, we started by assigning a genotype to
each cell-variant pair. First, we defined the minimum depth at 5 reads
and any variant in any cell with depth below the threshold in a cell
would be assigned as “missing”. Then, we used cutoffs:

VAFWT ∼ ½0, 20�

VAFHET ∼ ð20, 80�

VAFHOM ∼ ð80, 100�

to assign each variant’s genotype (WT- wildtype; HET- heterozygously
mutated; HOM- homozygously mutated) in each cell, thus allowing
20% of reads of a barcode to be false positives potentially caused by
barcode contamination. Finally, we set the threshold for the alternate
(mutant) read count to 3 reads to convert low-quality heterozygous
calls back towildtype to arrive at the final cell-variant genotypematrix.
This alternate read filter was adapted from SNV filtering for bulk
sequencing. It was also intended to filter out SNVs with low depth and
low alternate read count, which are very likely false positives caused by
misalignment or homopolymer region or droplet merging. Note that
this genotypingmethod is intended to assign single-cell genotypes for
bulk-validated SNVs but not for novel SNV discovery.

For getting a list of high-quality variants for each library de novo
(to compare the SNV set between fresh and frozen nuclei), we used a
more stringent variant filtering scheme than above: starting from the
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genotype matrix output by Mission bio’s variant calling pipeline (the
default NGT matrix, output by the h5.create.dna.create_ngt() func-
tion), we first genotyped eachmutation call with amore stringent filter
- minimum depth was set to 10 while minimum alternate read count
was set to 5. Then we discarded variants that have “missing” genotype
inmore than 75% cells (whilewhitelisting SNVs in certain genes that are
known to be prone to homozygous deletion in PDAC, such as SMAD4,
CDKN2A). Through inspecting the distributions of cellular prevalence
of variants across different read depths and total cell numbers, we
determined that a mutational prevalence of 0.5% (an SNV needs to
have either HET or HOM genotype in greater or equal to 0.5% of all
cells) is a feasible and effective cutoff to filter out most technical
artifacts. Any variant mutated in more than 0.5% of all cells was added
to the high-quality variant list. See more details in the mosaic.dna.-
filter_variants() function.

Allelic dropout (ADO) calculation
To calculate ADO, we used germline single-nucleotide polymorphisms
(SNPs), which should have a heterozygous genotype and therefore
nonzero read count of both alleles in all nuclei detected if there were
no ADO. The ADO rate was formulated as:

number of nucleiwith strictly 0 readof either allele
total number of nuclei

ð2Þ

To identify germline SNPs, we first annotated snDNA-seq’s SNV
callset with bulk-sequencing variant allele frequency (VAF) of the
matchednormal sample, if the SNVwasdetected in the normalby bulk.
We selected SNVs with VAF >0.2 in the bulk normal to avoid technical
artifacts. Then we calculated the mean single-nucleus VAF (not con-
sidering VAF =0) for each SNV, and selected SNVs with 0.2 <mean
single-nucleus VAF < 0.8. This was to exclude SNVs that are homo-
zygous or associated with somatic mosaicism. The final list was then
used for ADO calculation.

Doublet model and calculation
Please see attached Supplementary Methods.

Single-cell per-amplicon ploidy calculation
The ploidy calculation was mainly based on Mission Bio’s Mosaic
package. The per-amplicon read counts were normalized first within
the same cell across different amplicons bymean read depth, and then
within the same amplicon across different cells by median read depth.
Note the median read depth across different cells only considered
good-quality cells, which aredefined as thosewith at least 1/10 number
of reads as that of the cell with the 10th rank in terms of read count.

Then the per-amplicon ploidywas calculated by setting a group of
cells as diploid baseline based on a priori knowledge (e.g. KRAS
mutational status) and taking the ratio of every other cell’s per-
amplicon read count against that group’s per-amplicon median
read count.

To test the robustness of our ploidy calculation, we picked one
sample with known KRAS mutation and cancer-related aneuploidy
based on bulk sequencing and validated with DNA microarray. We
started by separating a snDNA-seq library into two groups- KRAS-
mutated and KRAS-WT, with the latter assumed asmostly normal cells.
Then we divided the normal cell population randomly into 3 groups
(norm_a, norm_b, norm_c), used one group (norm_a) as diploid base-
line and calculated other groups’ ploidy against it. As shown in the
Supplementary Fig. 3, the two other putative normal cell groups had
their median per-amplicon ploidy aligning close to 2, which validates
the diploid-defining rule; the KRAS-mutated group had apparent
aneuploidy across most amplicons and CDKN2A and SMAD4 loss,
which validated our ploidy calculation.

For case PR01, because there was not an a priori clonal oncogenic
driver such as a KRAS variant to be reliably used to determine a diploid
population, we used seven (including two TGFBR2 mutations that are
2-bp apart) variants pre-identified by bulk WES to set up a rule: a cell
with “WT” genotype for all 7 variants can be called putative normal and
be used as diploid baseline.

Single-cell genotyper (SCG) setup
Please see attached Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed sequence data have been deposited at the Eur-
opean Genomephenome Archive (EGA), which is hosted by the Eur-
opeanBioinformatics Institute and theCentre forGenomicRegulation,
under accession number EGAS00001006024. These data include: 1.
Tapestri data for 38 unique sample runs and 2mixing experiment runs:
(a) FASTQ files. (b) BAM files (valid cell barcodes only) output by the
default Mission Bio Tapestri pipeline. (c) HDF5 files output by the
default Mission Bio Tapestri pipeline. 2. Matched bulk data used in the
paper for a subset of samples: (a) WES BAM files for 19 tumor samples
of cases PR01 through PR05, and thematched normal sample for each
case. (b) MSK-IMPACT BAM files for 4 tumor samples of case PR02. (c)
WGS BAM files for case PA04’s two tumor samples (PA04-1 and PA04-
liver) and one matched normal sample. The above data are available
under restricted access, as required by the MSKCC Medical Donation
Program Data Access Agreement (MSKCC MDP DAA). Readers inter-
ested in gaining access through EGA need to contact the data access
committee (DAC) of this dataset and start an application. The DACwill
try to respond within two weeks but may take longer in special con-
ditions. TheMSKCCMDPDAA, to be provided by the DAC and include
guidelines and restrictions on data usage, must be signed. Once the
application is approved, an EGA account will be provided for data
access. The time length of access to the data will be determined by the
DAC on a case-by-case basis. Further information about EGA can be
found at https://ega-archive.org and “The European Genomephenome
Archive of human data consented for biomedical research” (http://
www.nature.com/ng/journal/v47/n7/full/ng.3312.html). Additionally,
the following data are included in SupplementaryData: 1. Under folder
“PR01-05-bulk_data”: bulkWESmutation annotation format (MAF) files
for cases PR01 through PR05. Note these are already subset to our
targeted panel’s genomic region. 2. Under folder “PA04-bulk_data”:
bulk WGS MAF file for case PA04’s two tumor samples. Bulk WGS
mutant allele counts for genomic variants identified for case PA04’s
normal sample. Again, these are already subset to our panel’s genomic
region. 3. Under folder “PA04-SCG_input”: immediate input files used
for single-cell genotyper (SCG) run (Fig. 6). These were generated as
described in SupplementaryMethods, Section 2. Any other data canbe
madeavailable upon request. Sourcedata areprovidedwith this paper.

Code availability
A customized version of Mission Bio’s “Mosaic” package (original:
https://github.com/MissionBio/mosaic) used in this work for snDNA-
seq data analysis is available in Github (https://github.com/
haochenz96/mosaic) or Zenodo (https://doi.org/10.5281/zenodo.
7236672)54. A forked version of the single-cell genotyper (SCG) pack-
age, which only reformatted the README from the original version for
better readability, is available at https://github.com/haochenz96/scg.
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