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A deep learning approach reveals unex-
plored landscape of viral expression in
cancer

Abdurrahman Elbasir1, Ying Ye1, Daniel E. Schäffer 1,2, Xue Hao 1,
Jayamanna Wickramasinghe1, Konstantinos Tsingas1,3, Paul M. Lieberman 1,
Qi Long3, Quaid Morris 4, Rugang Zhang 1, Alejandro A. Schäffer 5 &
Noam Auslander 1

About 15% of human cancer cases are attributed to viral infections. To date,
virus expression in tumor tissues has been mostly studied by aligning tumor
RNA sequencing reads to databases of known viruses. To allow identification
of divergent viruses and rapid characterization of the tumor virome, we
develop viRNAtrap, an alignment-free pipeline to identify viral reads and
assemble viral contigs.Weutilize viRNAtrap, which is based on a deep learning
model trained to discriminate viral RNAseq reads, to explore viral expression
in cancers and apply it to 14 cancer types from The Cancer Genome Atlas
(TCGA). Using viRNAtrap, we uncover expressionof unexpected anddivergent
viruses that have not previously been implicated in cancer and disclose human
endogenous viruses whose expression is associated with poor overall survival.
The viRNAtrap pipeline provides a way forward to study viral infections
associated with different clinical conditions.

Viral infections have a causal role in ~15%of all cancer casesworldwide1.
Viruses linked to cancer are generally divided into direct carcinogens,
which drive an oncogenic transformation through viral oncogene
expression, and indirect carcinogens, which may lead to cancer
through mutagenesis associated with infection and inflammation. To
date, seven viruses have been classified as direct carcinogenic agents
in humans2. Among these, the high-risk subtypes of human papillo-
mavirus (HPV) are the causative agent of ~5% of human cancers.
Chronic hepatitis B virus (HBV) orhepatitis C virus (HCV) infections are
associated with most hepatocellular carcinoma cases. More recently,
advances in sequencing technologies have contributed to a better
appreciation of the high burden of viral infections in cancer, exem-
plified by Kaposi’s sarcoma herpesvirus and the Merkel cell poly-
omavirus, which were discovered based on nucleic acid subtraction to
cause Kaposi’s sarcoma and Merkel cell carcinoma, respectively2. The
discovery of oncogenic viruses, starting with the Rous sarcoma virus3,
has been critical for understanding mechanisms driving cancer

evolution and for improving cancer prevention and intervention stra-
tegies. However, the burden of viral infections in cancer is thought to
remain underappreciatedbymuchof the cancer research community4.

Since the advent of next-generation sequencing, new viral strains
are typically identified from large-scale DNA or RNA sequencing data
based on sequence similarity to known viruses. The Cancer Genome
Atlas (TCGA) has become a principal resource for the identification of
viral sequences in cancer tissues. Several studies screened TCGA DNA
sequencingdata to characterize known viruses in cancers5, and analyze
host integration sites for viruses such as HBV that integrate into the
human genome6. Other studies used RNA sequencing to screen for
known viruses in the human transcriptome7–10, and to discover novel
viral isolates10. Most recently, a few studies combined DNA and RNA
sequencing to quantify the presence of known cancer-associated
viruses in human cancers11,12. However, the set of sequenced viral
clades and the set of viral clades known to infect humans are both
incomplete. Viruses and cancers have rapidly evolving genomes, and a
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new cancer-associated virus may have little sequence similarity to
known viruses isolated outside of the tumor microenvironment. This
issue is exacerbated when analyzing short reads, which are typical of
RNA sequencing technologies. Therefore, the discovery of new and
divergent cancer viruses remains highly challenging with existing
strategies13. For the detection of bacterial viruses from metagenomic
DNA sequencing, several machines and deep learning techniques have
been recently developed. These methods overcome some of the lim-
itations associated with homology-based approaches and rapidly
identify viral reads including novel and divergent viruses14–18. More
recently, methods have been developed to identify viruses that have
the potential to cause human infections19,20. These recently developed
methods suggest that deep learning methods to detect viral reads
from RNA sequencing have the potential to uncover novel and diver-
gent viruses in human tissues.

Here, we develop a framework, named viRNAtrap, that employs a
deep learning model to accurately distinguish viral reads from RNA
sequencing, and utilizes the model scores to assemble viral contigs.
We apply viRNAtrap to 14 cancer types from TCGA (selected based on
potential viral relevance to oncogenesis), to perform exploratory data
analysis and characterize the landscape of viral infections in the human
cancer transcriptome. We demonstrate the ability of viRNAtrap to
identify different types of viruses that are expressed in tumors by
constructing three viral databases and comparing viRNAtrap findings
to sequences in those databases. We first evaluate known cancer-
associated viruses that are expressed in different tumor types. Then,
we curate a database of potentially functional human endogenous
retroviruses (HERVs) and analyze expression patterns of different
HERVs across human cancers to find that HERV expression is asso-
ciated with poor survival rates. Finally, we employ viRNAtrap to iden-
tify divergent viruses that are expressed in tumor tissues. Notably, we
identify a Redondoviridae member that is expressed in head and neck
carcinomas, a Siphoviridae member that is expressed in 10% of high-
grade serous ovarian cancers, and a Betairidovirinae member that is
expressed in more than 25% of endometrial cancer samples. In sum-
mary, we present the first deep learning-based method to identify
viruses from human RNA sequencing and demonstrate its ability to
rapidly characterize viruses that are expressed in tumors and uncover
viral instances that have not been previously found in these samples
using alignment-based methods. viRNAtrap can be applied to identify
new viruses that are expressed in a variety of other malignancies,
introducing new avenues to study viral diseases.

Results
The viRNAtrap framework
To identify viruses in the human transcriptome, we first trained a
neural network to distinguish viral reads basedon short sequences.We
collected positive (viral) and negative (human) transcripts that were
segmented into 48 bp fragments and divided into training and test sets
(Fig. 1a, Methods). We used different metrics to evaluate the ability of
the model to identify viral sequences based on short segments. The
model yielded test-set performance: area under the receiver operating
characteristic curve (AUROC) of 0.81, area under the precision-recall
curve (AUPRC) of 0.82 (Fig. 1b), the accuracy of 0.71, recall of 0.83, the
precision of 0.67 and F1-score of 0.74 (Fig. 1c). We compared the
performance of this model to previous models trained to identify
viruses, namely DeepViFi16, DeepVirFinder15, ViraMiner21, as well as a
method called “off-the-shelf Seq2Seq” compared through DeepViFi16,
that does not use much domain-specific knowledge about viruses
(Methods). Importantly, ourmodel outperformed othermethods in all
measures, except for precision, for which DeepVirFinder out-
performed all other methods (Fig. 1b, c). However, precision is less
critical for this framework because alignment steps are used to further
filter out negatives. Importantly, DeepViFi16, DeepVirFinder15, and
ViraMiner21 were previously not trained or evaluated for RNA

sequencing or 48 bp reads, which is likely the reason that these
methods are less appropriate in that context without specific optimi-
zation (see Methods). Examining the average model performance
across segments from different human viruses, we find that human
single-stranded DNA viruses from taxon Monodnaviria were assigned
with high confidence, whereas, for RNA viruses, we observed more
variation in model confidence. For example, the model confidently
predicted the viral origin of sequences from Ebola and influenza
viruses but assigned borderline scores to sequences from several
Phenuiviridae members such as Dabie bandavirus (Fig. 1d and Sup-
plementary Data 1).

Based on the trained neural network, we built a computational
framework (Fig. 1a, Methods) to identify viral contigs from tumor
RNAseq and applied the framework to 7272 samples from 14 cancer
types in The Cancer Genome Atlas (TCGA)22, from which 6717 were
tumor samples and 555 were non-cancer samples matched to a cancer
sample from the same individual (Supplementary Data 2). In pre-pro-
cessing, we extracted reads that were not aligned to the human gen-
ome (hg19) or to the phiX phage23 that was identified as a frequent
contaminant. The computational framework, named viRNAtrap, was
then applied to unaligned RNA reads (to reduce the running time of
viRNAtrap), to detect viral reads and assemble predicted viral contigs.
Finally, in post-processing analysis, we used blastn24 to compare the
assembled viral contigs to three curated viral databases. We identified
viral contigs originating from reference viruses that are expected in
cancer tissues, human endogenous viruses, and candidate novel or
more divergent viruses, which are expressed in different cancer types

Identifying reference tumor viruses
We first characterized the presence of known cancer-associated
human viruses in different tumor types. High-risk human Alphapa-
pillomavirus strains (HR-ɑHPVs) were most frequently detected; the
type observed in the majority of TCGA samples is HPV16. This is
expected because HR-ɑHPVs, such as HPV16 and HPV18, underlie ~5%
of cancer casesworldwide25 while low-risk humanAlphapapillomavirus
(LR-ɑHPV) strains, such as HPV54 and HPV201, are mostly associated
with the development of genital warts but not cancer26. We found at
least oneHR-ɑHPV in 288CESC samples (286 squamous cell carcinoma
samples and two non-cancer samples). We found 61 HNSC samples,
and a total of 14 samples across other cancer types, that contain a
contig from at least one HR-ɑHPV (Fig. 2a). LR-ɑHPVs were identified in
a small set of samples mostly from matched non-cancer tissues,
including cervix and head and neck (Fig. 2a and Supplementary
Data 2, 3).

Hepatitis B virus (HBV) is the second most frequently detected
virus across TCGA samples. HBV infections andHepatitis C virus (HCV)
infections are two primary causes of liver cancer andmay co-occur in a
patient11. We found HBV expression in 85 LIHC tumor samples and
seven non-cancer samples, and HCV in 13 LIHC tumor samples. HBV
was also found in a few tumor samples and matched non-cancer
samples from other cancer types (Fig. 2a). By comparing the samples
predicted as virus-positive by viRNAtrap to the samples annotated as
virus-positive in the TCGA clinical annotations, we found that the true
positive rates of viRNAtrapwere above 95% for HR-ɑHPVs (in CESC and
HNSC), and for HCV and HBV in LIHC, supporting that viRNAtrap
correctly identifies samples expressing known cancer viruses (Sup-
plementary Fig. 1). In addition, viRNAtrap found adeno-associated
virus 2 (AAV2) in eight LIHC samples, six from tumors and two from
non-cancer samples. AAV2 is a small DNA virus that has the potential to
integrate into human genes and contribute to oncogenesis, although
the current evidence is insufficient for AAV2 to be included in the
consensus list of oncogenic viruses27,28. A recent study that addressed
discrepancies in AAV2 expression across TCGA samples found at least
oneAAV2 read in 11 LIHC samples27. However, in three of these samples
only one AAV2 read was found, which is difficult to detect with the
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viRNAtrap pipeline. Notably, previous studies that systematically
characterized viral presence across TCGA did not identify AAV2 in
more than six LIHC samples11,27, demonstrating the sensitivity of viR-
NAtrap compared to other computational methods. We additionally
detected AAV2 in one KIRC sample, one PAAD sample, and one mat-
ched non-cancer sample from LUAD (Fig. 2a).

We found several samples that express human polyomaviruses,
especially polyomaviruses 6 and 7. Most notably, we found seven
BRCA samples and two HNSC samples that express polyomaviruses.
We additionally found Parvovirus B19 sequences in a few samples29

(three cancer and onematched non-cancer); this virus has beenmostly
associated with normal tissues30, but was also previously identified in
isolated tumor cases31,32. We investigated possible genomic correlates
of the expression of these viruses, including the tumor mutation bur-
den (TMB, the rate of somatic mutations in a tumor, which is a bio-
marker and is annotated for all TCGA samples), and the chromosome-
level aneuploidy (Methods). We found that HR-ɑHPV-positive samples
have lower TMBand aneuploidy levels compared toHR-ɑHPV-negative
samples (Fig. 2b). In contrast, LIHC cancer patients positive for HBV
showed significantly higher TMB compared to HBV-negative samples
(Supplementary Fig. 2). We additionally examined the association
between the expression of known oncoviruses and overall survival.
While none of the associations were significant after adjustment for

multiple hypotheses (Supplementary Fig. 2 and Supplementary
Table 1), we found a trend that HR-ɑHPV-positive HNSC patients have
better survival compared to HR-ɑHPV-negative patients (by the
Kaplan–Meier curves Fig. 2c), which is confirmatory of previous
studies33,34. We also found a positive association between the viral
presence and the overall survival of LIHC patients with HBV (Supple-
mentary Fig. 2 and Supplementary Table 1).

Uncovering expression patterns of HERVs in cancer tissues
To further demonstrate the utility of viRNAtrap, we analyzed the
expression of HERVs across different tumor types in TCGA (HERVs
were not used to train the viRNAtrap model). HERVs constitute ~8% of
the human genome; most HERV sequences are remnants of ancestral
retroviral infection that became fixed in the germline DNA35,36. HERV
proteins are found expressed in different conditions including cancer
tissues37–41. Specifically, the HERV-K family, which was most recently
integrated into the human genome and is one of the most abundant
HERV families in the human genome (along with HERV-H), was pre-
viously reported in tumor tissues and cell lines42,43. Moreover, recent
findings reported the association between HERV expression and poor
survival rates12,36,44–46.

To comprehensively characterize HERV members that are
expressed in different tumors, we established a database of potentially

Viral
Classification

1

0.5

NC_038914NC_038524NC_040620NC_033781
NC_040688NC_040805

NC_038523

NC_023891
NC_039086NC_027779

NC_040806

NC_0
14

95
6

NC_0
38

52
5

NC_0
34

61
6

NC
_0

34
50

5

NC
_0

38
72

8

NC
_0

35
21

2

N
C

_0
34

48
7

N
C

_0
43

58
7

N
C

_0
43

61
7

NC
_0

34
49

7
NC

_0
12

77
7

N
C

_0
14

40
6

N
C

_0
14

40
7

N
C

_0
20

10
6

N
C

_0
18

10
2

N
C

_0
15

15
0

N
C

_0
14

36
1

N
C

_0
24

11
8

N
C

_0
34

25
3

N
C

_0
19

02
8

N
C

_0
16

15
5

1 60930_
C

N

62
09

10
_

C
N N

C
_013060

N
C

_019027
N

C
_013443

NC_015373

NC_055339

NC_055344

NC_015374
NC_038350

NC_035213

NC_043445

NC_039024

NC_039025

NC_026435NC_055342
NC_026436

NC_009528
NC_026426

NC_020805
NC_038283

NC_034443

NC_043585
NC_043616
NC_014373
NC_014372
NC_045512
NC_034490

NC_038294
NC_019843
NC_034480

NC_026432

NC_026428

NC_025343

NC_026425

NC_043452

NC_015413

NC_035889

NC_018137

NC_026431

NC_011203

NC_034486

NC_024781

NC_055330

NC_001664

NC_020810

NC_055332

NC_007605

NC_015375

NC_055331

NC_055340

NC_034479

NC_043586

NC_055230

NC_035469

N
C

_039192
N

C
_055343

N
C

_039191
N

C
_038351

N
C

_022518

N
C

_012776
N

C
_024494

NC_043451
NC_018138

N
C

_039193
N

C
_026433

N
C

_026434

NC
_0

43
61

5

NC
_0

34
50

6
NC

_0
55

52
3

NC
_0

38
39

2

NC
_0

38
72

7

NC
_0

23
88

8

NC_0
17

99
5

NC_0
14

95
3

NC_0
13

03
5

NC_0
21

48
3

NC_0
17

99
4

NC_0
17

99
6

NC
_0

16
15

7

NC_040803

NC_017997

NC_014185

NC_014952

NC_022095

NC_017993

NC_022892
NC_038522

NC_019023
NC_040550

NC_040804
NC_040619

NC_040691

NC_014954NC_014955
NC_026946

NC_014469

NC_028125NC_027528

25
26

20
_

C
NN

C
_039062

N
C

_039063
N

C
_034385

N
C

_012800

N
C

_012798

N
C

_023984

N
C

_012802

N
C

_025961
N

C
_012801

N
C

_035758

N
C

_011800

N
C

_025114

N
C

_012986

NC_012957

NC_038356

NC_038358

NC_038353

NC_038360

NC_038355

NC_038359

NC_038352

NC_038357

NC_038354

NC_038361

NC_014093

NC_025726

NC_014068

NC_014095

NC_038347

NC_014089

NC_025727

NC_020498

NC_030297

NC_014097
NC_038345

NC_038346

NC_038337

NC_022789

NC_017091

NC_012564

NC_012729

NC_012042
NC_039050

NC_024888

NC_030449NC_040306NC_024694NC_038726NC_034498

NC_035211

NC_038605
NC_038609
NC_038594
NC_038604
NC_038596
NC_038606
NC_038613
NC_038600
NC_038610

NC_038418

NC_023874

NC_038595

NC_038412

NC_038417

NC_038413

NC_036877

NC_038415

NC_038416

NC_032682

NC_021568

NC_038414

NC_039215

NC_022788NC_018401NC_038496NC_028459NC_038497NC_030447NC_030448

NC_038611

NC_040309

NC_038612

NC_038603

NC_038602

NC_038307

NC_038598

NC_032480

N
C

_0
15

41
1

N
C

_0
15

41
2

N
C

_0
24

49
5

N
C

_0
43

45
0

N
C

_0
18

13
6 274420_

C
N

N
C

_0
24

49
6

N
C

_0
55

34
1

NC
_0

38
42

6

NC
_0

26
42

7

NC
_0

24
07

0
NC

_0
44

85
6

NC
_0

39
89

7
NC

_0
44

85
3

NC
_0

44
85

4
NC

_0
44

04
5

NC
_0

40
87

6
NC

_0
44

93
2

N
C

_0
26

43
7

N
C

_0
26

42
4

N
C

_0
39

47
5

N
C

_0
44

04
6

N
C

_0
26

42
3

N
C

_0
39

47
7

NC
_0

44
85

5
NC

_0
29

64
7

NC_0
30

79
1

NC_0
26

81
7

NC_0
38

43
6

NC_0
27

99
8

NC_0
38

59
9

NC_0
38

60
7

NC_0
26

43
8

NC_0
26

42
2

NC_0
26

42
9

NC_038597

NC_030454

NC_035475
NC_039070

NC_035474

NC_038601
NC_038608

NC_022089

Anelloviridae

Monodnaviria

Riboviria
Varidnaviria

Duplodnaviria

Model scoreb

c

a

Pr
ed

ic
t v

ira
l r

ea
ds

TACCTGGGTACCA

RNA-seq Reads

48 bp reads

Embedding
     Layer

Convolutional Neural Network
         Component

Fully Connected
    Layers

Pre
   Processing

hg19
Phix

Bowtie 2 
   alignment

U
nm

ap
pe

d 
R

ea
ds

Post-
 Processing
BLAST

Reference
 viruses

Human
  endogenous
    viruses 

Contig
  Assembly

High 
  model score

Low
  model score

Vi
ra

l c
on

tig
s

d

Other viruses

1.0

0.8

0.4

0.6

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0.2 0.4 0.6 0.8 1.0

viRNAtrap = 0.82

Receiver operating
characteristic curves Precision recall curves

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0.2 0.4 0.6 0.8 1.00.0

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Pr
ec

is
io

n

DeepVirFinder = 0.78
ViraMiner = 0.76
DeepViFi = 0.51
Seq2Seq = 0.55

viRNAtrap = 0.81
DeepVirFinder = 0.77
ViraMiner = 0.75
DeepViFi = 0.52
Seq2Seq = 0.51

viRNAtrap
DeepVirFinder
ViraMiner
DeepViFi
Seq2Seq

Accuracy Recall Precision F1 score
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functional HERVs that were extracted from the human genome
(Methods). The viRNAtrap contigs were aligned against this database,
to identify patterns of HERV expression in the 14 cancer types con-
sidered throughout this study.

As expected, we found that themost abundantly expressed HERV
families are HERV-K and HERV-H. The fraction of samples expressing

different individual HERV members was used to cluster tumor types.
Interestingly, we found that squamous cell carcinomas (including
cervical, lung, and head and neck) are clustered together based on the
proportional distribution of expressed HERV members (Fig. 3a). The
HERVs that are most abundantly expressed across different cancers
include some that are in proximity to cancer-associated genes or single
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nucleotide polymorphisms (SNPs) (Supplementary Data 3, 4). Specifi-
cally, one HERV-H member (chr2:204826665-204832368) is located
365 bp from the ICOS (Inducible T-cell costimulatory) gene, which has
been associated with tumor immune responses47–50. In addition, one
HERV9 member (chrX:150718827-150731816) is located 330bp from
the PASD1 cancer/testis antigen gene (each of these two HERVs are
found in ten TCGA samples, Supplementary Data 4, 5).

We investigated associations between HERV transcript presence
and patients’ overall survival (Fig. 3b). In agreement with previous
studies12,36,44–46, we find that patients with HERV-K- and HERV-H-
positive cancer samples have significantly lower overall survival com-
pared toHERV-K- andHERV-H-negative patients inCOAD, LUSC, LUAD,
and LIHC. Notably, every significant association that we identified
between HERV presence and overall survival in these cancer types is
negative (Fig. 3b and Supplementary Table 2).

To investigate the link between HERV expression and poor sur-
vival, we compared the TMB and aneuploidy scores between patients
expressing HERVs and those without HERV expression. HERVs that
were associated with poor survival were not associated with TMB or
aneuploidy (Supplementary Data 6). We found that HERVs associated
with poor overall survival were generallymore likely to be expressed in
the presenceof somaticmutations in frequentlymutated cancer driver
genes, such as TP53, KRAS, ARID1A, and PTEN (using hypergeometric

enrichment, Supplementary Data 7). However, we did not find a strong
association with mutations in any specific gene, and HERV expression
was found even in samples with no somatic mutations in any of these
genes (Fig. 3c and Supplementary Data 8)

Finding divergent viruses in human cancer
We next investigated tumor expression of divergent viruses that have
rarely or never been previously reported in humancancers.We aligned
the contigs produced by viRNAtrap against a database of viruses
(Methods) from different hosts that were not expected to be found in
tumor tissues, including human, bat, mouse, insect, plant, and bac-
terial viruses. (Fig. 4a). We found multiple contigs of mosaic plant
viruses in distinct samples from most tumor types, especially adeno-
carcinomas. For example, the watermelon mosaic virus was found in
three colorectal cancer samples, and the Bermuda grass latent virus,
which was previously reported in a COAD sample10, was identified in
multiple samples from three cancer types (COAD, LIHC, and UCEC;
Fig. 4a). Mosaic plant viruses have been previously detected in human
feces51,52, which could suggest viral entry and travel through the
digestive tract. However, it is unclear how mosaic plant viruses would
reach other tumor tissues, such as the liver and the endometrium, and
whether these are associated with an unidentified source of laboratory
contamination.
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Fig. 3 | Human endogenous retroviruses (HERVs) expressed in different cancer
types. a Heatmap clustogram clustering the proportion of HERVs across different
tumor types. The rows are 14TCGA tumor types. The 36 columns are the 36distinct
HERVswith the highest expression in human cancers, mapped to unique regions in
the genome (Supplementary Data 5). b Selection of Kaplan–Meier curves com-
paring the survival rates between patients in which any HERV reads were detected
(blue curves) versus those in which no HERV reads were detected (red curves). The
unadjusted two-sided log-rank p values are reported. (**) global FDR q <0.05, (*)

cancer-type specific FDR q <0.05. For Kaplan–Meier curves, shaded areas represent
the confidence interval of survival. Additional significant associations between
HERV and survival are reported in Supplementary Data 12. c Heatmap showing
somatic mutations in major cancer driver genes (selected are the most frequently
mutated driver genes in these samples, red) and the expression of HERVs that are
significantly associated with survival in LIHC, LUAD, LUSC, and COAD (green).
Source data are provided as a Source Data file 3.
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Notably, we identified expression in five head and neck carcinoma
samples of a Vientovirus, a member of the recently characterized
human virus family Redondoviridae that is associated with the human
oro-respiratory tract53 (Fig. 4a and Supplementary Data 3, 9). We also
found expression of a Gemycircularvirus HV-GcV154 in distinct samples
from several cancer types, and Cutavirus expression in one COAD and
one CESC sample each. We additionally detected human
coxsackievirus55 in a COAD sample, confirming a previous report10.

We also found expression of a few arthropod viruses in TCGA,
almost exclusively in UCEC samples (Fig. 4a), the most notable of
which is Armadillidium vulgare iridescent virus (IIV31)56. We detected
reads that align with IIV31 proteins in 152 endometrial cancer samples
(which constitute more than 25% of endometrial cancer samples stu-
died).While we did not find previous reports of IIV31 in these samples,
reads that align to the same strain were recently detected in a fewDNA
sequencing samples, but were filtered because these were not inclu-
ded in databases of multiple pipelines12. IIV31 is in Betairidovirinae;
members of this subfamily of dsDNA viruses infect a wide variety of
arthropods, including common insect parasites of humans57. One

study speculated on the role of Betairidovirinae transmitted by mos-
quitos in human disease58, but, to our knowledge, their presence in
humans has not been reported before. While Betairidovirinae are not
considered to be pathogens of vertebrates, one study showed that the
modelBetairidovirinae insect iridovirus 6 (IIV6)was lethal tomice after
injection, while heat-inactivated IIV6was not59. Additional studies have
shown that Betairidovirinae can infect vertebrate predators of infected
insects as well as several vertebrate cell lines60. Therefore, Betair-
idovirinaemay opportunistically infect vertebrates, including humans.

We identified different IIV31 genes expressed in UCEC samples,
and samples positive for IIV31 proteins originate from different bat-
ches and sequencing centers (Supplementary Data 10). In addition, we
found that IIV31 presence was strongly and positively associated with
overall survival (Fig. 4b), and negatively associated with TMB and
chromosome-level aneuploidy (Fig. 4c, d).Wedidnot identify a path to
contamination by IIV31; the multiple origins of IIV31-positive samples
and significant associations between IIV31 expression and other cancer
properties both suggest that IIV31 is not a contaminant. Of the most
highly expressed IIV31 proteins, we found an IAP apoptosis inhibitor
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homolog and serine/threonine protein kinases that were individually
associated with poor overall survival (YP_009046765, YP_009046752,
and YP_009046774, respectively), as well as a RAD50 homolog
(YP_009046808, Supplementary Fig. 3 and Supplementary Data 10).

We found a significant positive association between IIV31 and
CIBERSORT61 inferred CD8+ T-cell frequency and Treg frequency
(Fig. 4d). These findings, together with the association with improved
survival, suggest that IIV31 could be linked with a different infection,
either directly or indirectly. We explored the association of IIV31
infection with Trichomonas vaginalis (TV)62 infection. TV is a single-
celled protozoan pathogen that infects the human urogenital tract63,
and has been associated with an increased risk of cervical cancer,
which is enhancedbyHPVcoinfection64.We found that TV is expressed
in multiple UCEC tumor samples (we verified 21 TV-positive tumors
with strict alignment parameters, due to a high false positive ratewhen
aligning against TV transcripts). Indeed, TV-positive samples are highly
enrichedwith IIV31-positive samples (Fisher exact test p value = 1.4e-8).
Both TV and IIV31 are significantly associated with somatic PTEN
mutations, which are linked to better survival in endometrial cancers65

(whereas the presence of IIV31 is also associated with mutations in
CTNNB1 and PIK3R1, Fig. 4e).

We additionally identified Geobacillus virus E2 expression in 33
ovarian cancer samples; this virus is likely the most frequently
expressed virus in high-grade serous ovarian cancer. To further vali-
date the presence of the Geobacillus virus E2, we applied viRNAtrap to
cell line data from CCLE66. We identified the COV318 cell line as Geo-
bacillus virus E2-positive and identified the OVISE cell line as a virus-
negative control. Through qRT-PCR we validated the expression E2 in
the predicted-positive cell line COV318 (Fig. 4f). These results verify
that Geobacillus virus E2, which was never found in ovarian cancer
before, is indeed expressed in ovarian cancer cells, and that viRNAtrap
can be used to sensitively detect virus-positive samples. Geobacillus
bacteria has been previously detected in multiple ovarian cancer
samples67,68. While we could not pinpoint the Geobacillus species har-
boring the phage, it is likely within those previously found in ovarian
cancer samples67,68.

We found murine leukemia virus69 expression in distinct samples
fromfive cancer types.However,murine leukemia virus contamination
has been reported for cell culture due to human DNA preparation70.
Our method additionally detected a previously unknown virus in a
matched non-cancer sample from one HNSC patient, with protein
similarity to Pteropus (fruit bat)-associated Gemycircularvirus and
several other gemycircularviruses (Supplementary Data 3, 9).

Discussion
Identification of viruses from tumor RNA sequencing allows for the
potential discovery of new carcinogenic agents and mechanisms. The
discovery of novel anddivergent viral species that contribute to cancer
initiation and progression is crucial for the development of new ther-
apeutics, including vaccinations, screening practices, and anti-
microbial treatments. Viruses are currently identified from sequencing
reads based on similarity to known viruses71. However, when studying
viruses from short reads, typical with Illumina-based RNA sequencing,
reads originating from divergent viruses may share little sequence
similarity to known viruses, rendering the identification of novel
viruses highly challenging.

To address this challenge, we developed viRNAtrap, a new,
alignment-free framework to identify viral reads from RNAseq and
assemble viral contigs. The contigs detected by viRNAtrap can be
aligned to different viral databases, as we demonstrate in this study, to
rapidly identify viral expressions of interest in tumor samples. We
curate a database of HERVs that comprise intact retroviral genes in the
human genome and survey the expression of these viruses across
different cancer tissues. Through a database of divergent viruses, we
demonstrate that viRNAtrap identifies viruses in TCGA samples that

were not detected in previous studies. This is enabled through an
integrative method that uses the model scores to assemble viral reads
rather than aligning short divergent reads to viral databases or
applying assembly to many unmapped reads. We further show that
using the deep learning model substantially improves the running
time, while not compromising sensitivity if more than five viral reads
are present (Supplementary Fig. 4, see Methods). Importantly, the
output of viRNAtrap can be alternatively used as input to motif search
tools, to potentially identify highly divergent viruses. Because the deep
learning model underlying viRNAtrap was trained to distinguish viral
from human sequences, the model predictions for sequences derived
froma rangeofother organisms is not defined. Futurework could train
models to identify viruses from a variety of other organisms, and, with
the viRNAtrap framework, achievehigher sensitivity for viral detection.

We employ viRNAtrap for exploratory data analysis and char-
acterize viruses that are expressed across 14 cancer tissues from TCGA
and analyze their genomic and survival correlates. Interestingly, while
the expression of some exogenous cancer viruses is known to be
associated with improved survival, we found that the expression of
human endogenous viruses is strictly associated with poor survival
rates. Expression of a virus of the subfamily Betairidovirinae, which are
pathogens of insects, found in endometrial cancer tissueswas similarly
associated with significantly better overall patient survival. For all
divergent viruses reported in this study, thepresenceandclassification
ofmultiple viral readswas verified by targetedblastn- andblastx-based
sequence analyses in different samples. However, it is not possible to
model all contaminants of viruses that may have infected the samples
during laboratory procedures16.

Perhaps, the most interesting divergent virus we found is IIV31
from the subfamilyBetairidoovirinae, whichwas frequentlydetected in
UCEC TCGA samples. Interestingly, IIV6, a very close relative of IIV31,
can infect a variety of vertebrates including mice, and induces an
immune response in mammalian tissues60,72. Thus, one possibility is
that IIV31 is transmitted to the uterus through another insect, such as
the crab louse. While we have not yet confirmed the source of this
virus, our results imply that its presence may be a direct or indirect
consequence of Trichomonas vaginalis infection. Therefore, it shows
that viRNAtrap is sufficiently powerful to identify a previously
unknown viral transcript in tumor samples, whether oncogenic or
neutral. Through this analysis, we also identified TV reads in multiple
endometrial cancer samples, indicating a possible new association
between TV and endometrial cancer, like the known association of TV
with cervical cancer64. One of the established pathogenic mechanisms
of TV infection in humans, which may also explain the frequent HPV
coinfection, is that TV secretes exosomes that have the effect of sup-
pressing CXCL873. Interestingly, low expression of CXCL8, like infec-
tionwith TV, has been associatedwith a favorable prognosis in cervical
cancer74. Thus, it is possible that the presence of IIV31 is a secondary
infection in patients already infected with TV or some other pathogen
that suppresses the human anti-viral response.

Importantly, we identified the E2 Geobacillus virus in 10% of high-
grade, serous ovarian cancers, making it the most frequently expres-
sed virus in this cancer type. We experimentally verified that E2 Geo-
bacillus is indeed expressed in cell lines. We also found expression of a
Redondoviridae member in head and neck cancers that was not pre-
viously reported75. This finding calls for a study of the role of Redon-
doviridae in tumor initiation and progression, as this family of viruses
was only recently detected in humans and associated with different
clinical conditions.

In conclusion, we developed viRNAtrap, a new software for
alignment-free identification of viruses from RNAseq, allowing rapid
characterization of viral expression and detection of divergent viruses.
We applied it to tumor tissues from TCGA, uncovering expression
patterns of different groups of viruses. We report previously unrec-
ognized associations between several forms of cancer and several
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unexpected viral clades, including viral clades canonically found in
produce and in insect parasites of humans. Future studiesmay employ
viRNAtrap to find viruses that contribute to other malignancies.

Methods
Training a neural network to distinguish viral RNA sequen-
cing reads
The viRNAtrap framework is composed of two main components,
illustrated in Fig. 1a. The first is a deep learning model, which was
trained to accurately distinguish viral from human reads using RNA
sequencing. The second assembles the predicted viral reads into
contigs. The trained neural network is composed of one 1D-
convolutional layer and three fully connected layers, one of which is
the final output layer. The RNA sequences were one-hot encoded to
vectors thatwere given as input to themodel. The learning ratewas set
to 0.0005, we used 64 filters with ReLU as an activation function in the
convolutional layer, followed by one pooling layer for feature extrac-
tion. The global extracted features from the convolutional layer are
passed to three fully connected layers, tomake a prediction based on a
sigmoid activation function in the output layer.

To train themodel,wecollectedhumanandviral sequencingdata.
Coding sequences of human and other placental viruses were down-
loaded from the Virus Variation Resource76. Human transcripts for
hg19 were downloaded fromNCBI HumanGenomeResources77. These
sequences were segmented into 48 bp segments, which is the read
length for the RNAseq in almost all tumor types in TCGA; only a few
tumor types thatwere added chronologically last to TCGA used longer
reads. We used a 48 bp window size for human transcripts and a 2 bp
window size for viral sequences, to balance the positive and negative
data. Then, these were randomly split (where all segments of each
transcript were considered together) into balanced train, validation,
and test sets (n = 8,000,000, 800,000, and 2,558,044, respectively).

Model performance evaluation and comparison to existing
methods
We evaluated the performance of the model using the area under the
receiver operating characteristic curve (AUROC), the area under the
precision-recall curve (AUPRC), as well as accuracy, precision, recall,
and F1-score, for the test dataset. We trained multiple models with
different architectures and hyperparameters and then selected the
model with the highest average between the validation-set AUROC and
recall. The model was trained using TensorFlow 2.6.0 and Keras78. We
compared the performance of our model to models from DeepViFi16,
DeepVirFinder15, ViraMiner21, and off-the-shelf Seq2Seq model.
Because this is the first approach trained to predict viruses from RNA
sequencing reads of length 48 bp, we used our training data to retrain
each of these models, following the instructions provided by each
method, and evaluated theAUROC, AUPRC, accuracy, precision, recall,
and F1-score using our test set (see Supplementary Methods for a
detailed description of hyperparameters used). Importantly, existing
methods were not designed for reads shorter than 150bp, therefore
they should not be expected to perform as well as viRNAtrap on 48 bp
segments, for which viRNAtrap was optimized. Our comparison does
not rule out the possibility that new hyperparameter optimization for
this purpose may enhance the performance of existing methods for
48 bp sequences.

Assembling viral contigs from neural network predicted
viral reads
Once the viRNAtrap model predicts the probability of a viral origin of
each read, reads with model scores more than 0.7 are used as seeds to
assemble viral contigs. Viral contigs are assembled using an iterative
search for substrings with exact matches between 24 bp k-mers. Each
seed is complemented from the left and right ends using its left-most
and right-most 24bp k-mers. For both the left and right assembly,

reads containing the left or right-most k-mers in a different position
from the read that is being searched are identified. The read adding the
maximal number of bases to the assembled contig is used to com-
plement the left and right contigs. The model scores that were
assigned to reads that areused to assemble each contigwere averaged,
and the assembly terminates if the average score is below 0.5. Finally,
the right and left contigs are concatenated, to yield a complete viral
contig. This algorithmwas implemented in Python 3 and subsequently
in C, which improved the running time by more than an order of
magnitude for inputs with large numbers of reads.

Data pre-processing
We downloaded RNA sequencing data from Genomic Data Commons
(GDC; https://portal.gdc.cancer.gov/)79 asBAMfiles.High-quality reads
were selected andmapped with Bowtie2 against hg19 (1000 Genomes
version) and PhiX phage (NC_001422), and only the unmapped reads
were kept. Then, wemerged the paired-end reads and converted them
to fastqfiles,whichwere used as input for the viRNAtrap framework, to
yield predicted viral contigs.

Viral databases
Viral contigs yielded by the assembly component were used as inputs
to blastn24. Three databases were used to search for viruses (with an
E-value threshold of 0.01):

(1) RefSeq reference human viruses, downloaded from the
National Center for Biotechnology Information (NCBI)77, to which we
added human papillomaviruses strains that are not in RefSeq from
PAVE (https://pave.niaid.nih.gov)80. Reference viruses were searched
using blastn, with default parameters except for a word size of 15
(lower than the default of 28), which was chosen to allow identification
from short contigs.

(2) more divergent viruses were obtained from RVDB81 (https://
hive.biochemistry.gwu.edu/rvdb/) which was then filtered to remove
non-viral elements, endogenous viruses, and accessions that were
consistently not verified using blastn against the nonredundant (nr)
blast nucleotide database.

(3) Human endogenous viruses. We curated a database of
potentially functional HERVs through the evaluation of viral protein
completeness (in contrast to a previous study that evaluated HERV
expression indistinct RNAseqdatasets82). The initial genomic locations
of reported HERV elements were downloaded from the HERVd HERV
annotation database (https://herv.img.cas.cz)83. The nucleotide
sequences in hg19 for each reported HERV were extracted using
twoBitToFa84. We then applied blastx against NRwith an E-value cutoff
of 1E-4, as well as a profile search85 against collected POL proteins,
where the profile was obtained by collecting POL genes annotated in
GenBank in lentiviruses (as of September 2016) and aligning their
amino acid sequences using MAFFT86. Sequences with at least one
identified retroviral protein motif of POL/RT, GAG, or ENV were
extracted, yielding 3044 HERVs that were considered for search in
TCGAsamples (SupplementaryData 5). Importantly, the highmutation
rate of HERV87 prohibits most HERV sequences from aligning to the
human genome in pre-processing12,88, however, in rare cases, HERV
regions that are conserved would not be identified by this approach.

Quality standards for virus identification
For all viruses, blastnwas appliedwith anE-value cutoff of0.01 and any
sequences with a match to contaminant accessions (that were asso-
ciated with vector contamination) were filtered out.
a. Reference viruses. For every sample, contigs mapped to each

accession were extracted. Identified accessions with maximum
qcov across contigs ofmore than 90%, average qcov ofmore than
50%, and average similarity of more than 90% were considered.
Accessions with maximal contig length under 100 bp were
manually inspected and verified against nr.
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b. Humanendogenous viruses. For every sample, contigsmapped to
each HERV were extracted. HERVs with contigs longer than
200bp, and with average qcov and similarity of more than 95%
were considered.

c. Divergent viruses. For every sample, contigs mapped to each
accession were extracted. Viruses already identified through the
reference database were removed. Identified accessions with
maximal contig length of more than 300bp and qcov of more
than 40%, or withmaximal contig length ofmore than 100bp and
qcov of more than 75% and average similarity of more than 75%
were considered for manual inspection.

All instances of divergent viruses identified in TCGA samples were
verified using blastn against nr, to support that the virus strain is
indeed the best match to a viral contig generated by viRNAtrap. We
reason that non-reference viruses (divergent viruses and viruses of
non-human hosts) that were identified and verified in more than one
samplewere less likely to be a contaminant or isolated events, whereas
samples with fewer reads from such viruses may be filtered due to
the strict filtering. We therefore additionally searched using the STAR
aligner89 across tumor types where these viruses were identified
through viRNAtrap (Supplementary Data 3). The following accessions
were additionally searchedusing STAR to increase sample coverage (as
these were the most interesting divergent strains found across
multiple samples): Bermuda grass latent virus (NC_032405),
Armadillidium vulgare iridescent virus IIV31 (NC_024451), Geobacillus
virus (NC_009552), and the human lung-associated vientovirus
(NC_055523)

Filtering contaminants
To filter vector contaminants, we applied VecScreen90 to the assem-
bled contigs that have beenmapped to viruses through our databases,
where virus accessions associated with vector contaminants were
entirely removed from the search (Supplementary Data 11).

In addition, we examined the application of software such as
Kraken291 to the RNAseq reads for filtering reads that are not likely of
viral origin, by applying Kraken2 to reads of LIHC samples. However,
we found that 99% of the reads would not be filtered using this
approach (Supplementary Fig. 5), likely due to the short reads (48 bp)
for which Kraken has not been designed or evaluated, as longer
sequences are known to be more accurately mapped92.

Genomic correlates of viral expression
We correlated viral expression with genomic markers across TCGA
samples. Chromosomal aneuploidy levels for TCGA samples were
extracted from93 and the total number of chromosome-arm-level
alterations was used. The tumor mutation burden was defined to be
the total number of somatic mutations in each sample, downloaded
from the Xena browser94 (https://xenabrowser.net). CIBERSORT61

software was applied to TCGA samples using the default set of 22
immune-cell signatures.

Cells and culture conditions
Human ovarian cancer cell lines COV318 and OVISE were cultured in
RPMI1640 medium containing 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin under 5% CO2. All of the cell lines were
authenticated at The Wistar Institute’s Genomics Facility using short-
tandem-repeat DNA profiling. Regular mycoplasma testing was per-
formed using a LookOut mycoplasma PCR detection kit (Sigma, cat.
no. MP0035).

Experimental validation of the Geobacillus virus E2 in ovarian
cancer cell lines
Reverse-transcriptase qPCR (RT-qPCR) RNA was extracted using TRI-
zol reagent (Invitrogen, cat. no. 15596026). ExtractedRNAwasused for

reverse-transcriptase PCR using a High-capacity cDNA reverse tran-
scription kit (Thermo Fisher, cat. no. 4368814). Quantitative PCR was
performed using a QuantStudio 3 real-time PCR system. GAPDH was
used as an internal control. The fold change was calculated using
the 2-ΔΔCt method. The primers used for reverse-transcriptase
qPCR are: GAPDH forward, GTCTCCTCTGACTTCAACAGCG and
reverse, ACCACCCTGTTGCTGTAGTAGCCAA; Geobacillus virus E2
terminase forward, TTGCGATGCGTACTCAGACT and reverse,
CTCTTTTTGGTCAGCAGCGG Primers were obtained using NCBI
primer design tool as shown in the Supplementary Information.
The primers were synthesized by Integrated DNA Technologies
IDT. A specification of the primer design is provided in the Sup-
plementary Information.

Identification of Trichomonas vaginalis-positive samples
UCEC unmapped (to hg19) reads were aligned to the reference gen-
ome of Trichomonas vaginalis (GCF_000002825)62 strain G3 using
blastn24 with E-value <1e-8 and more than 90% identity. These thresh-
olds were set to remove false positives that were frequent when
aligning against Trichomonas vaginalis when examining both blastn24

and STAR aligner89. TV reads for each TV-positive sample were verified
by manual inspection of the output alignments.

viRNAtrap performance evaluation
Toevaluate the contributionof themodel to the viRNAtrappipelinewe
re-ran viRNAtrap on 10 LIHC samples, and additionally ran a modified
viRNAtrap pipeline not using the model, on the same system. We
compared the viruses identified by themodel-based approach to those
that are identified when the pipeline is applied without using the
model (Supplementary Table 2, showing similar viruseswith adifferent
number of contigs). We additionally compared the running time of the
two approaches (Supplementary Fig. 4).

To evaluate the sensitivity of the viRNAtrap pipeline based on the
number of viral reads present in a sample, we performed a simulated
analysis. From the test dataset, we downsampled groups of viral reads
with different group sizes (10,000 groups for each size, from one read
up to 10 reads), and we evaluated the number of groups with at least
one read that is scored above 0.7, which is the seed threshold used for
the viRNAtrap assembly. Therefore, this analysis is estimating the
probability of identifying viruses based on the number of reads pre-
sent.We found 93 and 99%of the groupswithmore than 5 and 9 reads,
respectively, would be identified.

Statistical methods
Survival analyse, includingKaplan–Meier curvesplots and log-rank test
p values, were obtained using the Python lifelines package (v0.26.4)95.
P values comparing TMB and aneuploidy between two groups were
computed with two-sided Wilcoxon rank-sum tests. Heatmap clusto-
grams were generated through seaborn clustermap.

Viruses with significant log-rank p values are reported as sig-
nificantly associated with survival.

None of the reference viruses were significantly associated with
survival after FDR correction (Supplementary Table 1), however, we
report in Fig. 2 the association between HR-HPV with unadjusted p
value because it is confirmatory of a known association between HR-
HPV and HNSC survival33,34.

For HERV, our exploratory data analysis uncovered some sig-
nificant associations with complete hypothesis testing. We present in
the main text selected associations with at least five cases in each
group. Nevertheless, FDR correction was applied within each cancer
type for all HERV associations, and we additionally applied a global
FDR correction for all comparisons across cancer types, yielding some
significant associations with less thanfive positive cases. The complete
significant associations between survival and viral presence are
reported in Supplementary Data 12.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The complete training and test data as well as viral databases gener-
ated in this study have been deposited in the Zenodo database under
the accession code https://doi.org/10.5281/zenodo.7548375. The
results shown here are in whole or part based upon data generated by
the TCGA Research Network: https://www.cancer.gov/tcga. The raw
FASTQ RNA sequencing data are protected and are not publicly
available due to data privacy laws, but are available under restricted
access as data can be unique to an individual. Access can be obtained
from the GenomeData Commons (GDC) after receiving permission via
dbGaP, following the steps described in: https://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id = phs000178.v11.p8. The
processeddata including viruses identified and respective statistics are
available as supplementaryData 3. The complete data generated in this
study are provided in the Supplementary Information/Source Data
file. Source data are provided with this paper.

Code availability
The scripts for pre and post-processing and the viRNAtrap package are
available through GitHub: https://github.com/AuslanderLab/virnatrap
and Zenodo under accession code: https://doi.org/10.5281/zenodo.
7548375.

References
1. Morales-Sánchez, A. & Fuentes-Pananá, E. M. Human viruses and

cancer. Viruses 6, 4047–4079 (2014).
2. Krump, N. A. & You, J. Molecular mechanisms of viral oncogenesis

in humans. Nat. Rev. Microbiol. 16, 684–698 (2018).
3. Rous, P. A sarcoma of the fowl transmissible by an agent separable

from the tumor cells. J. Exp. Med. 13, 397–411 (1911).
4. Moore, P. S. &Chang, Y.Whydo viruses cause cancer?Highlights of

the first century of human tumour virology. Nat. Rev. Cancer 10,
878–889 (2010).

5. Salyakina, D. & Tsinoremas, N. F. Viral expression associated with
gastrointestinal adenocarcinomas in TCGA high-throughput
sequencing data. Hum. Genomics 7, 23 (2013).

6. Parfenov, M. et al. Characterization of HPV and host genome
interactions in primary head and neck cancers. Proc. Natl Acad. Sci.
USA 111, 15544–15549 (2014).

7. Cao, S. et al. Divergent viral presentation amonghuman tumors and
adjacent normal tissues. Sci. Rep. 6, 28294 (2016).

8. Strong, M. J. et al. Differences in gastric carcinoma micro-
environment stratify according to EBV infection intensity:
implications for possible immune adjuvant therapy. PLoS
Pathog. 9, e1003341 (2013).

9. Khoury, J. D. et al. Landscape of DNA virus associations across
humanmalignant cancers: analysis of 3,775casesusingRNA-Seq. J.
Virol. 87, 8916–8926 (2013).

10. Tang, K. W., Alaei-Mahabadi, B., Samuelsson, T., Lindh, M. & Lars-
son, E. The landscape of viral expression and host gene fusion and
adaptation in human cancer. Nat. Commun. 4, 2513 (2013).

11. Cantalupo, P. G., Katz, J. P. & Pipas, J. M. Viral sequences in human
cancer. Virology 513, 208–216 (2018).

12. Zapatka, M. et al. The landscape of viral associations in human
cancers. Nat. Genet. 52, 320–330 (2020).

13. Kellam, P. Molecular identification of novel viruses. Trends Micro-
biol. 6, 160–165 (1998).

14. Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Sun, F. VirFinder: a
novel k-mer based tool for identifying viral sequences from
assembled metagenomic data. Microbiome 5, 69 (2017).

15. Ren, J. et al. Identifying viruses frommetagenomic data using deep
learning. Quant. Biol. 8, 64–77 (2020).

16. Rajkumar, U. et al. DeepViFi: detecting oncoviral infections in can-
cer genomes using transformers. BCB '22: Proceedings of the 13th
ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics 1–8 https://doi.org/10.1145/
3535508.3545551 (Association for Computing Machinery 2022).

17. Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids
from metagenomic fragments using deep learning. Gigascience
https://doi.org/10.1093/gigascience/giz066 (2019).

18. Auslander, N., Gussow, A. B., Benler, S., Wolf, Y. I. & Koonin, E. V.
Seeker: alignment-free identification of bacteriophage genomes by
deep learning. Nucleic Acids Res. 48, e121 (2020).

19. Zhang, Z. et al. Rapid identification of human-infecting viruses.
Transbound. Emerg. Dis. 66, 2517–2522 (2019).

20. Bartoszewicz, J. M., Seidel, A. & Renard, B. Y. Interpretable detec-
tion of novel human viruses from genome sequencing data. NAR
Genom. Bioinform. 3, lqab004 (2021).

21. Tampuu, A., Bzhalava, Z., Dillner, J. & Vicente, R. ViraMiner: deep
learning on raw DNA sequences for identifying viral genomes in
human samples. PLoS ONE 14, e0222271 (2019).

22. Weinstein, J. N. et al. The cancer genome atlas Pan-cancer analysis
project. Nat. Genet. 45, 1113–1120 (2013).

23. Mukherjee, S., Huntemann, M., Ivanova, N., Kyrpides, N. C. & Pati, A.
Large-scale contaminationofmicrobial isolategenomesby Illumina
PhiX control. Stand. Genom. Sci. 10, 18 (2015).

24. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new genera-
tion of protein database search programs. Nucleic Acids Res. 25,
3389–3402 (1997).

25. Coursey, T. L., Van Doorslaer, K. & McBride, A. A. Regulation of
human papillomavirus 18 genome replication, establishment, and
persistence by sequences in the viral upstream regulatory region. J.
Virol. 95, e0068621 (2021).

26. Doorbar, J. et al. The biology and life-cycle of human papilloma-
viruses. Vaccine 30, F55–F70 (2012).

27. Schäffer, A. A. et al. Integration of adeno-associated virus (AAV) into
the genomes ofmost Thai andMongolian liver cancer patients does
not induce oncogenesis. BMC Genomics 22, 814 (2021).

28. Bayard, Q. et al. Cyclin A2/E1 activation defines a hepatocellular
carcinoma subclass with a rearrangement signature of replication
stress. Nat. Commun. 9, 5235 (2018).

29. Cossart, Y. E., Field, A. M., Cant, B. & Widdows, D. Parvovirus-like
particles in human sera. Lancet 1, 72–73 (1975).

30. Adamson-Small, L. A., Ignatovich, I. V., Laemmerhirt,M.G. &Hobbs,
J. A. Persistent parvovirus B19 infection in non-erythroid tissues:
possible role in the inflammatory and disease process. Virus Res.
190, 8–16 (2014).

31. Dickinson, A. et al. Newly detected DNA viruses in juvenile naso-
pharyngeal angiofibroma (JNA) and oral and oropharyngeal squa-
mous cell carcinoma (OSCC/OPSCC). Eur. Arch. Otorhinolaryngol.
276, 613–617 (2019).

32. Li, Y. et al. Detection of parvovirus B19 nucleic acids and expression
of viral VP1/VP2 antigen in human colon carcinoma. Am. J. Gastro-
enterol. 102, 1489–1498 (2007).

33. Sethi, S. et al. Characteristics and survival of head and neck cancer
by HPV status: a cancer registry-based study. Int. J. Cancer 131,
1179–1186 (2012).

34. Sarkar, S. et al. Human papilloma virus (HPV) infection leads to the
development of head and neck lesions but offers better prognosis
in malignant Indian patients. Med. Microbiol. Immunol. 206,
267–276 (2017).

35. Curty, G. et al. Human endogenous retrovirus K in cancer: a
potential biomarker and immunotherapeutic target.Viruses https://
doi.org/10.3390/v12070726 (2020).

Article https://doi.org/10.1038/s41467-023-36336-z

Nature Communications |          (2023) 14:785 10

https://doi.org/10.5281/zenodo.7548375
https://www.cancer.gov/tcga
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id
http://phs000178.v11.p8
https://github.com/AuslanderLab/virnatrap
https://doi.org/10.5281/zenodo.7548375
https://doi.org/10.5281/zenodo.7548375
https://doi.org/10.1145/3535508.3545551
https://doi.org/10.1145/3535508.3545551
https://doi.org/10.1093/gigascience/giz066
https://doi.org/10.3390/v12070726
https://doi.org/10.3390/v12070726


36. Kolbe, A. R. et al. Human endogenous retrovirus expression is
associated with head and neck cancer and differential survival.
Viruses https://doi.org/10.3390/v12090956 (2020).

37. Kämmerer, U., Germeyer, A., Stengel, S., Kapp, M. & Denner, J.
Human endogenous retrovirus K (HERV-K) is expressed in villous
and extravillous cytotrophoblast cells of the human placenta. J.
Reprod. Immunol. 91, 1–8 (2011).

38. Armbruester, V. et al. A novel gene from the human endogenous
retrovirus K expressed in transformed cells. Clin. Cancer Res. 8,
1800–1807 (2002).

39. Wang-Johanning, F. et al. Human endogenous retrovirus K triggers
an antigen-specific immune response in breast cancer patients.
Cancer Res. 68, 5869–5877 (2008).

40. Wang-Johanning, F. et al. Expression of human endogenous retro-
virus k envelope transcripts in human breast cancer. Clin. Cancer
Res. 7, 1553–1560 (2001).

41. Kassiotis, G. Endogenous retroviruses and the development of
cancer. J. Immunol. 192, 1343–1349 (2014).

42. Xue, B., Sechi, L. A. & Kelvin, D. J. Human endogenous retrovirus K
(HML-2) in health and disease. Front. Microbiol. 11, 1690 (2020).

43. Kim, J. S., Yoon, S. J., Park, Y. J., Kim, S. Y. & Ryu, C. M. Crossing the
kingdom border: human diseases caused by plant pathogens.
Environ. Microbiol. 22, 2485–2495 (2020).

44. Hahn, S. et al. Serological response to human endogenous retro-
virus K in melanoma patients correlates with survival probability.
AIDS Res. Hum. Retroviruses 24, 717–723 (2008).

45. Zhao, J. et al. Expression of human endogenous retrovirus type K
envelope protein is a novel candidate prognosticmarker for human
breast cancer. Genes Cancer 2, 914–922 (2011).

46. Reis, B. S. et al. Prostate cancer progression correlates with
increased humoral immune response to a human endogenous
retrovirus GAG protein. Clin. Cancer Res. 19, 6112–6125 (2013).

47. Fan, X., Quezada, S. A., Sepulveda, M. A., Sharma, P. & Allison, J. P.
Engagement of the ICOS pathway markedly enhances efficacy of
CTLA-4 blockade in cancer immunotherapy. J. Exp. Med. 211,
715–725 (2014).

48. Xiao, Z., Mayer, A. T., Nobashi, T. W. & Gambhir, S. S. ICOS is an
indicator of T-cell-mediated response to cancer immunotherapy.
Cancer Res. 80, 3023–3032 (2020).

49. Faget, J. et al. ICOS-ligand expression on plasmacytoid dendritic
cells supports breast cancer progression by promoting the accu-
mulation of immunosuppressive CD4+ T cells. Cancer Res. 72,
6130–6141 (2012).

50. Conrad, C. et al. Plasmacytoid dendritic cells promote immuno-
suppression in ovarian cancer via ICOS costimulation of Foxp3(+)
T-regulatory cells. Cancer Res. 72, 5240–5249 (2012).

51. Zhang, T. et al. RNA viral community in human feces: prevalence of
plant pathogenic viruses. PLoS Biol. 4, e3 (2006).

52. Balique, F., Lecoq,H., Raoult, D. &Colson, P. Canplant viruses cross
the kingdom border and be pathogenic to humans. Viruses 7,
2074–2098 (2015).

53. Abbas, A. A. et al. Redondoviridae, a family of small, circular
DNA viruses of the human oro-respiratory tract associated with
periodontitis and critical illness. Cell Host Microbe 25,
719–729.e714 (2019).

54. Halary, S. et al. Novel single-stranded DNA circular viruses in peri-
cardialfluid of patient with recurrent pericarditis. Emerg. Infect. Dis.
22, 1839–1841 (2016).

55. Dalldorf, G. & Sickles, G. M. An unidentified, filtrable agent isolated
from the feces of childrenwith paralysis.Science 108, 61–62 (1948).

56. Federici, B. A. Isolation of an iridovirus from two terrestrial isopods,
the pill bug, Armadillidium vulgare, and the sow bug, Porcellio
dilatatus. J. Invertebr. Pathol. 36, 373–381 (1980).

57. Williams, T. Natural invertebrate hosts of iridoviruses (Iridoviridae).
Neotrop. Entomol. 37, 615–632 (2008).

58. Li, L. et al. Investigation on mosquito-borne viruses at lancang river
and Nu river watersheds in Southwestern China. Vector Borne
Zoonotic Dis. 17, 804–812 (2017).

59. Ohba, M. & Aizawa, K. Mammalian toxicity of an insect iridovirus.
Acta Virol. 26, 165–168 (1982).

60. İnce İ A. et al. Invertebrate iridoviruses: a glance over the last dec-
ade. Viruses https://doi.org/10.3390/v10040161 (2018).

61. Newman,A.M. et al. Robust enumerationof cell subsets from tissue
expression profiles. Nat. Methods 12, 453–457 (2015).

62. Carlton, J. M. et al. Draft genome sequence of the sexually trans-
mitted pathogen Trichomonas vaginalis. Science 315,
207–212 (2007).

63. Kissinger, P. Trichomonas vaginalis: a review of epidemiologic,
clinical and treatment issues. BMC Infect. Dis. 15, 307 (2015).

64. Yang, S. et al. Trichomonas vaginalis infection-associated risk of
cervical cancer: a meta-analysis. Eur. J. Obstet. Gynecol. Reprod.
Biol. 228, 166–173 (2018).

65. Risinger, J. I. et al. PTEN mutation in endometrial cancers is asso-
ciated with favorable clinical and pathologic characteristics. Clin.
Cancer Res. 4, 3005–3010 (1998).

66. Barretina, J. et al. The cancer cell line encyclopedia enables pre-
dictive modelling of anticancer drug sensitivity. Nature 483,
603–607 (2012).

67. Banerjee, S. et al. The ovarian cancer oncobiome. Oncotarget 8,
36225–36245 (2017).

68. Nejman, D. et al. The human tumor microbiome is composed of
tumor type-specific intracellular bacteria. Science 368,
973–980 (2020).

69. Robinson, H. L. Retroviruses and cancer. Rev. Infect. Dis. 4,
1015–1025 (1982).

70. Uphoff, C. C., Lange, S., Denkmann, S. A., Garritsen, H. S. & Drexler,
H. G. Prevalence and characterization of murine leukemia virus
contamination in human cell lines. PLoS ONE 10, e0125622 (2015).

71. Kostic, A. D. et al. PathSeq: software to identify or discover
microbes by deep sequencing of human tissue.Nat. Biotechnol. 29,
393–396 (2011).

72. Ahlers, L. R., Bastos, R. G., Hiroyasu, A. & Goodman, A. G. Inverte-
brate iridescent virus 6, a DNA virus, stimulates amammalian innate
immune response through RIG-I-Like receptors. PLoS ONE 11,
e0166088 (2016).

73. Twu, O. et al. Trichomonas vaginalis exosomes deliver cargo to host
cells and mediate host∶parasite interactions. PLoS Pathog. 9,
e1003482 (2013).

74. Wu, X. et al. Identification of key genes and pathways in cervical
cancer by bioinformatics analysis. Int. J. Med. Sci. 16,
800–812 (2019).

75. Taylor, L. J. et al. Redondovirus diversity and evolution on global,
individual, and molecular scales. J. Virol. 95, e0081721 (2021).

76. Hatcher, E. L. et al. Virus variation resource - improved
response to emergent viral outbreaks. Nucleic Acids Res. 45,
D482–D490 (2017).

77. Sayers, E. W. et al. Database resources of the National Center for
Biotechnology Information. Nucleic Acids Res. 49, D10–D17
(2021).

78. Chollet, F. et al. Keras. https://github.com/fchollet/keras (2015).
79. Grossman, R. L. et al. Toward a shared vision for cancer genomic

data. N. Engl. J. Med. 375, 1109–1112 (2016).
80. VanDoorslaer, K. et al. Thepapillomavirus episteme: amajor update

to the papillomavirus sequence database. Nucleic Acids Res. 45,
D499–D506 (2017).

81. Goodacre, N., Aljanahi, A., Nandakumar, S., Mikailov, M. & Khan, A.
S. A reference viral database (RVDB) to enhance bioinformatics
analysis of high-throughput sequencing for novel virus detection.
mSphere https://doi.org/10.1128/mSphereDirect.00069-18
(2018).

Article https://doi.org/10.1038/s41467-023-36336-z

Nature Communications |          (2023) 14:785 11

https://doi.org/10.3390/v12090956
https://doi.org/10.3390/v10040161
https://github.com/fchollet/keras
https://doi.org/10.1128/mSphereDirect.00069-18


82. Tokuyama, M. et al. ERVmap analysis reveals genome-wide tran-
scription of human endogenous retroviruses. Proc. Natl Acad. Sci.
USA 115, 12565–12572 (2018).

83. Paces, J. et al. HERVd: the human endogenous retroViruses data-
base: update. Nucleic Acids Res. 32, D50 (2004).

84. Karolchik, D. et al. The UCSC Table Browser data retrieval tool.
Nucleic Acids Res. 32, D493–D496 (2004).

85. Yutin, N., Puigbò, P., Koonin, E. V. & Wolf, Y. I. Phylogenomics of
prokaryotic ribosomal proteins. PLoS ONE 7, e36972 (2012).

86. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment
software version 7: improvements in performance and usability.
Mol. Biol. Evol. 30, 772–780 (2013).

87. Bannert, N. & Kurth, R. Retroelements and the human genome: new
perspectives on an old relation. Proc. Natl Acad. Sci. USA 101,
14572–14579 (2004).

88. Smith, C. C. et al. Endogenous retroviral signatures predict immu-
notherapy response in clear cell renal cell carcinoma. J. Clin. Invest.
128, 4804–4820 (2018).

89. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinfor-
matics 29, 15–21 (2013).

90. Schäffer, A. A. et al. VecScreen_plus_taxonomy: imposing a
tax(onomy) increase on vector contamination screening.
Bioinformatics 34, 755–759 (2018).

91. Wood, D. E., Lu, J. & Langmead, B. Improvedmetagenomic analysis
with Kraken 2. Genome Biol. 20, 257 (2019).

92. Celaj, A., Markle, J., Danska, J. & Parkinson, J. Comparison of
assembly algorithms for improving rate of metatranscriptomic
functional annotation. Microbiome 2, 39 (2014).

93. Taylor, A. M. et al. Genomic and functional approaches to under-
standing cancer aneuploidy. Cancer Cell 33, 676–689.e673
(2018).

94. Goldman, M. J. et al. Visualizing and interpreting cancer genomics
data via the Xena platform. Nat. Biotechnol. 38, 675–678 (2020).

95. Davidson-Pilon, C. lifelines: survival analysis in Python. J. Open
Source Softw. 4, 1317 (2019).

Acknowledgements
The research reported in this publication was supported in part by the
National Cancer Institute of the National Institutes of Health under
Award Number R00CA252025 (N.A.), RF1-AG063481, P30-CA016520
(Q.L.), and NIH RO1 AI153508, Commonwealth of Pennsylvania SAP#
4100089371, andP30CA010815 (P.M.L), andby the Intramural Research
Program of the National Institutes of Health, National Cancer Insti-
tute (A.A.S.).

Author contributions
N.A. initiated the project. Q.L., R.Z., A.A.S., and N.A. supervised work.
A.E., X.H., R.Z., A.A.S., and N.A. designed and performed experiments
and analyses. A.E., Y.Y., D.E.S., J.W., A.A.S., and N.A. wrote and tested
software. P.M.L and Q.M. contributed to data interpretation and
exploratory analyses. K.T. and Q.L. revised the survival analysis.

Competing interests
P.M.L. is a founder of and advisor to Vironika, LLC. All other authors
declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-36336-z.

Correspondence and requests for materials should be addressed to
Noam Auslander.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-36336-z

Nature Communications |          (2023) 14:785 12

https://doi.org/10.1038/s41467-023-36336-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A deep learning approach reveals unexplored landscape of viral expression in cancer
	Results
	The viRNAtrap framework
	Identifying reference tumor viruses
	Uncovering expression patterns of HERVs in cancer tissues
	Finding divergent viruses in human cancer

	Discussion
	Methods
	Training a neural network to distinguish viral RNA sequencing reads
	Model performance evaluation and comparison to existing methods
	Assembling viral contigs from neural network predicted viral reads
	Data pre-processing
	Viral databases
	Quality standards for virus identification
	Filtering contaminants
	Genomic correlates of viral expression
	Cells and culture conditions
	Experimental validation of the Geobacillus virus E2 in ovarian cancer cell lines
	Identification of Trichomonas vaginalis-positive samples
	viRNAtrap performance evaluation
	Statistical methods
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




