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Dissecting the immune suppressive human
prostate tumor microenvironment via
integrated single-cell and spatial
transcriptomic analyses
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Youmna Kfoury1,2,3, ShulinWu5,6, Bronte M. Verhoeven7, Alexander O. Subtelny5,
Dimitar V. Zlatev6, Matthew W. Wszolek6, Keyan Salari 6,8, Evan Murray8,
Fei Chen 8, Evan Z. Macosko 8,9, Chin-Lee Wu5,6, David T. Scadden1,2,3,
Douglas M. Dahl6, Ninib Baryawno 7,12, Philip J. Saylor 10,12,
Peter V. Kharchenko 2,4,8,11,12 & David B. Sykes 1,2,3,12

The treatment of low-risk primary prostate cancer entails active surveillance
only, while high-risk disease requiresmultimodal treatment including surgery,
radiation therapy, and hormonal therapy. Recurrence and development of
metastatic disease remains a clinical problem, without a clear understanding
of what drives immune escape and tumor progression. Here, we comprehen-
sively describe the tumor microenvironment of localized prostate cancer in
comparison with adjacent normal samples and healthy controls. Single-cell
RNA sequencing and high-resolution spatial transcriptomic analyses reveal
tumor context dependent changes in gene expression. Our data indicate that
an immune suppressive tumor microenvironment associates with suppressive
myeloid populations and exhausted T-cells, in addition to high stromal
angiogenic activity. We infer cell-to-cell relationships from high throughput
ligand-receptor interaction measurements within undissociated tissue sec-
tions.Ourwork thus provides a highly detailed and comprehensive resource of
the prostate tumor microenvironment as well as tumor-stromal cell
interactions.

Localized prostate cancer (PCa) is a clinically heterogeneous disease.
Some patients present with low-risk prostate tumors that can safely be
observed, while others have a high-risk disease that carries a substantial
relapse risk even following state-of-the-art treatment. Despite efforts
aimed at early detection and improving our current curative-intent
therapies, many patients, unfortunately, experience recurrence1. There
remains a significant need to further our understanding of PCa, where
biological insights of the prostate tumor microenvironment (TME) may
help to identify novel therapeutic targets.

Single-cell gene expression technologies have made it possible to
assess thousands of cells within a single sample, revealing subtleties in
tumor cell heterogeneity as well as a complex TME2,3. Examinations of
normal adult human prostate4 and PCa have provided detailed
descriptions of the epithelial and tumor cells as well as cell states in
both prostate adenocarcinoma5–8 and neuroendocrine tumors9. How-
ever, the immune cells within the prostatemicroenvironment have not
been rigorously characterized at the single-cell level. The prostate TME
typically contains few immune cells, and it is hypothesized that this
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feature may explain the generally poor response of PCa to
immunotherapy10. We, therefore, processed freshly collected prostate
tissues using a method that enriched and preserved immune cells to
characterize the immune microenvironment at high-resolution.

To validate our single-cell findings, we used a spatial tran-
scriptomic technique (Slide-seqV2), where the tissue architecture and
cell-cell proximity relationships are preserved11,12. We developed a new
computational means of data analysis to examine the transcriptional
impact of tumor cells on neighboring stromal cells, including fibro-
blasts, pericytes, and endothelial cells.

In this study, combined scRNA-seq and spatial transcriptomic
analyses improve our understanding of PCa with the following obser-
vations: (1) primary PCa establishes a suppressive immune micro-
environment, (2) the prostate TME exhibits a high angiogenic gene
expression pattern in addition to a (3) new computational analysis
pipeline to deconvolute context-specific differential gene expression.
We further reveal the transcriptional state of stromal cells based on
their spatial localization within the tumor. In sum, our data reveal a
highly immune-suppressive TME and describe tumor-induced altera-
tions of neighboring cells that promote tumorigenesis and progres-
sion. This careful dissection of the cellular andmolecular landscape of
PCa will help identify areas of vulnerability amenable to therapeutic
intervention.

Results
The prostate TME characterized by single-cell and spatial tran-
scriptomic analysis
Fresh PCa samples were collected from 19 treatment-naive patients
diagnosed with prostate adenocarcinoma and underwent radical
prostatectomy. In 15 out of the 19 patients, matched ‘normal’ benign
prostate tissue adjacent to the tumor was also sampled. As controls,
prostate tissues not harboring cancer were collected from 4 patients
(underwent cystoprostatectomy for bladder cancer), and one healthy
prostate tissue was collected as part of a rapid autopsy from a patient
with metastatic non-small cell lung cancer (Fig. 1a).

The cellular composition of the prostate TME was examined
across a spectrum of primary tumor grades and stages (pathologic
T-stage 2a to 3b; Gleason score 6-10). Samples were divided into low-
grade (LG, Gleason 6 and 7, 12 cases) and high-grade (HG, Gleason
8–10, 7 cases) (Supplementary Data 1). Live, nonerythroid cells
(DAPIneg/CD235neg) were collected by fluorescence-activated cell sort-
ing (FACS) fromhealthy prostate tissues (n = 5), prostate tumor tissues
(n = 12 LG and n = 7 HG), and adjacent non-tumor prostate tissues
(n = 11 LG and n = 4 HG, hereafter ‘adjacent-normal’ (Adj-N)). All
patients had standardpathologic evaluation to confirm their diagnosis
(Fig. S1a).

The transcriptomes of 179,359 single cells were analyzed (average
of 4721 cells per sample and 50,416 transcripts per cell, Supplementary
Data 2). Conos13 (Clustering On Network Of Samples) aligned the
samples, and the analysis of the resulting joint cell clusters revealed a
rich repertoire of immune cells and non-immune stromal cells (Fig. 1b).
Cell types were annotated based on cell type-specific gene markers,
forming 16 major clusters (Fig. 1c, Fig. S1b, Supplementary Data 3).

Of note, our dissociation protocol was optimized to enrich
immune cells. This was an intentional choice to focus on the prostate
immune TME with the goal of understanding why PCa is considered
poorly immunogenic and rarely respond to immunotherapy14. In
comparing our tissue processing method (Collagenases+Dispase) to a
published protocol of a single-cell prostate study (Rocky)4, the Col-
lagenases+Dispase released a higher proportion of immune cells
(Fig. 1d, Fig. S1c). Reassuringly, cells liberated by both dissociation
protocols showed similar transcriptome profiles (Fig. S1d).

In terms of the abundance of major cell populations, significant
but small differenceswere observed inplasma cells, macrophages, and
endothelial cells when comparing the tumor fraction to the Adj-N

(Fig. 1e). Stratifying LG and HG cases, there were similarly small but
significant changes in plasma cells (Adj-N vs. tumor, LG),macrophages
(Adj-N vs. tumor, LG) and endothelial cells (Healthy vs. adj-N LG)
(Fig. S1e). The few significant differences in cell abundance were likely
due to high patient-to-patient variability even within patients with
same Gleason score (Fig. S1f).

The overall similarity of the transcriptional state between samples
was examined using a weighted expression distance, revealing a sig-
nificant increase in the inter-patient variability among the tumor
fraction, compared to the adj-normal and healthy fractions (Fig. 1f).
This suggests divergent trajectories of the cellular states in the tumor
region among different patients.

To validate single-cell findings with a dissociation-free approach
that preserves tissue architecture, we performed spatial tran-
scriptomics using Slide-seqV211,12. This provided the opportunity to
examine tumor organization at high spatial resolution. Fresh-frozen
10-micron sections were sampled from two healthy prostate samples
and two prostate tumor samples (one of LG Gleason score and one of
HG Gleason score) as well as their corresponding adjacent-normal
tissues (Fig. 1g).

Robust Cell Type Decomposition (RCTD) was used to assign cell
type annotations on Slide-seqV2 data based on scRNA-seq reference
data (see ‘Methods’)15. Hallmark genes denoting different cell popula-
tions were used to verify the RCTD annotation (Fig. S1g). As expected,
Slide-seqV2 measurements showed more pronounced differences in
cell proportions as compared to the scRNA-seq data, with greatly
expanded epithelial and fibroblasts populations and a significantly
smaller fraction of immune cells (Fig. 1d).

The cellular architecture viewed through the lens of Slide-seqV2
was reassuringly consistentwithwhatonewould expect from standard
H&E staining. The highly detailed spatial configuration of the healthy
prostate tissue demonstratedwell-organizedprostate epithelial glands
surrounded by immune and non-immune stromal cells including
fibroblasts, pericytes, and endothelial cells (Fig. 1g, panel 1). This
architecture was notably disrupted in the cancerous prostate (Fig. 1g,
panels 3 and 4). Differences in tissue organization were quantified by
spatial autocorrelation using Moran’s I score, which evaluates the
extent to which the cells are clustered (high score) or dispersed (low
score)16. The Moran’s I score for fibroblasts, endothelial cells, and
pericytes significantly decreased in tumors as compared to healthy
tissues (Fig. 1h).

A prostate tumor gene signature distinguishes normal and
malignant luminal epithelial cells
Unsupervised clustering revealed four epithelial subpopulations:
basal, luminal, club, and hillock (Fig. 2a) as denoted by key-marker
gene expression (Fig. S2a). Hillock and club cells were identified as
transitional cells in a cellular atlas of themouse lung17. These cells have
also been reported in human prostate tissue4,18 and in benign human
prostate organoids6, but their role in prostate tumorigenesis remains
unclear.

We used RNA velocity to infer the likely trajectories of epithelial
cell differentiation19. One trajectory suggested that club cells act as
luminal cell progenitors, an observation previously reported in PCa20.
A second distinct trajectory showed consistent directional flow sug-
gesting that hillock cellsmay act as progenitors for basal cells (Fig. 2b).
Differential gene expression comparing healthy and tumor-associated
hillock and club cells showed enrichment in genes involved in uro-
genital system development and epithelial tubes morphogenesis,
respectively (Fig. S2b), and these cells are known to be enriched in
urethra and peri-urethral prostate zones4.

Malignant cells did not cluster separately from the non-malignant
epithelial populations from which they originated. To distinguish
malignant cells from normal epithelial cells within the prostate tumor
samples, we applied inferCNV21 on the four epithelial subpopulations,
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taking their corresponding subpopulation from healthy samples as a
reference. Only cells within the luminal subpopulation showed clear
chromosomal aberrations, indicating that the malignant cells are of
luminal origin, consistent with previous studies22 (Fig. S2c).

Chromosomal aberrations and inferCNV analysis allowed us to
separate malignant luminal cells (with genomic aberrations) from

normal luminal cells within the tumor. Differential expression genes
(DEGs) analysis was used to identify an expression signature for the
malignant cells, leading to a signature composed of eight genes, which
we termed the “Prostate Tumor Gene Signature” (Fig. 2c) (See ‘Meth-
ods’). We applied this gene signature to published bulk RNA-seq of
PCa, demonstrating a consistent ability to distinguish tumor samples
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from adjacent-normal samples across four independent datasets
(Fig. S2d)23–26.

Since we were able to distinguish malignant cells from normal
luminal epithelial cells within tumor samples, we assessed for malig-
nant cells heterogeneity. Clustering of malignant cells revealed three
major aspects of malignant clusters (Fig. S3a, see ‘Methods’). Gene
Ontology (GO) pathway analysis showed enrichment in genes related
to cell growth and migration in malignant cluster 1 (C1) (Fig. S3b). C1
also showed high expression of EGR1, IER2, and KLF6 genes (Fig. S3a)
suggesting roles in PCa progression, motility, and metastasis27,28.

Epithelial-mesenchymal transition (EMT) plays an important role
in prostate cancer progression and metastasis29. Malignant cells
showed significantly higher EMT gene signature30 (Supplementary
Data 4) as compared to non-malignant luminal epithelial cells from the
three different sample types (healthy, Adj-N, and tumor) (Fig. 2d,
Fig. S3c).

Spatially, the healthy prostate tissue demonstrated an organized
glandular epitheliumwith awell-structuredbilayer of basal and luminal
cells (Fig. 2e). The adj-normal sample differedwith an expansion of the
luminal epithelial population, and loss of the well-organized glands
(Fig. S1a, Fig. 2e). Epithelial subpopulations were annotated using
RCTD and validated using key-marker genes for the four different
epithelial subpopulations (Fig. 2e and 2f). The clusters of club and
hillock cells observedwithin thehealthy prostate tissueweredisrupted
in the tumor and adj-normal tissues as demonstrated by spatial auto-
correlation (Fig. 2e and S3d).

The “Prostate Tumor Gene Signature” obtained from the 10X
single-cell data was applied to evaluate tumor cell annotation in the
Slide-seqV2 data. This eight-gene tumor signature successfully identi-
fied tumor-enriched areawithin theHG case (Fig. 2g). Almost no tumor
cells were annotated in the healthy and adj-normal samples (Fig. 2g),
speaking to the accuracy of this “Prostate Tumor Gene Signature”.

Context-dependent differential expression with linear admix-
ture correction
Using our Slide-seqV2 data, the edge or boundary of the expanding
tumor was particularly evident in the HG sample, which could be
segmented into two distinct spatial contexts. The tumor context was
dominated by a dense accumulation of tumor cells, while the tumor-
adjacent context was composed primarily of non-malignant epithelial
cells (Fig. S3e). The small fraction of tumor cells detected within the
adj-normal sample likely represents real infiltration of tumor cells.
Slide-seqV2 allows one to examine the differences in cellular state
associated with precise spatial contexts. Annotation tools such as
RCTD15 estimate the fractions of cell types contributing to each bead
and identify relatively pure beads that can be confidently assigned to a
specific cell type. However, even “pure” beads can carry admixture of
transcriptomes from the neighboring cells (Fig. 2h).

As composition of the cellular neighborhoods varies between
different tissue contexts, such admixture will heavily bias transcrip-
tional comparisons of cellular state between contexts. To overcome
this admixture effect, we developed a new computational approach
which regressed out context-dependent differences that could be
attributed to admixture from other cell types, focusing on the residual
differences that likely reflect the context-dependent change in the
transcriptional state of the target-cell type (details in Supplementary
Note). In subsequent sections, we apply this approach to contrast the
state of the stromal populations between tumor and tumor-adjacent
contexts.

The prostate tumor microenvironment exhibits high endothe-
lial angiogenic activity
The non-immune stromal populations including fibroblasts, endothe-
lial cells, and pericytes, represent important components of the TME
whose function and abundance varies significantly between cancer
types31. We identified five stromal subpopulations including two
endothelial, two pericytes, and one fibroblasts subpopulation (Fig. 3a)
annotated based on key-marker gene expression (Fig. S4a and Sup-
plementary Data 3).

Endothelial-1 subpopulation showed high expression of SELE/
SELP/CLU/PLVAP, characteristic of sinusoidal endothelial cells whereas
Endothelial-2 subpopulation expressed common arterial genes (HEY1/
IGFBP3/FBLN5)32–35 (Fig. S4a). GO analysis of Endothelial-2 pointed to
pathways involved in blood vessel development and angiogenesis
(Fig. 3b). An angiogenesis gene signature30 (Supplementary Data 4)
demonstrated that the tumor-associated Endothelial-2 scored highest
when compared to the other stromal populations, and when com-
paring healthy and tumor fractions across almost all non-immune
stromal populations (Fig. 3c).

Transcriptomic changes of the Endothelial-2 were examined
within the Slide-seqV2 spatial transcriptomic platform comparing the
‘tumor’ and ‘tumor-adjacent’ contexts (Fig. 3d and S4b). Pathway
enrichment analysis of Endothelial-2 was consistent with the 10X
single-cell data of the tumor, showing upregulation of sprouting
angiogenesis and vascular endothelial growth factor pathways (Fig. 3e,
Fig. S4c).

Endothelial-2 in the tumor context also showed upregulation of
cell migration and proliferation pathways (Fig. S4c). This is consistent
with the dispersed organization of this subpopulation within the
tumor tissue in contrast to well-organized structures of the adj-normal
and healthy samples (Fig. 3f), and this was quantified by spatial auto-
correlation analysis (Fig. 3g). Overall, this highlights the relevance of
endothelial cells to tumor vascularization and migration which corre-
lates with PCa progression36.

Perivascular pericytes are another component of the vascular
system. These cells exhibitmesenchymal features withmultipotency37,

Fig. 1 | The prostate TME characterized by single-cell and spatial tran-
scriptomic analyses. a Schematic illustration of samples collection and proces-
sing.b Integrative analysis of scRNA-seq samples visualized using a commonUMAP
embedding for cell annotation (left) and sample fractions (right). c Dotplot
representing key-marker gene expression in major cell types. The color represents
scaled average expression of marker genes in each cell type, and the size indicates
the proportion of cells expressing marker genes. d Stacked barplots showing the
fractional composition of cell number for different clusters within scRNA-seq
(using two different dissociation protocols: Collagenases+Dispase and Rocky, see
text) and Slide-seqV2. e Boxplot comparing proportion of major cell populations
between healthy prostate tissues (n = 5) and tissues collected from cancerous
prostates (tumorn = 18 and adj-normal n = 14). Significancewas assessedusing two-
sided Wilcoxon rank-sum test (Macrophage: *p =0.03). f Boxplot showing inter-
individual gene expressiondistances (based on Pearsoncorrelation)within healthy,
adj-normal, and tumor samples, averaged across all cell types. Significance was
assessed using two-sidedWilcoxon rank-sum test (tumor vs. adj-normal *p =0.015;

Tumor vs. Healthy ***p =0.0003). Boxplots in e, f include centerline, median; box
limits, upper and lower quartiles; and whiskers are highest and lowest values no
greater than 1.5× interquartile range. g Spatial presentation at a high-resolution
level using Slide-seqV2 for the major cell populations in healthy (n = 4), adj-normal
of LG case (n = 2), and two tumor tissues collected from a low-grade (Tumor-LG
n = 2) and high-grade (Tumor-HG n = 2) patients. Patinets ID from Supplementary
Data 2 representedhere as healthy isHP1, adj-normal of LGcase is Benign04, tumor
tissue of LG case is Tumor08, tumor tissue of HG case is Tumor02. h Barplots
showing spatial autocorrelation (Moran’s I) of fibroblasts and pericytes in Healthy
(n = 4), adj-Nomral (n = 4), and Tumor samples (n = 4). Moran’s I evaluates whether
the cells are clustered (high Moran’s I score) or dispersed (low Moran’s I score).
Statistical analysis was performed using two-sided Wilcoxon rank-sum test. (Peri-
cytes *p =0.03; Fibroblasts *p =0.029; Epithelial *p =0.03, error bars: SEM). Source
data are provided as a Source Data file. P values <0.05 were considered significant:
*p <0.05; **p <0.01; ***p <0.001; ****p <0.0001.
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and their role in vasculature development is established while their
role in cancer progression is unclear. We identified two pericyte sub-
populations (Fig. 3a). The expression pattern in Pericyte-1 was enri-
ched for pathways involved in extracellular structure organization and
connective tissue development, while Pericyte-2 demonstrated gene
signatures enriched for muscle contraction consistent with vascular
smooth muscle cells (VSMCs) (Fig. 3b). In addition, there was a sig-
nificant increase in the angiogenic gene signature of both pericyte
subpopulations in samples collected from cancerous prostate as
compared to healthy prostate (Fig. 3c). Spatially, Pericyte-1 cells were
dispersed in the tumor samples when compared to healthy and adj-

normal samples (Fig. 3f and 3g). Taken together, these data suggest a
role for pericytes in angiogenesis and in remodeling the tumor stroma
during PCa progression.

Cancer-associated fibroblasts (CAFs) play a critical role in shaping
the TME by promoting tumor proliferation and metastasis38, enhan-
cing angiogenesis39, and mediating immunosuppression40. In PCa,
CAFs play a causal role in cancer development at early stages, con-
tributing to therapy resistance and metastatic progression41. Fibro-
blasts gene expression patterns showed enrichment for extracellular
structure organization and connective tissue development pathways
(Fig. 3b). These same pathways were also identified within the Slide-
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seqV2 differential gene analysis, comparing the tumor to the tumor-
adjacent context (Fig. S4d). These data suggest a role for fibroblasts in
inducing extracellular matrix remodeling in prostate TME, which in
turn is important for tumor progression.

Coordination between tumor cells and stromal compartment in
tumor context
We utilized Slide-seqV2 spatial information to examine potential
channels of communication between cells within the tumor. While the
importance of cell-to-cell signaling is appreciated, it is challenging to
infer which cells communicate with each other and via which
channels42. Prediction of possible relationships is based on the
expression of ligand and cognate receptor pairs and typically results in
many potential interactions; additional filters are needed to distin-
guish functionally relevant channels. We reasoned that spatial proxi-
mity might be one such filter to identify relevant interactions.

We asked whether the corresponding ligand and receptor genes
exhibited cooperative upregulation in cells positioned directly next to
each. Slide-seqV2 data was used to construct a graph of physically
adjacent cells, which permitted testing whether a ligand-receptor (LR)
score, defined as a product of the two corresponding expression
levels, was significantly higher in physically adjacent cells than would
be expected from a randomized spatial arrangement (Fig. 4a, see
‘Methods’). From a reference list of ~1200 ligand-receptor interactions,
our analysis revealed 405 statistically significant potential commu-
nication channels (Fig. 4b, Supplementary Data 5).

With a focus on tumor-stromal communication, we investigated
for communication channels when considering tumor cells as a source
of ligands and stromal cells as expressing receptors (Fig. 4c). Tumor
cells express vascular endothelial growth factor (VEGFA and VEGFB),
which can stimulate Endothelial-2 cells through VEGF receptor, FLT143

and beta-1 integrin44,45. These channels could potentially explain the
pro-angiogenic shift in the state of the tumor-associated Endothelial-
2 subpopulation (Fig. 3e). We also observed potential interactions
between tumor cells and fibroblasts (COL9A2-ITGA1) and tumor cells
with Pericytes-2 cells (COL12A1-ITGA1) (Fig. 4c), two pathways that are
both involved in extracellularmatrix remodeling and cellmigration46,47.

Analysis of reverse interactions (i.e., stromal cells expressing
ligand to a tumor receptor), revealed a potential interaction mediated
by fibroblasts Insulin-like Growth Factor (IGF1) stimulating tumor cell
IGF1 receptor (Fig. 4d). The IGF pathway is known to promote tumor
growth and survival through suppression of apoptosis and activation
of cell cycle48. Slide-seqV2 analysis of the IGF1-IGF1R interaction con-
firmed the co-localization of tumor cells expressing IGF1R and fibro-
blasts expressing IGF1 (Fig. 4e).

Immunosuppressive myeloid cells are enriched in prostate
tumors
Myeloid cells support tumor progression in several cancer types, and
these cells are considered one of the most clinically relevant

populations to target for immune therapeutic purposes49. Unsu-
pervised clustering of myeloid population revealed three monocytes,
threemacrophages, and 1myeloid DC (mDC) subpopulations (Fig. 5a).
Annotation was performed based on key-marker genes (Fig. 5b and
S5a) and validated by monocyte and macrophage gene signatures
(Supplementary Data 4, Fig. 5c, panels 1 and 2).

Monocyte subpopulations were characterized as CD16hi
(CD16hi-Mo) which are known as non-classical monocytes, and
tumor-inflammatorymonocytes (TIMo)which hadhigh expressionof
CD14, a classical monocyte marker (Fig. 5b) as well as the highest
expression of an inflammatory gene signature (Supplementary
Data 4, Fig. 5c, panel 3). The third subpopulation was annotated as
Monocyte-Macrophage (Mo-MΦ) as it showed a gradual shift in their
gene expression from genes highly expressed in monocytes (e.g.,
S100A9) to genes expressed in macrophages (e.g., C1QA) (Fig. S5b),
suggesting a transitional cell state from monocytes toward macro-
phages. Both tumor and stromal cells produce chemokines involved
in themyeloid differentiation process, as well as in the recruitment of
monocytes to the tumor site50. In our dataset, we observed high
expression of CXCL12 in fibroblasts, CCL2 in pericytes, and CCL3,4,
and 5 in epithelial and tumor cells (Fig. S5c), suggesting a potential
role of fibroblasts and pericytes in recruiting monocytes to the
prostate tumor.

Patients with PCa have an immunosuppressive TME associated
with the accumulation of myeloid-derived suppressor cells
(MDSCs)51,52. In our dataset of myeloid subpopulation, TIMo cells
scored highest for MDSC gene signature53 (Supplementary Data 4,
Fig. 5c, panel 5), and the gene signaturewas significantly higher in cells
collected from cancerous prostate (tumor and adj-normal) compared
to healthy prostate tissues (Fig. 5d). This suggests a role for TIMo in
prostate tumor growth through immunosuppressive activity.

Several macrophage subpopulations were identified (Fig. 5a),
including tumor-inflammatory macrophages (TIMΦ) with a high
“Inflammatory gene signature”, antigen presenting macrophages (AP
MΦ) with a high “antigenprocessing andpresentation gene signature”,
as well as M2-macrophages (M2-MΦ) with a high “M2-gene signature”
(Fig. 5c, panels 4 and 6, Fig. S5d, Supplementary Data 4). M2-MΦ
showed a gradual increase in cell abundance from healthy towards
tumor fraction (Fig. 5e) and M2-macrophages have been shown to
suppress anti-tumor immune response across a broad range of
tumors54. In PCa, the high infiltration of M2-macrophages in tumor
tissue has been linked to tumor recurrence55 and metastasis56.

Multiplex immunohistochemistry (mIHC), performed in-situ on
the same tissue samples as the single-cell expression, confirmed a
higher infiltration of CD68+ macrophages and of CD68+ CD163+ M2-
MΦ in tumor tissues compared to their matched adj-normal tissues
(Fig. 5f). Quantification of tumor infiltration by M2-MΦ was more
pronounced in cases of high Gleason scores (4 + 4, 4 + 5, 5 + 5) (Fig. 5f,
bottom panel). M2-MΦ express high levels of genes involved in
angiogenesis such as angiogenic factor EGFL757 and in tumor

Fig. 2 | A Prostate Tumor Gene Signature distinguishes normal and malignant
luminal epithelial cells. a Joint embedding represent the detailed annotation of
epithelial subpopulations in prostate tissues. b RNA velocity analysis of the tran-
sitions of epithelial cells, estimated on different sample fraction. c Violin plot
showing the expression of genes panel of “Prostate Tumor Gene Signature” in
malignant cells and in the epithelial luminal cells of healthy, adj-normal, and tumor
prostate samples. d Boxplot representing the epithelial-mesenchymal transition
(EMT) score in malignant cells (n = 6) and the luminal epithelial cells of healthy
(n = 5), adj-normal (n = 14), and tumor (n = 17) prostate samples. The box is boun-
ded by the first and third quartile with a horizontal line at themedian and whiskers
extend to the maximum and minimum value. Significance was assessed using two-
sided Wilcoxon rank-sum test (Malignant vs. adj-normal *p =0.02; Malignant vs.
Healthy *p =0.03). e Spatial presentation of epithelial subpopulations in healthy
(n = 4), adj-normal (Adj-normal LG n = 2) and two tumor tissues collected from low-

grade (Tumor-LG n = 2) and high-grade (Tumor-HG n = 2) patients. Patinets ID from
Supplementary Data 2 represented here as healthy is HP1, adj-normal of LG case is
Benign04, tumor tissueof LG case isTumor08, tumor tissueofHGcase is Tumor02.
fDotplot representing key-marker genes expression in epithelial subpopulations in
Slide-seqV2. The color represents scaled average expression of marker genes in
each cell type, and the size indicates the proportion of cells expressing marker
genes. g Spatial presentation for “Prostate Tumor Gene Signature” average
expression inhealthy, adjacent-normal (HG) and tumor (HG) Slide-SeqV2pucks.hA
schematic view of the admixture problem in the Slide-seqV2 puck. The barplot
shows the cell type composition in two different contexts within the same puck.
The barplot related to the tumor context contains substantial admixture from
nearby tumor cells whereas the one related to tumor-adjacent context is a het-
erogeneous mixture of different cell types. Source data are provided as a Source
Data file.
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metastasis such as LYVE158 and NRP159 (Fig. S5e), suggesting a role for
M2-MΦ infiltration in angiogenesis within tumors.

mDCs present tumor antigens to T-cells with a critical role in the
initiation and regulation of the adaptive anti-tumor immune
response60. We identified three mDCs subpopulations, each with high
expression of either CD1C, CLEC9A or LAMP3. No significant changes

were observed in the cell abundance of the different mDCs subsets
(Fig. S5f).

Overall, our myeloid cell analysis identified immunosuppressive
subpopulations that may contribute to tumor progression, including
MDSC-like monocytes (TIMo), and macrophages with an M2-gene
signature.
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Prostate cancer is characterized by T-cell exhaustion and
immunosuppressive Treg activity
The adaptive immune system plays a pivotal role in mounting an
effective, antigen-specific immune response against tumors. Unsu-
pervised clustering of the lymphoid compartment revealed four CD4+
T-cell, three CD8+ T-cell and two NK subpopulations (Fig. 6a) as
annotated by key-marker genes (Fig. 6b).

The functional state of CD8+ T-cells was assayed using a cyto-
toxicity gene signature (“cytotoxicity score”) (Supplementary
Data 4)61,62. CD8+ effector cells exhibited a higher cytotoxicity score
compared to CTL-1 and CTL-2 (Fig. S6a). Also, we aimed to check the
CTLs cytotoxicity by comparing “cold” tumors characterized with low
T-cell infiltration and “hot” tumors with high degree of T-cell
infiltration63. To this end, we collected scRNA-seq data from pancrea-
tic ductal adenocarcinoma (PDAC)64 as another cold tumor; and from
“hot” tumors including head and neck squamous cell carcinoma
(HNSCC)65, liver hepatocelluar carcinoma (LIHC)66 and lung cancer
(lung)3. We first performed an integration for T-cell compartments
from all datasets mentioned above where data showed the three CD8+
T-cell subsets (CTL-1, CTL-2, and CD8+ effector cells) obtained in our
dataset also in the other solid tumors (Fig. S6b). Interestingly, T-cell
cytotoxicity scored significantly higher in the three different CTLs in
the “hot” tumors compared to “cold” tumors (Fig. 6e) that affect the
efficacy of immune therapy.

In addition, we observed the low T-cell infiltration in prostate
tumor in our Slide-seqV2 data (Fig. S6c and S6d). Hallmark genes
denoting different cell populations were used to verify the RCTD
annotation in Slide-seqV2 data (Fig. S6e).

Also, we checked for T-cell exhaustion. Both CTL-1 and CD8+
effector cells exhibited higher expression of a T-cell exhaustion gene
signature66–68 (Supplementary Data 4, Fig. 6c), and the exhaustion
score was higher in the prostate tumor and adj-normal samples as
compared to healthy prostate tissues (Fig. 6d).

Measurement of T-cell abundance showed a higher proportion of
exhausted CTL-1 cells in tissues collected from cancerous prostate
compared to healthy prostate tissues (Fig. S6f), suggesting that more
CTLs in the tumor fraction became dysfunctional, and eventually
acquiring an “exhausted” phenotype.

CD4+ T-cells were subdivided into naive, T-helper-1 (Th1),
T-helper 17 (Th17), and T-regulatory (Treg) cells based on cell-type-
specific genes69 (Fig. 6b). CD4+ cell abundance were stable across the
different sample fractions (Fig. S6f). In Tregs subpopulation, we
checked for Treg activity gene expression (Treg activity score)70,71

(Supplementary Data 4). Data showed significantly higher Treg
activity score in Tregs collected from the tumor compared to adj-
normal and healthy samples (Fig. 6f). Notably, genes of tumor
necrosis factor receptor superfamily TNFRSF9, TNFRSF18, and
TNFRSF4 were highly and exclusively expressed in the Tregs infil-
trating the tumor (Fig. S6g). These receptors bind tumor necrosis
factors, pro-inflammatory cytokines involved in inflammation-

associated carcinogenesis72 and in supporting an immunosuppres-
sive TME.

Coordination between myeloid and lymphoid compartments
Tregs and MDSCs represent two immunosuppressive cell populations
important for cancer immune tolerance. Both populations exhibited
high suppressive activity in the tumor fraction and their crosstalk has
been previously reported in different cancers73,74. Based on this, we
examined the correlation between MDSC score in TIMo and Treg
activity score in Tregs both in tumor samples and their adj-normal
tissues. Within the tumor fraction, the MDSC score and Treg activity
score were significant correlated, with no clear separation between LG
and HG Gleason patients (Fig. 7a, top). No correlation was seen in adj-
normal tissues (Fig. 7a, bottom).

Based on this correlation betweenmyeloid and T-cell suppressive
populations, we checked the ligands that are highly expressed in TIMo
and receptors that are upregulated in the Tregs in the tumor fraction,
followed by significant potential ligand-receptor interactions between
the two subpopulations. Data showed CCL20-CCR6 as one of the sig-
nificant axes of interaction between TIMo and Tregs, respectively
(Fig. 7b).CCL20was highly expressed in TIMo and its cognate receptor
CCR6 was predominantly expressed in Tregs, Th1 and Th17 (Fig. 7c,
Fig. 7d). Several studies showed an effect for CCL20 signaling in
enhancing tumor growth, invasiveness, and chemoresistance75–77 by
recruiting Tregs and/or Th1778,79.

To examine whether CCL20-CCR6 axis is involved in the immune
suppressive TME of PCa, we injected parental RM1 PCa cell line sub-
cutaneously into C57BL/6 J wild-type (WT) mice. When tumor reached
the volume of 300-400 mm3, mice were treated with CCL20-blocking
antibody alone or in combination with immune check point blockade
(anti-PD-1). Blocking CCL20-CCR6 interaction using CCL20-blocking
antibody reduced significantly RM1 tumor growth with no combina-
torial effect for anti-PD-1 (Fig. 7e), suggesting CCL20-CCR6 axis to be
involved in the prostate immune suppressive TME.

Taken together, we characterized the functional status of T-cell
subpopulations in prostate tumors to demonstrate exhausted CTLs
along with increased Treg suppressive activity which correlated
strongly with the suppressive activity of MDSC-like monocytes
through CCL20-CCR6 axis.

The prostate cancer TME is enriched in exhausted CD56DIM

NK cells
Natural killer (NK) cells are an innate lymphoid cell with cytotoxic
function that can be modulated by activating and inhibitory cell-
surface receptors80. NK cells were annotated based on key-marker
gene expression (Fig. 6b)81 and clustering revealed 4 NK subpopula-
tions (Fig. S7a and S7b). NKT cells were characterized by high
expression of T-cell marker genes CD3D and CD8 and CD56Dim NK cells
by high expression of HAVCR2, which is expressed by terminally dif-
ferentiated NK cells (Fig. S7b)81. CD56bright NK cells expressed XCL1,

Fig. 3 | The prostate tumor microenvironment exhibits high endothelial
angiogenic activity. a Joint embedding represent the detailed annotation of
stromal cells in prostate tissues. b Overview of enriched GO terms of top 200
upregulated genes for each stromal subpopulation based on single-cell data ana-
lysis. c Boxplot comparing the angiogenesis signature across the three different
sample fractions (healthy n = 5; adj-normal n = 14; tumor n = 18) for each stromal
subpopulation. See Supplementary Data 4 for the genes defining angiogenesis
signature. Boxplots include centerline, median; box limits, upper and lower quar-
tiles; and whiskers are highest and lowest values no >1.5× interquartile range. Sta-
tistical significance was accessed using two-sided Wilcoxon rank-sum test
(*p <0.05, ****p <0.0001), p values could be found in Supplementary Data 6. d The
scatterplot showing the effect of linear model-based correction on Endothelial-2
cells. Red dots indicate tumormarker genes. The x axis is the log-fold change of the
genes without the correction, the y axis is the same after the correction. The topDE

genes are text-labeled. eDotplot shows enrichedGO terms of upregulated genes in
Endothelial-2 cells in a tumor context compared to tumor-adjacent context.
f Spatial presentation at a high-resolution level using Slide-seqV2 for the stromal
subpopulations in healthy (n = 4), adj-normal (Adj-normal LG n = 2), and two tumor
tissues collected from a low-grade (Tumor-LG n = 2) and high-grade (Tumor-HG
n = 2) patients. Patients ID from Supplementary Data 2 represented here as healthy
is HP1, adj-normal of LG case is Benign04, tumor tissue of LG case is Tumor08,
tumor tissue of HG case is Tumor02. g Comparison of spatial autocorrelation
(Moran’s I) of Endothelial-2 cells and Pericytes-1 cells in healthy (n = 4), adj-normal
(n = 4), and tumor samples (n = 4). Statistical significance was accessed using two-
sided Wilcoxon rank-sum test (Endothelial cells-2 *p =0.03. Pericytes-1: Tumor vs.
Adj-normal *p =0.03; Tumor vs. Healthy ***p =0.03; Healthy vs. Adj-normal
*p =0.03, error bars: SEM). Source data are provided as a Source Data file. P values
<0.05 were considered significant: *p <0.05; **p <0.01; ***p <0.001; ****p <0.0001.
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XCL2, GZMK, CD44, and KLRC181, while the CD56bright-IL7R + cells sepa-
rated based on specific expression of IL7R and the homing-receptor
SELL (encoding CD62L)82–84 (Fig. S7b).

The NKT and CD56DIM cells also showed high expression of the
effector protein and cytotoxic-related genes FGFBP2, GNLY, GZMB,
GZMH81,85 (Fig. S7b). However, these same NK subpopulations

exhibited a higher exhaustion gene signature (Supplementary Data 4)
in the tumor samples as compared to healthy tissue (Fig. S7c), sug-
gesting impaired effector function within the prostate TME. Of the NK
subpopulations, the CD56DIM cells scored highest for the exhaustion
gene signature (Fig. S7d) andwere in higher abundance in the prostate
tumor as compared to the healthy prostate (Fig. S7e).

Fig. 4 | Coordination between tumor cells and stromal compartment in tumor
context. a Schematic of ligand-receptor analysis for Slide-seqV2 data. b Summary
of the total number of significant ligand-receptor interactions between stromal and
epithelial cells. Each cell indicates potential channels of communication from
ligand (row) to receptor (column). c, d Communication channels between tumor
cells and stromal cells, communication from tumor cells (ligand) to stromal cells

(receptor) (c), and from stromal cells (ligand) to tumor cells (receptor) (d). Color
and size represent the significance (−log10 adjust p value) of ligand and receptor
pairs, (e.g., Ligand IGF1 in fibroblasts and receptor IGF1Rin tumor cells). e Dot plot
showing expression of IGF1 ligand-IGF1 receptor (IGF1R) axis in colocalized fibro-
blasts and tumor cells, respectively, on a low-grade (LG) tumor case. Source data
are provided as a Source Data file.
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The prostate cancer TME is characterized by activated B-cells
B-cells are less extensively studied in cancer as compared to the
myeloid and T-cell counterparts. B-cell infiltration has been described
in several cancer types though their function and correlation to sur-
vival remain controversia86. Clustering of B-cells based on key-marker

genes revealed 3 subpopulations: naive-B, active-B, and plasma cells
(Fig. S7f). B-cell activity was assessed in active B-cells and plasma cells87

(Supplementary Data 4). B-cell activity was significantly higher in cells
from tumor and adj-normal tissue compared to healthy prostate
(Fig. S7g), possibly due to the recognition of tumor antigens by the
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B-cells. However, this increased activity was accompanied by a lower
B-cell abundance in the tumor samples (Fig. S7h).

In our spatial characterization of immune cells, B-cells and mac-
rophages were most abundant, with few monocytes, T-cells, and
plasma cells (Fig. S6c and S6d). This low abundance did not permit a
formal analysis of potential ligand/receptor interactions.

Discussion
Localized PCa has been extensively studied using bulk transcriptomic
and genomic sequencing approaches, providing insights into onco-
genic drivers and recurrent molecular changes. Here, we used a high-
resolution single-cell approach to characterize changes in tumor,
immune, andnon-immune stromal cellswithin theTME.Thesefindings
were complemented by spatial transcriptomic analysis where the tis-
sue architecture and cell-to-cell relationships are preserved, allowing
one to determine whether transcriptomic changes are context-
dependent.

The strengths of our study include the (a) fresh nature of our
patient samples, (b) matched tumor and adj-normal samples across a
spectrum of Gleason scores to help overcome the inherent patient-to-
patient variability, (c) rigorous collection of truly normal control
prostate samples (healthy), and (d) the combined single-cell and spa-
tial transcriptomic analysis. Indeed, this manuscript represents a
highly detailed spatial transcriptomic analysis using Slide-seqV2 to
characterize the prostate tumor tissue, as well as a new computational
approach to detect spatial context-dependent transcriptional differ-
ences in different cell types, which are typically obscured by the
admixture from neighboring cells. Such changes are likely to provide
insights about the impact of microenvironment on the cell and the
mechanisms through which such changes may be induced. We hope
that the developed context-dependent DE method, which controls for
the likely artifact of admixture from neighboring cells, will enable
analysis of such context-driven changes by other investigators
(Supplementary Note).

As expected, the prostate TME is complex with several subsets of
myeloid cells, T-cells, NK cells, and B-cells in addition to the non-
immune stromal populations of endothelial cells, fibroblasts, and
pericytes. This led to some key observations.

Regarding epithelial cells, we identified distinct subsets including
hillock and club cells that our RNA velocity analysis suggested a pro-
genitor role for both subpopulations. We also used an iterative strat-
egy to distinguish between malignant and normal epithelial cells, first
relying on detection of genomic aberrations to distinguish normal and
malignant luminal-type cells, and then deriving a succinct “Prostate
Tumor Gene Signature”, which could robustly identify tumor samples
across four independent datasets (Fig. S2d).

Regarding the immune microenvironment, we obtained an
immunosuppressive tumor-inflammatorymonocyte with a highMDSC

gene signature. In addition, M2-macrophages were increased in
abundance in the TME, a finding that was consistent across single-cell
analysis and immunohistochemistry. M2-macrophages have been
reported to be involved in the growth and progression of PCa and they
have gained remarkable importance as therapeutic candidates for
solid tumors88. No neutrophils were obtained within our PCa dataset.
Mature neutrophils are known to have relatively low RNA content and
high levels of RNases, resulting in fewer transcripts detected in Gel
Bead-In EMulsions (GEMs), and less usable sequencing reads. Neu-
trophils are also particularly sensitive to degradation after collection
or during scRNA-seq process, suggesting that wemay lost the cells due
to technical issues.

As for the lymphoid compartment, CTLs showed a high exhaus-
tion signature in the tumor fraction along with higher Treg activity.
Interestingly, we did not see significant T-cell differences when com-
paring low-grade and high-grade cases, suggesting that even the low-
grade tumors had already established a highly immunosuppressive
microenvironment. Evenwithin the NK cells, the CD56DIM NK cells were
expanded in the tumor fraction, again suggesting a functionally less
cytotoxic NK cell.

Comparing the T-cell cytotoxicity of “cold” and “hot” tumors
showed significantly higher cytotoxicity score in the latter (Fig. 6e),
suggesting more functional T-cells that may have an effect on tumor
response to immune therapy.

We hypothesized that, there is a correlation between the immu-
nosuppressive myeloid and T-cell phenotype in our dataset as our
group previously showed that immunosuppressive myeloid cells
contributed to the exhausted T-cell phenotype in the setting of
metastatic prostate cancer89. Indeed, we observed in our dataset a
correlation between MDSC and Treg activity signatures in TIMo and
Tregs, respectively; pointing to the role ofmyeloid cells in establishing
a T-cell suppressive and pro-tumor microenvironment. Through
computational heuristics, we identified CCL20-CCR6 as a potential
ligand-receptor axis that may allow for communication between TIMo
and Tregs, respectively. We showed that blocking one such signaling
axis using CCL20-blocking antibody significantly reduced tumor
growth in a subcutaneous model of syngeneic PCa. This axis is impli-
cated in several inflammatory and immune-activated states, including
autoimmunedisease90. The potential formodulating the axis to reduce
the activated states of immune cells has been extensively explored and
led to early-stage clinical trials91,92.

We utilized the spatial neighborhood to infer cell-to-cell interac-
tions with high-resolution and this enabled the identification of ligand-
receptor interactions in undissociated tissue section, especially
between tumors cells and their stroma. Beyond the tumor-fibro-
blasts and tumor-endothelial cell communication that we highlighted,
we hope that this analysis will prove more broadly useful for the
community and point towards clinically relevant and therapeutically

Fig. 5 | Immunosuppressive myeloid cells are enriched in prostate tumors.
a, b Joint embedding showing the detailed annotation of the myeloid subpopula-
tions (a) and the expression of select gene markers for each subpopulation (b).
c Gene expression pattern: boxplots representing the average gene expression
pattern of monocyte, macrophage, inflammatory, antigen processing and pre-
sentation, MDSC gene signatures, and M2-macrophages gene signature across the
different myeloid subpopulations (top). Heatmap showing the average gene
expression of representative genes across the different myeloid subpopulations in
healthy, adj-normal, and tumor prostate samples (bottom). See Supplementary
Data 4 for the genes defining the above-mentioned signatures. d Boxplot com-
paring the average expression of MDSC gene signature in tumor-inflammatory
monocytes (TIMo) across the three different samples (healthy n = 5, adj-normal
n = 14, and tumor n = 18). e Boxplot representing the cell fraction of different
myeloid subpopulations across the healthy (n = 5), tumor (n = 18), and their adj-
normal (n = 14) prostate tissues. Boxplots in c–e include centerline, median; box

limits, upper and lower quartiles; and whiskers are highest and lowest values no
>1.5× interquartile range. Statistical significance was accessed using two-sided
Wilcoxon rank-sum test (*p <0.05; **p <0.01; ***p <0.001; ****p <0.0001), p values
could be found in Supplementary Data 6. f Top: multiplex fluorescence immuno-
histochemistry (mFIHC) staining of prostate tumor tissue (bottom) and its adj-
normal tissue (top) collected from a prostatectomy case of Gleason score 5 + 5.
Samples are labeledwith PD-1 (Clone EH33) (colorRed), FOXP3 (colorOrange), CD8
(color Yellow), CD68 (color Magenta), CD3 (color Cyan), CD163 (color Green), and
DAPI (Blue) by using mFIHC. Bottom: quantification of absolute number of mac-
rophages (left) and M2-macrophages (right) from mIHC data comparing tumor
tissues to their matched adj-normal tissues collected from prostatectomy cases of
different Gleason scores. Red circles represent the tumor samples and black circles
represent their matched adj-normal samples. Source data are provided as a Source
Data file.
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targetable interactions. This analysis also supports the complementary
use of techniques that involve tissue dissociation with techniques that
preserve the normal tissue architecture to home in on these cell-cell
relationships.

There are several limitations that should be pointed out. First, the
small sample size as total, and separating into cases of LG and HG
Gleason, resulted in a lack of statistical power that masked critical
elements due to heterogeneity among patients. Second, the small
number of tumor cells detected based on the dissociation protocol we

used, hindered the identification ofpotential tumor-derivedmolecules
that might be remodeling the immune microenvironment.

Overall, this combined dataset of single-cell and spatial tran-
scriptomic analysis of primary prostate tumor samples and their
normal controls provides a rich community resource. Biological
validation of the tumor relationships with their neighboring immune
and stromal cells will lead to a better understanding of prostate
cancer progression and will identify new therapeutic targets for this
common disease.
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Methods
Patient materials
In accordance with the U.S. Common Rule and after Institutional
Review Board (IRB) approval, all human tissues were collected at
Massachusetts General Hospital (MGH, Boston, MA) and carried out
with institutional review board (IRB) approval (IRB#2003P000641).
Written informed consents were obtained from all participants in
the study.

Surgical approach and tumor collection
Patients with clinically localized prostate cancer were treated with
minimally invasive transabdominal radical prostatectomy. The dis-
section of the prostate was done by antegrade approach, freeing the
bladder neck, then progressing caudally to the apex and urethra. Upon
freeing the prostate, it was placed in a laparoscopic specimen sac. The
specimen was then immediately removed from the patient. The staff
transported the tissue without delay to the pathology lab where the
research staff was waiting to assure the least possible ischemic time
from separation of the organ from blood supply to prepared speci-
men. The prostate was marked with ink, and sectioned. The prostate
cancer tissue is identified by a trained genitourinary pathologist, aided
with biopsy and MRI reports. The cancer is confirmed by histological
examination of the immediate adjacent tissue. Cancer cell content is
estimated to be 70%.

Sample preparation
Dissociation of tissues into single cells. All samples were collected in
Media199 supplemented with 2% (v/v) FBS. Single-cell suspensions of
the tumors were obtained by cutting the tumor into small pieces
(1mm3) followed by enzymatic dissociation for 45minutes at 37 °C
with shaking at 120 rpm using Collagenase I, Collagenase II, Col-
lagenase III, Collagenase IV (all at a concentration of 1mg/ml, Wor-
thington Biochemical Corporation) and Dispase (2mg/ml, Gibco) in
the presence of RNase inhibitors (RNasin (Promega), RNase OUT
(Invitrogen)), and DNase I (ThermoFisher). Erythrocytes were subse-
quently removed by ACK Lysing buffer (Quality Biological) and cells
resuspended in Media199 supplemented with 2% (v/v) FBS for further
analysis.

FACS sorting. Single cells from tumor samples were surface stained
with anti-CD235-PE (Biolegend) for 30min at 4 °C. Cells were washed
twice with 2% FBS-PBS (v/v) followed by DAPI staining (1 ug/ml) (Sup-
plementary Data 7). Flow sorting for live-nonerythroid cells (DAPI-neg/
CD235-neg) was performed on a BD FACS Aria III instrument (version
8.0.3) equipped with a 100um nozzle (BD Biosciences, San Jose, CA).
All flow cytometry data were analyzed using FlowJo software (FlowJo
10.8.1, Treestar, San Carlos, CA).

Massively parallel scRNA-seq processing
Single cells were encapsulated into emulsion droplets using Chro-
mium Controller (10X Genomics). scRNA-seq libraries were

constructedusingChromiumSingle-Cell 3’ v2Reagent Kit according to
the manufacturer’s protocol.

Briefly, the volume of the collected samples after sorting was
decreased and the cells were examined and counted under a micro-
scope with a hemocytometer. Cells then were loaded in each channel
with a target output of average 4000 cells. Reverse transcription and
library preparation was done on C1000 Touch Thermal cycler with 96-
Deep Well Reaction Module (Bio-Rad). Amplified cDNA and final
libraries were evaluated on an Agilent BioAnalyzer using a High Sen-
sitivityDNAKit (Agilent Technologies). Individual librarieswerediluted
to 4 nM and pooled for sequencing. Pools were sequenced with 75
cycle run kits (26 bp Read1, 8 bp Index1 and 55 bp Read2) on the
NextSeq 500 Sequencing System (Illumina) to 70–80% saturation level.

scRNA-seq data processing and analysis
Sequencing data were processed using 10X Cell Ranger with default
parameters (version 3.0.1), aligned to GRCh37 human reference gen-
ome. In total, we obtained 187,457 cells. We removed cells with less
than 600 total UMI considered as “lowquality” cells. Theobtained read
count matrices were further analyzed with Scrublet93 for doublets
identification. Scrublet scores above 0.4 were omitted. After quality
control, 179,359 cells from 39 samples were obtained. Two samples
from PCA24 (PCA24-N-LG_Collagenases+Dispase, PCA24-N-LG_Rocky
(Supplementary Data 2)) were only used to compare dissociation
protocol and they were not added to the comparative analysis. We
used Conos13 (k = 15, k.self=5, matching.method = ‘mNN’, metric = ‘

angular’, space = ‘PCA’) to integrate multiple scRNA-seq datasets
together. Principal component analysis was performed on 2000 genes
with the most variable expression as selected by conos. Leiden clus-
tering was used to determine joint cell clusters across the entire
dataset collection. Distances in the first 15 principal components were
used to create UMAP embedding.

Cell annotation
To annotatemajor cell populations in our dataset, we used sets of well-
established marker genes for each of these cell populations and
annotated the cells based on their high expression for the marker
genes. The detailed gene list used for the cell annotations canbe found
in Supplementary Data 3.

For cell subpopulations assessment within each major cell popu-
lation, we extracted raw count matrices and re-analyzed cell subsets
separately with Conos. As an example, to annotate the myeloid sub-
population, we extracted all myeloid cells and re-analyzed the sub-
populations separately with Conos (requirement of at least 40 total
myeloid cells for each sample). Leiden community detection method
(as implemented in Conos) was used to determine refined joint clus-
ters, providing higher resolution than the initial analysis. UMAP
embedding was estimated using embedGraph function in Conos with
default parameter settings. The same analogous procedure was per-
formed for lymphoid compartment including T-cells and NK cells as
well as non-immune stromal population and epithelial cells.

Fig. 6 | Prostate cancer is characterized by T-cell exhaustion and immuno-
suppressive Treg activity. a Joint embedding showing the detailed annotation of
lymphoid subpopulations. b Dotplot representing key-marker gene expression in
lymphoid subpopulations. The color represents the scaled average expression of
marker genes in each subpopulation, and the size indicates the proportion of cells
expressing marker genes. c Boxplots represent the average expression of exhaus-
tion score in CD8+ CTLs subpopulations (CTL-1 n = 37, CTL-2 n = 36 and CD8+
effector cells n = 35). Statistics are accessedwith two-sidedWilcoxon rank-sum test
(CTL-1 vs. CTL-2 ****p = 3.32E-06; CTL-2 vs. CD8 + effector ****p = 1.61E-06).
d Boxplots comparing the average expression of exhaustion score in CTL-1 (left)
andCD8 + effector (right) subpopulations across healthy (n = 5), adj-normal (n = 14)
and tumor (n = 18) samples. Statistics are accessed with two-sided Wilcoxon rank-
sum test (*p <0.05, **p <0.01, ***p <0.001), p values could be found in

Supplementary Data 6. e Boxplots represent the average expression of cytotoxicity
score in CD8+CTLs (CD8+ effector cells, CTL-1 and CTL-2) in cold tumors
including prostate cancer (PCA n = 18) and pancreatic ductal adenocarcinoma
(PDAC n = 19), and in hot tumors including Head and Neck squamous cell carci-
noma (HNSCC n = 26), liver hepatocelluar carcinoma (LIHC n = 8) and lung cancer
(lung n = 10). Statistical significance was accessed using two-sided Wilcoxon rank-
sum test (*p <0.05; **p <0.01; ***p <0.001; ****p <0.0001), p values could be found
in Supplementary Data 6. f Boxplot represents the average expression of Treg
activity gene signature in Treg subpopulation across the three different samples.
Significance was assessed using two-sided Wilcoxon rank-sum test (Tumor vs. adj-
normal *p =0.013; Tumor vs. Healthy *p =0.015). Boxplots in c–f include centerline,
median; box limits, upper and lower quartiles; and whiskers are highest and lowest
values no >1.5× interquartile range. Source data are provided as a Source Data file.
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Calculation of gene set signature scores
To assess cell states in different cell subsets and conditions, we used a
gene set signature score to measure the relative difference of cell
states. The signature scores were calculated as average expression
values of the genes in a given set. Specifically, we first calculated sig-
nature score for each cell as an average normalized (for cell size) gene
expression magnitudes, then the signature score for each sample was

computed as the mean across all cells. All signature gene modules are
listed in the Supplementary Data 4. The statistical significance was
assessed using Wilcoxon rank-sum test.

Differential expressed genes analysis
For DEGs analysis between cell types, Wilcoxon rank-sum test, imple-
mented by the getDifferentialGenes() function fromConos Rwas used
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Fig. 7 | Coordination between myeloid and lymphoid compartments. a Scatter
plot showing the correlation between Treg activity score in Tregs and MDSC score
in TIMo subpopulation in tumor (top) and adj-normal prostate tissues (bottom).
Each dot represents a sample. Pearson linear correlation estimate, and p values are
shown. The error band indicates 95% confidence interval. b A computational
approach highlighting CCL20-CCR6 interaction between myeloid and T-cell sub-
sets. Significance of ligand-receptor pair is determined by permutation test.
c, d Average expression of CCL20 (c) and CCR6 (d) is shown for different cell
populations from tumor (n = 18). Statistical significance was assessed using two-
sided Wilcoxon test. Boxplots in c, d include centerline, median; box limits, upper

and lower quartiles; andwhiskers are highest and lowest values no greater than 1.5x
interquartile range. Statistical significance was accessed using Wilcoxon rank-sum
test (*p <0.05; **p <0.01; ***p <0.001; ****p <0.0001), p values could be found in
Supplementary Data 6. e Tumor volume of RM1 prostate tumor. Mice (5 mice/
group) were injected subcutaneously with 0.25×106 RM1 cells. anti-CCL20 (200ug/
kg) and/or anti-PD-1 (6mg/kg) were injected intraperitoneally to mice every 3 days
for a total of 4 times. Tumor growth wasmonitored by caliper measurement of the
tumor volume every 3 days. Statistical significance was accessed using Wilcoxon
rank-sum test (IGg1 + IGg2a vs. anti-CCL20 + anti-PD-1 p =0.016; IGg1 + IGg2a vs.
anti-CCL20 + IGg2a p =0.029). Source data are provided as a Source Data file.
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to identify marker genes of each cell cluster. The genes were con-
sidered differentially expressed if the p value determined Z score was
greater than 3. For DEGs analysis between sample fractions (for
example Tumor Treg vs. adj-Normal Treg), getPerCellTypeDE() func-
tion in Conos R package was utilized with default settings. DESeq294

was applied to “mini-bulk” (or meta-cell) RNA-seq measurements by
combining all molecules measured for each gene in each subpopula-
tion in each sample. A minimal number of 10 cells (of the selected cell
type) were required for a sample to be included in the comparison.

Identification of malignant epithelial cells
To identify the malignant cells from non-malignant epithelial cells, we
used interCNV21,95 for inferring large-scale chromosomal copy number
variations. We ran inferCNV on different epithelial subpopulations
using the same cell type from healthy tissues as the reference “normal”
cells. Only epithelial luminal cells showed clear copy number aberra-
tion. To identify malignant cells, we examined hierarchical clustering
of CNV profiles obtained from inferCNV and selected malignant cells
with deletion in chr8, chr12 and chr16. The set of tumor cells was then
expandedbasedon the “prostate cancer signatures” (see next section).
In total, 1237 malignant cells were classified.

Generation of the “Prostate Tumor Gene Signature”
To generate a gene expression signature that is clinically relevant, we
compared the gene expression profiles between malignant cells and
non-malignant luminal cells in tumor fraction. Only the upregulated
geneswithZ score >3were selected and taken into subsequent analysis.
Wenext screenedeachof theDEGsbasedon their expression in healthy
prostate tissue, requiring eachgene tobe expressed in less than 5%cells
of all epithelial cells. In total, we identified 8 significant DEGs that met
the above criteria. The average expression of these curated DE genes is
regarded as the diagnosis signature score, later used on multiple bulk
RNA-seq data to quantify the predictive accuracy of such signature.
ROC analysis showed a strong prostate cancer predictive ability with an
Area Under the Curve (AUC) score of 0.956 for GSE2103423, 0.93 for
GSE9728424, 0.937 for TCGA25 (https://www.cbioportal.org/study/
clinicalData?id=prad_tcga) and 0.94 for GSE7077026 in four indepen-
dent prostate cancer cohorts. We then applied the “Prostate Tumor
Gene Signature” to all tumor luminal cells. The tumor signature scores
were calculated as average expression values of the 8 significant DEGs
(Prostate Tumor Gene Signature) for each cell, with additional 201
tumor cells identified based on the threshold 0.1.

Clustering of malignant cells
To examine the tumor cells heterogeneity, we extracted tumor cells
and re-ran data integration using Conos requiring at least 40 cells for
each sample. In short, each individual dataset was first normalized and
projected to low-dimension space using ICA. Different samples were
then aligned together using Conos. UMAP embedding was estimated
using default parameter settings. Leiden clustering (con-
os::findCommunities) was used to determine joint cell clusters across
the entire dataset collection. We identified three tumor cell sub-
clusters (C1-C3).

RNA velocity-based cell fate tracing
To perform the RNA velocity analysis, the spliced reads and unspliced
reads were recounted by the velocyto python package96 based on
previous aligned bam files of scRNA-seq data. The calculation of RNA
velocity on the UMAP embedding were done by following the scVelo19

pipeline on both individual sample group as well as the merged
dataset.

Multiplex immunohistochemistry analysis
We used multiplex immunohistochemistry (mIHC) panel to evaluate a
set of unselected radical prostatectomy cases, spanning all grade

groups. A seven-plex Fluorescence Immunohistochemistry assay was
performed on 4 µm FFPE sections, using Leica Bond Rx autostainer. A
six antibodies panel consisted of CD3 (Rabbit polyclonal, Dako), CD8
(C8/144B, Mouse monoclonal, Dako), PD-1(EH33, Mouse monoclonal,
Cell Signaling), FOXP3 (D2W8E, Rabbit monoclonal, Cell Signaling),
CD68 (PG-M1, Mouse monoclonal, Dako), CD163 (10D6, Mouse
monoclonal, LeicaBiosystem), alongwithDAPI counterstaining. Briefly
the staining consists of sequential tyramine signal amplified immu-
nofluorescence labels for each target, and a DAPI counterstain. Each
labeling cycle consists of application of a primary antibody, a sec-
ondary antibody conjugated to horse radish peroxidase (HRP), and an
opal fluorophore (Opal 690, Opal 570, Opal 540, Opal 620, Opal 650
andOpal 520, AkoyaBiosciences), respectively. The stained slideswere
scanned on a Perkin Elmer Vectra 3 imaging system (Akoya Bios-
ciences) and analyzed using Halo Image Analysis platform (Indica
Labs). Each single stained control slide is imaged with the established
exposure time for creating the spectral library. We ran an algorithm
learning tool utilizing the Halo image software training for the gland
and stroma regions, and subsequently completed cell segmentation.
The thresholds for the antibodies were set respectively, based on the
staining intensity, by cross reviewing more than 20 images. Cells with
the intensity above the setting threshold were defined as positive.
Regions of interest included both immune-cell-rich and non-rich areas
and included both tumor and benign areas.

Comparative analysis with public scRNA-seq datasets of differ-
ent cancer types
To compare the profile of lymphoid compartment of our prostate
cancer dataset with other cancer types, we collected single-cell data
from pancreatic ductal adenocarcinoma (PDAC)64, lung cancer (LUSC)
3, liver hepatocellular carcinoma (LIHC)66, head and neck squamous
Cell Carcinoma (HNSC)65, then performed a joint alignment for lym-
phocyte compartment. Prostate cancer cell annotations were propa-
gated to other cancer types using propagateLabels() function inConos
followed by comparative analysis for T-cell cytotoxicity using “cyto-
toxicity score”.

CCL20-blocking antibody treatment
RM1 prostate cancer cells (0.25 × 106 cells) were injected sub-
cutaneously to C57BL6/J male mice (#000664) from The Jackson
Laboratory. When tumor reached the volume of 300–400mm3, mice
received an intraperitoneal injection of 45μg anti-CCL20-blocking
antibody (R&D Systems, clone 114908) or rat IgG isotype control
antibody (R&D Systems, clone 43414), 150μg of anti-mouse PD-1
(BioXcell, clone RMP1-14) or rat IgG2a isotype control (BioXcell, clone
2A3). The mice were treated every 3 days for a total of 3 times. Tumor
growth was monitored by caliper measurement of the tumor volume
and data were analyzed using Prism Software (Version 9.5.0 (525)).
Statistical analyses were performed as indicated and p values of ≤0.05
considered significant.

RM1 cells were maintained in DMEM (Corning, 15-013-CV) com-
plemented with 10% FBS (GIBCO by Life Technologies, A31605-01) and
1%Penicillin-Streptomycin (GIBCObyLife Technologies, 15140-122). All
mice were maintained in pathogen-free conditions and all procedures
were approved by the institutional Animal Care and Use Committee of
Massachusetts General Hospital. Statistical analyses were performed
as indicated and P values of ≤0.05 considered significant.

Slide-seqV2 processing and sequencing
Slide-seq arrays were prepared and spatial bead barcodes sequenced
following Slide-seqV211 protocol, using arrays (named pucks) created
with custom synthesized barcoded beads (5’-TTT_PC_GCCGGTAAT
ACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJJJTCTTCA
GCGTTCCCGAGAJJJJJJNNNNNNNVVT30-3’) with a photocleavable
linker, a bead barcode sequence (J, 14 bp), a UMI sequence
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(NNNNNNNVV, 9 bp), and a poly dT tail. Slide-seqV2 technique was
applied on 4 different patients- a total of 12 samples: 2 healthy tissues
collected from cystoprostatectomy surgeries (patients with bladder
cancer), one tumor tissue of Gleason 4 + 3 and one tumor tissue of
Gleason 5 + 4 collected from prostatectomy surgeries along with their
adjacent-normal tissues (Supplementary Data 2). Two samples from
each tissue were collected.

OCT-embedded frozen tissue sampleswerewarmed to −20 °C in a
cryostat (Leica CM3050S) and serially sectioned at a 10 µm thickness
(2–3 Slide-seq array replicates per sample), with consecutive sections
used for hematoxylin and eosin staining. Each tissue section was
affixed to an array and moved into a 1.5ml eppendorf tube for down-
stream processing. Briefly, the samples library was prepared as the
following:

RNA hybridization. Pucks in 1.5-ml tubes were immersed in 200μl of
hybridization buffer (6μ SSC with 2U/μl Lucigen NxGen RNase inhi-
bitor) for 30min at room temperature to allow for binding of the RNA
to the oligonucleotides on the beads.

First-strand synthesis. First-strand synthesis was performed by incu-
bating the pucks in RT solution (115μl water, 40μl Maxima 5× RT
buffer (Thermo Fisher, EP0751), 20μl of 10mM dNTPs (NEB, N0477L),
5μl RNase inhibitor (Lucigen, 30281), 10μl of 50μM template switch
oligonucleotide (Qiagen, 339414YCO0076714) and 10μl Maxima H
Minus reverse transcriptase (Thermo Fisher, EP0751)) for 1.5 h at 52 °C.

Tissue digestion. 200μl of 2× tissue digestion buffer (200mM Tris-Cl
pH 8, 400mM NaCl, 4% SDS, 10mM EDTA and 32U/ml proteinase K
(NEB, P8107S)) was then added directly to the RT solution, and the
mixture was incubated at 37 °C for 30min.

Second-strand synthesis. The solution was then pipetted up and
down vigorously to remove beads from the surface, and the glass
substrate was removed from the tube and discarded. 200μl of wash
buffer (10mM Tris pH 8.0, 1mM EDTA and 0.01% Tween-20) was then
added to the 400μl of tissue clearing and RT solution mix, and the
tube was centrifuged for 3min at 3000× g. The beads were washed in
200μl of wash buffer for a total of three times then resuspended in
200μl of ExoImix (170μl water, 20μl ExoI buffer, and 10 μl ExoI (NEB,
M0568)) and incubated at 37 °C for 50min.

After ExoI treatment, the beads were centrifuged for 3min at
3000 × g andwashed in 200μl of wash buffer for a total of three times
then resuspended in 200μl of 0.1N NaOH and incubated for 5min at
room temperature. To quench the reaction, 200μl of wash buffer was
added and beads were centrifuged for 3min at 3000× g. This was
repeated for a total of three times. Second-strand synthesis was then
performed on the beads by incubating the pellet in 200μl of second-
strand synthesis mix (133μl water, 40μl Maxima 5× RT buffer, 20μl of
10mM dNTPs, 2μl of 1mM dN-SMRT oligonucleotide and 5μl Klenow
enzyme (NEB, M0210)) at 37 °C for 1 h. After second-strand synthesis,
beads were washed in 200μl of wash buffer a total of three times.

Library amplification. Beads were resuspended in 200μl water and
transferred into a PCR strip tube, pelleted in a minifuge, then resus-
pended in library PCRmix. PCR was performed following the program
of 1 cycle of 98 °C for 2min, 4 cycles of 98 °C for 20 s, 65 °C for 45 s,
72 °C for 3min, 11 cycles of 98 °C for 20 s, 67 °C for 20 s, 72 °C for
3min, and 1 cycle of 72 °C for 5min. The PCR was performed in a final
volume of 200 µl of PCR mix, divided into 4 PCR tubes.

PCR cleanup and Nextera tagmentation. The PCR product was then
purified by adding 30 μl of Ampure XP (Beckman Coulter A63880)
beads to 50μl of PCR product. The samples were cleaned according
to manufacturer’s instructions and resuspended into 50μl water and

the cleanup was repeated resuspending in a final concentration of
10 μl. 1 μl of the library was quantified on an Agilent Bioanalyzer High
sensitivity DNA chip (Agilent 5067-4626). Then, 600 pg of PCR pro-
duct was taken and prepared into Illumina sequencing libraries
through tagmentation with Nextera XT kit (Illumina FC-131-1096).
Tagmentation was performed according to manufacturer’s instruc-
tions and the library was amplified with primers Truseq5 and
N700 series barcoded index primers. PCR was performed following
the program of 72 °C for 3minutes, 95 °C for 30 seconds, 12 cycles of
95 °C for 10 seconds, 55 °C for 30 seconds, 72 °C for 30 seconds then
72 °C for 5minutes and hold at 10 °C. Samples were cleaned with
AMPURE XP (Beckman Coulter A63880) beads in accordance with
manufacturer’s instructions at a 0.6× bead/sample ratio (30 μl of
beads to 50 μl of sample) and resuspended in 10 μl water. Library
quantification was performed using the Bioanalyzer. Libraries were
sequenced using the following read structure on a NovaSeq (S2;
Illumina): Read1: 42 bp; Read2: 41 bp; Index1: 8 bp, and sequences
were processed using the pipeline available at https://github.com/
MacoskoLab/slideseq-tools.

We used the Broad Institute pipeline (from https://github.com/
MacoskoLab/slideseq-tools.git) to generate the countmatrices and the
bead locations from the raw BCL files.

Slide-seq data processing and cell-type annotation
Sequencing datawere processed using Slideseq-tools pipeline (https://
github.com/MacoskoLab/slideseq-tools). First the raw sequence data
is aligned to human genome reference version hg38 to obtain count
matrixes and beads spatial coordinates. We used recently published
RCTD15 to annotate spatial barcoded beads. Specifically, we sampled
down 10X scRNA-seq data to 1,000 cells per cell type and transfer the
10X data into the RCTD object as reference. Slide-seqV2 data were
filtered using default RCTD setting, requiring at least 100 UMI per cell.
To annotate Slide-seq beads. We first annotated themajor cell clusters
(T-cells, B-cells, stromal cells, epithelial cells and myeloid cells) with
corresponding 10X reference inmajor cell annotation, then eachof the
major cell cluster was extracted for cell sub-cluster annotation. We
only keep the spatial beads that are predicted as “singlet” or “doublet-
certain” categories.

Spatial autocorrelation analysis
To measure how the cells are spatially distributed across the puck, we
measured the spatial autocorrelation metric and evaluated clustering
centrality pattern for each cell type. We applied “compute auto-
correlations” function from hotspot package97, and calculated the
Moran’s I score to capture the overall spatial sparsity of cell-type-
specific spatial distribution. The positive value of Moran’s I score
indicates the centralized clustering whereas the lower score signifies
the lack of centralization. Finally, Wilcoxon signed-rank test was used
to access Moran’s I differences across healthy, adj-normal and tumor
conditions.

Estimate spatially differential expressed genes
To obtain the differentially expressed genes across different regions
within a puck, we used a custom pre-processing phase. We first iden-
tified specific regions within the tumor puck by segmenting out the
tumor proliferated region as “tumor context” and the non-proliferated
region within the puck as “tumor-adjacent context”. The context-
specific cell level expressions were then summarized to the cell-type
level pseudo-bulk profiles. We used a constrained linear regression
model to correct for the linear ad-mixture effects in the Slide-seqV2
measurement given a target cell-type. Finally, the corrected pseudo-
bulk profiles were used to carry out differential expression test with
the standard edgeR package functions98. For a detailed overview of the
differential expression pipeline please refer to the Supplemen-
tary Note.
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Identification of significant ligand-receptor pairs
Following the widely used protocol of delineating the significant
ligand-receptor (LR) identification, we used the already LR pairs
downloaded fromCellPhoneDB (v1.1.0)99 as a background. In 10X data,
the significant LR was discovered by examining ligand and receptor
expression in ‘sender cells’ and ‘receiver cells’. Specifically, we first
calculated the gene expression ratio scores for each cell type, con-
sidering the genes that are at least expressed in 10% of cells within that
cell type. To obtain the signal strength of a LR pair in two corre-
sponding cell types, we relied on the join expressiondistribution of the
associated genes. Specifically, we computed the LR pair score given a
cell type A and cell type B as the product of average expression of the
ligand fromcell typeA and receptor fromcell type B.Weobserved that
suchproductmight lead to an inflationof LRpairs that are in actual not
present in the environment. To select for the statistically significant
interactions, we further randomly shuffled the cluster labels of all cell
types and re-calculated LR pair score across 1,000 permutations. This
background is used as null distribution to evaluate the P value for the
target LR pair interactions.

To access ligand-receptor interactions in Slide-seqV2 data, we
combined information from the spatial structure of the cell-types in
conjunction with the ligand-receptor expression. The assumed that
spatially inferred ligand-receptor pairs should be co-expressed in
adjacent cells. To test for such interactions, we first build a k-nearest
neighbor graph (kNN, k = 10) based on the spatial coordinates of the
corresponding beads, then for any pair of cell types, we defined a LR
pair score to filter significant LR pairs by calculating the aggregated
expression product of ligand and receptor in adjacent neighborhood
cells obtained from kNN graph.

Formally, LR pair score for cell types A and B respectively was
defined as:

S=
Xn

i

Xm

j
Lexpi*Rexpj*Mij �

Xn

i

Xm

j
Rexpi*Lexpj*Mij ð1Þ

Here n represents the number of cells for the potential “sender”
cell type A, m represents the number of the “receiver” cells of the cell
typeB. L expi represents Ligand L expression in a cell of the cell typeAi.
R expj represents Receptor R expression in a cell of a cell type Bj .Mij is
spatial graph edge matrix, specifying whether the two cells are spa-
tially proximal to each other. To avoid potential bias from admixture
noise, such as the ligand expression signal from “receiver” cell type B
and the receptor expression signal from “sender” cell type A, the score
also incorporates a reverse expression that swaps the ligand and the
receptor. R expi represents Receptor R expression in a cell of the cell
type Ai. L expj represents Ligand L expression in a cell of the cell type
Bj . To evaluate if the LR pair score S is statistically significant, we
estimated a background distribution by shuffling cell labels in
expressionmatrix (shuffling happens in 2000 rounds). In each round, a
permitted score S was calculated using the same formula. P values
were then estimated as anempirical tail probability of observedLRpair
score S given the background distribution. The p values for all LR pairs
corresponding to the cell-types were subsequently adjusted for mul-
tiple hypothesis testing. In total, 405 significant potential interaction
were detected (Supplementary Data 5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw single-cell RNA sequencing data and processed data can be
accessed from the NCBI Gene Expression Omnibus database
GSE181294 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE181294). GRCh38 human reference genome was download from
10X genomics (https://support.10xgenomics.com/single-cell-gene-

expression/software/downloads/). For the joint alignment analysis
with public scRNA-seq data. We downloaded raw count matrix for
PDAC (https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA001063), LIHC
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140228),
LUSC (https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-
6149), HNSC (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE139324). Prostate cancer bulk RNA-seq and microarray data are
download from the NCBI Gene Expression Omnibus database:
GSE21034, GSE97284, TCGA (https://www.cbioportal.org/study/
clinicalData?id=prad_tcga), GSE70770. All other relevant data support-
ing the key findings of this study are available within the article and its
Supplementary Information files. Source data are provided with
this paper.

Code availability
Custom code that was used in this study can be found on github at
https://github.com/shenglinmei/ProstateCancerAnalysis and Zenodo
at https://zenodo.org/record/7526696#.Y78bfOzMJTZ. In addition, we
created an interactive web atlas to disseminate the data. Raw count
matrixes and cell annotations are also available at the github page.
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