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Alternative polyadenylation transcriptome-
wide association study identifies APA-linked
susceptibility genes in brain disorders
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Alternative polyadenylation (APA) plays an essential role in brain develop-
ment; however, current transcriptome-wide association studies (TWAS) lar-
gely overlook APA in nominating susceptibility genes. Here, we performed a 3′
untranslated region (3′UTR) APA TWAS (3′aTWAS) for 11 brain disorders by
combining their genome-wide association studies data with 17,300 RNA-seq
samples across 2,937 individuals.We identified 354 3′aTWAS-significant genes,
including known APA-linked risk genes, such as SNCA in Parkinson’s disease.
Among these 354 genes, ~57% are not significant in traditional expression- and
splicing-TWAS studies, sinceAPAmay regulate the translation, localization and
protein-protein interaction of the target genes independent of mRNA level
expression or splicing. Furthermore, we discovered ATXN3 as a 3′aTWAS-sig-
nificant gene for amyotrophic lateral sclerosis, and its modulation sub-
stantially impacted pathological hallmarks of amyotrophic lateral sclerosis
in vitro. Together, 3′aTWAS is a powerful strategy to nominate important APA-
linked brain disorder susceptibility genes, most of which are largely over-
looked by conventional expression and splicing analyses.

Alternative polyadenylation (APA) plays an essential role in the post-
transcriptional regulation of most human genes1,2. By changing the
position of polyadenylation (poly(A)), APA can generate transcripts
with either shortened or lengthened 3′UTRs that contain different cis-
regulatory elements, such as binding sites of microRNAs (miRNAs) or
RNA-binding proteins (RBPs), leading to altered translation, protein
localization, or protein-protein interactions (PPIs) of target genes3

independent of mRNA expression level or splicing. The development
and differentiation of the nervous system require highly complex post-
transcriptional gene regulation networks4. APA events resulting in
longer 3′UTRs are particularly common during central nervous system

(CNS) development5–7 and neuronal differentiation8. This broad,
neural-specific 3’UTR lengthening could mediate miRNA or RBP
interactions with 3′UTRs to facilitate cellular localization and targeted
translation often observed in neurons. Due to the unique and critical
regulatory mechanisms mediated by lengthened 3′UTRs during neu-
rological processes, it is conceivable that single-nucleotide poly-
morphisms (SNPs) associated 3′UTR length might contribute to brain-
related traits and diseases. Indeed, SNPs resulting in aberrant poly(A)
site selectionhavebeen linked to several neurodegenerative disorders,
including the huntingtin (HTT) gene observed in Huntington’s disease9

and α-synuclein (SNCA) gene in Parkinson’s disease10. Moreover,
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disruption of key APA regulators has been linked to brain-related dis-
eases, such as PABPN1 in oculopharyngeal muscular dystrophy11,
NUDT21 in neuropsychiatric disease12, and glioblastoma in our pre-
vious study13. Together, these observations suggest the relevance of
aberrant APA in brain disorders. Nonetheless, the prevalence and
functions of SNPs associated with APA for a broad spectrum of brain
disorders remains largely unknown.

Genome-wide association studies (GWAS) have identified hun-
dreds of genetic loci associated with an increased risk of developing
various brain disorders, including attention deficit hyperactivity
disorder (ADHD)14, autism spectrum disorder (ASD)15, bipolar dis-
order (BIP)16, major depression (MD)17, schizophrenia (SCZ)18, Par-
kinson’s disease (PD)19, and Alzheimer’s disease (AD)20. However,
identifying the susceptibility genes responsible for these loci remains
a significant challenge, as GWAS data do not reveal how a given SNP
affects gene regulation and, ultimately, cellular function. Expression
quantitative trait locus (eQTL) analysis has been used recently to
identify associations between risk genotypes and gene expression,
and several studies have successfully identified putative suscept-
ibility genes related to GWAS risk loci for multiple traits and
diseases21–24, including psychiatric disorders25–27. Nevertheless,
despite substantial efforts to identify eQTLs, a large proportion of
GWAS SNPs remain unexplained28,29. Transcriptome-wide association
studies (TWAS) have recently been proposed as the principal method
for nominating putative genes associated with disease risk by
imputing gene expression levels in large cohorts of individuals30–34. In
this approach, cohorts with expression and genotype data (e.g., the
Genotype-Tissue Expression Project [GTEx]) are used to train gene
expression predictionmodels based on cis-SNPs (i.e., within 1 Mbp of
the gene). These models are then used to predict gene expression in
the GWAS cohorts without directly measuring expression levels.
Finally, statistical associations are estimated between predicted gene
expression and traits in GWAS cohorts. Compared to GWAS, TWAS
have a lower multiple-testing burden and more power to nominate
susceptibility genes by aggregating multiple cis-SNPs into a single
predicted expression value32,35. However, these eQTL and TWAS
studies do not consider the effects of APA, and thus largely overlook
GWAS SNPs associatedwith post-transcriptional regulationmediated
by 3′UTR length changes. Our recent work identified ~0.4 million
common genetic variants associated with APA (3′aQTLs) using
Genotype-Tissue Expression (GTEx) version 736, which could explain
approximately 16.1% of GWAS variants associated with 23 brain-
unrelated human traits/diseases37. These results underscore the
importance of fully characterizing 3′aQTLs and APA-linked suscept-
ibility genes in brain disorders.

In this study, we collect the most comprehensive genome-wide
genotype-gene expression datasets to perform 3′aQTL mapping
based on 17,300 RNA-seq samples from 2937 individuals, including
dorsolateral prefrontal cortex (DLPFC) tissues from 579 individuals
in the ROS/MAP cohort, DLPFC tissues from 1,520 individuals in the
PsychENCODE cohort, and 838 individuals from GTEx v8 cohort (13
brain tissues and 36 non-brain tissues). The percentage of distal
poly(A) site usage index (PDUI) is used as a molecular phenotype to
construct a publicly available 3′aTWAS model hub (https://wlcb.oit.
uci.edu/3aTWAS) for identifying APA-linked susceptibility genes
associated with human diseases or traits. This allows us to conduct
the transcriptome-wide association study of 3′UTR usage (3′aTWAS)
for 11 brain disorders and we identify 354 APA-linked disease sus-
ceptibility genes. Our 3′aTWAS results confirm two previously vali-
dated APA risk genes (SNCA10 and DDHD238) and identify many other
APA-linked susceptibility genes, approximately 57% of which are
overlooked by conventional expression and splicing TWAS, such as
ZNF592 in BIP and SCZ. Furthermore, in the experimental validation
of 3′aTWAS-identified genes, we find that modulation of ataxin-3
(ATXN3), a 3′aTWAS susceptibility gene for amyotrophic lateral

sclerosis (ALS), substantially impacts pathological hallmarks of ALS
in vitro. Furthermore, global analyses highlight the convergence of
known and previously unknown susceptibility genes in PPI networks
and pathways related to brain disorders, including autophagy and
membrane trafficking. Taken together, our results present 3′aTWAS
as a powerful tool for identifying APA-linked susceptibility genes in
brain disorders.

Results
3′aQTLs explain a large portion of brain disorder heritability
First, we performed 3′aQTL analysis, as described in our previous
study36, to identify local genetic effects associated with variations in 3′
UTR usage in 17,300 genotype-matched RNA-seq samples from the
ROS/MAP, PsychENCODE, and GTEx v8 cohorts (Fig. 1a). To the best of
our knowledge, this study represents the largest 3′aQTL study of the
human brain.We used our previously described DaPars239,40 algorithm
to identify APA events. Briefly, the DaPars2 framework calculates a
percentage of distal poly(A) site usage index (PDUI), which can identify
3′UTR lengthening or shortening events by joint analyses of all RNA-
seq samples. All PDUI values were normalized after corrections for
known covariates, including sex, sequencing platform, RNA integrity
number (RIN), post-mortem interval, and population structure, as well
as hidden covariates inferred by probabilistic estimation of expression
residual (PEER) factors41. Consistent with previous studies5,6, cross-
tissue PDUI values reveal that the brain harbors the longest 3′UTRs
among all tissue types (Fig. 2a), suggesting an intriguing possibility
that APA might play a particularly important role in normal brain
function and implying that its dysfunction could play a central role in
brain disorders. Indeed, we found that many GWAS lead SNPs in brain
disorders are located near the 3′UTR of target genes, such as ARL17B
(Supplementary Fig. 1).We thenusedMatrix eQTL42 to identify cis SNPs
(within 1Mbp of a 3′UTR) associated with differential 3′UTR usage (3′
aQTLs), as described previously37. Using a false-discovery rate (FDR)
threshold of 5%, we identified in total ~12.9M 3′aQTLs for 16,301 genes
in three cohorts (Fig. 2b). Many of these 3′aQTLs were associated with
important brain disease-related genes, such as FAM149A (Fig. 2c) for
Glass Syndrome43 and MAPT (encoding tau protein) for PD and AD
(Fig. 2d). Our current 3′aQTL results from 2937 individuals greatly
extended our previous 3′aQTL studies (467 individuals37 and 838
individuals44), particularly for brain tissues (representing a ~3.5-fold
increase in individuals).

We next explored the extent to which 3′aQTLs could explain brain
disorder heritability. First, we used quantile-quantile plots (QQ-plots)
to visualize the P-values of brain disorder GWAS SNPs, which were
binarily annotated according to 3′aQTLs fromGTExBrainCortex tissue
with P < 1 × 10−5 (Fig. 2e and Supplementary Fig. 2). For comparison, we
also included eQTLs and sQTLs from the samedataset in the sameplot
(Fig. 2e). All three QTL types showed significant overlap with GWAS
risk SNPs of brain disorders, such as PD (Fig. 2e). Interestingly, the top
PD GWAS SNPs, located near the α-synuclein gene (SNCA), overlapped
only with 3′aQTLs but not with eQTLs and sQTLs (Fig. 2e). SNCA is
known to be a major PD risk gene, and an increase in SNCA gene
expression is known to cause parkinsonism in affected families. Our
results showed that the lead PD GWAS SNP rs356203 has a very sig-
nificant 3′aQTL signal but no eQTL signal, which is consistent with the
previous finding that APAmediates the GWAS risk associated with this
SNP in SNCA10. Furthermore, applying previously reported strategies45,
we used GARFIELD46 to assess 3′aQTL enrichment in seven brain dis-
order GWAS SNPs. GARFIELD is a functional enrichment tool that
controls for linkage disequilibrium (LD), allele frequency, and distance
to genes. We found a 2–5 (log2) fold enrichment of 3′aQTLs in several
brain disorders in various brain tissues (Fig. 2f). Together, these results
demonstrate that APA represents an important molecular phenotype
capable of explaining a large portion of genetic susceptibility asso-
ciated with brain disorders.
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Development of 3′aTWAS prediction models
To systematically identify APA-linked susceptibility genes associated
with human brain disorders, we repurposed the traditional TWAS
methodology (FUSION software32) to examine the association
between GWAS summary statistics and 3′UTR usage (termed 3′
aTWAS) instead of gene expression (Fig. 1b, c). Briefly, for each
dataset, we used a mixed-linear model to estimate the heritability of
3′UTR usage (normalized PDUI values after corrections for covari-
ates) explained by cis-SNPs proximal to the 3’UTR of each gene in a
reference panel (cohorts including matched RNA-seq and genotype
data). Only genes with significant (P-value < 0.05) heritability esti-
mates (cis-h2) were included in the following analyses. For each
FUSION-trained model, including BLUP, LASSO, and Elastic Net, we
used cross-validation to choose the model with the best 3′aTWAS
prediction accuracy for each gene. We obtained a total of 52,829
tissue-specific 3′aTWAS PDUI prediction models in the ROS/MAP,
PsychENCODE, and GTEx reference panels (Fig. 3a), spanning 10,508
unique APA events in 7809 unique genes. Of note, the same APA
event could have multiple PDUI prediction models for different tis-
sues. We also found that 51.53% (5415/10,508) of 3′aTWASmodels are

in at least two reference panels (Fig. 3b and Supplementary Fig. 3),
with an average of 1035 3′aTWAS models per panel.

The number of 3′aTWAS prediction models was highly correlated
with the sample sizes of the reference panels (Fig. 3c). Comparing with
Frontal Cortex BA9 in the GTEx v8 panel (175 individuals), the two
panels with larger sample sizes, PsychENCODE (1520 individuals) and
ROS/MAP (579 individuals), had 3.41-fold (2064/606) and 3.03-fold
(1837/606) more 3′aTWAS prediction models, respectively (Fig. 3c).
The strong correlation between the number of 3′aTWAS prediction
models and sample size (Pearson correlation P-value < 7.76e−12,
r =0.79) suggests thatmoreAPAgeneswill continue to bepredicted as
additional RNA-seq datasets become available (Fig. 3c). Given the
current datasets, the average in-sample prediction accuracies (mea-
sured by heritability normalized R2, R2/cis-h2) of 3′aTWASmodels were
80.45%, 77.08%, and 67.31% for the ROS/MAP, PsychENCODE, and
GTEx Frontal Cortex BA9 panels, respectively (Supplementary Fig. 4),
which were similar to the previous expression and splicing TWAS
models. These results indicated that similar to expression and splicing
TWAS models, most cis-regulated 3’UTR usage (PDUI value) informa-
tion is captured by cis-SNPs. Finally, we tested 3′aTWAS individual

Fig. 1 | Overview of this study. a RNA-seq and matched genotype data were col-
lected from the GTEx, ROS/MAP, and PsychENCODE cohorts as reference panels.
We then performed 3′aQTL analysis and built 3′aTWAS models to predict the APA
usage of target genes with cis-SNPs in the reference panels. b We performed 3′
aTWAS analysis to nominate susceptibility genes in brain disorders using GWAS

summary statistics and 3′aTWAS models in each reference panel. c APA-linked
susceptibility genes in brain disorders identified by 3′aTWAS, which confirmed two
previously validated risk APAgenes (SNCA andDDHD2). This schematic was created
with BioRender.
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Fig. 2 | 3′aQTLs explain a large portion of brain disorder heritability. a PDUI
values of 49 GTEx tissues show that transcripts expressed in the brain tissues have
longer 3′UTRs than non-brain tissues. The left panel is the PDUI of an example gene
CD47 (n = 15,201 RNA-seq samples). The right panel shows themeanPDUI values for
all genes. A higher PDUI value corresponds with longer 3′UTR usage. The color of
each tissue corresponds with those used in the GTEx cohort. The center horizontal
lines within the plot represent themedian values and the boxes are bounded by the
25th and 75th percentile. The whiskers extend to the maximum and minimum
values within 1.5 times of the interquartile range. b The number of 3′aQTL APA
events highly correlates with the sample size in each tissue. Each dot indicates a
tissue type. Yellow and gray dots indicate brain and non-brain tissue types,
respectively. c Example of a SNP (rs4241814) that is strongly associated with
FAM149A 3′UTR usage in the brain. Left panel: Distribution of the normalized PDUI
values for each genotype. Each dot in the box plot represents the normalized PDUI
value for one particular sample in the ROS/MAP cohort (n = 579 biologically inde-
pendent samples). The center horizontal lines within the plot represent themedian

values and the boxes are bounded by the 25th and 75th percentile. The whiskers
extend to the maximum and minimum values within 1.5 times of the interquartile
range. Right panel: RNA-seq coverage tracks for the FAM149A 3′UTR. The bottom
track shows the RefSeq gene structure. d Similar to (c) but for MAPT in the Psy-
chENCODE cohort (n = 1520 biologically independent samples). The center hor-
izontal lineswithin theplot represent themedianvalues and theboxes arebounded
by the 25th and 75th percentile. The whiskers extend to the maximum and mini-
mum values within 1.5 times of the interquartile range. e Example of Parkinson’s
disease quantile–quantile plot (QQ plot) showing the nominal P-values of brain
disorder GWAS SNPs, which were binarily annotated by 3′aQTLs (yellow), sQTLs
(blue), and eQTLs (light orange) with nominal P-value < 10−5. Each dot represents a
GWAS SNP. All Parkinson’s disease GWAS nominal P-values are also shown as
controls (black). f Enrichment of 3′aQTLs in seven brain disorder GWAS SNPs
(nominal P-value < 10−5) across GTEx brain tissues. 3′aQTLs are calculated based on
2181 RNA-seq samples of brain tissues from the GTEx cohort. Data are presented as
mean values ± SEM. OR odds ratio.
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tissue models for 31 human traits (18 brain-related and 13 brain-unre-
lated). Our results showed that the majority of 3′aTWAS-identified
genes are not expression TWAS or splicing TWAS genes (Fig. 3d). In
summary, we have developed highly comprehensive 3′aTWAS pre-
diction models, which uncovered susceptibility genes that were not
previously captured by expression or splicing TWAS.

3′aTWAS for 11 brain disorders
We applied the brain tissue-trained 3′aTWAS models to the GWAS
summary statistics of 11 brain disorders, including amyotrophic lateral
sclerosis (ALS)47, attention deficit hyperactivity disorder (ADHD)14,
autism spectrum disorder (ASD)15, anxiety (ANX)48, bipolar disorder
(BIP)16, depression (DEP)48, major depressive disorder (MDD)17, schi-
zophrenia (SCZ)18, post-traumatic stress disorder (PTSD)49, Parkinson’s
disease (PD)50 and Alzheimer’s disease (AD)20 (Fig. 1b-c and Supple-
mentary Table 1). In total, we identified 1,393 significant associations
between predicted PDUI values and GWAS phenotypes (FDR <0.05),
representing 449 transcripts of 354 APA-linked disease susceptibility
genes (Fig. 4a-d and Supplementary Data 1). Among these

354susceptibility genes, 121were identified inmore thanone reference
panel. The largest number of APA transcripts were associatedwith SCZ
in all three panels (78 in ROS/MAP, 62 in PsychENCODE, and 141 in 13
GTEx brain tissues; Fig. 4a). We also found susceptibility genes that
were shared across multiple brain disorders (Supplementary Fig. 5).
For example, 19 genes were common to both SCZ and BIP, including
BORCS7, which is a known molecular risk factor for SCZ51. Next, we
considered the LD and co-regulation caveats in TWAS analysis52 and
used a Bayesian fine-mappingmethod FOCUS52 to prioritize putatively
causal 3′aTWAS genes. 151 transcripts were prioritized as putatively
causal candidates with a posterior inclusion probability (PIP) > 0.9
(Supplementary Data 2).

To validate APA-linked susceptibility genes identifiedby 3′aTWAS,
we performed the following analyses. First, as a positive control, we
confirmed that the 3′aTWAS models could identify previously repor-
ted APA-linked disease susceptibility genes, e.g., SNCA10 and DDHD238,
with risk SNPswithin their 3′UTRs. In PD, SNCAwas themost significant
gene identified in multiple reference panels, including ROS/MAP (P-
value = 7.80e−36), PsychENCODE (P-value = 5.08e−25), GTEx Brain

Fig. 3 | 3′aTWAShub across 13 brain tissues and 36non-brain tissues fromROS/
MAP, PsychENCODE, and GTEx cohorts. a Number of 3′aTWAS models across
each tissue from ROS/MAP, PsychENCODE, and GTEx cohorts. DLPFC, dorsolateral
prefrontal cortex. b Venn diagram showing the overlap between the number of 3′
aTWAS models in ROS/MAP DLPFC, PsychENCODE DLPFC, and GTEx Brain frontal
cortex (FC) tissues. c The number of 3′aTWASmodels is highly correlated with the

sample size in each tissue. Each dot indicates a tissue type. Yellow and gray dots
indicate brain and non-brain tissue types, respectively. d A majority of human
diseases of 3′aTWAS genes are not expression TWAS or splicing TWAS genes. 3′
aTWAS specific genes are shown in blue. Overlap between 3′aTWAS and expression
TWASgenes is shown in green. Overlapbetween 3′aTWASand splicing TWASgenes
is shown in red.
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Fig. 4 | 3′aTWAS for 11 brain disorders. a Bar plots show the number of 3′aTWAS
significant genes (FDR <0.05) for 11 brain disorders in 13 GTEx-derived brain tis-
sues, ROS/MAP DLPFC, and PsychENCODE DLPFC. b–d Manhattan plots of 3′
aTWAS results in 11 brain disorders using prediction models from GTEx Brain
Cortex (b), ROS/MAP DLPFC (c), and PsychENCODE DLPFC (d). Each point repre-
sents the Z-score of a single 3′aTWAS association. Colored points represent sig-
nificant associations with brain disorders at FDR<0.05, with each of the 11 colors
representing 1 of 11 different brain disorders. e Aligned Manhattan plots of Par-
kinson’s disease GWAS, 3′aQTLs, and eQTLs at the SNCA locus. SNPs are colored by
LD (r2). f Parkinson’s disease was used as an example to assess whether similar

results were observed from different 3′aTWAS prediction models built from an
independent reference panel. Parkinson’s disease 3′aTWAS Z-scores in ROS/MAP
and PsychENCODE are highly correlated (two-tailed Pearson correlation P-value =
2.2e−16, r =0.70). Red triangles represent replicate genes in Parkinson’s disease
which are 3′aTWAS significant and have consistent directions whenusing ROS/MAP
and PsychENCODE as reference panels. g A ternary plot represents the colocali-
zationprobabilities for 3′aTWASsignificant associations.hVenndiagramshows the
overlap of 3′aTWAS significant genes (FDR<0.05) for 11 brain disorders with
expression and splicing TWAS.
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Cerebellar Hemisphere (P-value = 2.23e−10), GTEx Brain Cerebellum
(P-value = 3.87e−20),GTExBrainCortex (P-value = 6.47e−19), andGTEx
Brain Frontal Cortex BA9 (P-value = 4.10e−7). In agreement with pre-
vious studies10, SNCAhad a positive Z-score, indicating that long 3′UTR
usage in SNCA increases PD risk. The leading PD GWAS SNP near SNCA
(<1Mbp) is in high LD (R2 = 0.99) with the lead 3′aQTL SNP rs356165
(P-value = 3.07e−15) of SNCA, but this leading GWAS SNP is less
strongly associated with eQTLs and sQTLs of SNCA in GTEx Brain
Cortex (P-value > 0.00001; Fig. 4e and Supplementary Fig. 6). This
suggests that 3′UTR usage, rather thanmRNA expression or splicing of
the SNCA transcript, mediates risk in PD. Additionally, our 3′aTWAS
models identified DDHD2 as a significant SCZ susceptibility gene
across ROS/MAP, PsychENCODE, and 13 GTEx-derived tissue types,
consistent with previous reports38. Specifically, a negative Z-score of
DDHD2 in these reference panels indicates that short 3′UTR usage of
DDHD2 increases SCZ risk (Fig. 4b–d).

We further used PD as an example to assess the robustness of the
associations between GWAS phenotypes and predicted PDUIs from 3′
aTWAS models trained with different reference panels. We found that
the PD 3′aTWAS association Z-scores based on ROS/MAP and Psy-
chENCODE cohorts were highly correlated with one another (Pearson
correlation P-value < 2.2e−16, r = 0.70) (Fig. 4f). Furthermore, five out
of nine significantly associated genes (SNCA, ARL17A, ZSWIM7, NCOR1,
and RNF40) from the PD ROS/MAP cohort were replicated in the Psy-
chENCODE cohort at an FDR <0.05, including four genes with con-
sistent effect directions. These replication results demonstrate that 3′
aTWAS risk genes are highly robust regardless of which reference
panel is used to train the models.

Interestingly, we also found that many significant 3′aTWAS genes
are far from significant GWAS loci—all significant (P-value < 10−8) GWAS
loci are at least 1Mbp away from the 3′aTWAS gene. These risk genes
were identified because 3′aTWAS has more power to nominate sus-
ceptibility genes through aggregating multiple cis-SNPs into a single
predicted PDUI value32,35. For example, the best proximal GWAS SNP
within 1Mbp of a 3′aTWAS gene RABEP1 in SCZ has a non-significant P-
value of 1.77 × 10−6 (Supplementary Fig. 7). Similarly, the best proximal
GWAS SNP within 1Mbp of a 3′aTWAS gene CHDH in BIP has a non-
significant P-value of 6.40 × 10−7 (Supplementary Fig. 8).

We also conducted colocalization analysis using coloc software53

to identify APA genes that share 3′aQTLs with GWAS SNPs. Briefly,
coloc calculates five posterior probabilities (PP0–PP4), among which
PP4 represents the probability that GWAS signals and 3′aQTLs share
causal SNPs. Here, we considered PP4 ≥0.5 as significant colocaliza-
tion. In total, 55.42% (772/1,393) of 3′aTWAS associations, 56.12% (252/
449) of transcripts, and 54.80% (194/354) of genes have high coloca-
lization probabilities (Fig. 4g and Supplementary Data 1). Of note,
compared with the TWAS method, the colocalization method has
limited power for the identification of multiple independent causal
variants per gene. Furthermore, we used SuSiE54 to fine-map 3′aQTLs
for all significant 3′aTWAS genes. We found that many 3′aTWAS genes,
such as STAT6, PPIL2, and ELAC2 (Supplementary Fig. 9), had at least
one SuSiE-identified potentially causal SNP with high posterior inclu-
sion probability (PIP > 0.7). A table of all SNPs with PIP > 0.7 was pro-
vided in Supplementary Data 3. Finally, we compared 3′aTWAS with
both classical expression and splicing TWAS. In total, a large portion
(57.14%, 136/238) of 3′aTWAS genes were not identified by either
expression or splicing TWAS (Fig. 4h). The 3′aTWAS genes identified
for 11 brain disorders are publicly available (https://wlcb.oit.uci.edu/
3aTWAS), which we hope will serve as a useful resource for the neu-
roscience research community.

3′aTWAS identifies important APA-linked susceptibility genes in
brain disorders
In addition to the previously reported APA-linked susceptibility genes,
SNCA andDDHD2, our 3′aTWASanalysis identifiedpreviouslyunknown

APA-linked susceptibility genes (352 of 354) in a wide range of brain
disorders, most of which were overlooked by conventional expression
TWAS and splicing TWAS analyses. This indicates that GWAS risk loci
associated with these newly described susceptibility genes can only be
explained by APA, independent of gene expression and splicing
changes. For example, the 3′aTWAS gene ZNF592 (both identified in
SCZ andBIP), whichwas not identifiedby expressionor splicing TWAS,
has been reported to play a key role in cerebellar development55.
Mutations in ZNF592 can cause familial mental retardation (CAMOS
syndrome)55. After adjusting for the predicted 3′UTR usage of the
ZNF592 gene, the SCZ GWAS signal substantially decreases (Fig. 5a),
indicating that the 3′aTWAS association of ZNF592 almost entirely
explains the SCZ GWAS signal in this region. The ZNF592 3′aQTL also
exhibits high colocalization probability with the SCZ GWAS signal
(PP4 = 0.983), but not with ZNF592 eQTLs or sQTLs (Fig. 5b). Our data
suggest the importance of ZNF592 APA regulation in SCZ. Two similar
examples (HP1BP3 and SYN2) are shown in Supplementary Fig. 10.

Furthermore, our 3′aTWAS results revealed that many known
brain disorder GWAS risk loci-associated genes are heavily regulated
by APA, including some that were also identified by expression TWAS
or splicing TWAS. Of note, many of these overlapping genes have a
stronger 3′aQTL signal than eQTL or sQTL signal, indicating that dys-
regulationof APA in these genes plays a prominent role in related brain
disorders. For example, 3′aTWAS identified GABRA2 (encoding the
GABAA receptor) as an important neuronal inhibition regulator
implicated in many brain disorders56,57. We found strong 3′aQTLs but
relatively weak eQTLs for GABRA2 in ROS/MAP (lead eQTL: P = 6.47e
−10, lead 3′aQTL: P = 1.91e−38). Similar to ZNF592, the 3′aTWAS asso-
ciation of GABRA2 almost entirely explains the BIP GWAS signal in this
region (Fig. 5c). The GABRA2 3′aQTLs also show high colocalization
probability with the BIP GWAS signal (PP4 =0.955), but not with the
GABRA2 eQTL (Fig. 5d). Similarly, CTSB, which is essential in α-
synuclein lysosomal degradation and Parkinson’s disease58, has more
significant 3′aQTLs than eQTLs in the GTEx Brain Cortex cohort (lead
eQTL: P = 6.28e−06, lead 3′aQTL: P = 4.48e−19) (Supplementary
Fig. 11a);DYNC1I2 hasmore significant 3′aQTLs than eQTLs in the GTEx
Brain Cerebellum cohort (lead eQTL: P = 9.50e−07, lead 3′aQTL:
P = 2.11e−44) (Supplementary Fig. 11b).

Overall, our 3′aTWAS results provide a valuable resource of sus-
ceptibility genes for a wide array of brain disorders, which warrant
experimental validation. As an example, we focused on ATXN3 in ALS,
as ATNX3 3′aQTLs showed the highest colocalization probability with
the ALS GWAS signal (PP4 =0.969, Supplementary Table 2), but not
with ATNX3 eQTLs (Fig. 5e, f). To this end, we examined the potential
role of the 3′aTWAS-identified ALS susceptibility gene ATXN3 on key
ALS pathological hallmarks in vitro. Ubiquitin-positive, cytoplasmic
inclusions containing hyperphosphorylated TDP-43 C-terminal frag-
ments (CTFs) are observed in post-mortem tissue of approximately
97% of ALS patients59,60. Given that ATXN3 is a deubiquitinase that
regulates cellular proteostasis, we investigated whether modulating
the protein levels of ATXN3 impacts TDP-43 aggregation. While
endogenous, full-length TDP-43 does not normally aggregate in cells,
this pathology can be readily induced by transient overexpression of
aggregation-prone TDP-43 CTFs61. Indeed, we found that small hairpin
RNA (shRNA)-mediated ATXN3 knockdown (Supplementary Fig. 12)
results in the substantial accumulation and hyperphosphorylation of
TDP-43 CTFs at S409/S410 in HEK293T cells (Fig. 5g, i, j) and SH-SY5Y
neuroblastoma cells (Fig. 5h–l). FLAG-ATXN3 overexpression reduced
the accumulation and phosphorylation of TDP-43 CTFs in SH-SY5Y
cells (Fig. 5h–l), demonstrating that ATXN3 modulation significantly
affects key ALSmolecular phenotypes in vitro. Given the roleof ATXN3
in the ubiquitin–proteasome system, we tested the hypothesis that
ATXN3 knockdown disrupts TDP-43 CTF degradation. Indeed, we
observed a significant increase in TDP-43 CTF stability upon ATXN3
knockdown (Supplementary Fig. 13). Future experiments are required
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Fig. 5 | 3′aTWAS identifies new APA-linked susceptibility genes in brain dis-
orders. aRegional associationplot. SCZGWAS signal at theZNF592 locus (gray) and
GWAS signal after removing the effects of ZNF592 3′UTR usage (yellow). This ana-
lysis shows that the association is largely explained by ZNF592 3′UTR usage.
b Aligned Manhattan plots of SCZ GWAS, 3′aQTLs, and eQTLs at the ZNF592 locus.
SNPs are colored by LD (r2). c Similar to (a) for theGABRA2 locus in BIP. d Similar to
(b) for the GABRA2 locus in BIP. e Similar to (a) for the ATXN3 locus in ALS. f Similar
to (b) for the ATXN3 locus in ALS.g-hWestern analysis of HEK293T cells (g) and SH-
SY5Y cells (h) transfected with mCherry-tagged TDP-43 CTF (aa 208–414) and
shRNAs for 48 h. Note: Multiple bands reflect distinct cleavage products. TDP-43
was detected using an antibody that recognizes a C-terminal epitope.
iQuantification of total TDP-43 in HEK293T cells transfectedwith ATXN3 shRNA #1

(p =0.0013), #2 (p =0.0016), or #3 (p =0.0182) relative to shRNA control.
j Quantification of pTDP-43 in HEK293T cells transfected with ATXN3 shRNA #1
(p =0.0483), #2 (p =0.0460), or #3 (p =0.0351) relative to shRNA control.
kQuantification of total TDP-43 in SH-SY5Y cells transfected with ATXN3 shRNA #1
(p =0.0073), #2 (0.0496), #3 (0.1098), or FLAG-ATXN3 (p =0.5485) relative to
shRNA control. l Quantification of pTDP-43 in SH-SY5Y cells transfected with
ATXN3 shRNA #1 (p =0.0121), #2 (p =0.0961), #3 (p =0.01050), or FLAG-ATXN3
(p =0.0488) relative to shRNA control. Each experiment was repeated n = 3 times.
Data are presented as mean values ± SEM. Statistical significance was determined
by an unpaired two-tailed t-test between each condition and the shRNA control. *
represents p <0.05. ** represents p <0.01.
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to determine the functional significance of ATXN3 APA on the meta-
bolism of the ATXN3 transcript and to investigate the potential role of
ATXN3 APA in ALS. In summary, these results indicate the ability of 3′
aTWAS to reveal functionally important susceptibility genes asso-
ciated with brain disorders.

3′aTWAS brain disorder genes are enriched in autophagy and
membrane trafficking pathways
We used inBio Discover62 to evaluate whether known disease-related
genes (defined by inBio Discover) and brain disorder susceptibility
genes identified by 3′aTWAS converge on similar functional networks
or pathways. Our results showed that 3′aTWAS genes were enriched in
CNS diseases, neurodegenerative diseases, PD, and AD (Fig. 6). PPI
analyses highlight the convergence of known and previously unknown
susceptibility genes in PPI networks (Fig. 6). Furthermore, 3′aTWAS
genes were also enriched in the autophagy pathway (P < 2.0e-4), con-
sistent with previous work demonstrating that autophagy is critical in
CNS diseases63,64. Autophagy plays a key role in the maintenance of
cellular proteostasis by facilitating the degradation of misfolded pro-
teins andprotein aggregates—hallmarkpathological features of several
neurodegenerative disorders. Additionally, as a macromolecular
recycling system, autophagy responds to nutrient and energy levels in
the cell to maintain metabolic homeostasis63–65. We also found
enrichment of 3′aTWAS brain disorder genes in the membrane traf-
ficking pathway (P < 3.3e−4) (Fig. 6), further highlighting the impor-
tance of membrane trafficking in brain disorders66. Membrane

trafficking is essential for preserving neuronal heath from the soma to
distant axons and dendrites, as these microcompartments require
continuous protein transport and clearance. Correspondingly, dis-
ruption of membrane trafficking has been observed in many CNS
disorders66–68. Notably, membrane trafficking and autophagy are
tightly linked processes, as autophagosomes that initiate in axons and
dendrites require trafficking to the soma, where degradative lyso-
somes are found in neurons69. This may suggest that 3′aTWAS genes
are broadly enriched in cellular pathways involved in maintaining
neuronal proteostasis. In summary, these results suggest that genes
identified by 3′aTWAS represent important components of gene reg-
ulatory networks in the brain and thatAPAdysregulation represents an
important, understudied mechanism involved in brain disorders.

Discussion
In this study, we developed 3′aTWAS to systematically identify APA-
linked susceptibility genes, and provide evidence that 3′UTR usage
associated with common SNPs is an important feature of brain
disorder, capable of explaining GWAS risk loci that are not associated
with dysregulation of gene expression or splicing. We built 3′aTWAS
predictionmodels in the largestbrain-relevant tissuedatasets available
(ROS/MAP, PsychENCODE, and GTEx Consortia) and used these pre-
diction models to test whether the effects of risk SNPs in brain dis-
orders weremediated by changes in 3′UTRusage. Our 3′aTWAS results
not only confirmed previously reported APA risk genes (SNCA and
DDHD2) but also identified previously unknown APA-linked

Fig. 6 | 3′aTWAS prioritizes known and previously unknown susceptibility
brain disorder genes that are connected in PPI networks and enriched in
autophagy and membrane trafficking pathways. 3′aTWAS genes are connected
in PPI networks with known brain disorder genes. Pathway enrichment analysis

showed that 3′aTWAS genes are enriched in brain disorder related pathways,
including autophagy and membrane trafficking pathways. Each node represents
one 3′aTWAS gene. Node size represents the node degree.

Article https://doi.org/10.1038/s41467-023-36311-8

Nature Communications |          (2023) 14:583 9



susceptibilities genes, such as ZNF592 and ATXN3. Further analysis
revealed that 3′aTWAS-identified genes are not a random set of genes
but are enriched in previously reported pathways related to brain
disorders. To the best of our knowledge, this study represents the
most comprehensive effort to evaluate the association of genetically
predicted 3′UTR usage with complex human diseases.

We demonstrate that 3′aTWAS serves as a powerful tool for
identifying APA-linked susceptibility genes. Further experimental
study of these genes will not only increase our understanding of the
molecularmechanisms underlying various brain disorders but will also
highlight candidate genes for therapeutic intervention. In this study,
we showed that the 3′aTWAS gene ATXN3 directly impacts key
pathological ALS hallmarks in vitro. ATXN3 knockdown substantially
increased the accumulation and phosphorylation of TDP-43 CTFs,
whereas ATXN3 overexpression reduced these phenotypes in human
neuroblastoma cells. ATXN3 is a deubiquitinase with several reported
cellular functions, including the regulation of proteasomal degrada-
tion of ubiquitinated proteins70. ATXN3 physically and functionally
interacts with familial ALS-associated proteins, binding and co-
aggregating with valosin-containing protein (VCP)71 and regulating
the recruitment of misfolded superoxide dismutase 1 (SOD1) into
aggresomes72. CAG-polyglutamine (polyQ) repeat expansions in
ATXN3 cause the neurodegenerative disorder spinocerebellar ataxia
type 3 (SCA3). SCA3 patients uniformly display cerebellar and brain-
stem degeneration, and many SCA3 patients develop motor
neuronopathy73. Furthermore, pathological TDP-43 inclusions have
been detected in lower motor neurons in the brainstem and spinal
cord of SCA3 patients, which resembles findings in ALS patients74.
Although intermediate-length CAG-polyQ repeats in the ataxin-2 gene
have been linked to ALS, CAG-polyQ repeat length in ATXN3 has not
been associated with ALS risk75. As a proof-of-concept, we showed that
ATXN3modulation affects ALSmolecular phenotypes in vitro.We note
that this does not provide evidence for a causative role of ATXN3 APA
in ALS, and future studies will be required to investigate the link
between ATXN3 APA and ALS more deeply.

There are several potential reasons that 3′aTWAS is able to iden-
tify many genes that are not significant in traditional expression- and
splicing-TWAS studies. Mechanistically, APA regulation differs greatly
from that of gene expression and splicing. APA is primarily regulated
by APA-specific regulators, including the canonical polyadenylation
factors (e.g., CFIm25) and various RNA- or DNA-binding proteins76,77,
but not by transcription factors or splicing factors. Additionally,
genetically driven APA change can impact ribosome occupancy and
protein expression levels without affecting mRNA expression levels78.
Furthermore, previous studies showed that 3′aQTLs have distinct
molecular features and are largely distinct from other QTLs, such as
expression and splicing QTLs37,78.

Future studies will be required to identify which SNPs drive
changes in APA usage in the APA-linked disease susceptibility genes
identified in this study. It remains challenging to identify the causal
variant among correlated variants for QTLs due to LD; however, fur-
ther fine-mapping analyses, including statistical and functional fine-
mapping methods79, may solve part of the problem. Statistical fine-
mapping methods, such as eCAVIAR80, FINEMAP81, or SuSiE54, can
prioritize potential causal variants using a variety of methods such as
the heuristic, penalized regression, and Bayesian strategies79. How-
ever, these methods often cannot distinguish causal variants from
variants in strong LD. Recently, functionalfine-mappingmethods, such
as the massively parallel reporter assay (MPRA)82, have successfully
identified putative causal variants for both mRNA expression82 and 3′
UTR usage83. In contrast to other methods, MPRA is able to identify
multiple causal variants even in a single tight LD region82. After iden-
tifying the causal variants for 3′aTWAS genes, CRISPR-based experi-
ments could be used to validate the impact of SNPs on 3′UTR usage
and ultimately on disease-related phenotypes. Importantly, there are a

growing number of approaches to modulate APA in vitro and
in vivo84,85, whichmay eventually be developed into disease-modifying
therapies.

Moving forward, there are threemain challenges thatmay prevent
the leveraging of 3′aTWAS in elucidating the mechanistic basis of
neurodegenerative and neuropsychiatric disorders. First, a large
sample size of matched transcriptomic and genomic datasets from
different brain regions is required to build more accurate prediction
models. Although transcriptomics data from multi-brain regions exist
in the GTEx cohort, the sample size is as of date too limited
(n = 114–209) to build robust and accurate 3’aTWAS models for most
genes. The strong correlation between the number of 3′aTWAS pre-
diction models and sample size in this study suggests that limited
sample size remains an issue formost brain tissue types and that more
APAgeneswill continue tobepredicted as additionalRNA-seqdatasets
become available. Second, most samples in the available tran-
scriptome cohorts (e.g., GTEx, ROS/MAP, and PsychENCODE) were
derived from individuals of Caucasian-European ancestry. More
diverse transcriptome datasets (e.g., African and Asian racial ancestry)
remain necessary to build ancestry-specific 3′aTWAS prediction mod-
els. Third, similar to eQTLs or sQTLs, 3′aQTLs are often cell type-
specific and condition-specific. Using bulk and steady-state RNA-seq
datasets, current 3′aQTLsmay not include genetic effects that are only
active in disease-relevant cell types or those that can be modified by
environmental conditions, such as stimulation or viral infection.
Recent studies have suggested that a large fraction of eQTLs strongly
associate with genotype in a cell-type- or condition-specific context86.
Therefore, the construction of cell type-specific and condition-specific
3’aTWAS prediction models under various disease-related cell types
and conditions represent a major future direction.

In summary, our 3′aTWAS prediction model serves as a new
resource for investigating the effects of genetic variants affecting APA.
While we have initially focused on brain disorders in this study, our 3′
aTWAS prediction models across 49 human tissues can be readily
applied to many other human diseases and traits. 3′aTWAS provides
novel insights into previously unexplained GWAS risk loci and impli-
cates APA as a major contributing factor to the pathogenesis of the
human disease.

Methods
Transcriptomics cohorts in this study
The RNA-seq and matched genotype data in the following cohorts
were used in our study: (1) ROS/MAP Consortium: We downloaded
RNA-seq andwhole genome sequencing (WGS) data of ROS/MAP from
the AMP-AD Consortium87,88. We included only RNA-seq samples that
were generated from post-mortem human DLPFC and excluded RNA-
seq samples without matchedWGS data. Whenmultiple samples were
derived from the same individuals, we selected the samples with the
highest RIN. Raw RNA-seq data were generated from post-mortem
human DLPFC tissue and mapped to the human genome (hg19/
GRCh19) using STAR89 as previously described90. Genotype VCF files
were downloaded from the AD Knowledge Portal. (2) PsychENCODE
Consortium: DLPFC RNA-seq data and matched genotype files from
PsychENCODE27,91 were included in the following analyses. We selected
samples with the highest RIN when multiple samples were derived
from the same individual. Original RNA-seq data were also mapped to
the human genome (hg19/GRCh19) using STAR89. Genotype VCF files
were downloaded from the PsychENCODE “PEC Capstone Collection”.
Variants with low imputation quality (r2 ≤0.7) were removed by
PLINK92. (3) GTEx Consortium: Raw GTEx RNA-seq and genotype files
were obtained from the dbGaP database (phs000424.v8.p2), which
includes 17,382 RNA-seq samples across 54 tissues from 948 indivi-
duals. We removed tissue types with small sample sizes, including the
brain substantia nigra, bladder, cervix endocervix, cervix ectocervix,
fallopian tube, and minor salivary gland. Only individuals included in

Article https://doi.org/10.1038/s41467-023-36311-8

Nature Communications |          (2023) 14:583 10

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2


the GTEx analysis freeze were considered. For all three cohorts, var-
iants were filtered to remove variants with minor allele frequency≤
0.01, indels, and all variants with ambiguous ref/alt alleles. Five gen-
otype principal components (PCs) were computed to account for
ancestry covariates in all subsequent analyses. Sample collection, data
generation, and data processing were approved by the institutional
review board (IRB) of each cohort. This study was approved by the IRB
of the University of California, Irvine (UCI IRB #431). All data derived
from human post-mortem samples used in this study comply with all
relevant ethical regulations.

DaPars2 analyses
Our previously developed DaPars2 software40, which allows the joint
analyses of multiple samples based on a two-normal mixture model,
was used to calculate the PDUI value. Briefly, we extract a 3′UTR
annotation for each gene using bedtools93 and the “DaPars_Ex-
tract_Anno.py” script within DaPars240. We then used samtools94 to
calculate the sequencing depth for each sample. Finally, we used
DaPars240 to calculate the 3′UTR usage (PDUI value) of each transcript
across samples.

3′aQTL mapping
Aswepreviously described37, we applied a linear regression framework
in Matrix eQTL42 to test the association between the normalized PDUI
values and SNPs within an interval of 1Mbp from the 3′UTR region,
adjusting for known covariates (including sex, RIN, platform, post-
mortem interval, and top five genotype PCs) and hidden covariates
calculated by PEER41. The number of PEER covariates for each tissue
was determined as suggested by the GTEx Consortium.We performed
1000 rounds of permutation to obtain empirical P values for each
gene, which were then adjusted using the R package qvalue95.

Building 3′aTWAS prediction models
We used transcriptome and individual-matched WGS genotype data
from the ROS/MAP, PsychENCODE, and GTEx Consortia to establish 3′
aTWAS single-tissue prediction models for 3′UTR usage (PDUI value)
by FUSION32. Known covariates, including sex and genotyping plat-
forms, post-mortem interval, and hidden batch effects or other
unobserved covariates from PEER41 were used to residualized PDUI
values calculated by Dapars240. Residualized PDUI values were used to
train cross-tissue 3′aTWAS models with genotype data. Prediction
models with a heritability of Bonferroni-corrected P <0.05 were used
for 3′aTWAS analysis.

Applying 3′aTWAS prediction models to GWAS summary
statistics
We selected and downloaded GWAS summary statistics of 11 brain
disorders (ALS47, ADHD14, ASD15, ANX48, BIP96, DEP48, MD17, SCZ18,
PTSD49, PD50, and AD97), which were sufficiently powered to observe
genome-wide significant SNPs. For PD and BIP, we used the publicly
available summary statistics, excluding the 23andme samples. To
facilitate and enhance comparisons with expression and splicing
TWAS, we also selected 49 sufficiently powered summary statistics of
psychiatric traits or non-brain-associated diseases. Variants in GWAS
summary statistics were filtered to remove variants with minor allele
frequency ≤0.01, indels, and all variants with ambiguous ref/alt alleles
using ldsc software98. We then applied 3′aTWAS prediction models to
filtered GWAS summary statistics data.

Testing the enrichment of GWAS signals in 3′aQTL
We extracted 3′aQTLs (P< 1 × 10−5) that also belonged to psychiatric
disorder GWAS SNPs and plotted the quantile–quantile plot (QQplot) of
GWAS P values for those SNPs. Similarly, we also generated theQQplots
for eQTLs and sQTLs (P< 1 × 10−5), and raw GWAS P values were plotted
as a control for comparison. Following previously described

strategies99,100, we applied GARFIELD46 to test the enrichment of brain
disorder GWAS SNPs among 3′aQTLs. GARFIELD is a tool for assessing
the enrichment of a complex trait and the overlapping functional fea-
tures while controlling for LD, allele frequency and distance to genes46.

Joint and conditional analysis
Joint and conditional testing was performed for 3′aTWAS-significant
associations (FDR <0.05) signals using FUSION32 to determine how
much GWAS signal remained after the association from 3′aTWAS was
removed. Briefly, a permutation test (n = 100,000) was conducted for
each3′aTWAS-significant association to shuffle the 3′aQTLweights and
empirically determine an association statistic. 3′aTWAS-significant loci
that pass the joint and conditional testing indicate that 3′UTR usage
heterogeneity was captured and is less likely to be colocalized by
chance.

Expression TWAS and splicing TWAS analyses
For comparison, we performed expression TWAS and splicing TWAS
analyses on the same GWAS summary statistics of brain disorders. The
expression and splicingTWASmodules ofGTEx v8were obtained from
PredictDB101.

Colocalization of 3′aQTL and GWAS associations
Colocalization of 3′aQTL and GWAS associations was conducted using
the coloc software53, which has been incorporated into the TWAS/
FUSION pipeline32, using the default parameters for 3′aTWAS-sig-
nificant associations. Briefly, coloc uses the approximate Bayes factor
test approach and calculates five posterior probabilities (PP0–PP4) for
the corresponding hypotheses: PP0, the posterior probabilities of the
null model of no association; PP1, the posterior probabilities that
causal SNPs are associated with GWAS signals only; PP2, the posterior
probabilities that causal SNPs are associated with 3′aQTLs only; PP3,
the posterior probabilities that causal SNPs of GWAS signals and 3′
aQTLs are independent; PP4, the posterior probabilities of GWAS sig-
nals and 3′aQTLs share causal SNPs.We consider PP4 ≥0.5 to represent
significant colocalization.

3′aQTL and 3′aTWAS fine-mapping analyses
We used the fine-mapping tool SuSiE54 to identify potentially causal
SNPs of 3′aQTLs. Only the 3′aQTLs of significant 3′aTWAS genes were
included in the fine-mapping analyses. 3′aTWAS fine-mapping analyses
was performed by FOCUS52 using the same reference panels of 3′
aTWAS analyses.

Cell culture
HEK293T cells (human embryonic kidney cells, from ATCC) were
maintained in Dulbecco’s modified Eagle medium (ThermoFisher,
11965084) supplemented with 10% fetal bovine serum and 50U/mL
penicillin-streptomycin. SH-SY5Y cells (human neuroblastoma cells,
from ATCC) were maintained in 50% EMEM (ATCC, 30-2003), 50%
Ham’s F12 (ThermoFisher, 11765047), supplemented with 10% fetal
bovine serum, and 50U/mLpenicillin–streptomycin. Cells were grown
at 37 °C and 5% CO2.

qRT-PCR
HEK293T cells were transfected with scramble shRNA or ATXN3
shRNAs (Sigma) for 48 h prior to RNA isolation (Qiagen, 74106) and
cDNA synthesis (ThermoFisher, 11756500). Relative fold change of
ATXN3 was determined by qRT-PCR using SYBR Green Master Mix
(ThermoFisher, A25776) with GAPDH as an endogenous control.

ATXN3 shRNAs (Sigma, NM_004993) were obtained in the MIS-
SION® pLKO.1 backbone plasmid. Target sequences:

#1 - TRCN0000007405 - CGTCGGTTGTAGGACTAAATA (3’UTR)
#2 - TRCN0000007406 - CGAGTGTTAGAAGCAAATGAT (CDS)
#3 - TRCN0000007407 - GCAGGGCTATTCAGCTAAGTA (CDS)
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Primers:
ATXN3 fwd: 5’-TCGGAAGAGACGAGAAGCCTAC-3’
ATXN3 rev: 5’-AAGTGCTCCTGAACTGGTGGCT-3’
GAPDH fwd: 5’-CGCTCTCTGCTCCTCCTGTT-3’
GAPDH rev: 5’-CCATGGTGTCTGAGCGATGT-3’

Western blot
Protein extracts were prepared in radioimmunoprecipitation assay lysis
buffer (ThermoFisher, 89900)with protease andphosphatase inhibitors
(ThermoFisher, 87786) (note: lysates were not centrifuged). Lysates
were sonicated at 4 °C (Bioruptor Pico), denatured in LDS sample buffer
(ThermoFisher, NP0007) with a reducing agent (ThermoFisher,
NP0009), and heated at 70 °C for 10min. Lysates were electrophoresed
by sodium dodecyl sulfate–polyacrylamide gel electrophoresis using a
4%–20% gradient polyacrylamide gel (Bio-Rad, 5678093) and trans-
ferred to 0.45-μm polyvinylidene difluoride membrane (Bio-Rad,
1704157). Blots were incubated with primary antibodies diluted in 5%
nonfatmilk inTBST (TRIS-buffered saline, 0.05%Tween-20) overnight at
4 °C and with secondary antibodies diluted in 5% nonfat milk in TBST
(ThermoFisher, A16078 [goat anti-mouse HRP, 1:3000], A16110 [goat
anti-rabbit HRP, 1:3000], A32728 [goat anti-mouse Alexa FluorTM 647,
1:1000], A32733 [goat anti-rabbit Alexa FluorTM 647, 1:1000]) for 60min
at room temperature. Detection was performed using enhanced che-
miluminescence substrate (Genesee Scientific, 20–300S) and imaged on
a ChemiDoc MP (Bio-Rad). Primary antibodies used in this study were
TDP-43 (Proteintech, 12892-1-AP, 1:3000), phospho-TDP-43 S409/S410
(Proteintech, 22309-1-AP, 1:3000), ATXN3 (Millipore-Sigma, MAB5360,
clone 1H9, 1:2000), and α-tubulin (ThermoFisher, 62204, 1:3000).

Cycloheximide chase experiment
HEK293T cells were transfectedwith scramble shRNAorATXN3 shRNA
#1 along with mCherry-TDP-43 CTF for 24 h. Fresh media was added
containing 20 µg/mL cycloheximide (Sigma, C4859) to inhibit protein
synthesis. Cells were harvested at 0, 4, 8, or 12 h and analyzed by
western blot.

PPI network and pathway analysis
A unified web platform inBio Discover62 was used to evaluate the
enrichment of non-HLA 3′aTWAS genes in known disease gene lists
(defined by inBio Discover) and pathways.We also used STRING102 and
inBio Discover62 to evaluate the interconnectivity of non-HLA 3′aTWAS
genes byphysical PPIs. inBioDiscover62 collectedPPIs from the InWeb3
database, which contains 420,000 interactions between 12,793 human
proteins. Cytoscape (v3.8.0)103 was used to visualize the PPI network
and the enriched diseases and pathways of 3′aTWAS genes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No new sequencing data were created in this study. The raw RNA-seq
andgenotypedata of theGTEx cohort are available to authorized users
through dbGaP release, under accession code phs000424.v8.p2. The
data are available under controlled access due to data privacy laws.
Data access application review time depends on the dbGaP database.
The rawRNA-seq and genotype of the ROS/MAP cohort are available in
the AD Knowledge Portal under accession code syn3219045. The data
are available under controlled access due to data privacy laws. To
access the ROS/MAP cohort, users need to complete and submit a
signed Data Use Certificate (DUC) to the AD Knowledge Portal at
https://adknowledgeportal.synapse.org/Data%20Access. The DUC
must include the objectives of the proposed research, study design
and analysis plan. The AD Knowledge Portal will review the application
and the expected review time is about two weeks. The raw RNA-seq

and genotype data of the PsychENCODE cohort are available in the
PsychENCODE Knowledge Portal under accession code syn4921369.
The data are available under controlled access due to data privacy
laws. To access the PychENCODE cohort, users need to submit an
online request access form with a signed Distribution Agreement
[https://www.nimhgenetics.org/data/request-access/distribution-
agreement.pdf] to NIMH Repository & Genomics Resource at https://
www.nimhgenetics.org/request-access/how-to-request-access. All
requests for access to PychENCODE cohort data will be reviewed by a
trans-NIH Data Access Committee consisting of NIH Program Staff
fromNIDA, NIAAA, andNIMH. Expected data access application review
time is about threemonths. The processed 3′aQTL summary statistics,
3′aTWASmodels and all significant 3′aTWASgenes in 11 brain disorders
are freely available at https://wlcb.oit.uci.edu/3aTWAS and Synapse
(accession no. syn50919268). All significant 3′aTWAS genes in 11 brain
disorders are also available at Supplementary Data 1. The expression
and splicing TWAS modules of GTEx v8 in PredictDB are publicly
available at https://predictdb.org/. The details, including accession
numbers, of GWAS summary statistics used in this study are listed in
Supplementary Table 1. PTSD GWAS summary statistic is available to
authorized users through dbGaP release, under accession code
phs001672.v9.p1. Other GWAS summary statistics are publicly avail-
able at GWAS catalog [https://www.ebi.ac.uk/gwas/]. Source data for
uncropped blots are provided with this paper. Source data are pro-
vided with this paper.

References
1. Hoque, M. et al. Analysis of alternative cleavage and poly-

adenylation by 3’ region extraction and deep sequencing. Nat.
Methods 10, 133–139 (2013).

2. Wang, R., Nambiar, R., Zheng, D. & Tian, B. PolyA_DB 3 catalogs
cleavage andpolyadenylation sites identifiedbydeep sequencing
in multiple genomes. Nucleic Acids Res. 46, D315–D319 (2018).

3. Tian, B. & Manley, J. L. Alternative polyadenylation of mRNA pre-
cursors. Nat. Rev. Mol. Cell Biol. 18, 18–30 (2017).

4. Miura, P., Sanfilippo, P., Shenker, S. & Lai, E. C. Alternative poly-
adenylation in the nervous system: to what lengths will 3’ UTR
extensions take us? Bioessays 36, 766–777 (2014).

5. Hilgers, V. et al. Neural-specific elongation of 3’ UTRs during
Drosophila development. Proc. Natl Acad. Sci. USA 108,
15864–15869 (2011).

6. Smibert, P. et al. Global patterns of tissue-specific alternative
polyadenylation in Drosophila. Cell Rep. 1, 277–289 (2012).

7. Hong, W. et al. APAatlas: decoding alternative polyadenylation
across human tissues. Nucleic Acids Res 48, D34–D39 (2020).

8. Shepard, P. J. et al. Complex and dynamic landscape of RNA
polyadenylation revealed by PAS-Seq. RNA 17, 761–772 (2011).

9. Romo, L., Ashar-Patel, A., Pfister, E. & Aronin, N. Alterations in
mRNA 3’ UTR isoform abundance accompany gene expression
changes in human Huntington’s disease brains. Cell Rep. 20,
3057–3070 (2017).

10. Rhinn, H. et al. Alternative alpha-synuclein transcript usage as a
convergent mechanism in Parkinson’s disease pathology. Nat.
Commun. 3, 1084 (2012).

11. Jenal, M. et al. The poly(A)-binding protein nuclear 1 suppresses
alternative cleavage and polyadenylation sites. Cell 149,
538–553 (2012).

12. Gennarino, V. A. et al. NUDT21-spanning CNVs lead to neu-
ropsychiatric disease and altered MeCP2 abundance via alter-
native polyadenylation. Elife 4, e10782 (2015).

13. Masamha, C. P. et al. CFIm25 links alternative polyadenylation to
glioblastoma tumour suppression. Nature 510, 412–416 (2014).

14. Demontis, D. et al. Discovery of the first genome-wide significant
risk loci for attention deficit/hyperactivity disorder.Nat. Genet. 51,
63–75 (2019).

Article https://doi.org/10.1038/s41467-023-36311-8

Nature Communications |          (2023) 14:583 12

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2
https://www.synapse.org/#!Synapse:syn3219045
https://adknowledgeportal.synapse.org/Data%20Access
https://www.synapse.org/#!Synapse:syn4921369
https://www.nimhgenetics.org/data/request-access/distribution-agreement.pdf
https://www.nimhgenetics.org/data/request-access/distribution-agreement.pdf
https://www.nimhgenetics.org/request-access/how-to-request-access
https://www.nimhgenetics.org/request-access/how-to-request-access
https://wlcb.oit.uci.edu/3aTWAS
https://doi.org/10.7303/syn50919268
https://predictdb.org/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v9.p1
https://www.ebi.ac.uk/gwas/


15. Grove, J. et al. Identification of common genetic risk variants for
autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

16. Mullins, N. et al. Genome-wide association study of more than
40,000 bipolar disorder cases provides new insights into the
underlying biology. Nat. Genet. 53, 817–829 (2021).

17. Howard, D. M. et al. Genome-wide meta-analysis of depression
identifies 102 independent variants and highlights the importance
of the prefrontal brain regions. Nat. Neurosci. 22, 343–352
(2019).

18. Pardinas, A. F. et al. Common schizophrenia alleles are enriched in
mutation-intolerant genes and in regions under strong back-
ground selection. Nat. Genet. 50, 381–389 (2018).

19. Nalls, M. A. et al. Identification of novel risk loci, causal insights,
and heritable risk for Parkinson’s disease: a meta-analysis of
genome-wide association studies. Lancet Neurol. 18,
1091–1102 (2019).

20. Wightman, D. P. et al. A genome-wide association study with
1,126,563 individuals identifies new risk loci for Alzheimer’s dis-
ease. Nat. Genet. 53, 1276–1282 (2021).

21. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte
browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

22. Tachmazidou, I. et al. Identification of new therapeutic targets for
osteoarthritis through genome-wide analyses of UK Biobank data.
Nat. Genet. 51, 230–236 (2019).

23. Dubois, P. C. et al. Multiple common variants for celiac disease
influencing immune gene expression. Nat. Genet. 42,
295–302 (2010).

24. Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expres-
sion contribute to the risk of childhood asthma. Nature 448,
470–473 (2007).

25. Chang, D. et al. A meta-analysis of genome-wide association stu-
dies identifies 17 new Parkinson’s disease risk loci. Nat. Genet. 49,
1511–1516 (2017).

26. Ng, B. et al. An xQTLmap integrates thegenetic architectureof the
human brain’s transcriptome and epigenome. Nat. Neurosci. 20,
1418–1426 (2017).

27. Wang, D. et al. Comprehensive functional genomic resource and
integrative model for the human brain. Science 362,
eaat8464 (2018).

28. Gamazon, E. R. et al. Using an atlas of gene regulation across 44
human tissues to inform complex disease- and trait-associated
variation. Nat. Genet. 50, 956–967 (2018).

29. Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying
genetic effects on disease mediated by assayed gene expression
levels. Nat. Genet. 52, 626–633 (2020).

30. Gamazon, E. R. et al. A gene-based association method for map-
ping traits using reference transcriptome data. Nat. Genet. 47,
1091–1098 (2015).

31. Zhu, Z. et al. Integration of summary data from GWAS and eQTL
studies predicts complex trait gene targets. Nat. Genet. 48,
481–487 (2016).

32. Gusev, A. et al. Integrative approaches for large-scale tran-
scriptome-wide association studies. Nat. Genet. 48,
245–252 (2016).

33. Hu, Y. et al. A statistical framework for cross-tissue transcriptome-
wide association analysis. Nat. Genet. 51, 568–576 (2019).

34. Zhou, D. et al. A unified framework for joint-tissue transcriptome-
wide association and Mendelian randomization analysis. Nat.
Genet. 52, 1239–1246 (2020).

35. Wainberg, M. et al. Opportunities and challenges for
transcriptome-wide association studies. Nat. Genet. 51,
592–599 (2019).

36. Consortium, G. T. et al. Genetic effects on gene expression across
human tissues. Nature 550, 204–213 (2017).

37. Li, L. et al. An atlas of alternative polyadenylation quantitative trait
loci contributing to complex trait and disease heritability. Nat.
Genet. 53, 994–1005 (2021).

38. Park, C. Y. et al. Genome-wide landscape of RNA-binding protein
target site dysregulation reveals a major impact on psychiatric
disorder risk. Nat. Genet. 53, 166–173 (2021).

39. Xia, Z. et al. Dynamic analyses of alternative polyadenylation from
RNA-seq reveal a 3’-UTR landscape across seven tumour types.
Nat. Commun. 5, 5274 (2014).

40. Feng,X., Li, L.,Wagner, E. J. & Li,W. TC3A: theCancer 3’UTRAtlas.
Nucleic Acids Res. 46, D1027–D1030 (2018).

41. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using prob-
abilistic estimation of expression residuals (PEER) to obtain
increased power and interpretability of gene expression analyses.
Nat. Protoc. 7, 500–507 (2012).

42. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large
matrix operations. Bioinformatics 28, 1353–1358 (2012).

43. Conte, F. et al. Systematic analysis of copy number variants of a
large cohort of orofacial cleft patients identifies candidate genes
for orofacial clefts. Hum. Genet. 135, 41–59 (2016).

44. Cui, Y. et al. 3’aQTL-atlas: an atlas of 3’UTR alternative poly-
adenylation quantitative trait loci across human normal tissues.
Nucleic Acids Res 50, D39–D45 (2022).

45. Li, Y. I., Wong, G., Humphrey, J. & Raj, T. Prioritizing Parkinson’s
disease genes using population-scale transcriptomic data. Nat.
Commun. 10, 994 (2019).

46. Iotchkova, V. et al. GARFIELD classifies disease-relevant genomic
features through integration of functional annotations with asso-
ciation signals. Nat. Genet. 51, 343–353 (2019).

47. van Rheenen,W. et al. Genome-wide association analyses identify
new risk variants and the genetic architecture of amyotrophic
lateral sclerosis. Nat. Genet. 48, 1043–1048 (2016).

48. Thorp, J. G. et al. Symptom-level modelling unravels the shared
genetic architecture of anxiety and depression. Nat. Hum. Behav.
5, 1432–1442 (2021).

49. Stein, M. B. et al. Genome-wide association analyses of post-
traumatic stress disorder and its symptom subdomains in the
Million Veteran Program. Nat. Genet. 53, 174–184 (2021).

50. Konig, I. R. Challenges in disentangling the genetic backgroundof
Parkinson’s disease. Lancet Neurol. 18, 1069–1070
(2019).

51. Li, M. et al. A human-specific AS3MT isoform and BORCS7 are
molecular risk factors in the 10q24.32 schizophrenia-associated
locus. Nat. Med. 22, 649–656 (2016).

52. Mancuso, N. et al. Probabilistic fine-mapping of transcriptome-
wide association studies. Nat. Genet. 51, 675–682 (2019).

53. Giambartolomei, C. et al. Bayesian test for colocalisation between
pairs of genetic association studies using summary statistics. PLoS
Genet. 10, e1004383 (2014).

54. Gao, W. & Sarkar, A. A simple new approach to variable selection
in regression, with application to genetic fine-mapping. J. R. Stat.
Soc. Ser. B (Stat. Methodol.).82, 1273–1300 (2020).

55. Nicolas, E. et al. CAMOS, a nonprogressive, autosomal recessive,
congenital cerebellar ataxia, is caused by a mutant zinc-finger
protein, ZNF592. Eur. J. Hum. Genet. 18, 1107–1113
(2010).

56. Butler, K. M. et al. De novo variants in GABRA2 and GABRA5 alter
receptor function and contribute to early-onset epilepsy. Brain
141, 2392–2405 (2018).

57. Edenberg, H. J. & Foroud, T. Genetics and alcoholism. Nat. Rev.
Gastroenterol. Hepatol. 10, 487–494 (2013).

58. McGlinchey, R. P. & Lee, J. C. Cysteine cathepsins are essential in
lysosomal degradation of alpha-synuclein. Proc. Natl Acad. Sci.
USA 112, 9322–9327 (2015).

Article https://doi.org/10.1038/s41467-023-36311-8

Nature Communications |          (2023) 14:583 13



59. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-
negative inclusions in frontotemporal lobar degeneration and
amyotrophic lateral sclerosis. Biochem Biophys. Res. Commun.
351, 602–611 (2006).

60. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar
degeneration and amyotrophic lateral sclerosis. Science 314,
130–133 (2006).

61. Chou, C. C. et al. TDP-43 pathology disrupts nuclear pore com-
plexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neu-
rosci. 21, 228–239 (2018).

62. Li, T. et al. A scored human protein-protein interaction network to
catalyze genomic interpretation. Nat. Methods 14, 61–64 (2017).

63. Mizushima, N. & Levine, B. Autophagy in human diseases. N. Engl.
J. Med. 383, 1564–1576 (2020).

64. Martini-Stoica, H., Xu, Y., Ballabio, A. & Zheng, H. The autophagy-
lysosomal pathway in neurodegeneration: a TFEB perspective.
Trends Neurosci. 39, 221–234 (2016).

65. Di Meco, A., Curtis, M. E., Lauretti, E. & Pratico, D. Autophagy
dysfunction in Alzheimer’s disease: mechanistic insights and new
therapeutic opportunities. Biol. Psychiatry 87, 797–807 (2020).

66. Wang, D., Chan, C. C., Cherry, S. & Hiesinger, P. R. Membrane
trafficking in neuronal maintenance and degeneration. Cell Mol.
Life Sci. 70, 2919–2934 (2013).

67. Kiral, F. R., Kohrs, F. E., Jin, E. J. & Hiesinger, P. R. Rab GTPases and
membrane trafficking in neurodegeneration. Curr. Biol. 28,
R471–R486 (2018).

68. Hasegawa, T., Sugeno, N., Kikuchi, A., Baba, T. & Aoki, M. Mem-
brane trafficking illuminates a path to Parkinson’s disease. Tohoku
J. Exp. Med. 242, 63–76 (2017).

69. Winckler, B. et al. The endolysosomal system and proteostasis:
from development to degeneration. J. Neurosci. 38,
9364–9374 (2018).

70. Matos, C. A. et al. Ataxin-3 phosphorylation decreases neuronal
defects in spinocerebellar ataxia type 3 models. J. Cell Biol. 212,
465–480 (2016).

71. Zhong, X. & Pittman, R. N. Ataxin-3 binds VCP/p97 and regulates
retrotranslocation of ERAD substrates. Hum. Mol. Genet. 15,
2409–2420 (2006).

72. Wang, H., Ying, Z. & Wang, G. Ataxin-3 regulates aggresome for-
mation of copper-zinc superoxide dismutase (SOD1) by editing
K63-linked polyubiquitin chains. J. Biol. Chem. 287,
28576–28585 (2012).

73. Rüb, U., Brunt, E. R. & Deller, T. New insights into the pathoa-
natomy of spinocerebellar ataxia type 3 (Machado-Joseph dis-
ease). Curr. Opin. Neurol. 21, 111–116 (2008).

74. Tan, C. F. et al. Selective occurrence of TDP-43-immunoreactive
inclusions in the lowermotor neurons inMachado-Josephdisease.
Acta Neuropathol. 118, 553–560 (2009).

75. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine
expansions are associatedwith increased risk for ALS.Nature466,
1069–1075 (2010).

76. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and
consequences of alternative polyadenylation. Mol. Cell 43,
853–866 (2011).

77. Gruber, A. J. & Zavolan, M. Alternative cleavage and poly-
adenylation in health and disease. Nat. Rev. Genet. 20,
599–614 (2019).

78. Mittleman, B. E. et al. Alternative polyadenylation mediates
genetic regulation of gene expression. Elife 9, e57492 (2020).

79. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide asso-
ciations to candidate causal variants by statistical fine-mapping.
Nat. Rev. Genet. 19, 491–504 (2018).

80. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals
detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

81. Benner, C. et al. FINEMAP: efficient variable selection using sum-
mary data from genome-wide association studies. Bioinformatics
32, 1493–1501 (2016).

82. Abell, N. S. et al. Multiple causal variants underlie genetic asso-
ciations in humans. Science 375, 1247–1254 (2022).

83. Bogard, N., Linder, J., Rosenberg, A. B. & Seelig, G. A deep neural
network for predicting and engineering alternative polyadenyla-
tion. Cell 178, 91–106.e123 (2019).

84. Shin, J. et al. CRISPRpas: programmable regulation of alternative
polyadenylation by dCas9. Nucleic Acids Res. 50, e25
(2022).

85. Tian, S. et al. CRISPR-iPAS: a novel dCAS13-based method for
alternative polyadenylation interference. Nucleic Acids Res. 50,
e26 (2022).

86. Schmiedel, B. J. et al. Impact of genetic polymorphisms on human
immune. Cell Gene Expr. Cell 175, 1701–1715.e1716 (2018).

87. Hodes, R. J. & Buckholtz, N. Accelerating medicines partnership:
Alzheimer’s disease (AMP-AD) knowledge portal aids Alzheimer’s
drug discovery through open data sharing. Expert Opin. Ther.
Targets 20, 389–391 (2016).

88. Chibnik, L. B. et al. Susceptibility to neurofibrillary tangles: role of
the PTPRD locus and limited pleiotropy with other neuropatholo-
gies. Mol. Psychiatry 23, 1521–1529 (2018).

89. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioin-
formatics 29, 15–21 (2013).

90. Raj, T. et al. Integrative transcriptome analyses of the aging brain
implicate altered splicing in Alzheimer’s disease susceptibility.
Nat. Genet. 50, 1584–1592 (2018).

91. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregula-
tion in ASD, schizophrenia, and bipolar disorder. Science 362,
eaat8127 (2018).

92. Purcell, S. et al. PLINK: a tool set for whole-genome association
and population-based linkage analyses. Am. J. Hum. Genet. 81,
559–575 (2007).

93. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26, 841–842
(2010).

94. Li, H. et al. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

95. Storey, J. D. & Tibshirani, R. Statistical significance for genome-
wide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

96. Stahl, E. A. et al. Genome-wide association study identifies 30 loci
associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

97. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci
and functional pathways influencing Alzheimer’s disease risk.Nat.
Genet. 51, 404–413 (2019).

98. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes con-
founding from polygenicity in genome-wide association studies.
Nat. Genet. 47, 291–295 (2015).

99. Hormozdiari, F. et al. Leveraging molecular quantitative trait loci
to understand the genetic architecture of diseases and complex
traits. Nat. Genet. 50, 1041–1047 (2018).

100. Zhang, Z. et al. Genetic analyses support the contribution of
mRNA N(6)-methyladenosine (m(6)A) modification to human dis-
ease heritability. Nat. Genet. 52, 939–949 (2020).

101. Barbeira, A. N. et al. Exploring the phenotypic consequences of
tissue specific gene expression variation inferred from GWAS
summary statistics. Nat. Commun. 9, 1825 (2018).

102. Jensen, L. J. et al. STRING 8—a global view on proteins and their
functional interactions in 630 organisms. Nucleic Acids Res. 37,
D412–D416 (2009).

103. Shannon, P. et al. Cytoscape: a software environment for inte-
grated models of biomolecular interaction networks. Genome
Res. 13, 2498–2504 (2003).

Article https://doi.org/10.1038/s41467-023-36311-8

Nature Communications |          (2023) 14:583 14



Acknowledgements
We thank Jingyi Jessica Li, Leslie M. Thompson, Jie Jenny Wu, and
members of the Li lab for helpful discussions. This work was supported
by the USNational Institutes of Health (R01 CA193466, R01 CA228140 to
W.L., andR35NS122140 toA.R.L.S.). Y.C. is supportedbyAmericanHeart
Association Postdoctoral Fellowship #906383. F.J.A. is supportedbyNIH
T32-AG00096 and a Muscular Dystrophy Association Development
Grant (MDA865871).We are grateful to the participants in the ROS/MAP,
PsychENCODE, and GTEx Consortia. The results published here are in
part based on data obtained from the AD Knowledge Portal (https://
adknowledgeportal.org). ROS/MAP study data were provided by the
Rush Alzheimer’s Disease Center, Rush University Medical Center, Chi-
cago. Data collection was supported through funding by NIA grants
P30AG10161 (ROS), R01AG15819 (ROS/MAP; genomics and RNAseq),
R01AG17917 (MAP), R01AG30146, R01AG36836 (RNAseq), R01AG48015
(monocyte RNAseq), U01AG32984 (genomic and whole exome
sequencing), U01AG61356 (whole genome sequencing, targeted pro-
teomics, ROS/MAP AMP-AD), the Illinois Department of Public Health
(ROS/MAP), and the Translational Genomics Research Institute (geno-
mic). Additional phenotypic data can be requested at www.radc.rush.
edu. Bio-samples and/or data of the PsychENCODE Consortium for this
publication were obtained from the NIMH Repository & Genomics
Resource, a centralized national biorepository for genetic studies of
psychiatric disorders. Data were generated as part of the PsychENCODE
Consortium. Visit 10.7303/syn26365932 for a complete list of grants
and PIs.

Author contributions
Y.C., W.L., and A.R.L.S. conceived and supervised the project. Y.C.
performed the bioinformatics analysis. F.J.A. and S.M. performed the
experiments. Y.C., W.L., A.R.L.S., F.J.A., F.P., D.W., J.S.L., and E.J.W.
interpreted the data and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-36311-8.

Correspondence and requests for materials should be addressed to
Albert R. La Spada or Wei Li.

Peer review information Nature Communications thanks Leng Han and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-36311-8

Nature Communications |          (2023) 14:583 15

https://adknowledgeportal.org
https://adknowledgeportal.org
http://www.radc.rush.edu
http://www.radc.rush.edu
https://doi.org/10.1038/s41467-023-36311-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Alternative polyadenylation transcriptome-wide association study identifies APA-linked susceptibility genes in brain disorders
	Results
	3′aQTLs explain a large portion of brain disorder heritability
	Development of 3′aTWAS prediction models
	3′aTWAS for 11 brain disorders
	3′aTWAS identifies important APA-linked susceptibility genes in brain disorders
	3′aTWAS brain disorder genes are enriched in autophagy and membrane trafficking pathways

	Discussion
	Methods
	Transcriptomics cohorts in this study
	DaPars2 analyses
	3′aQTL mapping
	Building 3′aTWAS prediction models
	Applying 3′aTWAS prediction models to GWAS summary statistics
	Testing the enrichment of GWAS signals in 3′aQTL
	Joint and conditional analysis
	Expression TWAS and splicing TWAS analyses
	Colocalization of 3′aQTL and GWAS associations
	3′aQTL and 3′aTWAS fine-mapping analyses
	Cell culture
	qRT-PCR
	Western blot
	Cycloheximide chase experiment
	PPI network and pathway analysis
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




