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Single-cell sequencing of ascites fluid illus-
trates heterogeneity and therapy-induced
evolution during gastric cancer peritoneal
metastasis

Xuan-Zhang Huang 1,2,3,9, Min-Jiao Pang1,2,3,9, Jia-Yi Li1,2,3,9, Han-Yu Chen1,2,3,9,
Jing-Xu Sun1,2,3, Yong-Xi Song1,2,3, Hong-Jie Ni1,2,3, Shi-Yu Ye1,2,3, Shi Bai1,2,3,
Teng-Hui Li1,2,3, Xin-Yu Wang1,2,3, Jing-Yuan Lu4, Jin-Jia Yang4, Xun Sun5,
Jason C. Mills 6,7,8 , Zhi-Feng Miao1,2,3 & Zhen-Ning Wang 1,2,3

Peritonealmetastasis is the leading cause of death for gastrointestinal cancers.
The native and therapy-induced ascites ecosystems are not fully understood.
Here, we characterize single-cell transcriptomes of 191,987 ascites cancer/
immune cells from 35 patients with/without gastric cancer peritoneal metas-
tasis (GCPM). During GCPM progression, an increase is seen of monocyte-like
dendritic cells (DCs) that are pro-angiogenic with reduced antigen-presenting
capacity and correlate with poor gastric cancer (GC) prognosis. We also
describe the evolution of monocyte-like DCs and regulatory and proliferative
T cells following therapy. Moreover, we track GC evolution, identifying high-
plasticity GC clusters that exhibit a propensity to shift to a high-proliferative
phenotype. Transitions occur via the recently described, autophagy-
dependent plasticity program, paligenosis. Two autophagy-related genes
(MARCKS and TXNIP) mark high-plasticity GC with poorer prognosis, and
autophagy inhibitors induce apoptosis in patient-derived organoids. Our
findings provide insights into the developmental trajectories of cancer/
immune cells underlying GCPM progression and therapy resistance.

Gastric cancer (GC) is the fifth most-diagnosed cancer and the
fourth leading cause of cancer deaths worldwide1. Gastric cancer
peritoneal metastasis (GCPM) is common after curative surgical
resection and portends a poor prognosis of <6months overall
survival2–4. GC patients diagnosed with GCPM during the

perioperative stage experience only limited benefits from anti-
tumor therapy strategies5–8. The molecular mechanisms of GCPM
occurrence and development remain poorly understood. There-
fore, an in-depth and dynamic exploration of GCPM occurrence and
development can help us elucidate mechanisms involved in GCPM
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molecular pathology and find more effective therapeutic targets
for GCPM.

GCPM occurs when GC cells selectively find a suitable ecosystem
for growth in the peritoneum9–11. The peritoneal ecosystem is
highly complex, including distinct heterogeneous immune cell
populations12,13. Both peritoneal exfoliated tumor cells (PETCs) and
immune cells in the abdominal cavity undergo diverse changes during
GCPM development, and anti-tumor therapy might lead to a therapy-
induced evolution of GCPM cells, in turn affecting their sensitivity to
therapy14–16. Comprehensive dissection of the characteristics of peri-
toneal infiltrating immune cells and PETCs with single-cell resolution is
necessary to better understand the underlying molecular mechanisms
of GCPM and provide insights into future therapy strategies. Several
recent studies dissected intratumoral heterogeneity and lineage
diversity in primaryGCandperitonealmetastatic foci17,18. However, the
dynamic heterogeneity of the peritoneal ecosystem in early GCPM, the
most promising clinical intervention stage, and the therapy-induced
evolution of cells within this ecosystem, especially immune checkpoint
evolution, remain enigmatic.

In this study, we characterized a total of 191,987 high-quality cells
from 35 patients across five groups relative to GCPMdevelopment and
treatment status. We assessed the diversity and heterogeneity of cells
in the peritoneal ecosystem and observed proportionally reduced
dendritic cells (DCs) and increased regulatory CD4 T cells (Treg) and
naïve T cells during GCPM evolution. Notably, monocyte-like DCs
exhibited high diversity and pro-angiogenic phenotypes, with reduced
antigen-presenting capacity and increased pro-angiogenic capacity.
We describe a proliferative cycling T cell cluster in the peritoneal
ecosystem which represents an exhausted and dysfunctional stage of
T cells comprising three heterogeneous sub-clusters. Peritoneal infil-
trating monocyte-like DCs and cycling T cells exhibited marked evo-
lution of heterogeneity after therapy, involving cell fate transition,
immune phenotype changes, and metabolic reprograming. For GC
cells, high-plasticity GC cells were marked by a propensity to evolve
after therapy into high-proliferative GC cells. The plasticity transition
from quiescent to proliferative states resembled the recently descri-
bed plasticity process called paligenosis. Paligenosis was originally
defined as the programbywhich differentiated (mitotically quiescent)
cells use autophagy and dynamic mTORC1 regulation to reprogram
into dividing cells in precancerous lesions like metaplasia19. This pro-
cess has been proposed that if GC arises frommetaplasia that arose via
paligenosis, then perhaps GC cells may use paligenosis to survive20.
Accordingly, we showhere that two autophagy-related genes (MARCKS
and TXNIP) were identified as biomarkers of high-plasticity GC. Fur-
thermore, autophagy and mTORC1 inhibitors (known to block pali-
genosis) significantly induced apoptosis in patient-derived organoids
(PDOs) from ascites samples. Our large-scale single-cell dataset pro-
vides a direction for future research on the molecular mechanisms of
GCPMandwill helpdesign effective therapy strategies for GCPM in the
future.

Results
Dynamic changes in the cellular ecosystem in ascites or perito-
neal lavage fluid from GC patients
We obtained scRNA-seq transcriptomic profiles of cells from the
peritoneal ecosystem from 35 patients across four medical centers,
including normal peritoneal lavage fluid from four benign hyster-
omyoma patients (normal negative controls, G0 Group), peritoneal
lavage fluid from four early GC patients (G1 Group); peritoneal lavage
fluid from 10 advanced GC patients (G2 Group); ascites from 12
untreated advanced GC patients with diagnosed GCPM (G3 Group);
and ascites from five advanced GC patients with diagnosed GCPM
following systemic therapy (G4 Group) (Fig. 1a and Supplementary
Table 1).We additionally collected four ascites samples fromuntreated
advanced GC patients with diagnosed GCPM to culture ascites PDOs

for experimental validation based on inhibitor drug intervention
experiments and immunofluorescence assays (Fig. 1b and Methods).

To ensure that thefiltered scRNA-seqdata for further downstream
analysis were from single live cells, we used the harmony algorithm to
integrate scRNA-seq data from samples from the five groups and
applied strict quality control and cellfiltering (Supplementary Table 2).
A total of 191,987 high-quality cells including myeloid cells, lympho-
cytes, fibroblast cells, mesothelial cells, and tumor cells were ulti-
mately obtained (Fig. 1c), with an average of 2,744 genes, 11,177 unique
molecular identifiers (UMIs), and only about 6% mitochondrial genes
per cell detected (Supplementary Fig. 1a, b and Supplementary
Table 2). We identified 12 major cell clusters including immune and
non-immune cells using the Uniform Manifold Approximation and
Projection (UMAP)method (Fig. 1c). All cells had high expression levels
of housekeeping genes such as GAPDH, ACTB, B2M, and RPL11 (Sup-
plementary Fig. 1c), verifying the quality and accuracy of single cells.
Immune and non-immune cells were divided based on PTPRC expres-
sion (Supplementary Fig. 1c).

Immune cells accounted for the majority of our analyzed cells
from the peritoneal ecosystem, consistent with previous findings from
peritoneal dialysis fluid13. We identified multiple immune cell types
using the following markers: T cells (CD3D and CD3E), NK cells (KLRC1
and KLRF1), type 1 conventional DCs (cDC1, CLEC9A and XCR1), type 2
conventional DCs (cDC2, CLEC10A and CD1C), macrophages/mono-
cytes (CD163, FCGR3A and CD14), mast cells (CPA3 and TPSB2), B cells
(CD79B and MS4A1), plasma cells (XBP1 and MZB1), and neutrophils
(FCGR3B and CSF3R) (Fig. 1c, d and Supplementary Fig. 1c). For non-
immune cell populations, we identified tumor cells (EPCAM and
CLDN4), fibroblasts (COL3A1 and NNMT), and mesothelial cells (LRRN4
andWT1) (Fig. 1c, d andSupplementaryFig. 1c). Inferring chromosomal
copy number variations (inferCNV) including gain and loss of chro-
mosomes based on transcriptome has been widely used to identify
whether epithelial cells are malignant tumor cells across scRNA-seq
studies21–24. Our results showed that all identified epithelial cells were
confirmed as malignant tumor cells by inferCNV analysis (Supple-
mentary Fig. 1e, f). Over twelve cell clusters exhibited distinct dis-
tributions during the GCPM progression, with macrophages/
monocytes and T cells, which were the main cell composition in the
peritoneal cavity, exhibiting decreasing and increasing trends,
respectively (Fig. 1e and Supplementary Fig. 1d). We next conducted
ELISA assays to measure the concentrations of chemokines in the
peritoneal cavity to explore their effects on recruitment of immune
cells into the peritoneal cavity during GCPM progression. CXCL16,
a chemokine which recruits T cells, was elevated during GCPM
(p = 5.9e-5), consistent with the change in the proportion of T cells,
while the concentrations of chemokines that recruit macrophages/
monocytes displayed complex changes (Supplementary Fig. 1g)25–27.
The concentration of CCL5 (p =0.0004) was reduced, but CCL2
(p = 1.6e-5), CCL3 (p = 0.0125) and CCL4 (p =0.0051) were increased
during GCPM progression (Supplementary Fig. 1g). The inconsistent
changes of the macrophages/monocytes proportions and monocyte-
recruitment chemokines may be due to the fact that monocyte-
recruitment chemokines can also simultaneously recruit other cells,
such as T cells, NK cells, neutrophils, DCs and MDSCs, making the
recruitment of monocytes simultaneously influenced by multiple
cytokines25–27. The concentrations of chemokines found via ELISAwere
consistent with the changes of their transcripts in our scRNA-seq data
(Supplementary Fig. 1h).

Monocyte-like dendritic cells exhibit high diversity and a pro-
angiogenic phenotype during GCPM
We first analyzed the G0-G3 Group to explore the immune cell land-
scape and thedynamic changes in immune cellsduringGCPM.Myeloid
cells dominate the immune cell population. The cDC2 cluster dis-
played obvious variation among different groups, and the proportion
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of these cells infiltrating into the peritoneal cavity decreased as GC
progressed, specifically in patients with GCPM (p = 0.0128) (Fig. 1e).
Macrophages/monocytes showed a decreasing trend without statis-
tical significance (p =0.3254) (Fig. 1e). To explore potential distinct
functional roles of cell clusters, we performed further myeloid cell
clustering. In total, 11 cell clusters were identified among myeloid
lineages: four DC clusters, three macrophage clusters, two monocyte

clusters, one neutrophil cluster, and one mast cell cluster (Fig. 1f and
Supplementary Fig. 1i).

DCs are themain regulators for initiating antigen-specific immune
responses in tumor immunity. We observed distinct CLEC9A+/XCR1+

cDC1 and CLEC10A+/CD1C+ cDC2 clusters (Fig. 1g)28–30. Our C4-DC
cluster, featuring high expression of CLEC9A and XCR1, was identified
as cDC1, with a relatively low proportion (Fig. 1f,g,h). cDC2 cells were
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divided into three clusters (C1-DC, C2-DC and C3-DC) (Fig. 1f,g and
Supplementary Fig. 2a), characterized by comparable expression of
major histocompatibility complex (MHC)-II and lower expression of
MHC-I, consistent with previous reports of cDC1s and cDC2s mainly
initiating CD8 and CD4 T cells responses, respectively (Supplementary
Fig. 2a)28,31,32. C2-DC and C3-DC clusters highly expressed CD14, CD163,
FCN1, MAFB, S100A9, and FCGR1A, while CD1C and MHC-II levels were
relatively lower; this gene expression profile classified those clusters as
more monocytic (monocyte-like DCs)33,34 (Supplementary Fig. 2a, b).
C3-DC is a cDC2 cluster characterized by highMCM4,MCM6, and PCNA
expression, with lower antigen-presenting capacity and higher pro-
angiogenic capacity (characterized by SPP1, STAB1, and TYMP expres-
sion); thus, it seems to largely represent proliferating DCs35–38

(Figs. 1g, 2a and 2b).Wenext examined the dynamic changeofmyeloid
cells during GCPM. C1-DC and C2-DC proportions decreased in the G3
Group compared to the G1-G2 Groups (C1-DC, G3 vs G1: p =0.0315, G3
vs G2: p = 3.3e-3; C2-DC, G3 vs G1: p =0.0602, G3 vs G2: p =0.0141),
whereas C3-DCproportions (G3 vsG1:p =0.3040,G3 vsG2:p = 0.5258)
did not obviously change (Fig. 1h), indicating that the proportion of
cDC2 cells that are proliferating is not related to GC stage. The pro-
portion of monocyte-like DCs in the cDC2 population was significantly
higher in the G3 Group than in the G1-G2 Group (G3 vs G1: p =0.0038,
G3 vs G2: p =0.0021, Supplementary Fig. 2c). We performed FACS on
ascites and peritoneal lavage fluids, and the results validated the
existence of both cDC2 andmonocyte-like DCs in the peritoneal cavity
(Supplementary Fig. 2d). FACS also showed that the proportion of
cDC2 cells decreased in ascites (p =0.0355) and the proportion of
monocyte-like DCs in cDC2 was higher in ascites than in peritoneal
lavage fluids (p =0.0195) (Supplementary Fig. 2e), consistent with our
scRNA-seq data. Interestingly, monocyte-like DCs sorted by FACS
from ascites showed significant upregulation of transcripts encoding
cytokines that can recruit monocytes, including CCL2, CCL3, CCL4 and
IL1B (CCL2: p =0.0022; CCL3: p = 0.0205; CCL4: p =0.0487; IL1B:
p =0.0466) (Supplementary Fig. 2f).

Function scores were applied to explore functional changes in
each DC type during GCPM. C1-DC and C4-DC clusters exhibited the
highest antigen-presenting capacity among DCs, with no obvious
antigen-presenting capacity change in G3 Group, whereas the C2-DC
and C3-DC clusters (monocyte-like DCs) exhibited obviously reduced
antigen-presenting function score and functionalmolecule expression
in the G3 Group compared to the other stages (Fig. 2a, b and Source
Data). The C2-DC and C3-DC cluster showed an increased pro-
angiogenic function score and functional molecule expression in the
G3 Group during GCPM (Fig. 2a, b). We next explored the dynamic
developmental of DCs using Monocle trajectory analysis (Methods).
Cell lineage trajectory of DCs showed that the C1-DC and C4-DC clus-
ters were at the origin of the pseudotime trajectory, with the C2-DC
cluster at the middle and the C3-DC cluster, characterized by a
monocyte-like phenotype, lower antigen-presenting capacity, and
higher pro-angiogenic capacity, at the end of the pseudotime trajec-
tory (Fig. 2c). The tumor ecosystem can affect metabolic activity and
lead to immune cell dysfunction through metabolic reprogramming,
ultimately driving an immunosuppressive, pro-angiogenic, and pro-

tumoral phenotype39–41. Therefore, we examined metabolic repro-
gramming in DCs, observing that glycolysis and fatty acid metabolism
gradually increased along the differentiation trajectory toward the
monocyte-like phenotype, whereas oxidative phosphorylation
increased in early and intermediate stages then slightly decreased
upon late differentiation (Fig. 2d). We constructed a heatmap to
explore dynamic expression changes of genes associated with cellular
transitions. C3-DC upregulated mTORC1 activation and E2F signaling
pathway-related genes, accompanied by enhanced glycolysis, fatty
acid metabolism, oxidative phosphorylation, and cholesterol meta-
bolism (Fig. 2e, f). Immune checkpoint signaling can promote tumor
escape from immunosurveillance and regulate cellularmetabolism41,42.
Several immune checkpoint genes (HAVCR2, CD47, LGALS9, and
CD276) were gradually upregulated along the DC differentiation tra-
jectory, especially at the late stage, revealing that C3-DC might sup-
press tumor immunity (Fig. 2e, f). We performed survival analysis of
The Cancer Genome Atlas Stomach Adenocarcinoma Cohort (TCGA
STAD) using the GEPIA2 tool (http://gepia2.cancer-pku.cn/#index)43,
and confirmed that the C3-DC cluster gene signature significantly
associated with worse prognosis (p = 0.0066), making it a potentially
useful indicator of adverse clinical outcomes in GCPM (Supplemen-
tary Fig. 2g).

We identified three macrophage clusters in the peritoneal eco-
system (Fig. 1f,g). We observed co-existence of M1 and M2 functional
phenotypes, indicating their complex function, consistent with pre-
vious studies21,44,45 (Supplementary Fig. 2h). The C2-Macro cluster
preferentially expressed myeloid-derived suppressor cell (MDSC)
signature genes including FCN1 and S100A8. The C3-Macro cluster
preferentially expressed APOE, and TREM2, resembling an immuno-
suppressive tumor-associated macrophage phenotype (TAM-like
macrophages)23,44,46 (Supplementary Fig. 2i,j).We used the TCGA STAD
cohort to evaluate the association between the C3-Macro gene sig-
nature and prognosis, finding that patients with high C3-Macro gene
signature tended to have poor prognosis although there was no sta-
tistical significance (median survival time: 24months vs 60months;
p =0.098, Supplementary Fig. 2k).

T cell inhibitory states are differentially remodeled in GCPM
progression
NK cells and especially T cells are key cytotoxic immune cells involved
in tumorigenesis and cancer metastasis47,48. We conducted unsu-
pervised clustering of all T cells and NK cells, identifying 14 clusters:
three CD4+ T cell clusters, six CD8+ T cell clusters, one proliferative T
cell cluster, two NKT cell clusters, and two NK cell clusters (Fig. 3a, b
and Supplementary Fig. 3a). We identified the C1-CD4 cluster as
effectormemoryCD4T cells (IL7R-positive andCCR7-negative) and the
C2-CD4cluster asnaïveCD4Tcells (CCR7, SELL, and LEF1positive). The
C3-CD4 cluster, identified as regulatory CD4 T cells, highly expressed
FOXP3, IL2RA, and IKZF2; co-stimulatory markers CD28, ICOS, and
TNFRSF9; and inhibitory checkpoint genes CTLA4 and TIGIT (Fig. 3c
and Supplementary Fig. 3b-d). For CD8 T cells, the C1-CD8 cluster
contained effector memory CD8 T cells (GZMK and DUSP2 positive);
the C2-CD8 and C5-CD8 clusters were identified as terminally

Fig. 1 | scRNA-seq profiles of dynamic changes in the peritoneal ecosystem.
a Scheme of the experimental design and analytical workflow of this study for
scRNA-seq. b Validation experiment based on patient-derived organoids from
ascites. c Uniform Manifold Approximation and Projection (UMAP) plot showing
the main cell types from all samples. Each cluster is colored and annotated
according to cell type. Mono/Macro, monocyte/macrophage; cDC1, type 1 con-
ventional dendritic cells; cDC2, type 2 conventional dendritic cells. d Heatmap
showing z-score normalizedmean expression of selectedmarker genes in each cell
type. eTheproportion of eachcell type in different groups fromG0 (n = 4 samples),
G1 (n = 4 samples), G2 (n = 10 samples) and G3 (n = 12 samples) Group. Histogram

colors correspond to cell type colors in c; point colors correspond to samples. Data
are presented asmean values ± SEM (error bars); thep-values are calculatedby one-
way ANOVA test. fUMAP plot representingmyeloid cell clusters colored by cluster.
DC dendritic cell, Macro macrophage, Mono monocyte. g Heatmap showing
z-score normalized mean expression of selected genes in each cluster of myeloid
cells. h The proportion of each cluster of myeloid cells from G0 (n = 4 samples), G1
(n = 4 samples), G2 (n = 10 samples) and G3 (n = 12 samples) Groups. Histogram
colors correspond to cell type colors in f; point colors correspond to samples. Data
are presented asmean values ± SEM (error bars); thep-values are calculatedby two-
sided unpaired Student’s t-test. Source data are provided as a Source Data file.
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differentiated effector memory/effector CD8 T cells (GZMA, GZMH,
GZMK, CCL4 and CCL5 positive); the C3-CD8 cluster was identified as
mucosal-associated invariant T cells (SLC4A10 positive); the C4-CD8
cluster co-expressed tissue-resident gene markers (ITGA1, CD69,
CXCR6, and CAPG) and was identified as tissue-resident memory
T cells; and the cycling T cluster showed high-proliferative genes
(MKI67, MCM2, PCNA, and STMN1) and tissue-resident marker

genes (ITGAE, CD69, CXCR6, and CAPG) (Fig. 3c and Supplementary
Fig. 3d, e).

The proportion of C2-CD4 naïve and C3-CD4 Treg clusters
increased dramatically and significantly in the G3 Group (C2-CD4, G3 vs
G1:p = 1.4e-4, G3 vsG2:p =4.2e-4; C3-CD4,G3 vsG1:p =6.5e-3, G3 vsG2:
p =0.0103, Fig. 3b). Several well recognized inhibitory immune check-
point genes such asHAVCR2, LAG3, PDCD1 and BTLA had no expression
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in most CD4 T cell clusters, whereas CTLA4 and TIGIT had moderate
expression in C3-CD4 Treg cells (Fig. 3c and Supplementary Fig. 3c, f).
TheC3-CD8mucosal-associated invariant T cells areprevalent in several
peripheral tissues andblood and are reported to kill tumor cells49,50. The
C3-CD8 mucosal-associated invariant T cells cluster proportion
decreased in the G3 Group compared to the G1 (p=0.0217) and G2
Groups (p =0.0494), and the cytotoxic function category was inhibited
in early-stage disease (G1-G3Group), demonstrating a rapid response to
change in the peritoneal ecosystem51,52 (Fig. 3b-d).

We observed a proliferative cycling T cluster characterized by
high MKI67, MCM2 and PCNA expression in the peritoneal ecosystem
(Fig. 3a, c and Supplementary Fig. 3d, e). These cells exhibited low
expression of cytotoxic (GNLY, IFNG, and PRF1) and naïve (CCR7 and
SELL) genes and high expression of inhibitory markers (Fig. 3d and
Supplementary Fig. 3e). The cytotoxic function score and corre-
sponding marker genes GZMA and GZMH were reduced in the G3
Group compared to the G0-G2 Groups (Fig. 3d and Supplementary
Fig. 3g). Therefore, the proliferative cycling T cluster may exhibit a
dysfunctional status and resemble a naïve phenotype, consistent with
previous reports21,53. Gene Set Enrichment Analyses (GSEA) indicated
the cycling T cluster was enriched in genes involved in cell cycle, gly-
colysis, and DNA replication, likely preparing thematerials and energy
required for proliferation, and negatively enriched in cytotoxicity
genes (Supplementary Fig. 3h).

We investigated the composition of the proliferative cycling T cell
cluster and found that it comprised of heterogeneous cell clusters
containing two CD8 cell clusters (C1-cycling T and C2-cycling T) and
one NKT cell cluster (C3-cycling T) (Fig. 3e and Supplementary Fig. 3i).
The C2-cycling T cell cluster proportionwas increased in the G3Group
compared to the G1 (p = 0.0390) and G2 Groups (p = 0.0203) (Fig. 3f).
Using Monocle trajectory analysis to explore the developmental tra-
jectory of peritoneal cycling T cells, we found that the developmental
trajectory started with the C6-CD8 naïve cluster, passed through the
C4-CD8 and C1-cycling T cell clusters, then culminated in the C2-
cycling T cell cluster (Fig. 3g,h). Metabolic transitions are essential for
CD8 T cell survival, proliferation, differentiation, and activation in anti-
tumor immunity41,54. We observed that glycolysis, fatty acid metabo-
lism, and NAD metabolism were obviously up-regulated alongside
developmental trajectory, consistent with previous reports39,41,55

(Fig. 3g,i). ProliferativeC2-cycling T cells highly expressedproliferative
genes (MKI67, STMN1, and PCNA) and gained partial naïve function
(CCR7, LEF1, TCF7 and CCR7), leading to reduced cytotoxic function
(GNLY, GZMA, and NKG7) and increased inhibitory function (TIGIT,
CD47, and CTLA4) (Fig. 3h,j). Therefore, the C2-cycling T cluster may
represent an exhausted and dysfunctional stage, consistent with
recent single-cell studies44,53,56.

Therapy-induced evolution of monocyte-like DC and cycling T
cell immune phenotype
Cells of the tumor ecosystem can exhibit therapy-induced evolution of
biological heterogeneity involving cell state transitions and cellular

plasticity23,57,58. We observed that the C2-DC cluster decreased
(p = 0.0161) following therapy (G4 Group; Fig. 4a). We next explored
functional changes during therapy-induced evolution. Therapy caused
C3-DC cells (shown earlier to be a late-stage population in GC) to gain
proliferative and pro-angiogenic capacity, and their antigen-
presenting capacity significantly decreased (Fig. 4b). Analysis with
the “SCENIC” R package suggested that the C3-DC cluster had dis-
tinctive transcriptional factor (TF) activity between the G3 and G4
Groups, characterized by PPARG, MLX and CEBPA activation (Supple-
mentary Fig. 4a). By comparing differentially expressed genes (DEGs)
of theC3-DC cluster between theG3andG4Groups,we confirmed that
the C3-DC cluster in the G4 Group was characterized by high expres-
sion of genes involved in immunosuppression (APOE and GPNMB) and
pro-angiogenesis (SPP1) (Supplementary Fig. 4b). Furthermore, C3-DC
cells significantly upregulated inflammatory factors CCL2, CCL3 and
CCL4 in the G4 Group, which may recruit inflammatory monocytes,
monocyte-like DCs, neutrophils and TAM-like macrophages into the
peritoneum through their corresponding receptors CCR1, CCR2, and
CCR5, leading to a pro-angiogenic and immunosuppressive
ecosystem59–61 (Supplementary Fig. 4b,c). GSEA analysis found that C3-
DC cells in the G4 Group highly expressed genes involved in inflam-
matory response, NF-kappa B signaling, chemokine signaling,
epithelial-mesenchymal transition, and Notch signaling (Fig. 4c).
Conversely, C3-DC cells in the G3 Group highly expressed genes
involved in antigen processing and presentation, MHC-II receptor
activity, and T helper cell differentiation (Fig. 4c).

Cell state and function transitions are often accompanied by
heterogenic metabolic patterns62–64. We used Gene Set Variation Ana-
lysis (GSVA) to assess metabolic activity in monocyte-like DC clusters
between the G3 and G4 Groups. The C3-DC cluster upregulated oxi-
dative phosphorylation and glycolysis after therapy, accompanied by
hyaluronan metabolism and purine metabolism in the G4 Group
(Fig. 4d). In contrast, the C2-DC cluster exhibited decreased mito-
chondrial function, characterized by downregulated oxidative phos-
phorylation and fatty acid mitochondria oxidation and increased
glycolysis and pyruvate metabolism (Fig. 4d). Systemic therapy sig-
nificantly decreased the proportion of C3-CD4 Treg cells (p =0.0060)
that had increased during GCPM with a reduced inhibitory and
naïve function, suggesting an improving immunosuppressive status
(Fig. 4e, f). The cycling T cell cluster exhibited distinct TF activity in the
G3 and G4 Groups, characterized by PPARG, ZBTB14, MLX, BATF, and
CEBPA activation (Supplementary Fig. 4d). The cycling T cell cluster in
the G4 Group had impaired adaptive immune function compared to
the G3 Group, including a low expression of cytotoxic genes (NKG7,
GZMA,GZMH, and PRF1) andMHCmolecules (HLA-DRA,HLA-DPA1, and
HLA-C) (Supplementary Fig. 4e). Notably, cycling T cells acquired
higher plasticity (ALDH1A1, SOX9, and SOX4) and lower proliferation
(STMN1) in the G4 Group (Supplementary Fig. 4e). Furthermore,
function score analysis indicated that cycling T cells exhibited a
reduced cytotoxic/proliferative function and an increased naïve
function under anti-tumor therapy (G4Group), suggesting that cycling

Fig. 2 | Monocyte-like dendritic cells exhibit high diversity and a pro-
angiogenic phenotype duringGCPM. aDotplot showing antigen-presenting, pro-
angiogenic, phagocytotic, pro-inflammatory, anti-inflammatory, and proliferative
function scores of myeloid-derived cell clusters in G0-G3 Groups. Dot size repre-
sents percent of expressing cells in each cluster, color represents z-score of nor-
malizedmean expression level of selectedgene signatures. DCdendritic cell,Macro
macrophage, Mono monocyte. b Violin plot showing expression levels of selected
antigen-presenting and pro-angiogenic genes in dendritic cell (DC) clusters among
G0 (n = 4 samples), G1 (n = 4 samples), G2 (n = 10 samples) and G3 (n = 12 samples)
Group, color-coded by cell type. Horizontal dotted line represents mean value, and
colored dotted curve line indicates changes in expression level of selected genes.
Box represents median ± interquartile range; whiskers represent 1.5x interquartile

range; p-values are calculated by two-sided unpaired Wilcoxon test.
c Developmental trajectory plot of dendritic cell (DC) clusters, color-coded by
cluster (left) andpseudotime (right). Eachdot represents a single cell.dCurve plots
showing metabolism score changes related to glycolysis, fatty acid metabolism,
and oxidative phosphorylation in dendritic cells (DCs) along pseudotime. Point
colors correspond to cell type colors in c. e The cell distribution of each dendritic
cell (DC) cluster along with the pseudotime (upper panel), color-coded by DC
clusters. Heatmap showing dynamic expression changes of genes in DC clusters
(lower panel). f Curve plots showing expression level changes of function-related
genes related to antigen-presentation, pro-angiogenesis, proliferation, plasticity,
and immune checkpoint along pseudotime in dendritic cells (DCs). Point colors
correspond to cell type colors in c. Source data are provided as a Source Data file.
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T cell functionmaybe silenced in response to the stress of therapy and
that this transition may be a self-protection mechanism against anti-
tumor drugs (Fig. 4f). The cycling T cell cluster also expressed genes
associated with drug metabolism (MGST1, GSTP1, NME1 and NME2)65–67

(Supplementary Fig. 4e). Metabolism analysis indicated that cycling
T cells undergo obvious metabolic reprogramming during therapy,
with upregulated oxidative phosphorylation, citric acid cycle, and

glutathione metabolism possibly associating with drug metabo-
lism (Fig. 4g).

Immune checkpoint evolution ofmonocyte-like DCs and cycling
T cells
Cancer immunotherapy can remodel the phenotype of immune cells
infiltrating into solid tumors68, but its impact in the peritoneal
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ecosystem remains unclear. Therefore, we explored immune check-
point evolution in immune cells by comparing ascites samples from
immunotherapy (two patients) and chemotherapy (three patients)
(Supplementary Table 1). We found inhibited overall antigen-
presenting capacity for all myeloid cells but largely comparable pro-
angiogenic capacity (Supplementary Fig. 5a). Specifically, C2-DC and
C3-DC proportions decreased in immunotherapy compared to che-
motherapy (Fig. 5a). In cell function analysis, the C2-DC cluster
downregulated antigen-presenting capacity without significant chan-
ges to pro-angiogenic capacity, whereas the C3-DC cluster down-
regulated both antigen-presenting and pro-angiogenic capacities in
immunotherapy (Fig. 5b). By comparing C2-DC DEGs between the
immunotherapy and chemotherapy groups, we found C2-DC cells in
the immunotherapy group had lower-expressed genes associated with
MHC molecules (HLA-DRB5, HLA-DQA2) (Fig. 5c). Notably, C2-DC cells
following immunotherapy were negatively enriched for pro-
inflammatory phenotype (CCL4, IL1B, CCL3 and TNF), with high
expression of anti-inflammatory associated genes (CD163 and MSR1)
(Fig. 5c). Similarly, C3-DC and C3-Macro clusters exhibited an anti-
inflammatory phenotype under immunotherapy, negatively enriching
for the NF-kappa B pathway and pro-inflammatory phenotype, sug-
gesting a widespread shift to an anti-inflammatory phenotype for
monocyte-like DCs and TAM-like macrophages with lower CCL2, CCL3,
CCL4, IL1B, TNF, and NFKBIA (Fig. 5d and Supplementary Fig. 5b,c). To
better understand the role of these monocyte-like DCs in immu-
notherapy, we examined immune checkpoint expression patterns.
CD274 (PD-L1) and PDCD1LG2 (PD-L2), the two ligands for the PD-1-
related immune checkpoint, were rarely expressed in monocyte-like
DCs and TAM-like macrophages. Other immune checkpoint genes
such as VSIR, MIF, LGALS9, and SIGLEC10, which can induce T/NK cell
immune checkpoints and subsequently inhibit their cytotoxicity69–72,
were expressed in C2-DC and C3-DC clusters and increased in immu-
notherapy compared with chemotherapy (Fig. 5e).

We next explored immune phenotype changes in peritoneal-
infiltrating T cells during immunotherapy. C2-CD4 naïve and C3-CD4
Treg cluster proportions decreased in immunotherapy compared to
chemotherapy (Fig. 5f), indicating that immunotherapy may reduce
immunosuppressive T cell clusters. In addition, immunotherapy
caused increased expression of co-stimulatory marker genes CD27,
CD69, and TNFRSF14 (Supplementary Fig. 5d), consistent with a pre-
vious report73. Cell function analysis indicated that the percent of CD8
T cells with high cytotoxic function slightly increased, although the
overall cytotoxic function score of CD8 T cells in immunotherapy was
comparable to the chemotherapy group, and the naïve function score
of CD4 T cells in the immunotherapy group decreased compared to
the chemotherapy group (Supplementary Fig. 5e). Further function
score analysis showed that immunotherapy did not obviously enhance
T cell cytotoxicity, but could increase the percent of CD8 T cells with
high cytotoxic function (Fig. 5g). However, immunotherapy sig-
nificantly induced upregulation of several immune checkpoints. The

C3-CD4 Treg cluster in the immunotherapy group preferentially
expressed immune checkpoint genes CTLA4, TIGIT, CD47, CD96, and
TNFRSF1B after immunotherapy, and VSIR, CD47, CD96, and TNFRSF1B
were upregulated in the cycling T cluster after immunother-
apy (Fig. 5h).

High-plasticity GC evolves to high-proliferative GC through a
conserved cellular program
All epithelial cells were divided into 7 clusters. We observed that C1-3
tumor clusters were shared by almost all GC cases, while C4-7 tumor
clusterswere present only in a single case (Fig. 6a).We analyzed tumor
characteristics such as proliferation, differentiation, and plasticity in
clusters C1-3 and found that the C1-tumor cluster was highly differ-
entiated, the C2-tumor cluster was highly plastic, and the C3-tumor
cluster was highly proliferative (Fig. 6b). Recently a conserved pro-
gram for cellular plasticity in epithelial cells was defined, termed
paligenosis. Paligenosis occurs via 3 stages: Stage1, massive activation
of autophagy and lysosomal activity as mTORC1 is extinguished;
Stage2, re-expression of progenitor or embryonic markers without
mTORC1 expression; Stage3, induction of highmTORC1 with cell cycle
entry19,20,74–77, consistent with a previous study78. Previously, pali-
genosis has been shown as the process differentiated cells use to
return to the progenitor state in precancerous states like gastric
metaplasia. We reasoned that GC, which largely arises from meta-
plastic lesions, might maintain plasticity in response to therapy by
continuing to use paligenosis. The C2-tumor cluster had high autop-
hagy (ATG5, MAP1LC3B), high plasticity (SOX4, CD164) and low
mTORC1 activity (RPS6, MLST8) (Supplementary Fig. 6a), character-
istics of early paligenosis (stages 1-2). The early paligenosis markers
DDIT4 and ATF3 were also upregulated (Supplementary Fig. 6a). The
C3-tumor cluster had high mTORC1 activity (MLST8, RPS6) and high
proliferation (MKI67, MCM2), characteristics of late paligenosis when
cells re-enter the cell cycle (stage 3)74,76,77 (Fig. 6b and Supplementary
Fig. 6a). We applied pseudotime trajectory analysis to the C1-3 tumor
clusters and found a continuous developmental trajectory between
the C2-tumor and C3-tumor clusters, while the C1-tumor had strong
heterogeneity and hence seemed to follow a separate developmental
mechanism, as they were evenly distributed along the trajectory
(Supplementary Fig. 6b). C1-tumor cells may be akin to differentiated
cells in a tissue prior to paligenosis, as C1-tumor cells have increased
“Differentiation” and decreased “Proliferation” and “Plasticity”
phenotypes.

We next analyzed therapy-induced evolution of GC cells during
GCPM. In normal tissue, paligenosis of differentiated cell is induced
by injury or inflammation that causes mature, mitotically quiescent
cells to reprogram and reenter the cell cycle75,79. Thus, if paligenosis
was the mechanism tumor cells were using to increase proliferation,
we would expect therapy to induce reprogramming of tumor cell
clusters. All clusters changed significantly following therapy, especially
plasticity and paligenosis characteristics of the C2-tumor cluster

Fig. 3 | T cell inhibitory states are differentially remodeled in GCPM progres-
sion. aUniformManifold Approximation and Projection (UMAP) plot representing
clusters of T/NK cells, colored by cluster.b The proportion of T/NK cells clusters in
different groups from G0 (n = 4 samples), G1 (n = 4 samples), G2 (n = 10 samples)
and G3 (n = 12 samples) Groups. Data are presented as mean values ± SEM (error
bars); p-values are calculated by two-sided unpaired Student’s t-test. c Heatmap
showing expression levels of selected genes of naïve, cytokines and effectors,
inhibitory, co-stimulatory, Treg, NK cells, and proliferative markers in each T/NK
cell cluster. d Dotplot showing the cytotoxic, inhibitory, naïve, proliferative, and
Treg function scores of T/NK cells clusters in G0-G3 Groups. Dot size represents
percent of expressing cells in each cluster and color represents z-score of nor-
malized mean expression level of selected gene signatures. e Uniform Manifold
Approximation and Projection (UMAP) plot of three clusters of cycling T cells,
colored by cell cluster. fHistogram plot indicating the cell proportions of cycling T

clusters in G0 (n = 4 samples), G1 (n = 4 samples), G2 (n = 10 samples), and G3
(n = 12 samples) Groups. Data are presented as mean values ± SEM (error bars); the
p-values are calculated by two-sided unpaired Student’s t-test. g Developmental
trajectory of cycling T cells inferred by Monocle 2 analysis, color-coded by cluster
(left) and pseudotime (right). Eachdot represents a single cell.hThedistributionof
cycling T cells is shown along pseudotime (upper panel), color-coded by T cell
clusters. Heatmap showing dynamic expression changes of selected genes and
related pathways along pseudotime (lower panel). i Curve plots showing dynamic
changes of metabolism scores in cycling T cells along pseudotime. Point colors
correspond to cell type colors in g. j Curve plots showing expression changes of
function genes related to cytotoxic, naïve, and immune checkpoint genes in cycling
T cells along pseudotime. Point colors correspond to cell type colors in g. Source
data are provided as a Source Data file.
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(Supplementary Fig. 6c, d). GSEA analysis confirmed that C2-tumor
cluster plasticity was further enhanced after therapy (G4 Group) as
characterized by Hedgehog, ERBB pathway activation, and cell polar-
ization remodeling (Fig. 6c). In further trajectory analysis, we dis-
covered that part of the C2-tumor cluster in the G3 Group develops
into the C3-tumor cluster in the G3 Group, with the other part devel-
oping into the highly-plastic C2-tumor cluster in the G4 Group. At the

terminal end of the cell trajectory, C2-tumor cells from the G4 Group
lose some plasticity and gain proliferative ability and develop into the
C3-tumor cluster from the G4 Group. The whole development trajec-
tory is a continuous evolution of cell plasticity leading to proliferation
(Fig. 6d–f). We analyzed expression changes of genes associated with
cell transitions. In themiddle of the trajectory where the C2-tumor-G4-
Group cluster is enriched, cells were characterized by epithelial-
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mesenchymal transition, a program often seen in cells gaining plasti-
city and therapy resistance80–83 (Fig. 6f). At the end of cell trajectory,
where the C3-tumor-G4-Group cluster is enriched, cells were char-
acterized by cell cycle entry and Wnt pathway activation, demon-
strating that C3-tumor cells in the G4 Group maintain considerable
pluripotencywhile gaining proliferative ability (Fig. 6f). Both C2-tumor
and C3-tumor clusters in the G4 Group showed metabolic repro-
graming and increased multi-drug resistance. C2-tumor cells in the G4
Group were further characterized by decreased mitochondrial func-
tion (oxidative phosphorylation and fatty acid oxidation) and
increased glycolysis and glycogen metabolism (Fig. 6g).

Autophagy inhibition blocks paligenosis and induces apoptosis
in GC PDOs
To further clarify cellular regulation during GCPM, we analyzed cell
communication amongall cell clusters in theperitoneal ecosystem.We
found complex communication among GC and immune cells. Sur-
prisingly, the strongest cell communication was between C2 and C3
tumor cells (Fig. 7a and Supplementary Fig. 7a, b). To decode the
molecular network regulating C2 and C3 tumor cells, we looked for
intersections between DEGs of C2 tumor cells, autophagy-related
genes, and genes related to GC patient prognosis in the TCGA STAD
database. Only two transcripts, MARCKS (Myristoylated Alanine Rich
Protein Kinase C Substrate) and TXNIP (Thioredoxin Interacting Pro-
tein) were present in all three gene sets in the C2 tumor cell cluster
(Fig. 7b and Supplementary Fig. 7c, d). No intersecting genes were
discovered among C3 tumor cell DEGs, a published set of mTORC1-
related genes, and genes related with GC patient prognosis in TCGA
(Fig. 7c). PDOs comprise effective tools for genetic evolution studies,
biomarker identification, and drug screening for cancer patients84–86.
We cultured PDOs from ascites samples from four advanced GC
patients with GCPM (Supplementary Table 3). As shown in Supple-
mentary Fig. 7e, GC PDOs maintained the growth patterns and differ-
entiation of the primary GC. MARCKS and TXNIP protein expression
did not correlate with expression of late (Stage 3) paligenosis markers
pS6 and KI6719,77; however, they were co-expressed with early pali-
genosismarkers DDIT4 and ATF3 as well as SOX9 (which is induced by
Stage 2), indicating that MARCKS and TXNIP are enriched in early
paligenosis74,76 (Fig. 7d). We treated ascites PDOs with autophagy or
mTORC1 inhibitors, as autophagy induction and mTORC1 activation
are hallmarks of early and late paligenosis, respectively, and both are
required for cells undergoingpaligenosis to eventually re-enter the cell
cycle19,77. Both autophagy and mTORC1 inhibitors significantly
decreased the growth of ascites PDOs as measured by organoid size
(Fig. 7e, f). The autophagy inhibitors DC661 and hydroxychloroquine
weremore effective at inhibiting the growth of ascites PDOs compared
with mTORC1 inhibitors TORIN1 and rapamycin (Fig. 7e, f). We dis-
covered that only DC661 or hydroxychloroquine induced organoid
death, indicating that autophagy and mTORC1 inhibitors hinder PDOs
growth via different mechanisms (red arrow in Fig. 7e). This result was

consistent with our previous studies that autophagy blockage causes
cell death in paligenosis stages 1-2, whereas mTORC1 blockage simply
inhibits cell cycle entry inpaligenosis stage 319,77. To further analyze the
features of organoid death upon treatment with autophagy and
mTORC1 inhibitors, we stained PDOs treated with autophagy or
mTORC1 inhibitors for CC3 (cleaved caspase3) and KI67. DC661 and
hydroxychloroquine significantly induced the apoptosis of ascites
PDOs, increasing the ratio of CC3/KI67 positive cells compared with
untreated control and mTORC1 inhibitors treated PDOs, confirming
that autophagy inhibition caused failed paligenosis and subsequently
induce apoptosis (Fig. 7g,h).

To examine the influence of autophagy andmTORC1 inhibitors on
peritoneal metastasis in vivo, three groups of mice were all intraper-
itoneally injected with PDOs and then treated with PBS, hydroxy-
chloroquine, or rapamycin. Positron Emission Tomography (PET)
displayed that both hydroxychloroquine and rapamycin clearly inhib-
ited peritoneal metastasis, and hydroxychloroquine was more effective
(Supplementary Fig. 7f,g), consistent with the PDO results in vitro.

Discussion
GCPM has poor prognosis and high mortality with poor therapeutic
outcomes2–4. The study of GPCM is complicated since the complexity
of the peritoneal ecosystem and the mechanisms of GCPM remain to
be deciphered. Here, we used single-cell RNA sequencing to compre-
hensively characterize the peritoneal ecosystem. Our analysis reveals
distinct and dynamic changes within the ascites ecosystem during
GCPM and illustrates the evolution of peritoneal cells induced by
chemotherapy and immunotherapy at single-cell resolution.

Antigen presentation is the main function of DCs87–89, and we
found that DC clusters exhibited slightly increased antigen-presenting
capacity in the G1 Group compared to the G0 Group and then
decreased antigen-presenting capacity in the G2 Group compared to
the G1 Group, consistent with their higher cell proportions among the
G0-G2 Groups, suggesting that early-stage disease may have an effect
on DC proportion and function. This supports the current viewpoint
that primary tumors can modify distant ecosystems to form pre-
metastatic niches before tumor metastasis90,91. The DC cluster varia-
tions across different disease stages, particularly in cDC2, indicate the
complexity of the DC-mediated tumor immune response caused by
GCPM. Monocyte-derived DCs can impede differentiation and IFN
production in CD4 T cells92. The proliferative C3-DC cluster expressed
lower MHC-I and MHC-II levels, indicative of a monocyte-like pheno-
type with reduced antigen-presenting capacity and increased pro-
angiogenic functions and cell proportion during GCPM. Develop-
mental trajectory analysis confirmed that the C3-DC cluster featured
immunosuppressive, pro-angiogenic and proliferative capacity. Alto-
gether, based on their dynamic changes in cell proportion and func-
tion, monocyte-like DCs contribute to a unique peritoneal immune
ecosystem, aiding in formation of an immunosuppressive and pro-
angiogenic ecosystem favorable for GCPM.

Fig. 4 | Therapy-induced evolution of monocyte-like DC and cycling T cell
immune phenotype. a Histogram plot showing cell proportions of myeloid cell
clusters in the G3 (n = 12 samples) and G4 Groups (n = 5 samples) colored by cell
type. DC, dendritic cell; Macro, macrophage; Mono, monocyte. Point colors cor-
respond to samples. Data are presented asmean values ± SEM (error bars); p-values
are calculated by two-sided unpaired Student’s t-test. b Split violin plots showing
the antigen-presenting, pro-angiogenic, and proliferative function scores of mye-
loid cells in theG3 (n = 12 samples, red) andG4Groups (n = 5 samples, blue) groups.
Box represents median ± interquartile range; p-values are calculated by two-sided
unpaired Wilcoxon test. c Gene Set Enrichment Analyses (GSEA) analysis showing
distinct enrichment pathways of C3-DC in the G3 (red) and G4 Groups (blue). Bar
chart showing normalized enrichment scores (NES) of specific pathways.
d Heatmap plot representing the activity of metabolism pathways of C2/C3-DCs in

the G3 and G4 Groups. Color indicates the activity score of each metabolism
pathway calculated by Gene Set Variation Analysis (GSVA) analysis. e Histogram
plot representing the cell proportionof T/NKclusters in theG3 (n = 12 samples) and
G4 Groups (n = 5 samples), colored by cell type. Point colors correspond to sam-
ples. Data are presented as mean values ± SEM (error bars); p-values are calculated
by two-sided unpaired Student’s t-test. f Split violin plots showing the cytotoxic,
inhibitory, naïve, and proliferative function scores of T cells in the G3
(n = 12 samples, red) and G4 Groups (n = 5 samples, blue). Box represents med-
ian ± interquartile range; p-values are calculated by two-sided unpaired Wilcoxon
test. g Similar to d, the metabolism pathway activity score of C3-CD4 and cycling
T cells in the G3 and G4 Groups shown in a heatmap plot. Pathway activity scores
were calculated by Gene Set Variation Analysis (GSVA) analysis. Source data are
provided as a Source Data file.
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T cells represent key cytotoxic immune cells during tumorigen-
esis and cancer metastasis48. Both C2-CD4 naïve and C3-CD4 Treg
clusters showed increased cell proportion and naïve function score
during GCPD, whereas the C1-CD4 T cell cluster was more prone to a
naïve phenotype in GCPM than in non-GCPMwithout obvious changes
in cell proportion. Notably, expression of genes involved in naïve
function such as SELL and CCR7 increased alongwith disease state, but

genes involved in inhibitory checkpoints (i.e., CTLA4 and TIGIT) were
not obviously affected. Therefore, these CD4 clusters either increased
their naïve function or their immunosuppressive cell proportion,
implying that both non-functional and immunosuppressive cells
become enhanced in the peritoneal ecosystem during GCPM. More-
over, CD8 cluster cytotoxic function was attenuated in peritoneal
tumor immunity in GCPM. Notably, the C2-CD8 cluster was
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characterized by low expression of cytokines/chemokines (CCL3,
CCL4L2, XCL1, and XCL2), which might hinder infiltration of effector
CD8 T/NK cells and DCs into the peritoneum for their anti-tumor
functions93–95. Thus, T cell immune function already begins to deplete
prior to GCPM, with significant depletion in GCPM and an obviously
increased naïve/immunosuppressive phenotype, eventually promot-
ing GCPM by inhibiting peritoneal immunity.

Paligenosis is a conserved cellular program for cells to undergo
plastic changes respond to damage and maintain homeostasis19. It has
previously been characterized inmultiple normal tissues and cells. For
successful paligenosis, cells require stress response proteins such as
DDIT4, ATF3 and IFRD1, whose actions modulate critical cell energy
and survival networks centered on mTORC1 and P5377. During gastric
tumorigenesis, there is evidence that pre-cancerous metaplasia is a
normal, wound-healing, regenerative response that is proceeded by
paligenosis. However, when paligenosis is abnormal, paligenotic cells
with DNA damage are not eliminated or stalled until DNA repair is
complete. Such cells can then accumulate DNA damage and
undergo malignant transformation, ultimately leading to diffuse GC
initiation75,76. Once GC is established via aberrant paligenosis, GC cells
maymaintain this abnormal paligenosis propensity, which they induce
in response to stress of various kinds: either endogenous due to
hypoxia/starvation from tumor overgrowth of blood supply or exo-
genous due to chemotherapy or immunotherapy.Wepresume thatGC
cells can use a modified paligenosis program (and its associated
metabolic/mTORC1modulating processes) to evade immune cells and
therapy and promoting invasion and metastasis as cancer progresses.

In the current study, we noticed GC cells shifted from a high-
plasticity state (early paligenosis with autophagy) to a high-
proliferative state (late paligenosis with strong mTORC1 activation)
in untreated GCPM patient ascites, with a cell trajectory consistent
with the paligenosis program. Previous studies reported that mTORC1
controls the adaptive transition of quiescent cells in G0 to re-enter the
cell cycle in response to injury-induced signals78. Accordingly, we
observed that the highly plastic GC cells in the G3 Group evolved to
gain even higher plasticity upon systemic therapy in theG4Group. The
simultaneous appearance of these different high-plasticity clusters is
consistent with the highly heterogenous nature of GC17,96,97. Therapy-
resistance is usually achieved by acquiring high-plasticity states
through increased expression of stemness-related genes98,99. Within
the plasticity response, such stemness-related genes (like SOX9) might
be induced via paligenosis, the first stage of which is a large upregu-
lation of autophagy and lysosomes.

Tumors are composed of heterogeneous cell populations that
exhibit varying degrees of functional and genetic heterogeneity100,101.
Cancer stem cells (CSCs) were proposed four decades ago, and are
defined as rare cell populations with unlimited self-renewal potential,

driving tumorigenesis, clonogenicity, metastasis and drug resistance,
and maintaining tumor microenvironment101–103. Interestingly, in this
study, we found two different populations in the peritoneal cavity
microenvironment of GCPM (C2-Tumor cell and C3-Tumor cell clus-
ters) that could functionally serve as CSCs. One cluster (C2 Tumor
cells) expressed stem-related genes (SOX4 and CD164); the other (C3-
Tumor cells) expressed proliferative genes (MKI67 and MCM2). Cell
trajectory analysis showed that the two clusters could transition from
C2-Tumor cell to C3-Tumor cell clusters, undergoing inactivation of
stem-related signal pathways and activation of proliferative signal
pathways. Thus, CSC potential may be maintained by plasticity via a
paligenosis-like program. Importantly, paligenosis is a stepwise, spe-
cific program with multiple cellular pathways involved. Considering
tumor plasticity from a paligenosis perspective thus may open many
avenues to design antitumor therapies and/or augment existing ther-
apy. Promisingly, we found that targeting paligenosis using autophagy
and mTORC1 inhibitors reduced proliferation of PDOs from ascites by
inducing apoptosis.

Tumor infiltrating immune cells feature immunosuppressive and
pro-tumorigenic functions and play distinct and complex roles in
tumor ecosystems104,105. Tumor cells with pluripotent and plastic
characteristics can self-renew to propagate tumorigenesis and
metastasis106–108. Immune cells support tumor growth and metastasis
and also remodel the tumor ecosystem to maintain a suitable niche109.
For example, TAM-like macrophages have been reported to promote
cancer stem cell-like characteristics via cytokine pathways110,111. Our
cell–cell interaction analysis highlighted intercellular interactions
between monocyte-like DCs and cycling T clusters and between C2
tumor cells and C3 tumor cells in the peritoneal ecosystem. Therefore,
we speculate that proliferative monocyte-like DCs and cycling T cells
maintain tumor cell plasticity in the peritoneal cavity via ligand-
receptor communication pathways. In our study, SPP1 and HGF were
indicated tomediate crosstalk between proliferative C3-DC and tumor
cells tomaintain stemcell ability in tumor cells via SPP1-CD44andHGF-
CD44 ligand-receptors112–114. Proliferative cycling T cells may also play
critical roles in maintaining tumor cell plasticity in GCPM via SPP1-
CD44112. Thus, to effectively prevent and treat GCPM, immunotherapy
strategiesmust consider theunique immunological characteristics and
stemness of peritoneal infiltrating tumor cells and their intercellular
interactions with immune cells.

Studying the ecosystems of ascites caused by other ascites-
producing conditions will be helpful to provide a crucial direction for
the further study of ascites of gastric cancer. A published study indi-
cates that the myeloid cells and lymphocytes in hepatocellular-
carcinoma-related ascites have distinct origins and are pre-
dominantly linked to primary tumor and peripheral blood origins,
respectively44. Ascites caused by high-grade serous ovarian cancer

Fig. 5 | Immune checkpoint evolution of monocyte-like DC and cycling T cells.
a Cell proportions of myeloid cell clusters after Chemotherapy (n = 3 samples) and
Immunotherapy (n = 2 samples) shown in histogramplot. DC, dendritic cell;Macro,
macrophage;Mono,monocyte. Histogram colors correspond to cell clusters; point
colors correspond to samples. Data are presented as mean values ± SEM (error
bars). b Dotplot showing the antigen-presenting, pro-angiogenic, and proliferative
function scores of myeloid cell clusters in Chemotherapy (n = 3 samples) and
Immunotherapy (n = 2 samples) Groups. Dot size represents percent of expressing
cells in each cluster, and color represents mean expression level of selected gene
signatures. c, d Volcano plots showing differentially expressed genes (DEGs) of C2-
DC (c) and C3-DC (d) betweenChemotherapy (three patients) and Immunotherapy
(two patients) Groups. e Split violin plots showing expression levels of immune
checkpoints of C2/C3-DC and C3-Macro in Chemotherapy (n = 3 samples, red) and
Immunotherapy (n = 2 samples, blue) Groups. The comparisons and statistical
analyses are conductedbetween cell clusters (three cell clusters: C2-DC, C3-DC, and
C3-Macro) of Chemotherapy and Immunotherapy groups, and the total cells

number of all clusters are >3. Box represents median ± interquartile range; p-values
are calculatedby two-sidedunpairedWilcoxon test. fThe samehistogramplot as in
a for T/NK clusters in Chemotherapy (n = 3 samples) and Immunotherapy
(n = 2 samples) Groups. Histogram colors correspond to cell clusters; point colors
correspond to samples. Data are presented as mean values ± SEM (error bars).
g Dotplot showing the cytotoxic, naïve, and proliferative function scores of T/NK
cell types in Chemotherapy (three patients) and Immunotherapy (two patients)
Groups. Dot size represents percent of expressing cells in each cluster, and color
represents z-score of normalized mean expression level of selected gene sig-
natures. h The same split violin plots as in (e) for T/NK cell types in Chemotherapy
(n = 3 samples, red) and Immunotherapy (n = 2 samples, blue) Groups. The com-
parisons and statistical analyses are conducted between T cell clusters (10 cell
clusters: C1-3 CD4, C1-6 CD8, andCycling T) of Chemotherapy and Immunotherapy
groups, and the total cells number of all clusters are >3. Box represents median ±
interquartile range; p-values are calculated by two-sided unpaired Wilcoxon test.
Source data are provided as a Source Data file.
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(HGSOC) is known to be associated with drug resistance and a poor
prognosis115, and the ascites ecosystem harbors several distinct cell
clusters including immune cells, epithelial cells and cancer-associated
fibroblasts116. Interestingly, the molecular subtypes of HGSOC mainly
reflect the tumor ecosystem composition (the abundance of immune
infiltrates and fibroblasts) rather than distinct subsets of malignant
cells, and inflammatory reprogramming of tumor cells depends on an

intact ascites microenvironment, reflecting an endogenous property
of the tumor cells116. Since the immune characteristics of peripheral
blood are quite different from those of tumors, and sampling ascites
via paracentesis is far easier and safer than tissue biopsy, these results
provide a direction for the detection of tumor status by sampling
ascites instead of peripheral blood or biopsy tissue. Further study
should explore the specific ecosystem characteristics of ascites of
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gastric cancer by comparing the ascites caused by other different
ascites-producing conditions.

In conclusion, our study describes different cell developmental
lineage trajectories in the peritoneal ecosystem and provides evidence
to better understand the mechanism of GCPM, aiding exploration of
effective target strategies for GCPM therapy.

Methods
Patient samples and ethics statement
Seventeen samples of malignant ascites fluid were collected from
patients pathologically diagnosed with GC and 18 peritoneal lavage
fluid samples were collected from GC patients without GCPM or from
benign hysteromyoma patients from four medical centers: the First
Hospital of China Medical University, the Sheng Jing Hospital of China
Medical University, the Liaoning Cancer Hospital & Institute, and the
People’sHospital of LiaoningProvince. Early gastric cancer is limited to
the mucosa or submucosa (pT1), with a very low risk of distant
metastasis and is amenable to endoscopic resection, while advanced
gastric cancer refers to tumors that invade the muscularis propria and
beyond (pT2 or higher) recommended radical gastrectomy with
lymphadenectomy117–122. Of these collected samples, four control
peritoneal lavage fluid samples were taken from four benign hyster-
omyoma patients (negative controls, G0 Group); peritoneal lavage
fluid from four early GC patients (G1 Group); peritoneal lavage fluid
from 10 advanced GC patients (G2 Group); ascites from 12 untreated
GCpatients with diagnosedGCPM (G3Group) and ascites from fiveGC
patientswith diagnosedGCPM following systemic therapy (G4Group).
Of the G4 group, three and two patients were treated with che-
motherapy and anti-PD-1/PD-L1immunotherapy, respectively. Some
ascites samples were obtained under laparoscopic exploration due to
GCPM. Detailed clinical, pathological, and therapeutic history infor-
mation are summarized in Supplementary Table 1. This study was
performed following the ethical guidelines of the Declaration of Hel-
sinki and was approved by the Research Ethics Committee of China
Medical University and these hospitals (Shenyang, China). Informed
consent was obtained from all enrolled patients before collection of
samples and clinical information.

Sample collection and single-cell suspension processing
Ascites fluids and peritoneal lavage fluids were immediately trans-
ported to our laboratory on ice following drainage. Liquid samples
were aliquoted into 50-ml centrifuged tubes through 70-um cell
strainers (Cat#352350, BDFALCON) and centrifuged at300 g for 5min
at 4 °C. After supernatant removal, the remaining cell pellet was
resuspended in red blood cell lysis buffer (Cat# R1010, Solarbio) and
incubated on ice for 5min to remove red blood cell contamination.
Phosphate-buffered saline (PBS; Cat# SH30256.01, HyClone) was used
to quench the red blood cell lysis buffer and then the cell suspension
was centrifuged at 300 g for 5min at 4 °C to pellet the cells. The above
process of red blood cell lysis was repeated until no red blood cells
were visible. The resulting cell pellet was washed twice with PBS then
resuspended in sorting buffer (PBS containing 2% fetal bovine serum

[FBS; Cat# DT-100-S, DearyTech]). Cell concentration and viability
were analyzed using Countstar Automated Cell Counter (Model# Rigel
S2, ALIT Life Sciences) with acridine orange/propidium iodide (AO/PI)
double staining assay (Cat# CS2-0106-5ML, Nexcelom Bioscience).
Single-cell suspensions with over 85% viability were used for scRNA-
seq assay. Generally, the entire process from sample collection to
single-cell suspension loaded on the 10x Chromium Controller
microfluidic device (10x Genomics) was completed within 2-4 h.

Single-cell RNA library preparation and sequencing
Nanoliter-scale Gel Beads-in-emulsion (GEM) generation & barcoding,
reverse transcription, complementary DNA (cDNA) amplification, and
3' gene expression dual index library construction steps were con-
ducted according to the manufacturer’s instructions of the 10x
Genomics Chromium single cell 3' platform (10x Genomics). Briefly,
single-cell GEM generation was performed on a 10x Chromium Con-
troller (Mode l# GCG-SR-1, 10x Genomics) using Chromium Next GEM
Single Cell 3ʹ Reagent Kit v3.1 (Cat# PN-1000268, 10x Genomics) and
Chromium Next GEM Chip G Single Cell Kit (Cat# PN-1000120, 10x
Genomics). Concentrations of single cell suspensions were adjusted to
800-1200 cells/μL (measured by CountStar), and then about 10000
cells per sample were loaded on each channel of the 10x Genomics
Chromiumsystem (GEMgeneration&barcoding) per sample. The cells
were partitioned into GEM to achieve single cell resolution. Captured
single cells were lysed and the released RNAs were barcoded through
reverse transcription in individual GEMs. Reverse transcription of
GEMs was performed using a Thermal Cycler (Model# 9902, Applied
Biosystems) at 53 °C for 45min, 85 °C for 5min, then heldat4 °C. cDNA
was PCR amplified to generate sufficient mass for library construction
and cDNA quality was assessed using an Agilent 4200 TapeStation
system (Agilent Technologies). Finally, barcoded cDNA libraries were
sequenced on an Illumina Novaseq6000 sequencer using a pair-end
150 bp (PE150) reading strategy (CapitalBio Technology, China). To
reduce batch effects among samples, all cDNA libraries were con-
structed using the same reagent kit and protocol.

Ascites PDOs culture and treatment
PDOs were derived from ascites drainage samples from four patients
with GCPM. Ascites drainage was filtered with a 70-um cell strainer
then centrifuged at 300 g for 5min. Pellets were resuspended into
single-cell suspensionswith PBS and incubatedwith red bloodcell lysis
buffer for 5min on ice, then centrifuged again at 300 g for 5min.
Finally, the cells were embedded inMatrigel, seeded onto pre-warmed
24-well culture plates, and cultured in Advanced DMEM/F12 medium
(GIBICO) with 50% L-WRN conditioned medium supplemented with
10mMHEPES (GIBICO), 10mMNicotinamide (Sigma), 1X N2 (GIBICO),
1X B27 (GIBICO), 1X Glutamax (GIBICO), 1.25 mM N-Acetylcysteine
(Sigma-Aldrich), 50 ng/mL EGF (Peprotech), 200 ng/mL FGF10
(Peprotech), 10 nM gastrin (R&D Systems), and 1X Primocin (Invivo-
gen). 10 uM ROCK inhibitor (Y-27632, R&D Systems) was provided for
the first generation of PDOs to prevent anoikis. PDOs were overlaid
with culture medium and incubated at 37 °C in humidified air

Fig. 6 | High-plasticityGC evolves tohigh-proliferative GC througha conserved
cellular program. a Uniform Manifold Approximation and Projection (UMAP)
visualization of tumor cells by cell types (Left, colors correspond to cell clusters)
and samples (Right, colors correspond to samples). b Violin plot showing function
scores of proliferation, plasticity, differentiation, mTORC1, autophagy, and pali-
genosis in tumor cells (C1-Tumor cell: n = 713 cells; C2-Tumor cell: n = 549 cells; C3-
Tumor cell: n = 2545 cells). Box represents median ± interquartile range; whiskers
represent 1.5x interquartile range; p-values are calculated by two-sided unpaired
Wilcoxon test. c Gene Set Enrichment Analyses (GSEA) analysis showing distinct
enrichment pathways of C2-Tumor cells in the G3 (red) and G4 Groups (blue). Bar
chart showing the normalized enrichment score (NES) of specific pathways in
specific tumor cells. d The trajectory plot of C2/C3-tumor cells in the G3 and G4

Groups (left), and the transition trajectories along pseudotime (right) in a two-
dimensional state-space inferred by Monocle 2 analysis. e Two-dimensional sche-
matic diagram showing cellular plasticity changes in C2/C3-tumor cells in the G3
and G4 Groups along paligenosis progression. f The 3-phase distribution of C2/C3-
tumor cells along pseudotime color-coded by cell cluster (upper panel). Heatmap
showing dynamic expression changes of genes and related pathways of C2/C3-
tumor cells in the G3 and G4 Groups along pseudotime (lower panel). g Heatmap
plot indicating the activity of metabolism pathways in C2/C3-tumor cells between
the G3 and G4 Groups. Color represents the activity score ofmetabolism pathways
calculatedbyGene Set Variation Analysis (GSVA) analysis. Source data are provided
as a Source Data file.
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containing 5% CO2. Culture medium was changed every 3 days. For
passaging, PDOs were collected by mechanically dissociating the
Matrigel, centrifuged at 150g for 5min, incubated with pre-warmed
TrypLE express for 7min, then pipetted about 100 times. All PDOs
were trypsinized to single cells under a light microscope then trans-
ferred into new matrigel with culture medium and plated in pre-

warmed 24 well-plates, incubated at 37 °C in humidified air containing
5% CO2. PDOs were passaged every 7 days until at least the 15th gen-
eration. PDOswere treatedwith culturemedia and inhibitors including
Hydroxychloroquine Sulfate (1uM), DC661 (4uM), TORIN1 (2uM), or
Rapamycin (400 nM) for 7 days before analysis. Culture medium and
drugs were changed every 3 days. To embed PDOs, culture media was
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Fig. 7 | Autophagy inhibition blocks paligenosis and induces apoptosis in GC
PDOs. a Heatmap showing the intercellular interaction by CellPhoneDB analysis.
Color represents the number of significant ligand-receptor pairs among different
cell subtypes. DC, dendritic cell; Macro, macrophage; Mono, monocyte. b, c Venn
diagramshowing thenumber of overlapping signaturegenes betweendifferentially
expressed genes (DEGs) of C2-tumor cell, poor prognostic DEGs of The Cancer
Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) database, and autophagy-
related gene sets (b) and mTORC1-related gene sets (c). d Immunofluorescence
staining for MARCKS (red, upper panel) and TXNIP (red, lower panel), early pali-
genosis markers DDIT4 (green) and ATF3 (green), late paligenosis markers KI67
(green) and pS6 (green), progenitor-related marker SOX9 (green), and nuclei
marker DAPI (blue) in 15th generation patients-derived organoids from ascites.
Scale bar, 100μm. The experiment was repeated with 4 independent experiments,
with similar results. e Fifteenth generation organoids generated as clones from
single cells dissociated from 14th generation organoids after addition of inhibitors

or vehicle when single cell suspensions were replated. Red arrows indicate appli-
cation of autophagy andmTORC1 inhibitors promoting organoids death. Scale bar,
400 μm. The experiment was repeated with four independent experiments, with
similar results. f Quantification of the size of 15th generation organoids as in (e)
after 7-day treatment with autophagy or mTORC1 inhibitors (n = 4 independent
experiments). Each datapoint represents the mean of mean values of organoids in
all wells. Every well included the means of 25+ counts. Data are presented as mean
values ± SEM (error bars); p-values are calculated by one-way ANOVA with Tukey
post hoc test. g Immunofluorescence staining for apoptosis marker CC3 (green),
proliferation marker KI67 (pink), and nuclei marker DAPI (blue) in 15th generation
organoids as in (e) after 7-days treatment with autophagy or mTORC1 inhibitors.
Scale bar, 100μm.hThe ratio ofCC3/KI67 positive cells as in (g) (n = 4 independent
experiments). Data are presented as mean values ± SEM (error bars); p-values are
calculated by one-way ANOVA with Tukey post hoc test.
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removed, PDOs were washed in DPBS on ice for 15mins, then PDOs
were fixed in 10% formalin on ice for 2 h. Finally, PDOs were moved to
75% ethanol at 4 °C overnight, mounted in 3% agar, and embedded in
paraffin.

Patient-derived organoid xenograft (PDOX) animal experiments
NOD/SCID mice were purchased from Beijing Vital River Laboratory
Animal Technology (Beijing, China). Ascites organoids were digested
into single cells using TrypLE. An amount of 1 × 106 cells in 0.2mL
Advanced DMEM/F12 medium with 2% FBS were intraperitoneal
injected to the 6-week-old femaleNOD/SCIDmice. Twoweeks after the
cells were injected, mice were treated with rapamycin and hydroxy-
chloroquine every 3 days for 3weeks. For rapamycin group, mice were
treated with 3μg/g rapamycin (LC Laboratories) in 0.25% Tween-20,
0.25% polyethylene glycol in PBS every 3 days. For hydroxy-
chloroquine sulfate group, mice were treated with 30μg/g hydroxy-
chloroquine sulfate (Selleck) in PBS every 3 days. After 5weeks of cell
injection, tumor-bearing mice were injected intravenously with 18-
fluorodeoxyglucose (18F-FDG) (8.32 ± 0.92MBq) via the tail-vein. For
best contrast, PET imaging performed after 30min metabolism.
Commercial software MadicPet was used to reconstruct PET images.
The maximum standardized uptake value (SUVmax) was measured for
semi-quantitative analysis. After the 18F-FDG PET scan, mice were
sacrificed and peritoneal tumors were isolated and embedded in par-
affin. All animal experiments were performed in accordance with the
National Institutes of Health Guide for Care and Use of Laboratory
Animals, the ARRIVE guidelines, and the institutional ethical guidelines
(China Medical University Animal Studies Committees). Mice were
sacrificed by euthanasia when the tumor size reached the limitation
(maximal tumor diameter ≥ 10mm).

Immunofluorescence staining
Organoidmicrotome sections underwent a standard deparaffinization
protocol with xylene and rehydration then were antigen retrieved in
sodium citrate buffer (2.94 g sodiumcitrate, 500 uL Tween 20, pH 6.0)
using a pressure cooker. Sections were blocked in 1%BSA, 0.3% Triton
X-100 in PBS for 60min. Primary antibodies were applied overnight at
4 °C, see Supplementary Table 4. For immunofluorescence staining,
organoid slides were washed in PBS and incubated with Alexa-fluor
(Invitrogen) secondary antibodies at room temperature for 60min,
then 4',6-Diamidino-2-phenylindole (DAPI) was used to detect nuclei.
Slides were washed in PBS and mounted using ProLong Gold antifade
mountant with DAPI (Molecular Probes) and stored at 4 °C. All
immunofluorescence images of organoids were captured with cita-
tion3 (BioTek instruments, Inc.). All experiments were performed at
least three times by the same scientific researcher. Detailed informa-
tion of antibody application and dilution is shown in Supplementary
Table 4.

Enzyme-linked immunosorbent assay (ELISA)
The concentrations of cytokines of ascites and peritoneal lavage fluids
were measured by ELISA (R&D Systems®). Briefly, samples were cen-
trifuged at 300 g for 5min at 4 °C to remove the cell pellet. The
detailed experiment processes were performed according to the
manufacturer’s instructions of the ELISA kits. Finally, the concentra-
tions of cytokines weremeasured viamicroplate reader (InfiniteM200
Pro, TECAN) capable of measuring absorbance at 450 nm, with the
correction wavelength set at 540 nm. ELISA data were collected using
Tecan i-control Software (version 1.11, TECAN).

Flow cytometry (fluorescence-activated cell sorting, FACS) of
monocyte-like dendritic cells
Single-cell suspension was obtained after filtration and centrifugation.
The cells for FACS were stained with Fluorophore-conjugated anti-
bodies containingCD45-eFluor (Cat# 69-0459-42, eBioscience™), CD3-

FITC (Cat# 11-0037-42, eBioscience™), CD56-FITC (Cat# 11-0566-42,
eBioscience™), CD19-FITC (Cat# 11-0199-42, eBioscience™), CD1c-APC
(Cat# 331524, BioLegend), CD163-PE (Cat# 12-1639-42, eBioscience™),
CD14-BV421(Cat# 563743, DB Biosciences) on ice for 30min. After
washing twice with FACS buffer, the cells were stained using 7-AAD
Viability Staining Solution (Cat# 00-6993-50, eBioscience™) on ice
5min. FACSAriaIII (BDBiosciences)was used for FACS. FACS data were
collected using BD FACS Diva Software (version 8.0.2, BD), and data
were analyzed with FlowJo software. Detailed information of antibody
application and dilution is shown in Supplementary Table 4.

Single-cell RNA-seq data processing
Raw scRNA-seq data were processed using Cell Ranger Software
(version 4.0.0, 10x Genomics) obtained from the 10x Genomics
official website (https://support.10xgenomics.com/single-cell-gene-
expression/software/overview/welcome) for demultiplexing, barcode
processing, read alignment to GRCh38 human reference genome,
single-cell 3' gene counting, and generation of feature (gene)-barcode
expression matrix. The preliminary filtered data generated by Cell
Ranger were used for downstream analysis. Quality of cells was
assessed based total UMI counts per cell, total detected genes per cell,
and proportion ofmitochondrial genes per cell. Low-quality cells were
filtered following these criteria: (1) cells with <200 genes; (2) cells with
<800 UMI counts or ranked in the top 1% of UMI counts; (3) cells with
>20%mitochondrial gene count. Genesdetected in less than three cells
were also excluded from downstream analyses. Subsequently, the
“DoubletFinder” R package was used to predict and remove potential
doublets123. Library size normalization was performed to obtain a
normalized barcode-count matrix using the “NormalizeData” function
in “Seurat” R package based on the gene counts of each cell124. Briefly,
size factors of each cell were computed by dividing the total gene UMI
counts in that cell by a scale factor of 10000 (Size Factor = total gene
UMI counts/10000), and then normalized gene UMI counts
(GUCnormalized) for each cell were computed by dividing the gene UMI
counts by the size factor for that cell (GUCnormalized =Gene UMI
Counts/Size Factor), which was a TPM-like values. Finally, normalized
gene expression values were quantified as log2(GUCnormalized + 1) for
subsequent downstream analyses.

Multiple scRNA-seq dataset integration and batch correction
This study included different samples of ascites fluid and peritoneal
lavage fluid from benign hysteromyoma patients and different stages
of GC to explore the landscape and dynamic change of the peritoneal
ecosystem during GCPM. Samples were from different donors (G0-G4
Groups), and the whole experiment of single-cell sequencing was
performed several times due to sample collection. Thus, batch effects
were an important factor that could not be ignored. To integrate
multiple scRNA-seq datasets into a shared space fromdifferent groups
for unsupervised clustering and reduce batch effects, the harmony
integration algorithm was used on the PCA space, which has been
reported to reduce experimental and technical batch effects while
preserving biological variation and the continuous state of develop-
mental cells rather than erroneously clustering cells into discrete
groups125. The Harmony algorithm has been widely used to integrate
multiple single-cell RNA-seq datasets44,126–128.

Dimensionality reduction, unsupervised cell clustering, and
visualization
The Seurat v3 Rpackagewas used for data scaling, highly variable gene
selection, dimensionality reduction, unsupervised clustering, and
visualization by using the normalized filtered feature-barcode
expression matrix124. In brief, the matrix was scaled using the “Scale-
Data” function in the Seurat R package, and highly variable genes,
which could preserve major biology variation, were identified for
subsequent principal component analysis (PCA) using the
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“FindVariableGenes” and “RunPCA” functions in “Seurat” R package.
An appropriate number of principal components were used based on
the PCA results, and specific resolution parameters were selected for
further unsupervised graph-based clustering to determine an optimal
number of cell clusters using the “FindNeighbors” and “FindClusters”
functions. For visualization of graph-based cell clustering, Uniform
Manifold Approximation and Projection (UMAP) was applied with the
“RunUMAP” function.

Differential expressed gene analysis, cell annotation, and cell re-
clustering
To identify cluster-specific markers genes, differential expressed gene
(DEG) analysis between the corresponding cluster compared with all
other clusters was performed using the Seurat “FindMarkers” function
with default parameters of the Wilcoxon rank-sum test. Significant
DEGs were defined as |log2(Fold Change)| > 0.50 and False Discovery
Rate (FDR) < 0.01. Cell clusters were annotated following the following
steps: (1) Cell type was automatically annotated using the “singleR” R
package (https://github.com/dviraran/SingleR)129, with unbiased cell
type recognition by leveraging reference transcriptomic datasets of
pure cell types to infer the cell of origin for each single cell indepen-
dently; (2) We summarized sets of well-known marker genes for each
cell types; (3) Cell annotation by the “singleR” function was manually
verified or corrected based on expression of knownmarker genes and
based on the top 50 most upregulated genes in each cluster; (4) Cells
simultaneously expressing two or more sets of marker genes of cell
types were labeled as doublets or multiplets and excluded from the
downstream analysis.

In the first round of cell clustering and cell annotation, major cell
types including T cells, NK cells, macrophages/monocytes, dendritic
cells, neutrophils, mast cells, tumor cells, B cells, plasma cells, fibro-
blasts, and mesothelial cells were identified. To further analyze major
cell types, re-integration, re-clustering, and re-annotation were con-
ducted on myeloid cells (macrophages/monocytes, dendritic cells,
neutrophils, and mast cells), T cells/NK cells, and tumor cells.

In addition, tomeasure correlations among different cells, cluster
marker genes were first chosen based on DEGs then the Pearson cor-
relation coefficient was computed between the average expression
profiles of cluster marker genes in cells. This was presented by hier-
archical clustering heatmap. Correlations between certain cell types in
different groupswere compared to explore potential function changes
along disease progression.

Single-cell CNV analysis
For cell clusters labeled as epithelial cells, inferCNV (https://github.
com/broadinstitute/infercnv) was applied to compute somatic large-
scale chromosomal copy number variations (CNV), such as gains or
deletions of entire chromosomes or large segments of chromosomes,
in each single cell to identify malignant epithelial cells130,131. InferCNV
sorted all analyzed genes by their genomic locations and applied a
moving average of 101 genes within each chromosome to estimate
initial chromosomal CNVs (CNVinitial) in each cell and at each analyzed
gene using the following CNV equation:

CNVk genei
� �

=
Pi+ 50

j = i�50EkðgenejÞ=101, where CNVk (genei) is the
CNV value of gene i in cell k, genej is the gene j in cell k, and Ek(genej) is
the normalized expression of gene j in cell k.

To verify the reliability of the CNV results, 1000T cells and 1000B
cells were added to the epithelial cells as “Observations” cell inputs
(as internal negative validation). In addition, another 1000T cells
and 1000 B cells were used as a set of reference “normal” cells. The
inferred CNV values of “Observations” cells was initially the CNV
value of “Observations” cells subtracted from the initial CNV
value of “normal”cells in the corresponding gene area (inferred
CNV=CNVobservations_initial - CNVnormal _initial). The inferCNV used a Hid-
denMarkovModel (HMM)Model (i6HMMmodel) to predict CNV level

and implemented aBayesianNetwork LatentMixtureModel to identify
the posterior probabilities of alteration status in each cell and whole
CNv region to correct the results. The i6 HMM model was a six-state
CNV scoremodel to predict the following CNV levels: 0: complete loss;
0.5: loss of one copy; 1: neutral; 1.5: addition of one copy; 2.0: addition
of two copies; 3.0: >2 copies. A heatmap was generated according to
CNV score per cell. T cells and B cells were clustered together and
labeled as “non-tumor cells”, whereas all epithelial cells were clustered
together separately fromTandBcells and labeled as “tumor cells”. The
inferCNV results showed that all epithelial cells in G3 and G4 Group
were malignant tumor cells.

Trajectory inference analysis
The Monocle2 algorithm was applied to infer potential cell lineage
trajectories between diverse cell phenotypes (https://github.com/
cole-trapnell-lab/monocle-release; http://cole-trapnell-lab.github.io/
monocle-release/)132,133. Cell lineage trajectories of CD8 +T and den-
dritic cell were inferred and characterized at the single-cell level. AUMI
counts matrix was used as the input. The “newCellDataSet” function
was used to create a CellDataSet object with parameter “expression-
Family=negbinomial.size()” following the Monocle2 tutorial. Based on
significant DEGs, dimensionality reduction was performed using the
DDRTree algorithm. The cell lineage trajectory based on cell cluster
and pseudotime was then inferred with the default parameters of
Monocle2 after dimensionality reduction and cell ordering, then
visualized with the “plot_cell_trajectory” function. Following cell tra-
jectory, DEGs along pseudotime (named “pseudotime-dependent
genes”) were found using the “differentialGeneTest” function. Then
“plot_genes_in_pseudotime” and “plot_pseudotime_heatmap” func-
tions were used to visualize dynamic changes of pseudotime-
dependent gene expression along pseudotime, and significant
pseudotime-dependent genes were also visualized with a heatmap.
Similarly, the BEAM test of Monocle 2 was applied to identify branch-
dependent gene expression dynamically expressed along eachbranch,
and significant branch-dependent genes were visualized with a
heatmap.

Definition of gene signatures and cell function scores
To define cell function scores, top upregulated genes between cell
clusters based on DEG analysis and published well-known functional
genes were used. Nine gene signatures were identified, including
cytotoxic, inhibitory, naïve, proliferative, and Treg function gene sig-
natures for T/NK cells, antigen-presenting, pro-angiogenic, phagocy-
totic, pro-inflammatory, anti-inflammatory, and proliferative function
gene signatures for myeloid cells, M1 and M2 gene signatures for
macrophage cells, and autophagy, plasticity, paligenosis, mTORC1,
proliferation, and differentiation function gene signatures for tumor
cells. Detailed gene signatures are listed in Supplementary Data 1.
Defining the average expression level of gene signatures as cell func-
tion and cell status has been widely used in single-cell analysis21,134,135,
thus we defined the average expression of these gene signatures after
z-score transformation as cell function and cell state for these cell
types, and the original expression of each gene was measured by
log2(GUCnormalized+1). Comparison of cell function scores between
different groups were tested by two-sided unpaired Wilcoxon test.

Metabolism pathway activity analysis
To estimate metabolism pathway activities for specified cell types,
metabolism pathway gene signatures were obtained from a curated
database and PathCards (https://pathcards.genecards.org/)136,137.
Metabolism pathways with <3 genes were excluded to make the ana-
lysis robust. Finally, the “GSVA” R package was used to perform
Gene Set Variation Analysis (GSVA) to estimate metabolism pathway
activities (http://www.bioconductor.org/packages/release/bioc/html/
GSVA.html)138.

Article https://doi.org/10.1038/s41467-023-36310-9

Nature Communications |          (2023) 14:822 17

https://github.com/dviraran/SingleR
https://github.com/broadinstitute/infercnv
https://github.com/broadinstitute/infercnv
https://github.com/cole-trapnell-lab/monocle-release
https://github.com/cole-trapnell-lab/monocle-release
http://cole-trapnell-lab.github.io/monocle-release/
http://cole-trapnell-lab.github.io/monocle-release/
https://pathcards.genecards.org/
http://www.bioconductor.org/packages/release/bioc/html/GSVA.html
http://www.bioconductor.org/packages/release/bioc/html/GSVA.html


Pathway enrichment analysis
To investigate differences in biological states and pathways between
different cell types, Gene Set Enrichment Analysis (GSEA), a compu-
tational method that determines whether an a priori defined set of
genes shows statistically significant, concordant differences between
two biological states, was performed (https://www.gsea-msigdb.org/
gsea/index.jsp)139. Gene sets for GSEA were obtained from the Mole-
cular Signatures Database (MSigDB) (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp). KEGG, GO, Reactome, and Hallmark pathway
enrichment analysis were performed140–143.

Cell–cell interaction analysis
CellPhoneDB was used to explore cell–cell interactions between dif-
ferent cell types144. Briefly, for each gene in each cell type, the average
expression valueof the gene and the percentage of cells expressing the
gene were calculated. Potential receptor-ligand interactions between
cell types were inferred based on the expression of receptors in one
cell type and ligands in the other, and then the cell type labels of all
cells were randomly permuted 1000 times to test the statistical sig-
nificance of the estimated receptor-ligand interaction. The intensity of
receptor-ligand interactions was assessed based on expression of the
ligand-receptor pairs in two cell types.

Transcription factor analysis
Transcription factor (TF) activity analysis was performed using the
“SCENIC” R package which could infer co-expression regulatory net-
works between TFs and candidate target genes from scRNA-seq data-
set (https://github.com/aertslab/SCENIC)145. The input matrix was the
normalized feature-barcode expression matrix. The SCENIC workflow
was performed as described previously145. Briefly, the workflow had
three steps: (1) “GENIE3” R package identified potential TF targets
based on co-expression; (2) “RcisTarget” R package performed the TF-
motif enrichment analysis and identified direct targets; and (3)
“AUCell” R package scored the activity of the direct targets on
single cells.

PDO size and immunofluorescence staining quantification
PDO size was measured by counting at least 25 randomly sampled
whole fields to prevent experimental bias. All treatments were quan-
tified across four samples of organoids and each sample was repeated
four times by the same scientific researcher. Quantification of CC3/
KI67 cells was done by counting at least 10 randomly sampled whole
fields. Statistics for comparing betweenmultiple groupswere analyzed
using one-way ANOVA with Tukey post hoc test to determine sig-
nificance. Data were generally expressed as mean± standard error of
mean (SEM). Single datapoints plotted were almost always means of
25+ counts, so means on plots were means of means. p < 0.05 was
considered statistically significant for interpretation in the text. All
PDOs sizes were measured in Image J (v1.52a, NIH), all statistics were
performed in GraphPad Prism (v8.0.1, GraphPad Software).

Statistical analysis
The two-sided unpaired Wilcoxon test, Pearson’s correlation test, log-
rank test, and Student’s t-test were used in this study. The comparisons
and statistical analyses in split violin plots are conducted between cell
clusters of different groups, and the total cells number of all clusters are
>3. A two-sided p-value <0.05 was considered statistically significant.
All statistical analyses were conducted using R version 4.0.5 (R Foun-
dation for Statistical Computing, Vienna, Austria), and Python version
3.9.0 (Python Software Foundation). Detailed descriptions on statistical
analysis are described in the results section and Figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The single-cell RNA sequencing data generated in this study have been
deposited in the Genome Sequence Archive for Human (GSA-Human)
database under accession code HRA002712, under controlled access.
Accesswill be granted for academic use only. Access can be granted by
request from the corresponding author (Zhen-Ning Wang,
josieon826@sina.cn). Access will be granted within 2weeks and there
is no limitation on duration of access. The processed single-cell RNA
sequencing data are available at Source Data file. The detailed data for
Figures and Supplementary Figures are summarized in the SourceData
file. Source data are provided with this paper.

Code availability
This study did not generate any unique code. All software and algo-
rithms used in this study are freely or commercially available and are
listed in the Methods section.
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