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Multi-ancestry and multi-trait genome-wide
associationmeta-analyses informclinical risk
prediction for systemic lupus erythematosus

Chachrit Khunsriraksakul 1,2, Qinmengge Li3, Havell Markus1,2,
Matthew T. Patrick3, Renan Sauteraud4, Daniel McGuire4, Xingyan Wang4,
Chen Wang 1, Lida Wang 4, Siyuan Chen4, Ganesh Shenoy5, Bingshan Li 6,
Xue Zhong7, Nancy J. Olsen8, Laura Carrel9, Lam C. Tsoi3,10, Bibo Jiang4,10 &
Dajiang J. Liu 1,2,4,10

Systemic lupus erythematosus is a heritable autoimmune disease that pre-
dominantly affects young women. To improve our understanding of genetic
etiology, we conduct multi-ancestry and multi-trait meta-analysis of genome-
wide association studies, encompassing 12 systemic lupus erythematosus
cohorts from 3 different ancestries and 10 genetically correlated autoimmune
diseases, and identify 16 novel loci. We also perform transcriptome-wide
association studies, computational drug repurposing analysis, and cell type
enrichment analysis. We discover putative drug classes, including a histone
deacetylase inhibitor that could be repurposed to treat lupus. We also identify
multiple cell types enriched with putative target genes, such as non-classical
monocytes and B cells, which may be targeted for future therapeutics. Using
this newly assembled result, we further construct polygenic risk score models
and demonstrate that integrating polygenic risk score with clinical lab bio-
markers improves the diagnostic accuracy of systemic lupus erythematosus
using the Vanderbilt BioVU and Michigan Genomics Initiative biobanks.

Systemic lupus erythematosus (SLE) is a chronic multi-organ auto-
immune disease that predominantly affects young women and
individuals of African, Asian, and Hispanic ancestries1,2. The pre-
valence of SLE worldwide was estimated to range from 37 to 123
cases per 100,000 individuals depending on geographic locations,
ancestry groups, study type, and study period3. No cure or targeted
treatment exists for SLE. Current medications for treatments are
broadly acting (e.g., corticosteroid) and are associated with many

side effects4. The diagnosis of SLE is challenging due to the het-
erogeneity in clinical symptoms and lack of pathognomonic fea-
tures or accurate lab tests5. The difficulty in the diagnosis of SLE
presents great challenges for treatment, as advanced-stage SLE is
associated with a worse prognosis and can lead to organ failure and
even deaths6. Thus, accurate early detection and intervention are
the key to mitigating SLE disease outcomes and improving quality
of life7.
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Genome-wide association studies (GWAS), functional genomic
studies, and integrative analysis have provided unprecedented
understanding of the genetic architecture underlying complex
diseases8. Such analyses have enabled the identification of candidate
causal genes or tissues/cell types and the development of robust bio-
markers and targeted drugs9. GWAS have also been successful in SLE10.
To date, GWAS have identified >130 loci that reach genome-wide sig-
nificance (P value <5 × 10−8)11–14. Yet, these identified loci explain only a
small fraction of overall heritability and the genes or tissues/cell types
affected by them remain unclear11,15. Previous SLE GWAS results were
primarily from individuals of European ancestry16–19. Fortunately, sev-
eral recentGWASefforts have greatly increased the sample size of non-
European ancestry including East Asians11,20–23.

To take advantage of existing datasets andmaximize sample sizes
and power, we assembled multi-ancestry SLE GWAS datasets from
European, EasternAsian, and Admixed American ancestries. To exploit
the shared genetic basis between different autoimmune diseases, we
also aggregated GWAS datasets from 10 genetically correlated auto-
immune diseases. We conducted multi-ancestry and multi-trait meta-
analysis. To gain mechanistic insights, we conducted transcriptome-
wide association studies (TWAS), linking regulatory variants to their
target genes. We leveraged computational drug repurposing (CDR)
and cell type enrichment analyses to identify novel drugs with the
potential to treat SLE as well as to identify previously described
immune cell types that are dysregulated in SLE. Lastly, we constructed
polygenic risk scores (PRS) and validated the models in two indepen-
dent biobanks: Michigan Genomic Initiative (MGI)24 and Vanderbilt
University Biobank (BioVU) and investigated the utility of PRS to
improve thediagnosis of SLEwhenused in conjunctionwith clinical lab
tests, e.g., anti-nuclear antibody (ANA) and anti-double strand DNA
(anti-dsDNA).

Results
SLE GWAS meta-analysis
We provide an overview of study design and schematic workflow in
Supplementary Fig. 1. Our compiled SLE GWAS dataset contains 12

cohorts from three ancestries [East Asian (EAS), NEAS = 194,435 (5877
cases and 188,558 controls); European (EUR), NEUR = 520,311 (14,355
cases and 505,956 controls); Admixed American (AMR), NAMR = 3720
(1393 cases and 2327 controls)], with a total number of N = 21,625 cases
and 696,841 controls. We carefully conducted quality controls to
ensure the validity of the analyses, including checking sample over-
laps, and manually examining Manhattan and quantile-quantile (QQ)
plots for each study. With quality-controlled SLE datasets, we first
performed a fixed effect meta-analysis within each ancestry using
inverse-variance weighted meta-analysis method.

Next, as SLE has overlapping symptoms and shared genetic basis
with other autoimmune diseases25–27, we conducted multi-trait asso-
ciation analysis to improve power (Supplementary Data 1 and Sup-
plementary Fig. 2).Wefirst calculated thegenetic correlations between
SLE and 13 other autoimmune disorders in samples of European
ancestry using linkage disequilibrium score regression (LDSC)28,29

(Fig. 1). We identified ten autoimmune disorders (autoimmune thyroid
disorder, Crohn’s disease, celiac disease, multiple sclerosis, primary
biliary cirrhosis, rheumatoid arthritis, Sjogren’s syndrome, systemic
sclerosis, type 1 diabetes, and ulcerative colitis) as significantly
genetically-correlated traits with SLE (false discovery rate <0.05)
(Fig. 1). We then performed multi-trait analysis across autoimmune
disorders of significant genetic correlation with SLE using MTAG30 in
each ancestry separately and combined the results across ancestries
using fixed effect meta-analysis.

We show Manhattan plot and Quantile-Quantile (QQ) plot for
multi-ancestry and multi-trait meta-analysis (MAMT) for SLE in Fig. 2
and Supplementary Fig. 3, respectively. Themeta-analysis results show
well calibrated QQ plot with genomic control value 1.03. If we define a
locus to be a 1 million basepair window surrounding the sentinel var-
iants, the meta-analysis identified 106 loci that reach genome-wide
significance (P value <5 × 10−8). Among the identified loci, 27 are novel
that reach genome-wide significance for the first time. Alternatively,
we may also define a locus based on the linkage disequilibrium (LD)-
based pruning.We created a LD reference panel using a subset of 1000
Genomes Project phase 3 data, with the same ancestry fraction as
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Fig. 1 | Genetic correlations across 14 autoimmune diseases in European
ancestry. Left panel indicates genetic correlations across 14 autoimmune diseases.
Genetic correlation is estimated using cross-trait LDSC. Color intensity and size of
square are proportional to strength of genetic correlation (brown = negative cor-
relation, green = positive correlation). Asterisks indicate genetic correlations that
are statistically significant at false discovery rate level of 0.05. Red boxes highlight
the correlation between SLE and other traits. Right panel illustrates the network of
significantly genetically-correlated traits. The colors of the lines represent the

magnitude of genetic correlation estimates using LDSC. The widths of the lines
represent the statistical significance. Disease name abbreviations: AN = ankylosing
spondylitis, ATD = autoimmune thyroid disease, CD =Crohn’s disease, CEL = celiac
disease, MS =multiple sclerosis, PBC= primary biliary cirrhosis, PSOA= psoriatic
arthritis, RA = rheumatoid arthritis, SJO = Sjogren’s syndrome, SLE = systemic lupus
erythematosus, SSC = systemic sclerosis, T1D = type 1 diabetes, UC= ulcerative
colitis, VIT = vitiligo.
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datasets in the meta-analysis. We performed LD-based pruning using
PLINK with the created reference panel and the squared correlation
between alleles (r2) cutoff of 0.2. It should be noted that a total of 249
loci, of which 92 were considered novel, were identified when LD
pruning was performed (Methods and Supplementary Data 2). For all
subsequent presentations, we stick with distance-based loci.

We further assessed the replicability of each locus usingMAMBA31

and its extension RATES (Method), a statistically rigorous model-
based method to assess replicability leveraging the strength and
consistency of association signals across studies. The termreplicability
was introduced by McGuire et al. that refers to variants with genuine
non-zero effects31. The posterior probability of replicability (PPR)
quantifies how likely the signal is genuine and can be replicated in a
sufficiently powered replication study, e.g., a large enough study from
a matched population31. RATES results confirmed that 74 known loci
and 16 novel loci were replicable with PPR > 0.90 (Supplementary
Data 3). Across 16 novel and replicable loci, we found that multi-
ancestry SLE-only GWAS already yielded genome-wide significant P
values in 3 loci and borderline significant P values for the remaining 13
loci (highest P value = 8.19 × 10−5). Importantly, rheumatoid arthritis’s
GWAS contributes the most to the identification of novel loci in SLE,
having the smallest P values for 8 out of 16 loci in comparison to other
autoimmune diseases (Supplementary Table 1). This is likely due to the
largest sample size of autoimmuneGWASdata andoverlapping clinical
features between SLE and RA32. Interestingly, all 16 novel loci do not
yield significant P values using Cochran’s Q tests for heterogeneities
under the Bonferroni threshold of 0.05/106 (Supplementary Fig. 4 and
Supplementary Data 4). As fixed effect meta-analysis favors loci with
homogeneous effects, we further explored the extent of heterogeneity
using additional sub-threshold variants (P < 1.00 × 10−6) and found that
97% of 144 loci do not show evidence of heterogeneity in effect sizes
across different SLE studies with P values for Cochran’s Q test ≥0.05/
144. We noted that the variances of the effect size estimates from
MAMT analysis are 59% smaller than multi-ancestry fixed effect meta-
analysis (MA) for SLE, indicating that jointly analyzing multiple traits
increases the effective sample sizes by 2.87-fold. 94 of previously
known loci did not reach genome-wide significance in our study, yet
most of them (91 out of 94 loci) still have association P values <0.05
(Supplementary Data 5). The reduced level of statistical significance
for these loci may be due to spurious association, genetic effect

heterogeneity between studies, or because multi-trait analysis intro-
duces noise for loci that are uniquely associated with one or few traits
and reduces power.

Linking GWAS hits to target genes
95% of identified sentinel variants are non-coding. 79% of variants in
the identified loci (as defined by sentinel variants and variants having
r2 > 0.8 to sentinel variants) are non-coding. To interpret their func-
tional consequence, we identified potential target genes of each top
variant at novel locus usingOpen Targets Genetics database (Accessed
21 April 2022)33. There is clear biological relevance for the identified
target genes (Fig. 2). For example, MKRN2 was previously shown to
regulate NF-κB-mediated inflammatory response34. Another target
gene CCDC88B is an important regulator of maturation and effector
functions of T cell35. Glycosylation changes in T cells by MGAT5 have
been shown to impact T cell functions and are implicated in many
autoimmune diseases36,37. Moreover, we identified CD83 as another
candidate target gene for SLE and studies have found soluble CD83 to
be a promising therapeutic to interferewith autoimmunity in SLE38.We
provide a description of the sentinel variant and targeted gene at each
novel locus in Table 1.

Transcriptome-wide association study implicates additional
novel genes
We conducted transcriptome-wide association studies (TWAS). Spe-
cifically, we first derived gene expression predictionmodels using two
reference datasets from disease-relevant tissues, i.e., the Genetic Eur-
opean Variation in Disease39 (GEUVADIS; lymphoblastoid cell line
(LCL); n = 358) and Depression Gene Network40 (DGN; whole blood;
n = 873) datasets. We used a new method PUMICE that integrates 3D
genome and epigenetic information to improve prediction accuracy41.
To assess the accuracy of prediction models, we calculate Spearman’s
correlation coefficients between measured and predicted gene
expression using nested cross-validation as described in Khunsrir-
aksakul et al.41 and assess whether Spearman’s correlation is sig-
nificantly different from zero41. Using PUMICE, we obtained 7028 and
9260 significant genes with Spearman’s correlation coefficients >0.1
and the corresponding P values <0.05 from GEUVADIS and DGN,
respectively. Next, we conducted TWAS analysis using TESLA42, which
integrates our SLE GWAS summary statistics from multiple
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participating studies of different ancestries with gene expression
prediction models based on samples of European ancestry in DGN or
GEUVADIS. Specifically, TESLA uses meta-regression to jointly model
the genetic effects across ancestries so that we can borrow strength
from shared effects between ancestries to optimize TWAS power
(Methods). In total, we identified 99 and 119 significant gene-level
associations using GEUVADIS and DGN trained models. We define loci
iteratively: wefirst rank significant genes by their P values. For themost
significant gene in the list, we define a locus as a 1 million basepair
window surrounding the gene.We then remove all genes in the list that
overlap the locus and repeat the process to define the next locus, until
we exhaust all significant genes from the list. We define novel loci as
the ones >1 million base pairs away from known GWAS sentinel var-
iants. Using this criterion, we found 6 and 17 novel and independent
loci from GEUVADIS and DGN analyses, respectively (Fig. 3a, b).

TWAS associations at 106 GWAS loci are reported in Supple-
mentary Data 6 and 7. We further compared the TWAS results with the
list of target genes linked to enhancer variants (enVars) via Open
Target Genetics43. In total, we were able to link these enVars to 26
unique target genes and subsequently used these genes as a reference
to benchmark the accuracy of our TWAS results. We found 22 enVar
target genes overlapping TWAS geneswith nominal significance levels,
and 9 enVar target genes overlapping TWAS hits with significant P
values under the Bonferroni threshold for testing multiple genes
across the genome.

We identified many novel associations that are supported by
biological links to SLE pathogenesis. For example, CD52 mRNA
expression is elevated in B cells of SLE patients and may function in B
cell homeostasis by inhibiting responses to B cell receptor (BCR)
signaling44. Circulating IL8 is also elevated in SLE patients45. IL8 can
activate neutrophils, leading to the release of neutrophil extracellular
traps (NETs), which are implicated in many immune-mediated
conditions46. UBASH3A is a suppressor of T cell receptor (TCR) sig-
naling and is implicated in multiple autoimmune diseases47–50. More-
over, UBASH3A mRNA expression levels in peripheral blood
mononuclear cells are decreased in SLE patients51.

Cell type enrichment analysis inDGN-trained TWAS associations
To identify immune cell types relevant for SLE, we conducted cell type
enrichment (CTE) analysis to evaluate if cell type specific genes are

enriched with TWAS associations. We provide more detailed descrip-
tion of the method and datasets in Methods.

In the Database of Immune Cell Expression (DICE) dataset, we
observed significant enrichment of TWAS hits in various immune cell
subsets, including non-classical monocytes, B cells, NK cells,
CD8 + T cells, and TH1 cells, whose dysregulation have been implicated
in SLE (Fig. 3c). This observation is consistent with previous studies.
For example, non-classical monocytes are increased in SLE patients
compared to healthy controls. They tend to have inflammatory char-
acteristicswith properties of antigenpresentation that activate T andB
cells52,53. Naïve B cells was observed to be decreased in SLE patients
when compared to patients with other autoimmune diseases and
healthy controls54. In SLE patients, the chromatin accessibility of naïve
B cells shows enrichment for transcription factors that lead to B cell
activation (NFKB, AP-1, BATF, IRF4, and PRDM1)55. The role of NK cells
remains unclear in SLE, as different subsets have shown to have either
pro- or anti- inflammatory activities56,57. Similarly, although the role of
naïve CD8+ T cells is unknown in SLE, their effect on the differentiation
into activated CD8+ T cells has been studied. Activated CD8+ T cells in
the peripheral blood of SLE patients are observed to have decreased
effector and cytolytic function which likely contribute to
autoimmunity58,59. Lastly, the ratio of TH1/TH2 are observed to be
increased in peripheral mononuclear cells of SLE patients60 along with
dysregulation of TH1 cytokines, such as IFN-γ61.

We also carried out a second cell-type enrichment analysis,
focusing on B cell subtypes collected from SLE patients62. This is
because one of the hallmarks of SLE is the production of auto-
antibodies, which are due to autoreactive B cells. We observed sig-
nificant enrichment of TWAS signals in cell type specific genes of
double negative B cells, transitional 3 B cells, activated naïve B cells,
and isotype switched memory B cells, whose dysregulation has been
implicated in SLE etiology (Fig. 3c). For example, Scharer et al.
observed all B cell subtypes were distinct between healthy controls
and SLE62. Double negative B cells are likely to differentiate into anti-
body secreting cells. Their transcriptomes are more closely related to
activated naïve B cells and isotype switched memory B cells in SLE
samples than in healthy control cells62. Overall, our analysis highlights
dysregulation of specific immune cells subsets that are previously
supported to be aberrant in SLE, which could serve as potential targets
for drug development and immune therapy.

Table 1 | List of sentinel variants at sixteen replicable novel loci from the multi-ancestry and multi-trait meta-analysis

rsID Chr:Pos (hg19) Effect allele Other allele Beta SE P value Mapped gene PMID

rs299629 3:12576846 A G −0.061 0.0078 1.0 × 10−14 MKRN2 28378844

rs516124 11:64128423 G T 0.069 0.0099 3.2 × 10−12 CCDC88B 25403443

rs6662618 1:92935411 T G 0.083 0.0122 1.0 × 10−11 RPAP2 7962544

rs3761847 9:123690239 G A 0.051 0.0077 5.1 × 10−11 TRAF1 19433411

rs13014122 2:135050622 G A 0.051 0.0083 5.9 × 10−10 MGAT5 30538706

rs12490565 3:121553719 G A −0.054 0.0088 7.5 × 10−10 EAF2 19333917

rs2288786 5:102600754 G A 0.051 0.0083 1.1 × 10−9 PAM 16107699

rs9494331 6:136006301 G A −0.064 0.0106 1.2 × 10−9 AHI1 16541099

rs4697651 4:10721433 C T 0.053 0.0088 1.5 × 10−9 CLNK 10562326

rs1535271 20:57734753 G A 0.080 0.0120 6.5 × 10−9 ZNF831 34552111

rs199533 17:44828931 G A 0.066 0.0115 1.0 × 10−8 NSF 25873919

rs12529514 6:14096658 T C −0.092 0.0162 1.3 × 10−8 CD83 23886695

rs2453044 1:120508524 A G −0.064 0.0115 2.8 × 10−8 NOTCH2 20531454

rs6602588 10:12487996 G A 0.044 0.0080 3.0 × 10−8 CAMK1D 19815495

rs6939565 6:130194204 C T −0.042 0.0076 3.3 × 10−8 L3MBTL3 15889154

rs12992553 2:70360262 A G −0.046 0.0084 4.4 × 10−8 ASPRV1 29212956,
34766153

We use the reference allele as the effect allele, and report the effect size estimates, standard errors, P values, and mapped target gene based on Open Target database. We also provide key
references that describe their biological functions related to SLE. Two-sided P value associated with each variant is calculated according to the Chi-squared test statistic with 1 degree of freedom.
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Computational drug repurposing analysis identified novel
therapeutics for SLE
We perform computational drug repurposing (CDR) via Connectivity
Map (CMap)63,64 using significant gene targets identified in TWAS
associations. Importantly, many clinically informative drug classes
were identified, including glucocorticoid receptor agonist, histone
deacetylase (HDAC) inhibitor, mTOR inhibitor, and topoisomerase
inhibitor (Fig. 4). Some of the identified drug classes, including glu-
cocorticoid receptor agonists, are already being commonly used in the
clinic to treat SLE and supports the validity of these results. An HDAC6
inhibitor was previously shown to greatly reduce lupus nephritis in
mice65. An mTOR inhibitor was also shown to attenuate SLE by reg-
ulating inflammation inducedCD11b+ Gr1+ myeloid cells66. Importantly,
sirolimus, an mTOR inhibitor, has already been shown to improve SLE
disease activity in Phase 1/2 clinical trial67. Irinotecan, a topoisomerase

inhibitor, also reverses lupus nephritis and results in prolonged sur-
vival in SLE mice68.

Derivation of PRS models
We derived multiple candidate PRS models using a number of
methods, including pruning and thresholding (P+T), SBayesR69,
SBLUP70, SDPR71, LDpred-inf72, LDpred-funct73, PUMAS74, PRS-CS-
auto75, and LASSOSUM76. We only used summary statistics-based
PRS methods, which do not require training or replicating cohorts
to select tuning hyperparameters. We analyzed three sets of GWAS
summary statistics, including 1) SLE GWAS of European ancestry
(N = 6748 cases and 11,516 controls)17 (Ref), which we also include
as part of MA and MAMT analyses, 2) MA for SLE, and 3) MAMT for
SLE. To validate the accuracy of PRS models, we use two inde-
pendent biobanks that are linked to electronic medical records

Fig. 3 | Manhattan plot of the transcriptome-wide association studies and
subsequent cell type enrichment analyses. Gene expression prediction models
are trained in either lymphoblastoid cell line (GEUVADIS dataset, panel a or whole
blood (DGN dataset, panel b. The red horizontal line represents the significance
threshold at 2.5 × 10−6 (Bonferroni threshold for testing 20,000genes).We label the
most significant gene at each novel locus outside identified GWAS loci, which we
defined as ±1 Mb region surrounding the sentinel variants. Two-sided P value
associated with each gene is calculated based on the TWAS Z score for gene-based

association test. Panel c illustrates the results for cell type enrichment analyses of
TWAS signals from whole blood (DGN) for 15 immune cell types from DICE dataset
(left panel) and 5 B cell subsets from SLE patients (right panel). We assess the P
value of enrichment using a Gaussian copula-based multiple regression model as
described in Chen et al.42. The blue horizontal line represents the significance
threshold at0.05. Bar plots highlighted in green colors represent the significant cell
type enrichment (two-sided P value <0.05).
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(EMRs), including MGI (N = 34,702) and BioVU (N = 49,707), which
are not part of the GWAS discovery cohorts. Since biobank data
may define SLE cases differently from the discovery cohorts, we
performed GWAS meta-analysis of BioVU and MGI datasets. We
confirmed that the effect size (beta) between the biobank
datasets and GWAS discovery cohorts have good concordance
with each other (Pearson correlation coefficient of 0.7 and
P value = 4.4 × 10−16) (Supplementary Fig. 5).

We calculated the proportion of variance explained on the lia-
bility scale (R2) and area under the receiver operating characteristic

curve (AUC) for each PRS model in the MGI and BioVU datasets and
selected the best PRS model for subsequent downstream analyses
(Supplementary Fig. 6). As MGI and BioVU are predominately of
European ancestry, we focus on samples of European ancestry in
our analyses. We provided other performance metrics, including
true negative, true positive, false negative, false positive, sensitivity,
specificity, odd ratio (OR) per standard deviation, OR of top 20% vs.
bottom 20% and its 95% confidence interval, and Nagelkerke’s R2

and its 95% confidence interval (NKR2 [95% CI]) in Supplemen-
tary Data 8.

Fig. 4 | Computationaldrug repurposinganalysis viaConnectivityMap (CMap).
We used significant SLE TWAS associations (P value <2.5 × 10−6; two-sided P value
associated with each gene is calculated based on the TWAS Z score for gene-based
association test) in CMap to identify drugs that could potentially reverse the dis-
ease signature. Data are visualized with L1000FWD. Each point represents cell-
specific drug-induced signature, and signatures were clustered via k-nearest
neighbors. To quantify the correlation between a query signature and reference
profile, CMap calculates a τ score. A negative τ score indicates that trait-associated

gene expression profile will be normalized by the identifiedmolecule,whichwe can
potentially repurpose to treat the disease. A CMap τ score of −75 indicates that the
drugmore consistently reverses the expression level of the TWAS significant genes
than 75% of all reference gene sets. Diamond shape represents signatures with
CMap τ scores less than −75. Signatures are colored by perturbational drug classes.
Contour lines and labels represent frequently identified drug class and
associated drugs.
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We found that LASSOSUM on average yielded more accurate
models compared to other PRS methods (Supplementary Data 9).
LASSOSUM risk scores generated an AUCs of 0.75 and 0.74 inMGI and
BioVU, respectively.Moreover, PRSbasedonGWAS summary statistics
derived from MAMT almost always performed better than that of MA
or Ref regardless of the PRS methods used. We also provide the
number of variants used as predictors in each PRS model in Supple-
mentary Table 2.

Sensitivity analyses of PRS models
Since our external testing datasets are EMR-based biobanks, which are
susceptible to incorrect data entry or false positive diagnosis, we
conducted sensitivity analyses to evaluate how the PRS models per-
formed using SLE cases defined by three different algorithms. A list of
ICD codes used in this study can be found on Supplementary Table 3.
Specifically, we utilized algorithms previously evaluated by Barnado
et al.77. We considered three different algorithms listed on Supple-
mentary Table 4, including

• Def1 (least stringent) that only requires at least one count of SLE
ICD codes;

• Def6 (intermediate) that requires at least two separate counts of
SLE ICD codes, and excludes patients with systemic sclerosis or
dermatomyositis ICD codes, and

• Def12 (most stringent) that requires at least four separate counts
of SLE ICD codes and a recorded ANA positive test result
(≥1:160). Moreover, patients with systemic sclerosis or derma-
tomyositis ICD codes are excluded.

Characteristics of patients identified from different algorithms
and biobanks, including sample size, age at first diagnosis, ANA and
anti-dsDNA status, and the number of patients with undifferentiated
connective tissue disease, can be found on Supplementary Table 5.
Importantly, the use of different definitions yielded comparable AUCs
of PRS. When defining SLE cases using more stringent criteria (i.e.,
usingDef 12 insteadofDef 1), we improved theAUCof PRS from0.75 to
0.78 in MGI and 0.74 to 0.79 in BioVU (Supplementary Fig. 7).

Integrating PRS with conventional lab tests led to further
improvement in diagnostic accuracy
Currently, the diagnosis of SLE follows the 2019 EULAR/ACR classifi-
cation criteria78. To be considered as SLE, patients must have positive
ANA tests (titer ≥1:80) and must tally at least 10 total points from
clinical domains (e.g.,malar rash) and immunologic domains (e.g., test
positive for anti-dsDNA). The biomarkers ANA and anti-dsDNA alone
have low accuracy and will only be prescribed when symptoms are
already present.

We hypothesized that PRS for SLE can stratify SLE patients,
improve the accuracy of conventional lab tests, and facilitate early
diagnosis. We first assessed the utility of PRS in stratifying individuals
for the risk of developing SLE using two independent biobanks, i.e.,
BioVU and MGI24. We observed that there were 3.81 times as many
cases in the top quintile than in the bottom quintile of the PRS dis-
tribution (OR [95% CI]; MGI: 3.46 [2.36, 5.08], BioVU: 4.74 [3.59,
6.25]) (Fig. 5a).

We, then, evaluated the model performance of PRS when used in
conjunction with ANA/anti-dsDNA lab results. We found consistent
improvement in prediction accuracy when we added PRS into the
prediction model. Specifically, in BioVU, the AUC of using PRS+
ANA + anti-dsDNA is 0.75, which improves the AUC of using only
ANA + anti-dsDNA (0.73) with P value 0.005 (Fig. 5b). Similarly, in MGI,
the AUC of using PRS +ANA+ anti-dsDNA is 0.75, which improves the
AUC of using ANA + anti-dsDNA alone (0.74) with P value of 0.065.
When jointly analyzing the MGI and BioVU cohorts, the AUC improves
from 0.72 with ANA+ anti-dsDNA alone to 0.74 with PRS +ANA+ anti-
dsDNA (P value = 0.002).

Lastly, we investigated the capability of PRS to stratify patients
with certain classical SLE lab results. Among individuals that are ANA
positive or anti-dsDNA-negative, the top PRS quintile has approxi-
mately 2.36 and 2.34 times more SLE cases than in the bottom PRS
quintile, respectively (Fig. 5c). When focusing on patients who had
positive ANA and negative anti-dsDNA tests in the MGI and BioVU
biobanks (the most common lab test results observed clinically), the
top PRS quintile has approximately 2.31 times more SLE cases than in
the bottom PRS quintile. Importantly, the risk gradient curve showed a
good stratification of positive ANA and negative anti-dsDNA patients,
especially, in BioVU database (prevalence of SLE in bottom quintile is
9.91%, middle quintile is 15.09%, and top quintile is 28.88%). The top
quintile has 2.91 and 1.91 times more SLE cases than those in the bot-
tom and middle quintiles, respectively. This result shows that PRS can
help increase the specificity of ANA test and sensitivity of anti-
dsDNA test.

Discussion
In this work, we carried out multi-ancestry andmulti-trait GWASmeta-
analysis of SLE by aggregating the GWAS results from 12 SLE cohorts,
encompassing over 700,000 samples. In total, we identified 106 sig-
nificant loci, of which 16 loci were deemed as novel and replicable. We
further discovered 22 additional novel loci through TWAS and per-
formed computational drug repurposing and cell type enrichment
analyses. Our results pointed out a few relevant drug classes, such as
glucocorticoid receptor agonist, HDAC inhibitor, and mTOR inhibitor,
as well as enriched cell types, such as non-classical monocytes and B
cells. The identifieddrugs are capable of reversing SLE-associated gene
expression signatures and are therefore putative candidates for SLE
treatment. The roles of these enriched cell types in SLE are also sup-
ported by previous experimental evidence.

Based on the meta-analysis results, we applied nine methods to
derive PRSmodels.We assessed the accuracy of the PRSmodels in two
independent EMR-based biobanks, including MGI and BioVU, and
evaluated their utility in identifying SLE patients when used in con-
junction with conventional lab tests. We found that PRS of SLE was
highly effective for identifying patients with an elevated risk of SLE, as
there were 3.81 times as many cases in the top PRS quintile than in the
bottom PRS quintile. Moreover, we showed that PRS can help increase
the specificity of ANA test and the sensitivity of anti-dsDNA test. The
results in MGI and BioVU datasets slightly differ, which may be due to
factors such as geographic catchment and sampling strategy24. None-
theless, the results are, in general, concordant with each other and
demonstrate the added utility of PRS in diagnosing SLE. Our results
demonstrate the potential benefits of incorporating PRS into SLE
classification criteria,which can lead to amoreaccurate early diagnosis
for SLE.

Our work helps establish the added benefits of PRS for
improved diagnosis when used together with conventional lab tests.
Earlier studies have applied PRS in various health outcomes
including type 2 diabetes, cardiovascular disease, and others79–82.
However, the added benefits of PRS, when used with other diag-
nostic criteria and lab tests, remain under-explored, and completely
unexplored to our knowledge for SLE. Our work showed that PRS
when used in conjunction with conventional lab values such as ANA
and anti-dsDNA status, could improve diagnostic accuracy. PRS
would not replace conventional lab tests, but as germline DNA
usually would not change over a lifetime, the use of PRS could
facilitate early diagnosis and risk screening. PRS has the most clin-
ical utility in individuals with extreme PRS values, who will benefit
from careful monitoring for progression83. With the improvement in
the understanding of the polygenic architecture of complex dis-
eases, the advancement of statisticalmethodology, and the increase
of genetic diversity in genotyped samples, we could expect further
improvements in the accuracy of genetic prediction83.
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Several future directions in data generation and method
development could further enhance the predictive capability of
PRS model in diagnosing SLE. First, since SLE is an autoimmune
disease with a relatively low prevalence, increasing GWAS sample
sizes will further improve marginal effect estimates and in turn,
improve the predictive value of PRS. Second, even though SLE is
more prevalent in non-European ancestry compared with
Caucasians84, 65% of the SLE GWAS samples in our study were from
European ancestry. It is imperative to increase the diversity of SLE
GWAS in the next phase of studies. Lastly, it remains an open
question of how to best combine multi-ancestry genetics data to
create a better and more transferable PRS model for different
ancestries. It will be of great interest to investigate whether PRS
similarly improves the diagnosis for SLE in individuals of non-
European ancestry when used together with conventional lab tests.
The utility of PRS in samples of European and East Asian popula-
tions will help motivate the development and deployment of PRS
models in other populations.

In summary, our work represents one of the first attempts of
applying PRS and clinical lab tests to enhance the early diagnosis of
SLE. We can apply the framework to study other diseases to identify
high-risk individuals from the population and facilitate the practice of
targeted treatment and precision medicine.

Methods
Quality control of GWAS summary statistics
A list of all GWAS for 14 autoimmune diseases used in this study was
listed in Supplementary Data 1. We retrieved GWAS summary statistics
from GWAS catalog85, FinnGen website (Release 5 data), Pan-UK Bio-
bank website, and BioBank Japan PheWeb22.

Prior to meta-analysis, we conducted careful quality control
including examining the genomic control values, and manually
inspecting the QQ plot andManhattan plot from participating studies.
We also harmonized GWAS data from participating studies and cali-
brated the effect allele to the reference allele. We also ensured that
participating studies have little, or no sample overlaps and the effect
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Fig. 5 | Applications of PRS model derived from LASSOSUM using multi-
ancestry and multi-trait GWAS data. a The odd ratios (OR) and 95% confidence
intervals (CIs; bars) of each PRS stratus against individuals in the lowest quintile.We
stratified PRS into 5 groups with the bottom quintile used as the reference group.
The reddashed line indicatesOR = 1.bAUCofPRS (P), ANA (A), anti-dsDNA (D), and
when these tests are used together to diagnose SLE. P values are calculated via one-
sided Delong’s test. It should be noted that this analysis is done in a subset of

patients who have available information on both ANA and anti-dsDNA tests. c Risk
gradient curves for patients with positive/negative ANA test results, positive/
negative anti-dsDNA test results, and positive ANA and negative anti-dsDNA test
results. The lines represent the relationship between PRS quintiles and fractions of
SLE cases, and the shaded areas surrounding the lines represent 95% CIs. Here, SLE
cases are defined according to Def1 (Supplementary Table 4).
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sizes are homogeneous between studies of similar ancestry, by calcu-
lating the λmeta statistic

86 (Supplementary Fig. 8). Specifically, for a SNP
i with estimated effect size bi,1 and bi,2 and variances σ2

i,1 and σ2
i,2 in a

pair of cohorts 1 and 2, we calculated a statistic Ti =
ðbi,1�bi,2Þ2
σi,1

2 + σi,2
2, and

denote the vector of statistics for all M SNPs as T=(T1,…,TM). λmeta is

then calculated as medianðT Þ
medianðχ21 Þ

. If λmeta is much greater than 1, it suggests

that there may be heterogeneity between estimated genetic effects
from cohorts 1 and 2. If λmeta is much smaller than 1, it suggests that
there may be overlapping samples. We have ensured that all pairs of
studies have λmeta values close to 1 (Supplementary Fig. 8). For studies
with known sample overlaps, we de-correlated the association statis-
tics to ensure valid meta-analysis results87.

For the situationwhere one study is amulti-ancestrymeta-analysis
and included all of the samples from another study (usually occur in
multi-ancestry GWAS), we subtracted the GWAS summary statistics of
the smaller study from the larger study according to the inverse-
variance weighted meta-analysis formula88, so that we can have non-
overlapping studies for ancestry-specific analysis.

Previous studies observed that PRSmodel derived fromHapMap3
SNPs have comparable performance to models that uses SNP from
1000 Genomes Project89. As such, we used SNPs in HapMap3 to
construct PRS.

Meta-analysis and annotation of the genome-wide significant
variants
For MA, we used inverse-variance meta-analysis across 12 SLE cohorts
as implemented in theMETAL software88. ForMAMT, we first analyzed
each disease within each ancestry using the inverse-variance weighted
fixed effect meta-analysis method in METAL88. Next, we utilized meta-
analysis results from European ancestry to calculate genetic correla-
tions among 14 autoimmune diseases using the LDSC software28,29, as
samples of European ancestry have the largest sample sizes. We con-
sidered traits to be genetically-correlated if genetic correlation P
values (two-sided) are significant after controlling false discovery rate
(FDR) at 0.05 level. We then performed multi-trait analysis combining
SLE and its significantly correlated traits in each ancestry separately
using theMTAG software30. Lastly, we combinedmultiple trait analysis
results across ancestries using inverse-variance weighted meta-
analysis88. HLA region was excluded from the multi-trait meta-analy-
sis as was done for other autoimmune diseases due to their unusually
large effect sizes that violate the model assumptions for MTAG.
Cochran’s Q test was performed via METASOFT90 to estimate the
heterogeneity of effect sizes across GWAS studies.

Genome-wide significance thresholds were defined as 5 × 10−8.
Independent genome-wide significant loci were defined as the ±1Mb
window surrounding the sentinel variant. We deem a locus novel if
therewere no previously reported significant variants in GWAS catalog
or previous studies that fall within ±1Mb from the sentinel variant. We
then annotated potential target genes for sentinel variants according
to the Open Target Genetics database, which used functional annota-
tion data (e.g., eQTL, pQTL, and pc-HiC) to link regulatory variants to
target genes. Alternatively, we also defined significant loci as the set of
variants that are in LD (r2 > 0.2) with the sentinel variants.

Assessing the replicability of association signals
We assessed the replicability of association signals using a model-
based approach. The method extends MAMBA31 that uses a mixture
model to assess whether the variants identified in a meta-analysis are
genuine or spurious based on the strength and consistency of the
association between studies. We define “replicable” variants as the
ones with genuine association signals, so they can be replicated in a
sufficiently powered replication study, e.g., one with large enough
sample sizes from a matched population. Replicable signals with

genuine non-zero effects tend to have stronger and more consistent
signals across studies than spurious association signals. Here, to
accommodate the potential heterogeneity of association signals
between datasets of different ancestries, we use meta-regression with
principal components of genome-wide allele frequencies as covariates
and use the residuals as input for MAMBA analysis. RATES will assign a
posterior probability of replicability to each signal which rigorously
assesses its validity. We consider signals with PPR >0.90 as strong
evidence of replicability.We also visually inspected theManhattan plot
and forest plot for the SNPs deemed as replicable and confirmed the
findings.

Imputing gene expression predictionmodels andTWAS analysis
Gene expression prediction models were constructed via PUMICE41.
Briefly, PUMICE utilizes epigenetic information to prioritize essential
genetic variants that carry important functional roles. It also uses 3D
genomic information to define windows that harbor cis-regulatory
variants. Thus, PUMICE can more accurately predict gene expression
levels using genotype data as input compared to alternative approa-
ches. For epigenomic data, we utilize four broadly available epigenetic
annotation tracks, including H3K27ac mark, H3K4me3 mark, DNase
hypersensitive mark, and CTCF mark from ENCODE database91,92. Epi-
genomic data for whole blood and LCLs were retrieved from the
ENCODE database with the following accession codes: ENCFF949VFY
and ENCFF028SGJ, respectively. For 3D genomic data, we considered
different choices for windows that harbor cis-regulatory variants,
including the ones defined by conventional linear windows sur-
rounding gene start and end sites (i.e., ±250kb and ±1Mb) as well as by
3D genomic informed regions (i.e., domain93, loop94, pcHiC95, and
TAD94). For whole blood (DGN), 3D genomic data from proxy tissue
(lung for domain and spleen for loop, pcHiC, and TAD) is used. For
LCLs (GEUVADIS), 3D genomic data from matched tissue is available.
Model is deemed significant if the cross-validated average Spearman’s
correlation coefficient is >0.1 and the P value of the correlation coef-
ficient is <0.05. We applied PUMICE to lymphoblastoid cell line
(GEUVADIS) and whole blood (DGN) datasets as these tissues aremost
relevant to SLE’s pathogenesis and have large sample sizes. For GEU-
VADIS, we restricted our analysis to European samples (n = 358). For
DGN, we only included samples with >90% European ancestry com-
position as determined from ADMIXTURE software using 1000 Gen-
omes Project Phase 3 Data as reference panel (n = 873). With PUMICE,
we obtained 7028 and 9260 gene expression models from GEUVADIS
and DGN, respectively, for which the cross-validated average Spear-
man’s correlation coefficients is >0.1 and the P value of the correlation
coefficient is <0.05.

Gene x trait association analysis with TESLA
The PUMICE prediction model is based on samples of European
ancestry. We apply TESLA42, a novel method to optimally integrate the
prediction model with a multi-ancestry GWAS for TWAS. TESLA
exploits shared phenotypic effects between ancestries and accom-
modates potential effect heterogeneities. TESLA ismore powerful than
alternative strategies that leverage fixed effect GWAS meta-analysis
results to perform TWAS and the methods that only integrates only
ancestrally matched GWAS and eQTL datasets.

Cell type enrichment analysis
We retrieved cell type expression from two sources: 1) Database of
Immune Cell Expression (DICE)96 and 2) transcriptomic profiles of B
cell subsets from SLE subjects62. Specifically, DICE profiled tran-
scriptomic data of 15 immune cell types (2 of which are activated cell
types) from 106 samples. For SLE-specific transcriptomic datasets, five
B cell subtypes from nine SLE patients were profiled. We processed
both datasets uniformly and closely followed the pipeline outlined in
the previous study97. First, we normalized RNA-sequencing data in
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terms of transcript per million (TPM). Next, we computed the average
expression for each gene in each cell type. We removed genes not
expressed across all cell types. We then rescale gene expression to a
total of 1 million TPM for each cell type, to minimize the impact of
library size. For each gene, we define the “gene expression specificity
score” by dividing the expression of each gene in a given cell type by
the total expression of the same gene across all cell types. We define
the cell type-specific genes as the oneswith gene expression specificity
score in the top 5th percentile in each cell type.

To performcell type enrichment analysis, wedefinedY as a vector
of squared TWASZ scores fromG significant genes andX as amatrix of
G rows and C columns where rows correspond to genes and columns
correspond to one of theC cell types. The (g, c) element ofX is either 0
or 1, denoting whether gene g is specific to cell type c according to the
definition of cell type specific gene above. As the genes may be cor-
related due to linkage disequilibrium, we calculate the correlation
between squaredTWASZ score statistics via bootstrap. For the Z-score
statistic from two genes 1 and 2, Z1 and Z2, the correlation between the
TWAS Z-statistic can be calculated from LD panel as described in
Khunsriraksakul et al.41, which we denote as ρ. To calculate the corre-
lation between squared Z statistics, we simulate bivariate normal dis-
tributed statistics Z ðbÞ

1 and Z ðbÞ
2 , b= 1,…,B, where

Z bð Þ
1 ,Z bð Þ

2 ∼N 0,
1 ρ

ρ 1

� �� �
ð1Þ

We then calculate the correlation between squared TWAS statistics as

eρ= 1
B� 1

XB
b= 1

Z bð Þ
1 Z bð Þ

2 ð2Þ

We denote the correlation matrix for the squared Z statistics of G
genes as Ρ. We then performed weighted regression to assess whether
cell type specific genes of a given cell type areenrichedwith TWAShits.
Specifically, we use

Y=Xγ + ϵ ð3Þ

We estimate the weighted regression coefficients as

γ̂ = X0P�1X
� ��1

XP�1Y ð4Þ

We assess the enrichment of each cell type by testing if the cor-
responding coefficient in γ̂ is significantly different from 0. This
approach is similar in principle to MAGMA98 and we adapt it for TWAS
analyses.

Computational drug repurposing
We extracted significant TWAS associations (P value <2.5 × 10−6) and
used them as a proxy for SLE disease signature. We then applied CMap
algorithm to identify drugs capable of reversing disease signature.
Specifically, we queried SLE TWAS association signals against the
reference profiles in the CMap database (from L1000 assay), which
recorded gene expression changes caused by perturbagens as the
signature of the drug x gene pair. We only used reference data from
touchstone dataset of CMap, which comprised reference signatures
across nine cell lines treatedwith ~3000well-annotated smallmolecule
drugs. We consider a gene set to have stronger connectivity with the
drug if the drug more consistently reverses the expression levels of all
genes in the gene set. To quantify the correlation between a query
signature and reference profile, CMap calculates a τ score. A negative τ
score indicates that trait-associated gene expression profile will be
normalized by the identified molecule, which we can potentially
repurpose to treat the disease. τ score allows us to compare the

strength of connectivity between different gene sets. For example,
CMap τ score of −75 indicates that the drugmore consistently reverses
the expression level of the TWAS significant genes than 75% of all
reference gene sets. We consider a more negative τ score as stronger
evidence that supports repurposing the drug for treating the disease.
Finally, we adapted L1000FWD plot to visualize drug-induced tran-
scriptomic signatures99.

Construction of PRS models
For our PRS model derivation, we applied nine PRS methods that do
not require validation datasets for parameter tuning, including P+T,
SBayesR69, SBLUP70, SDPR71, LDpred-Inf72, LDpred-funct73, PUMAS74,
PRS-CS-auto75, and LASSOSUM76, to three GWAS summary statistics.
We used 503 European samples from 1000 Genome Project Phase 3100

as a reference panel for estimating linkage disequilibrium coefficients,
per recommendations by previous work89.

For the P+T method, we followed the recommendation from the
Global Biobank Meta-Analysis Initiative89. Specifically, we ran PLINK101

with the following flags: -clump-p1 1 -clump-p2 1 -clump-r2 0.1 -clump-
kb 250. Next, we applied 13 different P value thresholds, including
5 × 10−8, 5 × 10−7, 1 × 10−6, 5 × 10−6, 5 × 10−5, 5 × 10−4, 5 × 10−3, 0.01, 0.05,
0.10, 0.20, 0.50, 1. For other PRS methods, we used default settings.

Study samples in MGI and BioVU
We first determined ancestry of each sample via ADMIXTURE102 using
1000 Genome Project Phase 3 data as a reference panel. We only
included samples with >90% European ancestry composition for sub-
sequent analyses. Genetic data was imputed via Michigan Imputation
Server using 1000 Genome phase 3 as the reference panel and only
variants with imputation quality metric Rsq >0.8 were kept for sub-
sequent analyses.

We then performed quality control of the data following the
recommendation by Marees et al.103. Specifically, with PLINK, we
excluded 1) SNPs with the low genotyping rate (-geno 0.01), 2) indivi-
duals who have high rates of genotype missingness (-mind 0.01), 3)
SNPs with lowminor allele frequency (-maf 0.05), 4) SNPs that deviate
from Hardy-Weinberg equilibrium (-hwe 1e-6), 5) individuals with high
or low heterozygosity rates, 6) individuals that have a first or second-
degree relative in the sample (-rel-cutoff 0.125), and 7) SNPs not within
the HapMap3 SNP set.

Next, we extracted phenotypic data from the electronic medical
records. Specifically, we used ICD codes to extract disease status
(Supplementary Table 3). For ANA test result, we considered a titer of
≥1:80 (e.g., 1:80, 1:160, 1:320, etc.) as positive, and the other values as
negative (e.g., negative status, 1:40, 1:20, and etc.). For anti-dsDNA test
result, we considered a level of≥60 IU/mLorpositive status as positive,
and the other values as negative (e.g., <60 IU/mL or negative status).

Evaluation of prediction performance
We evaluated the prediction performance of constructed PRS in two
independent biobank datasets: MGI and BioVU, which are not part of
the training data. Specifically, we calculated Nagelkerke’s R2 on the
liability scale104 after adjusting for Sex, PC1-10, and HLA alleles105

(HLA-DRB1*03:01, HLA-DRB1*08:01, and HLA-DQA1*01:02) that we
imputed using HIBAG106. We assumed population prevalence of SLE
to be 0.1%107. Furthermore, we also reported area under the receiver
operating characteristic curve (AUC) for full model with the above
covariates. We estimated the corresponding 95% confidence inter-
vals from bootstrap with 1000 replicates. Comparison of AUCs
between PRS models was calculated with two-sided Delong’s test.
Lastly, we divided the target samples into quintiles according to PRS
rankings. We calculated odds ratios of developing SLE in each
quintile against individuals with PRS in the bottom 20th percentile.
Sensitivity and specificity were calculated at the optimal threshold
using the Youden’s J statistic.
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Software URLs
LDSC software can be found at https://github.com/bulik/ldsc. MTAG
software can be found at https://github.com/JonJala/mtag. Open Tar-
get Genetics software can be found at https://genetics.opentargets.
org. METASOFT software can be found at http://genetics.cs.ucla.edu/
meta/. MAMBA software can be found at https://github.com/
dan11mcguire/mamba. PUMICE software can be found at https://
github.com/ckhunsr1/PUMICE. TESLA software can be found at
https://github.com/funfunchen/rareGWAMA. CMap software can be
found at https://clue.io/. L1000FWD web application can be found at
https://maayanlab.cloud/L1000FWD. SBayesR software can be found
at https://github.com/YinLiLin/hibayes. SBLUP software can be found
at https://yanglab.westlake.edu.cn/software/gcta. SDPR software can
be found at https://github.com/eldronzhou/SDPR. LDpred-Inf soft-
ware can be found at https://privefl.github.io/bigsnpr/articles/
LDpred2.html. LDpred-funct software can be found at https://github.
com/carlaml/LDpred-funct. PUMAS software can be found at https://
github.com/qlu-lab/PUMAS. PRS-CS-auto software can be found at
https://github.com/getian107/PRScs. LASSOSUM software can be
found at https://github.com/tshmak/lassosum. PLINK software can be
found at https://www.cog-genomics.org/plink. Bedtools software can
be found at https://bedtools.readthedocs.io/en/latest. ADMIXTURE
software can be found at https://bioinformaticshome.com/tools/
descriptions/ADMIXTURE.html. Michigan imputation server can be
found at https://imputationserver.sph.umich.edu/index.html. R Pro-
ject for statistical computing can be found at https://www.r-
project.org.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS summary statistics of themulti-ancestry andmulti-trait SLE
meta-analysis result have been deposited on the Shiny App [https://
liugroupstatgen.shinyapps.io/SLEv] for users to download and inter-
actively explore research results. Thismeta-analysis result was derived
via MTAG30 and METAL88 from the following datasets: SLE11,16–23,108,
ATD22, CD109,110, CEL111,112, MS112–114, PBC115,116, RA22,117, SJO22,118, SSC119,
T1D22,120, and VIT121. We alsoobtainedGWASdata fromFinnGenRelease
5 website [https://www.finngen.fi/en/access_results], Pan-UK Biobank
website [https://pan.ukbb.broadinstitute.org], and BioBank Japan
PheWeb [https://pheweb.jp] for traits available in these biobanks. A
more detailed information of each study can be found in Supple-
mentary Data 1. For TWAS results, we provided TWAS association
statistics from two distinct tissues, including DGN (whole blood) and
GEUVADIS (lymphoblastoid cell line). We have also linked GWAS var-
iant to its target gene by labeling the eQTL SNP in the gene expression
prediction model with the smallest GWAS P value (“top variant” col-
umn). DGN data can be requested at https://www.nimhgenetics.org/
request-access/how-to-request-access under “Depression Genes and
Networks study (D. Levinson, PI)”. GEUVADIS data can be accessed at
https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1. Gene expr
ession prediction models were created using PUMICE41 and TWAS
association statistics were calculated by TESLA42. DICE dataset can be
requested through dbGaP accession number phs001703.v1.p1. B cell
dataset from SLE subjects is available from the NCBI Gene Expression
Omnibus under accession number GSE118256.
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