
Article https://doi.org/10.1038/s41467-023-36297-3

DNA-Aeon provides flexible arithmetic
coding for constraint adherence and
error correction in DNA storage

Marius Welzel 1,2, Peter Michael Schwarz 1,2, Hannah F. Löchel 1,2,
Tolganay Kabdullayeva2, Sandra Clemens 1,2, Anke Becker 2,
Bernd Freisleben1,2 & Dominik Heider 1,2

The extensive information capacity of DNA, coupled with decreasing costs for
DNA synthesis and sequencing, makes DNA an attractive alternative to tradi-
tional data storage. The processes of writing, storing, and reading DNA exhibit
specific error profiles and constraints DNA sequences have to adhere to. We
present DNA-Aeon, a concatenated coding scheme for DNA data storage. It
supports the generation of variable-sized encoded sequences with a user-
defined Guanine-Cytosine (GC) content, homopolymer length limitation, and
the avoidance of undesired motifs. It further enables users to provide custom
codebooks adhering to further constraints. DNA-Aeon can correct substitution
errors, insertions, deletions, and the loss of whole DNA strands. Comparisons
with other codes show better error-correction capabilities of DNA-Aeon at
similar redundancy levels with decreased DNA synthesis costs. In-vitro tests
indicate high reliability of DNA-Aeon even in the case of skewed sequencing
read distributions and high read-dropout.

The high rate of global digitization fosters an increasing demand for
large-capacity data storage solutions. Conventional storage media
either have a limited maximum information density (around 103 GB

mm3

for harddisc drives1) or have to be regularly replaced due to their short
life expectancy2,3. DNA as a data storage medium is a promising
alternative to traditional storage media for long-term data storage,
thanks to its high information density and long life expectancy4. Dur-
ing the last years, tremendous progress has been made in the field of
DNA data storage research2,5–7. To store digital data in DNA, it first has
to be prepared in silico: the binary information is mapped to the four
DNA nucleotides (nt) Adenine (A), Guanine (G), Cytosine (C), and
Thymine (T). To increase the probability of successful data decoding in
the presence of errors, additional redundancy is introduced in the
form of an error-correcting code (ECC). Afterwards, the encoded data
can be synthesized using various methods, most of which generate
small fragments (oligonucleotides; short: oligos) of a length of 40–100
base pairs (bp)8. The synthesized fragments are then commonly stored
in vitro. In vivo storage is a potential alternative, since it would allow

the exploitation of a cell’s internal DNA repair systems for preventing
the occurrence of errors during storage1. To read DNA fragments,
sequencing technologies are used. They generate textfiles that contain
the order of the different nucleotides of the DNA strand read by
the sequencer, together with information regarding the uncertainty of
the sequencer regarding the nucleotides, i.e., the quality of the
base calls.

Each of these methods has characteristic error profiles and dif-
ferent constraints a DNA sequence has to adhere to8,9. Typical con-
straints include a Guanine-Cytosine (GC) content between 40 and 60%
in short intervals and no homopolymers (repetitive stretches of the
same nucleotide) longer than 3 or 4 nt. Another often overlooked
constraint2 are undesired motifs, which could be restriction sites used
for the DNA synthesis process, motifs with biological relevance, or
motifs that increase the probability of sequencing errors8. If such
motifs occur in the encoded DNA, they could lead to fragments that
are not synthesizable, PCR amplification with reduced yield, or highly
erroneous sequencing data. Löchel et al.2 developed a fractal-based

Received: 27 June 2022

Accepted: 25 January 2023

Check for updates

1Department ofMathematics andComputer Science, University ofMarburg,Marburg,Germany. 2Center for SyntheticMicrobiology (SYNMIKRO), Universityof
Marburg, Marburg, Germany. e-mail: dominik.heider@uni-marburg.de

Nature Communications | (2023) 14:628 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-4946-2156
http://orcid.org/0000-0002-4946-2156
http://orcid.org/0000-0002-4946-2156
http://orcid.org/0000-0002-4946-2156
http://orcid.org/0000-0002-4946-2156
http://orcid.org/0000-0001-8763-1507
http://orcid.org/0000-0001-8763-1507
http://orcid.org/0000-0001-8763-1507
http://orcid.org/0000-0001-8763-1507
http://orcid.org/0000-0001-8763-1507
http://orcid.org/0000-0003-3515-570X
http://orcid.org/0000-0003-3515-570X
http://orcid.org/0000-0003-3515-570X
http://orcid.org/0000-0003-3515-570X
http://orcid.org/0000-0003-3515-570X
http://orcid.org/0000-0002-9710-1152
http://orcid.org/0000-0002-9710-1152
http://orcid.org/0000-0002-9710-1152
http://orcid.org/0000-0002-9710-1152
http://orcid.org/0000-0002-9710-1152
http://orcid.org/0000-0003-4561-9184
http://orcid.org/0000-0003-4561-9184
http://orcid.org/0000-0003-4561-9184
http://orcid.org/0000-0003-4561-9184
http://orcid.org/0000-0003-4561-9184
http://orcid.org/0000-0002-3108-8311
http://orcid.org/0000-0002-3108-8311
http://orcid.org/0000-0002-3108-8311
http://orcid.org/0000-0002-3108-8311
http://orcid.org/0000-0002-3108-8311
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36297-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36297-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36297-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-36297-3&domain=pdf
mailto:dominik.heider@uni-marburg.de

method called mCGR, that is derived from chaos game representation
to generate codewords that adhere to user-defined constraints,
namely GC content, homopolymers, and undesired motifs. The code-
books generated using this method are one way to adhere to
constraints.

In recent years, tremendous progress has been achieved in the
field of DNA data storage systems, e.g., codes that combine error
correction and constraint adherence. Most codes that are available as
open-source software implementations follow a concatenated coding
scheme, allowing to exploit the strengths of two or more codes while
mitigating the weaknesses of a single code. For example, Grass et al.10

used a concatenation of two Reed-Solomon (RS) codes to correct
individual base substitutions and also erasures of entire sequences.
Thedigital data ismapped to elements of theGaloisfieldGF(47), where
each element of the field is represented by a DNA triplet that has
different bases on the second and thirdpositions, thereby avoiding the
formation of homopolymers longer than three bases.

Erlich and Zielinski11 used fountain codes for storing data in DNA
by treating the synthesizedDNA fragments as packets in a data stream.
An inner RS code protects each fragment, which allows the correction
of some substitutions. If the RS code detects errors that it cannot
correct (e.g., insertion and deletion errors (indels) or too many sub-
stitutions), the individual fragment is treated as an erasure. Erasures
can be reconstructed from the other fragments by the outer Luby-
Transform fountain code. Since fountain codes can generate a large
number of packets from an input file, the authors added a constraint
evaluation function to their software. A screening method discards
all packets that do not adhere to user-defined homopolymer
lengths and GC content constraints. The generation of new packets
progresses until a predefined number of constraint-adhering packets
is reached.

Press et al.12 used a hash-based convolutional code as an inner
code that can correct indels directly, i.e., without treating a complete
fragment as anerasure, aswell as substitutions. Anouter RSblock code
reconstructs fragments that are too damaged for the inner code to
correct. The available software supports user-defined homopolymer
lengths and GC contents by reducing the number of choices the
encoder has, depending on the previously encoded bases.

Several other works in the literature provide solutions for chal-
lenges in the field of DNA data storage, e.g., image processing for DNA
storage13, adaptation of the JPEG image coding algorithm for DNA data
storage14, error correction codes using LDPC15 or Polar codes16, random
access solutions6,17,18, and constrained codes19.

We present a method derived from arithmetic codes to encode
binary data into constraint-adheringDNA sequences using codebooks.
Furthermore, we exploit the redundancy introduced into the sequen-
ces for constraint adherence to correct insertions, deletions, and
substitutions using a sequential decoding algorithm. Finally, we con-
catenate our code with NOREC4DNA7, a Raptor fountain code20

implementation, using the quality information of the sequential
decoding process as an additional input. The fountain code uses this
quality information to choose the packets used for the decoding
process.

Results
Overview of the codes evaluated in this work
To evaluate DNA-Aeon, we compared it to three published codes with
open-source implementations: the code published by Grass et al.10

(further referred to as Grass code), DNA Fountain11, and HEDGES12 (we
will further refer to Hedges as the complete construct of inner-outer
concatenated code that the authors described, and HEDGES for the
inner code). The general features of each code implementation are
shown inTable 1. TheGrass code has a fixed block size of 713 strands of
118 bases each. Given the nature of fountain codes, DNA Fountain does
not have a fixed block or strand size. However, in our evaluations, it
required a sizeable minimal amount of bases to be able to reconstruct
the input data, even in the absence of errors. Hedges has a fixed block
size of 255 strands. The strand length of Hedges is somewhat variable,
since it depends on the length of the used primers and the size of the
input data. The largest coding strand lengthofHedges is 254bases. For
DNA-Aeon, both the strand length and the number of fragments are
freely selectable, with aminimal requirement of the input file size, plus
a small overhead of the Raptor fountain code and four bases per
packet for the required final CRC of each strand. If a header chunk is
used, theminimal amount of bases per packet increases by the number
of bases required to store the filename in the header chunk. While
there is no maximum strand length, short to moderate strand lengths
are recommended, as the loss of multiple smaller strands is easier
compensated than the loss of one long strand by the outer code of
DNA-Aeon. The DNA Fountain, Hedges, and DNA-Aeon implementa-
tions can adhere to the common constraints of homopolymer length
and GC content. However, DNA-Aeon further supports motif con-
straints with the supplied codebookgeneration tool and other types of
constraints by user-provided codebooks. The Grass code averts the
formation of homopolymers of length 3 in the encoded data. All codes
can correct substitutions and erasures of some strands, with Hedges,
DNA Fountain, and DNA-Aeon being also able to correct indel errors.
DNA-Aeon further encodes not only the file contents but also the
metadata, such as file name, permissions, and file extension.

Error correction performance
Since all error-correcting codes evaluated in this work can correct
substitution errors, we first evaluated the implementations regarding
their ability to correct such errors. We encoded a 4.8 KB text file
containing the German version of the fairy tale Dornröschen (sleeping
beauty).Weused each code and inserted substitution errors at random
positions in the encoded files. We gradually increased the number of
errors in steps of 500 substitutions and repeated for each point the
process 100 times, each time with randomly chosen error positions.
Löchel and Heider presented a similar approach9. The results of the
simulations are shown in Fig. 1a, with the number of successful
decoding attempts plotted against the number of substitutions per
encoded base (the base error ratio, BER). The code parameters used
for the simulations are described in the supplement. We constrained
the encoder output not to include homopolymers longer than three bp
to be consistent for all codes to the fixed homopolymer length of the
Grass code. We also used the common constraints of a GC content

Table 1 | Feature overview of the code implementations evaluated in our work

Grass code DNA Fountain Hedges DNA-Aeon

Scheme Inner RS, outer RS Inner RS, outer fountain (Luby transform) Inner hash based, outer RS Inner AC based, outer fountain
(Raptor)

Block Size 713 strands, 118 bases
per strand

Variable, high minimal requirement
(100,000+ bases)

255 strands, semi-variable
strand length

Variable

Constraints HP 3 HP, GC HP, GC HP, GC, Motifs...

Error types Substitutions, strand
erasures

Substitutions, strand erasures, indels Substitutions, strand
erasures, indels

Substitution, strand
erasures, indels

Article https://doi.org/10.1038/s41467-023-36297-3

Nature Communications | (2023) 14:628 2

between 40 and 60%6,7,21,22 in 10 bp intervals for all codes that support
it. As an additional constraint for DNA-Aeon, it had to have the lowest
total number of encoded bases of all codes evaluated. DNA Fountain
successfully decoded the data 100% of the time up to a BER of 0.006,
with a rapid decline in successful decoding attempts afterwards,
reaching zero percent at a BER of 0.016. For the Grass code, we
observed a successful decoding rate of 100% up to a BER of 0.012, with
a 94% success rate at a BERof 0.018, followedby a rapid decline to zero
percent at a BER of 0.024. For Hedges, we observed a 100% success
rate, up until a BER of 0.031, with a 98% success rate at 0.039. At a BER
of 0.046, Hedges still had a success rate of 77%, with a steeper decline
afterwards, reaching 42% decoding success at a BER of 0.054 and zero
percent at a BER of 0.077. DNA-Aeon was able to successfully decode
the input data 100%of the timeup to a BERof 0.07,with a slowdecline
to 95% decoding success at a BER of 0.077, and a sharp drop-off to 0%
decoding success at a BER of 0.85. Tables of the results are available in
the supplement.

Since the processes involved in DNA data storage not only lead to
substitution errors but also insertions and deletions (indels), we used
the MESA error simulator8 to simulate realistic storage conditions,
including indels. We used the pre-configured error rates of MESA for
array-based oligo synthesis23 and Illumina paired-end sequencing24,
together with depurination at pH 8 and 253.15 K for 120 months to
simulate in vitro storage. Besides the Grass code, which does not
account for indels and returns an error if the sequence length is not a
multipleof 3, eachcodewasable todecode the inputdata successfully.
To better compare DNA Fountain, Hedges, and DNA-Aeon in the pre-
sence of indels, we used the error rates that were observed by the
Hedges authors when using a highmutagenesis kit12 as a baseline, with
a substitution rate of 0.0238, a deletion rate of 0.0082, and an inser-
tion rate of 0.0039. Beginning with a multiplier of 0.1, we tested the
three codes that can account for indels with the error rates, the mul-
tiplier and the output constraints described above. We gradually
increased themultiplier in steps of 0.1 and repeated the simulation 100
times for each multiplier. The results are shown in Fig. 1b. Since DNA
Fountain did not have a 100% success rate with a multiplier of 0.1, we
did an additional evaluation with amultiplier of 0.05 for DNA Fountain
to reach a 100% successful decoding rate. DNA Fountain was able to
correct 100% of the errors at a BER of 0.002, and 41% at a BER of 0.01,
with a rapid decline to 0% at a BER of 0.014. Hedges decoded the input
data correctly 100% of the time up to a BER of 0.036, a 95 % success
rate at 0.4, followed by a decline in successful decoding attempts, with
a success rate of 56% at a BER of 0.047 and 16% at a BER of 0.054. The
success rate reached 0% at a BER of 0.061. DNA-Aeon was able to

correctly decode the input data 100% of the time up to a BER of 0.065,
with a success rate of 99% at a BER of 0.068 and 77% at a BER of 0.072.
The success rate sharply declined to 4 % at a BER of 0.075, followed by
a 0% success rate at a BER of 0.079. However, given that the error-
correcting capabilities of Hedges change depending on the leniency of
the output constraints, more lenient output constraints (longer
homopolymer chains or a more varying GC content in a broader win-
dow) would increase the error-correcting capabilities of Hedges. In
contrast, stricter output constraints would reduce it. Furthermore,
DNA-Aeon constrains the GC content in intervals, while Hedges con-
strains the GC content in sliding windows.

Rate comparison
We analyzed the two best-performing codes of the previous compar-
isons (DNA-Aeon and Hedges) to evaluate the relationship between
redundancy and error correction capabilities. For this purpose, we
used the 4.8 KB text file and the high mutagenesis frequencies
described in the previous section and gradually increased the multi-
plier in steps of 0.5, up to 2.5 times the observed values. This translates
to an error rate of up to 9 %, the equivalent of the expected amount of
degradation after 150 years of storage in nature (i.e., in buried bones at
13 ∘C) for 100 bp long sequences25,26 and the highest recommended
error rate for DNA-Aeon. Under optimal conditions (encoded DNA
embedded in silica particles and stored at −18 ∘C), the error-correction
performance of DNA-Aeon would allow the storage of data in DNA for
millions of years10. We adjusted the parameters of the evaluated codes
to achieve error-free decoding in 100 out of 100 times with the mini-
mal amount of encoded bases possible for each step. The analysis was
carried out for a GC content of 40–60% in intervals of 10 bp and with
no homopolymers longer than 3 nucleotides (Fig. 2a), and also for
Hedges default constraint parameters, comprised of a GC content
between 33:3% to 66:6% in 12 bp windows and a maximum homo-
polymer length of 4 (Fig. 2b). For all error rates evaluated here, DNA-
Aeon was able to retrieve the encoded data error-free using less bases
than Hedges. Especially for low error rates, typically observed in DNA
data storage4, DNA-Aeon requires considerably less redundancy than
Hedges. For the analysis carried out with a GC content of 40–60% in
intervals of 10 bp andwith no homopolymers longer than 3, DNA-Aeon
requires 27% fewer bases than Hedges if a 0.5 multiplier is applied to
the error rates observed by Press et al.12 using a high mutagenesis kit
(which translates to an error rate of 1.8%). For themoderate error rates
evaluated, using a multiplier of 1.0 (an error rate of 3.6%) and 1.5 (an
error rate of 5.4%), DNA-Aeon required 51% and 35%, respectively,
fewer bases than Hedges. For the high error rates evaluated, using a

a b

Fig. 1 | Base error ratio comparison: percentage of successful decoding
attempts for a given base error (substitution) ratio (a) and percentage of
successful decoding attempts for a given base error ratio (b), using the pro-
portions of substitutions, deletions and insertions described in12 (high muta-
genesis),with amultiplierbetween0.1 and2.2.Theoutput constraints usedwere
a maximum homopolymer length of 3 and, for the codes that support it, a GC

content between 40 and 60% in 10 nt intervals. The last ratio, inwhich the codehad
a 100% success rate (out of 100 repetitions) and up until the first time, the code had
a zero percent success rate, is shown for each code. Points represent the results of
the simulations, while dashed lines are interpolated values. Source data are pro-
vided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-36297-3

Nature Communications | (2023) 14:628 3

multiplier of 2.0 (an error rate of 7.2%) and 2.5 (an error rate of 9%),
DNA-Aeon required 16%, and <1%, respectively, fewer bases than
Hedges. For the analysis carried out with Hedges default constraint
parameters, DNA-Aeon requires 18 % less bases using a 0.5 multiplier
(error rate of 1.8%), 6 % less bases using a 1.0 multiplier (error rate of
3.6%), 2% less bases using a 1.5 multiplier (error rate of 5.4%), 18% less
bases using a 2.0multiplier (error rate of 7.2%) and 1.8% less bases with
a 2.5 multiplier (error rate of 9%). The Hedges parameters used for the
evaluations are described in the supplement, and the DNA-Aeon con-
figuration files used for the evaluations are available in the DNA-Aeon
GitHub repository.

Cost analysis under realistic conditions
One major disadvantage for the large-scale adoption of DNA as a data
storage device is the high cost of DNA synthesis. Thus, apart from
providing good error correction performance, the cost efficiency of
codes should be investigated.

To evaluate the cost efficiency, we used error rates as described
in the literature for array-based oligo synthesis23 and Illumina paired-
end sequencing24, togetherwith depurination at pH8 and 253.15 K for
120 months to simulate in vitro storage. The error rates are available
as supplemental file. In our simulations, we used the DNA error
simulator MESA8. We encoded a 4.8 KB text file containing the fairy
tale Dornröschen, using the four codes described earlier. When
possible, we adjusted the parameters of each code to allow the
decoding of the input data in the presence of errors simulated by
MESA, with as little redundancy as possible. The chosen parameters
are available in the supplement. We used the oligo pool pricing table
of Twist Bioscience to estimate the costs of synthesizing the encoded
data. The results are shown in Fig. 3. DNA-Aeon can decode the data
using 294 strands of 114 bases each, for a total of 33,516 bases.
Hedges needs 255 strands of 210 bases each, for a total of 53,550
bases. The Grass code requires 713 strands of 118 bases each, leading
to a total of 84,134 bases, while DNA Fountain requires 1500 strands
of 76 bases each, totaling 114,000 bases.

mCGR evaluation
To evaluate the distribution of sequence fragments, we evaluated all
four encodings with mCGR (matrix chaos game representation)2 and
the R package kaos27, as described in the supplement. The mCGR is
based on the Chaos Game Representation, which arranges DNA
sequences in fractal patterns and has, therefore, multiple applications
in bioinformatics and computational biology28. To this end, we carried
out an mCGR analysis of a 4.8 KB text file containing the fairy tale
Dornröschen, encoded using the codes described above. We split the

encoded sequences into fragments of length 10. The mCGR for k = 10
represents the frequency of all possible sequences in the length of 10.
Wedecreased k, which leads to a clusteringof sequenceswith the same
postfix. The results for k = 5 are shown in Fig. 4, and the results for
different k are available in the supplement. While the nucleotide
composition of the encoded data is equally distributed for DNA-Aeon,
a chessboard-like pattern in the DNA Fountain encoded data can be
observed. In themCGRof the Grass code, a cross-like pattern emerges,
resulting from ahigh presenceof dimers of the same nucleotide. In the
Hedges encoded data, an overrepresentation of the sequence GTA,
TGC, and GTC in the form of clusters can be observed. The results
indicate that DNA-Aeon can better exploit the possible code space. In
addition, since DNA-Aeon can incorporate a user-defined codebook
based onmCGR, it would be possible to also encodemeta-information
in the codebooks.Moreover, themCGRanalysis canbe used to identify
the underlying code in case this information is lost, e.g., when infor-
mation is stored for several years.

In vitro results
To validate the ability of DNA-Aeon to decode data stored in DNA, we
encoded three different files of size 4.8 KB (a text file containing
the German version of the fairy tale sleeping beauty, Dornröschen),

a b

Fig. 2 | Code rate comparison: required code rate (information nucleotides
divided by total nucleotides encoded) for successful decoding 100 out of 100
tries for a given BER. a using the output constraints of a GC content of 40–60% in
10 bp long intervals and a maximum homopolymer length of 3, b with output

constraints of a GC content of 33:3% to 66:6% in 12 bp long intervals and a max-
imum homopolymer length of 4. Points represent the results of the simulations,
while dashed lines are interpolated values. Source data are provided as a Source
Data file.

Fig. 3 | Cost evaluation: estimated synthesis costs of encoding a 4.8KBfile with
enough redundancy to successfully decode it after synthesizing, in vitro sto-
rage for ten years, and sequencing. TheGrass code cannot decode the data in the
presence of insertions or deletions. The simulations were carried out for each code
10 times. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-36297-3

Nature Communications | (2023) 14:628 4

29.9 KB (a PNGof the logo of theMOSLA research cluster), and 47.1 KB
(a JPEG of the Enterprise NCC 1701-D) with different parameters. We
synthesized the encoded data, followed by PCR amplification and
sequencing to digitize the DNA. Information regarding the encoded
files, parameters used, and biological processing can be found in the
supplement. The raw sequencing data was then processed using parts
of the read processing pipeline Natrix29. Since it is common in read
processing pipelines to have various quality control steps in which
reads that do not reach a quality threshold are discarded, we tested
different quality thresholds during initial quality control and after the
assembly of paired-end reads. The initial decoding was successful for
all inputs using 100% of the FASTQ data. We gradually reduced the
percentage of the raw reads used for processing and decoding until
the decoding failed. The different properties of the last successful
decoding for each parameter combination are provided in the sup-
plement and shown in Fig. 5. Using a lower quality threshold both
before and after assembly led to less raw sequencing data needed for
decoding, while the amount of processed sequencing data needed for
successful decoding was between 1.1 and 1.96 times the encoded data.
We furthermore tested the influence of adding a 97% similarity clus-
tering as the last step of the processing before encoding. In the clus-
tering approach, sequences are ordered in a list by abundance, with

the most common one first, serving as the representative sequence of
the first cluster. All sequences that are at least 97% similar to the first
sequence are added to this cluster and removed from the list of
sequences. This process repeats until no sequences are left in the list,
with only the representative sequences being further evaluated. The
results are shown in the supplement. The clustering doubled the
number of raw sequences required for the MOSLA logo at 0.3 pq, 20
mq, and for 0.6 pq, 20 mq (with mq = the mean minimal quality of
reads to not be discarded, and pq = minimal quality of the read
assembly to not be discarded). For every other parameter combina-
tion, no changes in the amount of required raw sequences were
observed. The similarity clustering led to a general decrease in
requiredprocessed sequences to decode the data, as only0.741–0.966
times the encoded data were required for successful decoding. The
decreased amount of processed data needed for decoding using
similarity clustering, while the number of raw sequences required
remained the same compared to no clustering for most cases, implies
that the clustering led to a decrease in redundant sequences without
improving the error correction performance. Given the variation of
mapped reads per sequence in the FASTQ files (supplemental Table 8),
with some sequences only constituting 0.001% of the raw FASTQ files,
DNA-Aeon was able to decode the data with only 0.9–10% of the raw
FASTQ data.

Discussion
DNA-Aeon is a flexible code for DNA data storage that can be used to
encode data in DNA that adheres to a variety of constraints. The
codebook approach for constraint adherence supports the usage of
DNA-Aeon for different synthesis, storage, and sequencing method
stacks and easily interfaceswith tools for the generation of codebooks.
The provided codebook tool2 can adhere to the common constraints
of variable GC content, homopolymers of variable lengths, and unde-
sired motifs. Compared to other codes, DNA-Aeon encoded data
shows no discernible nucleotide distribution patterns, increasing the
resilience of the encoded data against errors. Furthermore, DNA-Aeon
can correct substitution, deletion, insertion errors, and the complete
loss of DNA fragments to a high degree. The user can set several
parameters of the decoder using a configuration file. Eachparameter is
explained in detail, allowing further customization and improvements
in error correction capabilities according to the used synthesis, sto-
rage, and sequencingmethods and the expected error probabilities. In
the event of unexpected high error occurrence not accounted for
during encoding, the stack size and the number of stack removals
executed can be adjusted. This flexibility facilitates further improve-
ments of error correction capabilities at the cost of increasedmemory
consumption or runtime. Furthermore, the flexibility of both fragment
size and amount of fragments generated can be leveraged to encode
data in DNA. This data can be successfully decoded in the presence of
error rates described in the literature for synthesis, storage, and

Fig. 4 | Sequence fragment distributions.mCGR representing the frequency of all
possible sequences of length 5 for Hedges (a), DNA-Aeon (b), Grass code (c) and
DNA Fountain (d). Source data are provided as a Source Data file.

Fig. 5 | Required amount of sequencing reads: the minimal amount of raw
sequencing reads, as a multiple of the amount of encoded data, that were
required for successful decoding under various raw read processing para-
meters andCRC intervals.TheCRC intervals represent the number of information
bytes between two 8-CRCs in the encoded data, the mean quality threshold is the
minimal averagequality score for a raw read to not be discardedduring processing.

In contrast, the PANDAseq quality threshold represents the quality an assembled
sequence (from the corresponding forward- and reverse-read) has to achieve to not
be discarded. The evaluation was carried out a single time for each parameter
combination, file, and read percentage. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-023-36297-3

Nature Communications | (2023) 14:628 5

sequencing at <60% of the costs of other codes, thus paving the way
for an economic use of DNA storage systems. Finally, even with
sequencing data with a highly skewed coverage distribution, DNA-
Aeon can decode data without extensive read processing.

Methods
Code design overview
Our code consists of an outer fountain code and an inner code that
resembles an arithmetic code, with a switched en- and decoder (Fig. 6),
i.e., our encoder uses principles of arithmetic decoding. The outer
code uses the Raptor fountain code implementation of NOREC4DNA7

in the binary mode, which can generate all possible packets in a given
seed range. Users can define either the number of packets generated
from a file or the size of the individual packets generated. Further-
more, the addition of an optional header chunk is supported, con-
taining meta-information such as filename, permissions, and padding
of the last packet.

The inner encoder takes as its input the packets generated by the
outer code, and a FASTA file and concatenation scheme of codewords.
One option for the generation of the additional input is the mCGR
approach of ConstrainedKaos2 tool, which generates codewords with
user-defined constraints, namely GC content, homopolymers, and
undesired motifs. A model with transition probabilities is generated
using the codebook. In essence, the inner encoder is an arithmetic
decoder, treating the input as a compressed representation of a
constraint-adhering DNA sequence. Using source decoding to encode
data into a run-length limited representation was previously described
by Dubé et al.30. Each fountain encoded packet is logically split into
subpackets of the same, user-defined size, and a Cyclic Redundancy
Check (CRC) is assigned to each subpacket. These CRCs serve as ver-
ification and synchronization markers for the decoder, increasing the
substitution correction performance and allowing the correction of
synchronization errors (insertions and deletions). The approach of
using marker symbols for error detection in joint source and channel
coding was previously described by Elmasry31.

Arithmetic coding principles
Arithmetic coding is a lossless entropy encoding technique used as a
basis for many common video standards32. It compresses data by
iteratively partitioning the interval [0, 1) into smaller subintervals. The
partitioning of the current interval depends on symbol probabilities

given by a model. In the simple case, the current interval is split into
subintervals whose length is proportional to the probability of a
symbol occurring in the data. For a string abac, the probabilities would
be a: 0.5, b: 0.25, c: 0.25, and in the first iteration, the interval [0, 1)
would be split into the subintervals [0, 0.5), representing a as the first
symbol of the string, [0.5, 0.75), representing b, and [0.75, 1) repre-
senting c as the first symbol of the string. As a is the first symbol in the
example, the current subinterval is [0, 0.5) after encoding the first
symbol. It will be divided into the subintervals [0, 0.25), [0.25, 0.375),
and [0.375, 0.5) in the next iteration. Figure 7 shows the complete
encoding process of this example (the final subinterval being
[0.296875, 0.3125)). Every real number in the final interval can be used
as the compressed representation of the input, with the number hav-
ing the smallest bit string representation being commonly chosen. The
decoding of arithmetically encoded data follows the same steps as the
encoding, with the encoded data as input: starting in the interval [0, 1),
the decoder checks in which subinterval the encoded data falls. In the
example above, every real number of the final subinterval
[0.296875, 0.3125) of the encoding first falls into the subinterval
[0, 0.5), representing a in the first iteration, in the second iteration,
[0.25, 0.375), representing b, in the third iteration [0.25, 0.3125),

Fig. 6 | Overview of the DNA storage workflow using DNA-Aeon: Input data is
encoded and packetized using the NOREC4DNA Raptor fountain code, fol-
lowed by periodic insertion of an 8-bit CRC checksum, including a final CRC to
protect the end of the packet. The packets are then encoded in parallel using the
arithmetic code, using a constraint-free codebook. The channel (right side of the
figure) represents the DNA synthesis, storage, and sequencing of the encoded data.

The channel output packets are decoded in parallel by the inner, sequential
decoder. The sequential decoder stores the states of the arithmetic code as nodes.
In periodic intervals, a CRC check of the data that was decoded since the last CRC
checksum is performed. The fountain code then uses the packets with the highest
final Fano metric to recover the original input data.

Fig. 7 | Arithmetic coding example: encoding schematic of the string abacwith
probabilities a: 0.5,b: 0.25, c: 0.25. After encoding the final symbol c, the final
subinterval is [0.296875, 0.3125).

Article https://doi.org/10.1038/s41467-023-36297-3

Nature Communications | (2023) 14:628 6

representing a, and in the final iteration [0.296875, 0.3125), repre-
senting c.

Arguably themost crucial part of an arithmetic code is themodel:
a model that accurately matches the actual symbol probabilities has a
higher compression rate than amodel that does not. One possibility to
increase the accuracy of the model is to utilize an adaptive model, in
which the symbol probabilities in each iteration change according to
the data that was previously encoded.

Arithmetic modulation
In our approach, we treat the input data as a binary, compressed
representation of a DNA string. As explained above, the encoding
follows the principle of arithmetic decoding, with a model generated
using a set of allowed DNA codewords. During each iteration of the
encoding process, the model divides the four possible subintervals,
each representing one of the four bases A, T, G, and C, according to
occurrence probabilities yielded by the model. This approach enables
the transcoding of binary data into constraint-adhering DNA sequen-
ces. Utilizing the principles of arithmetic decoding to encode binary
data into constraint-adheringDNA sequences also allows the detection
of errors during decoding. Decoding fails if an error occurs that vio-
lates the codebook’s constraints (i.e., a base with no subinterval
assigned to it in the current decoder state). While this approach can
detect someerrors, it is not able by itself to pinpoint the exact location
the error occurs. For example, if the decoding failed because of a
homopolymer that exceeded the maximum length allowed by exactly
one base, each of the homopolymer members could be the erroneous
base. To incorporate a consistent ability to detect and correct sub-
stitutions and indels during the encoding process, an 8-bit long CRC is
periodically inserted into the encoding stream. This CRC is calculated
from the input bytes that were processed by the arithmetic encoder
since the last incorporation of a CRC. The periodic insertion of CRCs
allows the detection and subsequent correction of synchronization
errors (insertions and deletions) and substitutions. Since the iterative
narrowing of the code interval leads to severe error propagation, a
single wrong, missing, or inserted base leads to vastly different deco-
ded sequences. It will therefore lead to the failure of multiple CRC
checks. Since the model returns base frequencies for each base and
position, a potential erroneous base can be replaced by a base with a
high codebook frequency (i.e., a high probability that the base was
inserted at this position by the encoder) at the position if an error is
detected.

The user can freely choose the interval between two CRCs (as the
step-size parameter s), adjusting the code-rate depending on the
anticipated noise of the storage channel.

Model generation
The basis for our model is a codebook file containing DNA strings of
uniform length in the common FASTA format. In addition, a con-
catenation scheme is required. This concatenation scheme is a JSON
file containing key-value pairs of codeword prefixes and suffixes that
are not allowed to match in the encoded data. The GitHub repository
contains codebooks and concatenation schemes for common con-
straint combinations. Custom codebooks can be generated using the
ConstrainedKaos2 or other codebook generation tools. A model in the
form of a finite state transition diagram (FSTD) with transition prob-
abilities is generated by DNA-Aeon, using the frequencies of the bases
at each position of the codewords. A simple finite state transition
diagram, in which two consecutive G’s are not allowed, is shown in
Fig. 8. Each time the encoder reaches a multiple of the codeword
length, the FSTD returns to the first state, with some transitions dis-
abled according to the concatenation scheme. This prevents that the
encoded data contains undesired motifs or homopolymers that form
between two codewords without the need to discard all codewords
that contain pre-/suffixes that could form such sequences. With

increasingly stringent constraints, the number of available codewords
shrinks, leading to an increase of redundancy introduced by the
encoder, as shown in (1), whereC is the number of valid codewords and
n is the length of each codeword.

redundancy
bit
base

� �
=2� log2ð∣C∣Þ

n
ð1Þ

To estimate the encoded sequence b from a channel output y,
maximum a priori (MAP) estimation can be used, utilizing the redun-
dancy introduced for constraint adherence.

Estimation metric
The redundancy introduced by the encoder can be exploited by the
utilizationofMAP estimation to find themost likely encoded sequence
b out of a set of possible sequences Ω and from a known channel
output y:

b̂
MAP

= argmax
b2Ω

Pðb∣yÞ

= argmax
b2Ω

Pðy∣bÞPðbÞ
PðyÞ

ð2Þ

The Fano metric33 can be derived from the MAP sequence esti-
mator, as shown by Moon34. This metric is a cumulative, symbol-by-
symbol path metric for approximating the maximum likelihood path
through a decoding tree without evaluating all possible paths. For a
binary symmetric channel with transition probability pt and code rate
R, the Fano metric for the channel output symbol yi is

μðyi,biÞ=
log2ð2ð1� ptÞÞ � R if yi =bi

log2ð2ptÞ � R if yi ≠bi

�
ð3Þ

The Fano metric consists of two parts: a correctness term that adds
log2(2(1 − pt)) to the path metric if the candidate base agrees with the
channel output base at the current position, and a bias termR, which is
subtracted from the total metric for each base once. The bias term
functions as a path-length equalizer, allowing the comparison of paths
of different lengths. If only paths of the same length are compared, the
bias term is the same for all paths. In contrast, if paths of different
lengths are compared, longer paths have a larger bias, offsetting the
potentially higher pathmetric asmore positions in the channel output
could be evaluated in the longer paths. Themetricmakes use of binary
symmetric channel model properties34, which differs from the DNA
data storage channel35 and serves, therefore, as an approximatemetric
for DNA data storage coding. We have added an additional term to the
Fano metric, adding the prior probability of the base (i.e., the
probability that the base was added at this position by the encoder)
to each case. As a result, a path with a base that did not agree with the
channel output, but has a high probability of being added by the
encoder at this position has a higher metric than a base that did not

Fig. 8 | State transition example for sequence constraints. With two states, S0
and S1, and four possible inputs (A, T, C, and G) (a) thatmap to model probabilities
(b): finite state transition diagrams for a model in which two consecutive G’s are
forbidden (a) and probabilities as returned by the model (b).

Article https://doi.org/10.1038/s41467-023-36297-3

Nature Communications | (2023) 14:628 7

agree with the channel output with a low encoding probability. If a
decoding failure of the current candidate sequence takes place, the
path of the basewith the higher encoding probability can be evaluated
as a new candidate sequence. This symbol-by-symbol metric, utilizing
encoding probabilities, can be used for tree-based decoding.

Decoding
Our decoding process utilizes a variation of the stack algorithm36,37.
The stack algorithm is a sequential decoding algorithm in the formof a
decision tree that keeps an ordered stack with size M of decoding
paths stored. Compared to decoding algorithms like the Viterbi
algorithm38, the stack algorithm only evaluates the most likely candi-
date sequence at each decoder iteration. The algorithm’s sequential
nature allows using arithmetic demodulation states as decoding tree
nodes. For a channel output sequence y1:v, the path corresponding to
the most likely encoded sequence b̂1:g will be on top of the stack. The
adjusted Fano metric serves as an evaluation metric for sorting the
stack. After each decoding iteration, the decoding path with the best
metric is removed from the top of the stack and extended to multiple
branches. The decoding path is extended once for each possible next
symbol, with branches that lead to symbols that are not possible,
according to themodel, being removed. Each of the new nodes is then
inserted into the decoding stack, after which the stack is sorted
according to the branch metrics (Fig. 9). A node of the decoding tree
represents a decoding state (Xn,Kn), with Xn as the internal state of the
arithmetic decoder and Kn as the number of symbols that can be
decoded in this state39. Each timeKn reaches amultiple of the step-size
parameter s, a CRC validation of the last sdecoded bytes is executed. If
the validation fails, the node with the failed CRC is removed, and the
corresponding path will not be further evaluated. This removal
mechanism reduces path evaluations, increasing the probability that
the correct path will remain in the stack. The arithmetic decoding
process leads to delays between an erroneous symbol yn entering the
decoding register and the output of a wrongly decoded symbol40. To
account for this delay, we further added a penalty parameter to all
nodes of a decoding subtree spanning from the same CRC node if
multiple paths of this subtree failed the subsequent CRC check. This
approach decreases the number of evaluations in a local optimum, i.e.,
it offsets the higher metric that longer sequences get in the case of
multiple CRC failures. After the top decoding branch reaches a pre-
defined length, a final CRC check is carried out to validate the integrity
of the complete decoded sequence, followedby the termination of the
decoding process if the final CRC validationwas successful. If the stack
size reaches M, the decoding branches with the worst metric are
deleted from the stack. This stack removal mechanism reduces the
memory requirements of the algorithm, and the user can freely choose
M. To account for insertions and deletions, the decoding branch with
the best metric is extended to up to nine branches, four branches that
estimate the next base as A, T, C or G, four branches that assume a

deletionhas taken place, and one branch that assumes an insertion has
taken place if b̂v = yv+ 1. Furthermore, we allow the user to set the
number of nodes that are removed from the top of the stack and
subsequently extended, as a form of a generalized stack algorithm41.

NOREC4DNA Raptor fountain code concatenation
While the code described here is functional on its own, we con-
catenated it with the NOREC4DNA implementation of a Raptor foun-
tain code7 as an outer code. Since fountain codes can generate
numerous (depending on the implementation, up to infinite) packets
from the input data, users can freely adjust the rate of the outer code
depending on the anticipated error probabilities, the intended pur-
pose, and the budget. The fountain encoded data can be decoded in
any order; thus, it is not required to add indices to the data by the inner
encoder. Instead of indices, a seed is used. With this seed, the encoder
samples a distribution function to retrieve the number of chunks (n)
that will be XORed into the packet and then uses the same seed to
choose these n chunks. The decoder can reconstruct which chunks
were used for each encoded packet by applying the seed to the same
distribution function. With this information, the decoder can reduce
multiple packets to the original chunks using either belief propagation
or Gaussian elimination with partial pivoting. The decoding process
only needs (1 + ϵ) ⋅ n correct symbols to decode the input data. We
utilized this feature of fountain codes by adding the final metric of
eachpacket decodedby the inner decoder to the data before passing it
to the outer Raptor-based fountain code, which then uses the final
metric to choose the packets used for the decoding procedure. In
contrast to the previouslywidely used LT-based fountain code forDNA
data storage11, we chose a Raptor-based encoding to benefit from the
greatly reduced required overhead, stability, and significantly
decreased susceptibility to the coupon collectors problem7. Using a
fountain code as an outer encoder enables the reconstruction of the
encoded data if a sequence fragment is too damaged for the inner
code to repair or in the case of a loss of complete fragments. NOR-
EC4DNA allows the analysis of an optional checksum of each received
packet during the decoding. If the checksum indicates that the packet
is corrupt, it will be discarded in this step. In addition, the outer
encoding adds a header chunk containing metadata such as the file-
name and an additional file-wide checksum. After a successful recon-
struction, this checksum is used to verify the integrity of the decoded
data. In the case of a mismatch, the packet overhead can be used to
reconstruct the file. For this fallback, the decoder reorders the packets
in the (over-complete) Gaussian elimination equation. This approach
can reconstruct the file without errors if a solution exists in which the
corrupt packet(s) arenot required. This approachworks even if there is
nopacket-level checksumor if a packet-level checksumcollision exists.
The packet approachof fountain codes, inwhich each sequence strand
is treated as an individual packet, and the ability to adjust the redun-
dancy by increasing the number of packets, gives users enhanced
flexibility in usingDNA-Aeon for their specific needs. For example, with
this approach, generating a large number of packets is possible, fol-
lowed by screening the encoded packets according to a user’s needs. A
user that requires the encoded packets to have a very low probability
of secondary structure formation at a specific temperature could use a
tool to screen the encoded packets (e.g., MESA8) and only use packets
that satisfy these requirements. Another example of the increased
flexibility provided by using a Fountain code as the outer code is the
ease of generating new packets. If specific packets are not desirable
(e.g., if the integration into a vector or the host genome for in vivo
storage fails or unforeseen difficulties during the synthesis arise),
fountain codes allow users to additionally generate new packets
without requiring to replace all prior encoded packets. Finally, the
processes of synthesis, PCR, storage, and sequencing can lead to the
loss of complete packets11, and the ability of Raptor fountain codes to
reconstruct the original data as long as any (1 + ϵ) ⋅ n of the encoded

Fig. 9 | Principle of one iteration of the stack algorithm forDNA: an input node
I is extended for each of the possible bases (A, C, G, and T) at the current
position. The new decoding branches (I+A, I+G, I+C, and I+T) are then inserted into
the decoding stack, and the stack is sorted according to the branch metrics. The
node(s) with the highest metric in the stack will be extended in the next iteration.

Article https://doi.org/10.1038/s41467-023-36297-3

Nature Communications | (2023) 14:628 8

packets are present makes it well suited as the outer code of DNA-
Aeon. Since other error-correcting codes (e.g., Reed-Solomon codes)
can be used as outer codes, it would be interesting to evaluate their
properties compared to fountain codes in future studies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequence data that support the findings of this study have been
deposited in the sequence read archive under accession codes
SRR19954693, SRR19954695, SRR19954696, SRR19954697 and
SRR19954694, BioProject accession PRJNA855029. The error-
correction and rate analysis data generated in this study are pro-
vided in the Supplementary Information and Source Data files. The
raw data of the sequence processing parameter evaluations are pro-
vided in the SourceDatafiles. TheMESAconfigurationfile used for the
cost analysis under realistic conditions is provided in the Source Data
files. The final parameters used for the rate analysis are available in the
Source Data files. The encoded data, split into 10mers, as used for the
mCGR evaluation, are available in the Source Data files. No data
restrictions apply. Source data are provided with this paper.

Code availability
The source code of DNA-Aeon is available at https://github.com/
MW55/DNA-Aeon. The version used in this work is version 1.042.

References
1. Dong, Y., Sun, F., Ping, Z., Ouyang, Q. & Qian, L. DNA storage:

research landscape and future prospects. Natl Sci. Rev. 7,
1092–1107 (2020).

2. Löchel, H. F., Welzel, M., Hattab, G., Hauschild, A.-C. & Heider, D.
Fractal construction of constrained code words for DNA storage
systems. Nucleic Acids Res. 50, e30 (2021).

3. Anžel, A., Heider, D. & Hattab, G. The visual story of data storage:
From storage properties to user interfaces. Comput. Struct. Bio-
technol. J. 19, 4904–4918 (2021).

4. Ceze, L., Nivala, J. & Strauss, K. Molecular digital data storage using
DNA. Nat. Rev. Genet. 20, 456–466 (2019).

5. Takahashi, C. N., Nguyen, B. H., Strauss, K. &Ceze, L. Demonstration
of end-to-end automation of DNA data storage. Sci. Rep. 9,
4998 (2019).

6. El-Shaikh, A., Welzel, M., Heider, D. & Seeger, B. High-scale random
access on DNA storage systems. NAR Genomics Bioinform. 4,
lqab126 (2022).

7. Schwarz, P. M. & Freisleben, B. NOREC4DNA: using near-optimal
rateless erasure codes for DNA storage. BMC Bioinform. 22,
406 (2021).

8. Schwarz, P.M. et al.MESA: automatedassessment of syntheticDNA
fragments and simulation of DNA synthesis, storage, sequencing
and PCR errors. Bioinformatics 36, 3322–3326 (2020).

9. Löchel, H. F. & Heider, D. Comparative analyses of error handling
strategies for next-generation sequencing in precision medicine.
Sci. Rep. 10, 5750 (2020).

10. Grass, R. N., Heckel, R., Puddu, M., Paunescu, D. & Stark, W. J.
Robust chemical preservation of digital information onDNA in silica
with error-correcting codes. Angew. Chem. Int. Ed. 54,
2552–2555 (2015).

11. Erlich, Y. & Zielinski, D. DNA fountain enables a robust and efficient
storage architecture. Science 355, 950–954 (2017).

12. Press, W. H., Hawkins, J. A., Jones, S. K., Schaub, J. M. & Finkelstein,
I. J. HEDGES error-correcting code for DNA storage corrects indels
and allows sequence constraints. Proc. Natl Acad. Sci. USA 117,
18489–18496 (2020).

13. Pan, C. et al. Image processing in DNA. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Proces-
sing (ICASSP) (IEEE, 2020).

14. Dimopoulou, M., Antonio, E. G. S. & Antonini, M. A JPEG-based
image coding solution for data storage on DNA. In 2021 29th Eur-
opean Signal Processing Conference (EUSIPCO) (IEEE, 2021).

15. Lenz, A. et al. Concatenated codes for recovery frommultiple reads
of DNA sequences. In 2020 IEEE Information TheoryWorkshop (ITW)
(IEEE, 2021).

16. Pfister, H. D. & Tal, I. Polar codes for channels with insertions,
deletions, and substitutions. In 2021 IEEE International Symposium
on Information Theory (ISIT) (IEEE, 2021).

17. Organick, L. et al. Random access in large-scale DNA data storage.
Nat. Biotechnol. 36, 242–248 (2018).

18. Banal, J. L. et al. Random access DNA memory using boolean
search in an archival file storage system. Nat. Mater. 20,
1272–1280 (2021).

19. Immink, K. A. S. & Cai, K. Properties and constructions of con-
strained codes for DNA-based data storage. IEEE Access 8,
49523–49531 (2020).

20. Shokrollahi, A. Raptor codes. IEEE Trans. Inf. Theory 52,
2551–2567 (2006).

21. Pan, C. et al. Rewritable two-dimensional DNA-based data storage
with machine learning reconstruction. Nat. Commun. 13,
2984 (2022).

22. Lopez, R. et al. DNA assembly for nanopore data storage readout.
Nat. Commun. 10, 2933 (2019).

23. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis:
technologies and applications. Nat. Methods 11, 499–507 (2014).

24. Schirmer, M., D’Amore, R., Ijaz, U. Z., Hall, N. & Quince, C. Illumina
error profiles: resolving fine-scale variation in metagenomic
sequencing data. BMC Bioinform. 17, 125 (2016).

25. Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay
kinetics in 158 dated fossils. Proc. R. Soc. B: Biol. Sci. 279,
4724–4733 (2012).

26. Matange, K., Tuck, J.M. &Keung, A. J. DNA stability: a central design
consideration for DNA data storage systems. Nat. Commun. 12,
1358 (2021).

27. Löchel, H. F., Eger, D., Sperlea, T. & Heider, D. Deep learning on
chaos game representation for proteins. Bioinformatics 36,
272–279 (2020).

28. Löchel, H. F. & Heider, D. Chaos game representation and its
applications in bioinformatics. Comput. Struct. Biotechnol. J. 19,
6263–6271 (2021).

29. Welzel, M. et al. Natrix: a snakemake-based workflow for proces-
sing, clustering, and taxonomically assigning amplicon sequencing
reads. BMC Bioinform. 21, 526 (2020).

30. Dubé, D., Song, W. & Cai, K. DNA codes with run-length limitation
and Knuth-like balancing of the GC contents. In The 42nd Sympo-
sium on Information Theoryand its Applications (SITA 2019).
(Kirishima, Kagoshima, Japan, 2019).

31. Elmasry, G. Joint lossless-source and channel coding using auto-
matic repeat request. IEEE Trans. Commun. 47, 953–955 (1999).

32. Sullivan, G. J., Ohm, J.-R., Han, W.-J. & Wiegand, T. Overview of the
high efficiency video coding (hevc) standard. IEEE Trans. Circuits
Syst. Video Technol. 22, 1649–1668 (2012).

33. Fano, R. A heuristic discussion of probabilistic decoding. IEEE Trans.
Inf. Theory 9, 64–74 (1963).

34. Moon, T. K. Error Correction Coding (Wiley, 2005).
35. Heckel, R., Mikutis, G. & Grass, R. N. A characterization of the DNA

data storage channel. Sci. Rep. 9, 9663 (2019).
36. Jelinek, F. Fast sequential decoding algorithm using a stack. IBM J.

Res. Dev. 13, 675–685 (1969).
37. Zigangirov, K. Some sequential decoding procedures. Probl. Per-

edach. Inform 2, 13–25 (1966).

Article https://doi.org/10.1038/s41467-023-36297-3

Nature Communications | (2023) 14:628 9

https://www.ncbi.nlm.nih.gov/sra/?term=SRR19954693
https://www.ncbi.nlm.nih.gov/sra/?term=SRR19954695
https://www.ncbi.nlm.nih.gov/sra/?term=SRR19954696
https://www.ncbi.nlm.nih.gov/sra/?term=SRR19954697
https://www.ncbi.nlm.nih.gov/sra/?term=SRR19954694
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA855029
https://github.com/MW55/DNA-Aeon
https://github.com/MW55/DNA-Aeon

38. Viterbi, A. Error bounds for convolutional codes and an asympto-
tically optimum decoding algorithm. IEEE Trans. Inf. Theory 13,
260–269 (1967).

39. Guionnet, T. & Guillemot, C. Soft decoding and synchronization of
arithmetic codes: application to image transmission over noisy
channels. IEEE Trans. Image Process. 12, 1599–1609 (2003).

40. Wong, K.-W., Lin, Q. & Chen, J. Error detection in arithmetic coding
with artificial markers. Comput. Math. Appl. 62, 359–366 (2011).

41. Haccoun, D. & Ferguson, M. Generalized stack algorithms for
decoding convolutional codes. IEEE Trans. Inf. Theory 21,
638–651 (1975).

42. Welzel, M. DNA-Aeon provides flexible arithmetic coding for con-
straint adherence and error correction in dna storage. https://
github.com/MW55/DNA-Aeon (2023).

Acknowledgements
This work was financially supported by the LOEWE program of the State
of Hesse (Germany) in theMOSLA research cluster (D.H., A.B., B.F.). This
work was supported by the BMBF-funded de.NBI Cloud within the Ger-
man Network for Bioinformatics Infrastructure (de.NBI) (031A532B,
031A533A, 031A533B, 031A534A, 031A535A, 031A537A, 031A537B,
031A537C, 031A537D, 031A538A). The authors would like to thank Jan
Ruhland for his helpful comments regarding the mathematical
description of DNA-Aeon.

Author contributions
M.W.designed thecode,withcontributions fromP.M.S.,H.F.L., D.H., and
B.F. M.W. implemented the code, with contributions from P.M.S. and
S.C. M.W. and H.F.L. implemented the Constrained Kaos interface.
P.M.S. adapted NOREC4DNA for easier interfacing with DNA-Aeon and
dockerized DNA-Aeon. M.W. and P.M.S. carried out the error correction
performance comparisons. H.F.L. carried out the Chaos Game com-
parison. T.K. and A.B. carried out the synthesis, PCR amplification,
sequencing, and biological quality control. M.W. carried out the read
processing and analysis of the in vitro data. M.W. wrote the initial draft,
with contributions from P.M.S., H.F.L., D.H., and B.F. M.W. and H.F.L.
created the Figures. D.H. supervised the study. All authors contributed
to the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-36297-3.

Correspondence and requests for materials should be addressed to
Dominik Heider.

Peer review information Nature Communications thanks William Press
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-36297-3

Nature Communications | (2023) 14:628 10

https://github.com/MW55/DNA-Aeon
https://github.com/MW55/DNA-Aeon
https://doi.org/10.1038/s41467-023-36297-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	DNA-Aeon provides flexible arithmetic coding�for constraint adherence and error�correction in DNA storage
	Results
	Overview of the codes evaluated in this work
	Error correction performance
	Rate comparison
	Cost analysis under realistic conditions
	mCGR evaluation
	In vitro results

	Discussion
	Methods
	Code design overview
	Arithmetic coding principles
	Arithmetic modulation
	Model generation
	Estimation metric
	Decoding
	NOREC4DNA Raptor fountain code concatenation
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information

