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Comparison of fecal and blood metabolome
reveals inconsistent associations of the gut
microbiota with cardiometabolic diseases

Kui Deng 1,2,3,4,5, Jin-jian Xu1,5, Luqi Shen2,3,4,5, Hui Zhao2,3,4, WanglongGou2,3,4,
Fengzhe Xu2,3,4, Yuanqing Fu 2,3,4, Zengliang Jiang2,3,4, Menglei Shuai2,3,4,
Bang-yan Li1, Wei Hu1, Ju-Sheng Zheng 2,3,4 & Yu-ming Chen 1

Blood metabolome is commonly used in human studies to explore the asso-
ciations of gut microbiota-derivedmetabolites with cardiometabolic diseases.
Here, in a cohort of 1007 middle-aged and elderly adults with matched fecal
metagenomic (149 species and 214 pathways) and paired fecal and blood
targeted metabolomics data (132 metabolites), we find disparate associations
with taxonomic composition and microbial pathways when using fecal or
blood metabolites. For example, we observe that fecal, but not blood butyric
acid significantly associates with both gut microbiota and prevalent type 2
diabetes. These findings are replicated in an independent validation cohort
involving 103 adults. Our results suggest that caution should be taken when
inferring microbiome-cardiometabolic disease associations from either blood
or fecal metabolome data.

The human gut microbiome is a diverse and complex ecosystem, with
a huge number of microbes inhabited in the gastrointestinal tract. Gut
microbes play essential roles in maintaining human health, and can
regulate the host physiology and disease risk through producing
functional metabolites such as short-chain fatty acids (SCFAs) and bile
acids1. These metabolites are either derived directly from microbes,
from exogenous dietary residue or endogenous substrates generated
by the host2,3. Gut microbiota-related metabolites serve as important
intermediates in the cross-talk between the gut microbiota and
host, substantially influencing the development of cardiometabolic
diseases1,3,4.

Feces and blood are both commonly used biological samples to
capture the gut microbial metabolites. Previous evidence demon-
strated that gut microbiota significantly explained the variance of
blood metabolome (average explained variance: 4.6–15%)5–8, and
meanwhile, other studies showed that the gut microbial composition
was largely reflected by fecal metabolome (average explained

variance: 67.7%)9. In addition, diet and genetics are also important
factors shaping blood and fecal metabolome5,6,8–11. In epidemiological
studies, blood was the widely used biological sample for metabolome
profiling to facilitate the exploration of the association between gut
microbiota-related metabolites and cardiometabolic diseases12–17. For
example, Nemet et al. found that blood phenylacetylglutamine was
positively associated with incident cardiovascular disease and major
adverse cardiovascular events14. Vangipurapu et al. identified several
gut microbiota-related blood metabolites including kynurenate,
dimethylglycine, 2-hydroxyhippurate that were associated with the
risk of type 2 diabetes (T2D)12. Circulating trimethylamine N-oxide was
associated with cardiovascular disease risk17.

Currently, the majority of gut microbiota-metabolome asso-
ciation studies were performed using either feces or blood for
metabolome profiling5,6,9,18,19. Although both fecal and blood
metabolomics data were used in several prior studies to explore
the gut microbiota-metabolome associations, fecal and blood
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samples were not collected at the same time points and were
obtained from different subsets of participants20, or the sample
size was very small (N < 100)10,21. Therefore, direct comparison
between paired fecal and blood metabolome in their associations
with gut microbiota and cardiometabolic diseases has been rare
but highly warranted, as it could help guide the practical appli-
cations of fecal and blood metabolomics technology in studying
the associations of gut microbiota with cardiometabolic diseases
in human studies.

To fill the above research gaps, we systematically investigated the
associations of gutmicrobiota with paired fecal and bloodmetabolites
in 1007 middle-aged and elderly Chinese adults, with multi-omics
datasets of gut metagenomic sequencing (using fecal samples), and
targeted quantitative fecal and blood metabolome collected at the
same timepoint.We identified several fecal andbloodmetabolites that
were well-predicted by the gut microbiota, and then assessed their
associations with cardiometabolic diseases, including T2D, obesity,
nonalcoholic fatty liver disease (NAFLD), and hypertension.

Results
Study overview
This study was based on the Guangzhou Nutrition and Health Study
(GNHS)22,23, in which 1007 participants (age: 64.7 ± 5.6) whose stool
and blood samples were collected at the same day, without taking any
antibiotics within two weeks, were included in our present study as a
discovery cohort. We included 103 participants (age: 71.5 ± 7.1) from
the control arm of a hip fraction case-control study with paired fecal
and blood samples as an external validation cohort24.

We used the shotgun metagenomic sequencing and targeted
quantitative fecal and serum metabolomics profiling to generate
metagenome, and fecal and blood metabolome data, respectively, for
both discovery and validation cohort. After excludingmetaboliteswith
over 20% missing values or with relative standard deviation (standard
deviation/mean) ≥ 0.3 in quality control samples, 132 matched fecal
and blood metabolites were remained for subsequent analysis. These
metabolites mainly consisted of known gut microbiota-derived meta-
bolites including SCFAs, bile acids, indoles, etc. and other key host
metabolites, such as amino acids, carbohydrates, organic acids, and so
on. These metabolites covered a wide range of metabolic classes,
including amino acids, fatty acids, organic acids, carbohydrates, bile
acids, benzenoids, carnitines, phenylpropanoic acids, pyridines,
indoles, organooxygen compounds, and nucleosides. The overview of
this study is showed in Fig. 1.

Correlations between paired fecal and blood metabolites
We first assessed the phenotypic correlations (a direct comparison of
each metabolite’s values between feces and blood) between paired
fecal and blood metabolites using partial Spearman correlation
adjusted for age, sex, and BMI. The correlations between the paired
fecal and blood metabolites were generally low (phenotypic correla-
tion coefficients [mean ± sd]: 0.05 ±0.12). There were only eight sig-
nificantly correlatedmetabolites between feces and blood (correlation
coefficients > 0.3 and FDR <0.05), including 2-phenylpropionate,
3-indolepropionic acid, eicosapentaenoic acid (EPA), glycodeoxy-
cholic acid, glycoursodeoxycholic acid, hydrocinnamic acid, N-
Methylnicotinamide, and phenylacetic acid (Fig. 2a, Supplementary
Fig. 2 and SupplementaryData 1). Partial Spearman correlation analysis
only adjusted for age and sex showed consistent results (r = 0.999,
P <0.0001; Supplementary Fig. 3).

We then examined the genetic correlations (the proportion of
shared heritability between paired fecal and blood metabolites)
between the paired fecal andbloodmetabolites using bivariateGREML
analysis25. Consistent with the results of phenotypic correlations, there
were low genetic correlations among most paired fecal and blood
metabolites (genetic correlation coefficients [mean ± sd]: 0.13 ± 0.75),

with only 16 metabolites having an absolute value of genetic correla-
tion coefficients > 0.3 and FDR <0.05 (Fig. 2a, Supplementary Fig. 2
and Supplementary Data 1). Among them, three metabolites (3-indo-
lepropionic acid, glycoursodeoxycholic acid, and phenylacetic acid)
overlapped with those of phenotypic correlations (Fig. 2b).

Comparison between paired fecal and blood metabolome in
their associations with taxonomic composition and microbial
pathways
Given that there were low correlations between most paired fecal and
blood metabolites, we explored whether there were differences
between the associations of taxonomic composition or microbial
pathways with paired fecal and blood metabolites. We used two
machine learning models, random forest (RF) and Light Gradient
Boosting Machine (LightGBM) with five-fold cross-validation to inde-
pendently examine the association between taxonomic composition/
microbial pathways and each metabolite, either in the fecal or blood
samples, and then comparedwhether the associations were consistent
across feces andblood. As theRFmodel hadabetter performance than
the LightGBMmodel with a smaller root mean square error and more
well-predicted metabolites (Supplementary Fig. 1, Supplementary
Notes 1), the main results of this study were reported based on the RF
model. The predictability of fecal metabolites based on taxonomic
composition or microbial pathways, which was measured by Spear-
man’s correlation between the measured and predicted metabolite
levels for held-out samples by machine learning pipeline, was much
higher than those of blood metabolites (Fig. 3a, b, Supplementary
Fig. 4a and Supplementary Fig. 4b, Supplementary Data 2). Overall,
compared with blood metabolites, fecal metabolites had significantly
higher correlations with taxonomic composition (correlation coeffi-
cients: mean±sd: 0.40 ±0.15 vs. 0.09 ±0.11; P < 0.0001 by Wilcoxon
signed-rank test; Fig. 3c) and microbial pathways (correlation coeffi-
cients: mean±sd: 0.32 ± 0.14 vs. 0.06 ±0.11; P <0.0001 by Wilcoxon
signed-rank test; Supplementary Fig. 4c).

We then consideredmetabolites with correlation coefficient > 0.3
and FDR <0.05 as well-predicted metabolites18,26. Based on taxonomic
composition, we identified 98 well-predicted fecal metabolites,
including several known gut microbiota-derived metabolites, such as
SCFAs (acetic acid, butyric acid), bile acids (glycoursodeoxycholic
acid, tauroursodeoxycholic acid, glycocholic acid, taurochenodeoxy-
cholic acid, glycodeoxycholic acid, glycochenodeoxycholic acid),
phenylpropanoic acids (2-phenylpropionate, hydrocinnamic acid,
hydroxyphenyllactic acid, 3-3-Hydroxyphenyl-3-hydroxypropanoic
acid), benzenoids (phenylacetic acid, 4-hydroxyphenylpyruvic acid,
phenylpyruvic acid), indoles (3-indolepropionic acid), and so on
(Fig. 3a, e and Supplementary Data 2). There were 10 well-predicted
blood metabolites (Fig. 3b, e and Supplementary Data 2), among
which, 8 overlapped with fecal samples (2-phenylpropionate,
3-indolepropionic acid, glutaric acid, glycodeoxycholic acid, gly-
coursodeoxycholic acid, hydrocinnamic acid, N-Methylnicotinamide,
and phenylacetic acid). Therewere 90metabolites thatwere only well-
predicted in feces and not in blood, and 2 metabolites (alpha-N-Phe-
nylacetyl-L-glutamine and hippuric acid) that were only well-predicted
in blood and not in feces. Most well-predicted fecal metabolites had
superior predictability over their corresponding paired blood meta-
bolites, and for metabolites that were well-predicted in both feces and
blood, the models of most well-predicted fecal metabolites sig-
nificantly outperformed their respective models of well-predicted
blood metabolites (FDR <0.05, see Methods; Fig. 3d, Supplementary
Fig. 7a and Supplementary Data 3). The identified well-predicted
metabolites basedonmicrobial pathways showed consistent results, in
which all identified well-predicted metabolites based on microbial
pathways belonged to the identified well-predicted metabolites based
on taxonomic composition (Supplementary Fig. 4, Supplementary
Fig. 5a and Supplementary Fig. 5b and Supplementary Fig. 7b;
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Supplementary Data 2–3). For sensitivity analysis with different cut-off
r values (correlation coefficient: 0.2 and 0.4), the number of well-
predicted fecal metabolites was substantially more than that of blood
metabolites (Supplementary Fig. 5c, d). Sensitivity analysis for gut
microbiota-fecal/blood metabolite associations among participants
without T2D, hypertension or dyslipidemia medications showed con-
sistent results (Supplementary Fig. 6).

We then validated the robustness of the above associations
between taxonomic composition/microbial pathways and well-
predicted metabolites in an independent validation cohort.

We trained RF models for each well-predicted metabolite based on
taxonomic composition or microbial pathways in the discovery
cohort, and directly applied them to the validation cohort. Based on
Spearman’s correlation coefficient > 0.3 and FDR <0.05 (Methods),
68% (132/194) associations could be validated, including 63.3% (62/98)
taxonomic composition-fecal metabolite associations, 80% (8/10)
taxonomic composition-blood metabolite associations, 71.4% (55/77)
microbial pathways-fecal metabolite associations, and 77.8% (7/9)
microbial pathways-blood metabolite associations (Fig. 3e, Supple-
mentary Fig. 4e and Supplementary Fig. 9 and Supplementary Data 4).

Guangzhou Nutrition and Health Study

N=1007 (age: 64.7 5.6)

Discovery cohort Validation cohort

N=103 (age: 71.5 7.1)

Metagenomic sequencing data

149 Species  214 Pathways

Targeted metabolomics

132 paired fecal and 
blood metabolites

Species
Fecal metabolites

Blood metabolites

Fecal metabolites

Blood metabolites

Pathways

Machine 
Learning
Machine 
Learning

Gut microbiota 
well-predicted 

fecal metabolites

Gut microbiota 
well-predicted 

blood metabolites

• Type 2 diabetes

• Obesity

• Hypertension

• NAFLD

Paired comparison 

Fig. 1 | Workflow of the present study. A total of 1007 participants from the
Guangzhou Nutrition and Health Study with matched gut metagenomic and fecal
and blood metabolomics data and without taking antibiotics within two weeks are
included in this study. Shotgun metagenomic sequencing is performed for fecal
samples to obtain the metagenomic data, including taxonomic composition and
microbial pathways. A targeted metabolome profiling is performed to obtain the
fecal and bloodmetabolomics data. After removingmetabolites withmissing rate≥
0.2 or with relative standard deviation ≥ 0.3, 132 matched fecal and blood

metabolites are remained for subsequent analysis. We estimate the gutmicrobiota-
fecal/blood metabolite associations using the machine learning pipeline, and
compare the associations of taxonomic composition/microbial pathways with
paired fecal and blood metabolites. We then explore the associations of gut
microbiota-related fecal and bloodmetabolites with cardiometabolic diseases. We
further replicate the identified significant associations in an independent validation
cohort. This figure has been designed using images from Flaticon.com. NAFLD
nonalcoholic fatty liver disease.
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Associations of well-predicted metabolites with cardiometa-
bolic diseases
Subsequently, we explored the associations of the above well-
predicted fecal and blood metabolites identified in the discovery
cohort with prevalent cardiometabolic diseases (T2D, obesity, NAFLD,
and hypertension). There were 12 well-predicted fecal metabolites
being associated with several cardiometabolic diseases including T2D
(7 significant associations), obesity (4 significant associations) and
NAFLD (1 significant association) (FDR <0.05 by the multivariable
logistic models; Fig. 4a and Supplementary Data 5). Sensitivity analysis
with an additional adjustment of medications for T2D, hypertension,
and dyslipidemia showed consistent results (r = 0.998, P <0.0001;
Supplementary Fig. 8). However, we did not find any significant asso-
ciation for the well-predicted blood metabolites (Fig. 4b and Supple-
mentary Data 5).

These findings were interesting for metabolites that were well-
predicted in both blood and feces. For example, there were nominal
associations of blood 2-phenylpropionate, 3-indolepropionic acid and
hydrocinnamic acid with T2D (P <0.05 and FDR >0.05), while the
associations of fecal levels of these metabolites with T2D were statis-
tically significant (FDR <0.05). We further validated the significant
associations of these fecal metabolites with cardiometabolic diseases
in the external validation cohort. The low replication rate shown in
Fig. 4c was largely a power issue as the sample size of the validation
cohort was small. However, we discovered that 8 out of 11 associations

for the well-predicted fecal metabolites had the same effect directions
and strong correlation between partial regression coefficients
obtained from the discovery and validation cohort (r =0.894; Fig. 4c,
d), which suggested that the majority of our identified associations
between well-predicted fecal metabolites and cardiometabolic dis-
eases were consistent across the discovery and validation cohort.

Comparison between paired fecal and blood SCFAs in associat-
ing gut microbiota and T2D
SCFAs, such as acetic acid, propionic acid, and butyric acid are well-
known gut microbiota-derived metabolites that are produced by
microbial fermentation of dietary fiber1. Both fecal and blood levels
of SCFAs have been commonly used to explore the role of SCFAs in
human health27–31. Through comparing paired fecal and blood SCFAs
in their associations with taxonomic composition, we found that gut
microbes were strongly associated with fecal levels of acetic acid
(r = 0.53, FDR < 0.0001; Fig. 5a) and butyric acid (r = 0.59, FDR <
0.0001; Fig. 5c), but were not associated with blood acetic acid
(r = 0.02, FDR = 0.6797; Fig. 5b) or butyric acid (r = 0.03, FDR =
0.3605; Fig. 5d). Similar results were observed for the associations of
microbial pathways with paired fecal and blood SCFAs (Supplemen-
tary Fig. 10). Furthermore, we found that fecal butyric acid levels
were inversely associated with prevalent T2D (β = −0.25, FDR =
0.0375; Fig. 5e), while blood butyric acid was not associated
(β = −0.05, P = 0.543; Fig. 5f).
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Fig. 2 | Phenotypic and genetic correlations between paired fecal and blood
metabolites. a Phenotypic and genetic correlations between paired fecal and
blood metabolites for the top 30 metabolites that are ranked by phenotypic cor-
relations. Phenotypic correlations between paired fecal and blood metabolites are
estimated by partial Spearman correlation analysis, adjusted by age, sex and BMI.
Genetic correlations are calculated using bivariate GREML analysis. Correlations
with FDR<0.05 and ∣r∣ >0.3 (red dashed lines) are considered significant. FDR is

controlled by the Benjamini-Hochberg method. *FDR <0.05, **FDR<0.01, ***
FDR <0.005. The results for remaining metabolites are shown in Supplementary
Fig. 2. For genetic correlation analysis, there are 38 metabolites that do not con-
verged during the calculation process and thus have no results. b The overlap
between significant phenotypic and genetic correlations. All statistical tests are
two-sided. Source data are provided as a Source Data file.
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Discussion
In the present population-based large-scale gut microbiota-
metabolome association study, we compared paired fecal and blood
metabolome in their associations with gut microbiota and cardiome-
tabolic diseases. We found that taxonomic composition andmicrobial
pathways were more broadly associated with fecal metabolites com-
pared with blood metabolites. We further showed that some blood

metabolites were weakly associated with gut microbiota or cardio-
metabolic diseases. These results suggested that caution should be
taken when inferring microbiome-cardiometabolic disease associa-
tions from either blood or fecal metabolome data.

The importance of fecal metabolome for understanding the gut
microbiota function in humans has been recognized in the past few
years9. Meanwhile, bloodmetabolomewas also closely linked with gut
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microbiota in several recent studies5–8. Although paired fecal and
blood metabolome data are collected in some previous studies10,21,
their samples sizes were very small (N < 100) and direct comparisons
between paired fecal and blood metabolites in their associations with
gutmicrobiotawere not performed. To the best of our knowledge, our
studywas the largest study comparing simultaneously collectedpaired
fecal and blood metabolome for their associations with gut micro-
biota, which could potentially provide the guidance for the practical
applications of fecal and blood metabolome in exploring the associa-
tions of gut microbiota-related metabolites with host health.

Human blood is a conventionally used biological sample for
metabolome profiling in epidemiological studies, where the blood
metabolome was used to explore the associations of gut microbiota-
related metabolites with cardiometabolic diseases12–17. Metabolites
that are produced by the gut bacteria may experience complex inter-
mediate processes, such as intestinal epithelial absorption, enter-
ohepatic circulation, and liver absorption and transformation, when
transporting from intestinal tract to the bloodstream1,32, which may
weaken the associations between gut microbiota and blood metabo-
lites. In addition, when gut metabolites enter the blood, they may be
maintained within physiological ranges by homeostasis that is
achieved substantially through mass action-driven oxidation33. Thus,
bloodmetabolites may bemore stable than fecal metabolites andmay
be less sensitive to the change of gut microbiota.

Our study identified several known gut microbiota-derived
metabolites that were associated with cardiometabolic diseases.
Butyric acid was one of the three main SCFAs (acetic acid, propionic
acid, and butyric acid) derived by gut microbiota in human gut. The
fecal butyric acid levels were inversely (beneficially) associated with
T2D in our present study, which has been demonstrated by several
animal models34,35. In human studies, higher fecal butyric acid levels
were associated with improved insulin response28. Ana et al. enrolled
20 adults (9 hadT2D) aged ≥50years and found that the concentration
of fecal butyric acid was lower in T2D participants compared to those
without T2D36. We found that fecal hydrocinnamic acid levels were
inversely associated with T2D, which was consistent with Vangipurapu
et al.’s study, where blood levels of this metabolite were measured12.
Our study found that there was an inverse association between
fecal 2-phenylpropionate and T2D. The physiological function of
2-phenylpropionate was rarely explored in the literature, and its
underlying mechanism involved in T2D development should be fur-
ther clarified. Interestingly, the concentration of blood 2-phenylpro-
pionate, which was also associated with gut microbiota, was not
associated with T2D. This further supported the strength of fecal
metabolome in associating gut microbiota and metabolic diseases.
However, capturing associations is just thefirst step in epidemiological
studies aiming atproviding thedirections for downstreammechanistic
investigations as how the gut microbiota-derived metabolites affect

cardiometabolic diseases, in which blood metabolome may play an
important role.

Our studyhas several strengths. First, this study has a large sample
size with matched gut metagenomic, and fecal and blood metabo-
lomics data collected simultaneously within each participant, which
facilitates paired fecal and blood metabolome comparison. Second,
targeted fecal and blood metabolome profiling is performed in our
study participants, which provides absolute quantitative metabo-
lomics data. Third, most of our findings could be validated in an
independent validation cohort.

There are also several limitations. First, associations identified in
this study are not necessarily causal. Specifically, those identified well-
predicted metabolites based on gut microbiota are not necessarily
derived from gut microbiota, although there are high correlations.
Second, there are only 132 metabolites analyzed in our study because
of the targeted metabolome profiling. These metabolites constitute
only a small fraction of metabolic spectrum. Therefore, our results
should be validated in large cohorts with a large number of measured
metabolites in the future. Third, our cohort only surveyed the anti-
biotics usewithin 2 weeks at the time of stool sample collection. As the
effects of antibiotic treatments can last longer time, our findings
should be further validated in other large cohorts that surveyed the
long-term antibiotics use (>6 months). Fourth, there are only 103
participants in the validation cohortwith thenumber of patients 27, 23,
and 14 for T2D, hypertension, and obesity, respectively, which limits
the statistical power to fully replicate the results of metabolite-
cardiometabolic disease associations. In addition, as NAFLD status is
not available in the validation cohort, the corresponding associations
are unable to be validated. Thus, larger replication cohorts are needed
in future to further replicate our findings. Finally, as the participants
enrolled in our study are not selected at random, there is potential
selection bias. Additionally, as our cohorts are only based on indivi-
duals of Chinese ethnicity, the generalization of our conclusions to
populations with other ethnicities needs to be further investigated.

In conclusion, we conducted a comparison between paired fecal
and blood metabolome in their associations with gut microbiota and
cardiometabolic diseases in a large cohort study. Our results showed
disparate associations with gut microbiota and cardiometabolic dis-
eases when using fecal or blood metabolites. In epidemiological
studies, caution should be taken when inferring microbiome-
cardiometabolic disease associations from either blood or fecal
metabolome data.

Methods
Study cohorts
This study was based on the Guangzhou Nutrition and Health Study
(GNHS). The detailed description of GNHS cohort could be found in
previous studies22,23. Briefly, a total of 4048 Chinese participants aged

Fig. 3 | Comparisons between paired fecal and blood metabolites in their
associations with taxonomic composition. a The associations of taxonomic
composition with fecal metabolites, and b with blood metabolites. The random
forest model with five-fold cross-validation is used to predict the fecal or blood
metabolite levels based on taxonomic composition. Spearman’s correlation
between measured and predicted metabolite levels is used to measure the asso-
ciation of taxonomic composition with fecal or blood metabolites. *FDR<0.05,
**FDR<0.01, *** FDR <0.005. c The distributions of the associations of taxonomic
compositionwith fecal andbloodmetabolites (n = 132). The differencebetween the
distributions of taxonomic composition-fecal metabolite associations and taxo-
nomic composition-blood metabolite associations is tested by Wilcoxon signed-
rank test. Box plots indicate median and interquartile range (IQR). The upper and
lower whiskers indicate 1.5 times the IQR from above the upper quartile and below
the lower quartile. ***P <0.0001. d Differences between the associations of taxo-
nomic compositionwith paired fecal and bloodmetabolites that are well-predicted
in both feces and blood (marked with red in y axis), metabolites that are only well-

predicted in blood and not in feces (marked with green in y axis), and the top 30
metabolites that are onlywell-predicted in feces andnot inblood (markedwith blue
in y axis). Metabolites are ranked by the predictability of fecal metabolites. Dif-
ferences between the associations of taxonomic composition/microbial pathways
with paired fecal and blood metabolites are tested by the method proposed by
Hittner et al. (see ”Methods”). *FDR <0.05, **FDR<0.01, ***FDR <0.005. The results
for the top 31–90metabolites that are only well-predicted in feces and not in blood
are presented in Supplementary Fig. 7a. e The number of well-predicted fecal and
blood metabolites based on taxonomic composition and the number of validated
associations between taxonomic composition and well-predicted fecal/blood
metabolites in the validation cohort. Well-predicted metabolites are defined as
Spearman’s correlation coefficient > 0.3 and FDR <0.05. FDR is controlled by the
Benjamini–Hochbergmethod. Associationswith Spearman’s correlation coefficient
> 0.3 and FDR <0.05 are considered as being validated in the validation cohort. All
statistical tests are two-sided. Source data are provided as a Source Data file.
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40–75 years living in the urban area of Guangzhou, China, for at least 5
years were recruited between 2008–2013. We followed these partici-
pants every three years. During 2014–2018 follow-up visits, stool and
fasting blood samples were collected at the same time. We included
participants with paired fecal and blood samples (N = 1008), and one
paired fecal and blood samples were available per individual. We
excluded participants who have taken antibiotics within 2 weeks
(N = 1). Finally, 1007 participants (age: 64.7 ± 5.6; BMI: 23.6 ± 3.1) were
remained for subsequent analysis (Table 1).

We used the control armof a case-control study for hip fraction as
the validation cohort24. The participants were enrolled between 2009
and 2012 in Guangdong Province, China. Stool and fasting blood
samples were collected at the follow-up visits between February 2017
and May 2017 at the same time point. We included participants with
paired fecal and blood samples in the present study (N = 103; age:
71.5 ± 7.1; BMI: 24.2 ± 3.7; Table 1).

All participants involved in this study provided written informed
consent prior to sample collection. The Ethics Committee of the
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Fig. 4 | The associations of well-predicted fecal and blood metabolites with
cardiometabolic diseases. a The associations of well-predicted fecal metabolites
with cardiometabolic diseases. b The associations of well-predicted blood meta-
bolites with cardiometabolic diseases. In a, b, the intensity of colors represents the
partial regression coefficients that are computed by logistic models, adjusted by
age, sex, smoking status, alcohol status, education, income, physical activity, and
total energy intake for obesity, and by age, sex, BMI, smoking status, alcohol status,
education, income, physical activity, and total energy intake for T2D, hypertension
and NAFLD. FDR is controlled by the Benjamini–Hochberg method. #P <0.05,
##FDR<0.05. c Replication of the significant associations of well-predicted fecal

metabolites with cardiometabolic diseases in the validation cohort (n = 1007 in the
discovery cohort; n = 103 in the validation cohort). Error bars are partial regression
coefficients with 95% confidence intervals. d The scatter plot demonstrates the
partial regression coefficients for the associations of well-predicted fecal metabo-
liteswith cardiometabolic diseases obtained in the discovery (x axis) and validation
cohort (y axis). The correlation between the partial regression coefficients obtained
in the discovery and validation cohort is computed by Pearson correlation. Error
band is linear regression line with 95% confidence band. All statistical tests are two-
sided. Source data are provided as a Source Data file. T2D, type 2 diabetes; NAFLD
nonalcoholic fatty liver disease, FDR false discovery rate, CI confidence interval.
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School of Public Health at Sun Yat-sen University (2018048) and
Westlake University (20190114ZJS0003) approved the study
protocols.

Shotgun metagenomic sequencing and preprocessing
Fecal samples from all participants in the discovery and validation
cohort were collected on the examination day. During a follow-up visit
to the study center, we gave each participant a stool sampler and
provided the detailed instructions for stool sample collection. Parti-
cipants collected their stool samples after defecation anddelivered the
sample to the staff immediately. The stool samples were temporarily
stored in an ice box, and transported to the research laboratory and
stored in a −80 °C freezer within four hours.

Microbial DNA was isolated using the QIAamp DNA Stool Mini Kit
(Qiagen, Hilden, Germany) based on the manufacturer’s instruction.
DNA concentrations were determined by the Qubit quantification
system (ThermoScientific, Delaware, US). The Illumina HiSeq platform
(Illumina Inc., CA, USA)wasused for shotgunmetagenome sequencing

with 2 × 300-bp paired-end reads protocol. The microbial DNA
extraction and shotgun metagenome sequencing were performed at
NovogeneCompany (Beijing, China). After sequencing,weobtained an
average of 41.9million (minimum: 22.1million;maximum: 65.2million)
paired-end raw reads for each sample. The detailed information on
bioinformatics analysis of themetagenome data could be found in our
previous paper37. PRINSEQ (version 0.20.447) was employed to filter
the reads with low-quality scores, with the following filtering para-
meters: (1) trim the reads by quality score from the 5′ end and 3′ end
with a quality threshold of 20; (2) remove read pairs when either read
was <60bp, contained “N” bases or quality score mean bellow 30; and
(3) deduplicate the reads. Reads that could be aligned to the human
genome (H. sapiens, UCSC hg19) were removed (aligned with Bowtie2
v2.2.5 using –reorder –no-contain –dovetail)38. Taxonomic profiling of
the metagenomic samples was performed using MetaPhlAn2 (version
2.6.02) with default parameters which used a library of clade-specific
markers to provide pan-microbial (bacterial, archaeal, viral and
eukaryotic) quantification at the species level39. We used the
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Fig. 5 | Comparisons between paired fecal and blood SCFAs in associating
taxonomic composition and type 2 diabetes. a The association between taxo-
nomic composition and fecal acetic acid. bThe association between taxonomic
composition and blood acetic acid. c The association between taxonomic com-
position and fecal butyric acid. d The association between taxonomic composition
and blood butyric acid. The random forest model with five-fold cross-validation is
used to predict the fecal or blood metabolite levels based on taxonomic compo-
sition. The scatter plot is plotted by the predicted andmeasuredmetabolite values.
Spearman’s correlation betweenmeasured and predictedmetabolite values is used
to measure the association of taxonomic composition with fecal or blood

metabolites. Error bands in a–d are linear regression lines with 95% confidence
bands. e The association of fecal butyrate acid with T2D. f The association of blood
butyrate acid with T2D. In e, f, logistic regression model is used to assess the
associations of fecal or blood butyrate acid with T2D, adjusted for age, sex, BMI,
smoking status, alcohol status, education, income, physical activity, and total
energy intake. Error bands in e, f are logistic regression curves with 95% confidence
bands. FDR is controlled by the Benjamini-Hochbergmethod. All statistical tests are
two-sided. Source data are provided as a Source Data file. T2D, type 2 diabetes;
SCFA, short-chain fatty acids; FDR, false discovery rate.
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HUMAnN2 (version 2.8.1) with default parameters for functional pro-
filing of metagenomic samples40, in which microbial pathways were
generated based on MetaCyc metabolic pathway database41,42. We
included microbial species and pathways with a minimum detective
relative abundance of 0.01% in at least 10% of the samples, which
yielded 149 species and 214 pathways.We log-transformed the relative
abundance of species and pathway features before subsequent ana-
lysis and scaled them to zero-mean and unit-variance.

Fecal and blood metabolomics profiling and preprocessing
We performed targeted metabolomics profiling for fecal and serum
samples by an ultra-performance liquid chromatography coupled to
tandem mass spectrometry (UPLC-MS/MS) system (ACQUITY UPLC-
Xevo TQ-S, Waters Corp., Milford, MA, 570 USA). The Q300 Kit pro-
vided by Metabo-Profile Corp. (Shanghai, China), coving up to 310
metabolites and 12 biochemical classes, was used for targeted meta-
bolomics profiling, which was commonly used in several recent
studies43–45. It mainly includes known gut microbiota-derived meta-
bolites including SCFAs, bile acids, indoles, etc. and other key host
metabolites, such as amino acids, carbohydrates, organic acids, and so
on. Briefly, serum/lyophilized fecal sample vortexed vigorously with
ice methanol (internal standards contained), and the supernatant was
obtained. Then, ice-cold 50% methanol solution was added to dilute
the sample with 4000 × g centrifugation, and the supernatant mixed
with internal standards for each sample was sealed before UPLC-MS/

MS profiling. The instrument parameters were setting as follows: C18
analytical column (2.1 × 100mm,1.7μM); column temperature 40 °C;
mobile phases A (water with 0.1% formic acid), mobile phases B
(acetonitrile: IPA, 90:10). The whole profiling process was performed
at Metabo-Profile Corp. (Shanghai, China). The quality control (QC)
samples were made up of pooled samples and were run every 14 sam-
ples. Raw data generated by UPLC-MS/MS were processed using the
QuanMET software (v2.0, Metabo-Profile, Shanghai, China) to perform
peak integration, calibration, and quantification for each metabolite.
Metabolomic features were annotated to metabolites with MSI level 1
of confidence by comparing them to the standards of targeted meta-
bolites. The gut metagenomic sequencing and fecal metabolomics
profiling were performed with independent randomization proce-
dures to ensure that the sample orders were not the same.

We quantified the concentrations of 204 fecal metabolites and
232 blood metabolites in the targeted metabolomics measurements.
There were 173 overlapped metabolites between fecal and blood
metabolites. After removing fecal or blood metabolites that were
detected in less than80%of samples, 159 overlappedmetabolites were
obtained. We further excluded metabolites with the relative standard
deviation (standard deviation/mean) value in QC samples larger than
0.3 in fecal or blood samples. Finally, 132 paired fecal and blood
metabolites were included in the present study. These metabolites
mainly include amino acids, fatty acids, organic acids, carbohydrates,
bile acids, benzenoids, carnitines, phenylpropanoic acids, pyridines,
indoles, organooxygen compounds, and nucleosides. We imputed the
missing values of metabolites by half theminimal concentration of the
corresponding metabolites in the remaining non-missing samples. We
performed the log-transformation for fecal and blood metabolomics
data and standardized them into Z-scores (mean = 0, variance = 1).

Cardiometabolic disease ascertainment
Type 2 diabetes (T2D) was defined as fasting blood glucose ≥
7.0mmol/L (126mg/dL) or HbA1c ≥ 6.5% (48mmol/mol) or self-
reported drug medications for T2D, according to T2D diagnosis cri-
teria from the American Diabetes Association46. Hypertension was
ascertained based on systolic blood pressure ≥ 140mmHg or diastolic
blood pressure ≥ 90mmHg or current antihypertensive medication
use, according to the hypertension diagnostic standards published by
WHO/International Society of Hypertension Committee47. Nonalco-
holic fatty liver disease (NAFLD) was identified based on abdominal
ultrasonography using a Doppler sonography machine (Sonoscape
SSI-5500, Shenzhen, China). NAFLD was diagnosed according to cri-
teria of the Fatty Liver Disease Study Group of the Chinese Liver Dis-
ease Association48. Obesity was defined as BMI≥ 28 based on the
suggestion of Working Group On Obesity In China for Chinese
populations49.

Statistical analysis
Phenotypic correlation and genetic correlation analysis. We esti-
mated the phenotypic correlations (a direct comparison of each
metabolite’s values between feces and blood) between paired fecal
and blood metabolites using partial Spearman correlation analysis,
adjusted for age, sex and BMI. In addition, we calculated the genetic
correlation (the proportion of shared heritability between paired fecal
and bloodmetabolites) between fecal and bloodmetabolites using the
bivariate GREML analysis by GCTA25,50. Genetic correlation analysis was
performed for 596 participants with matched genotyping and fecal
and blood metabolomics data. The detailed information for the gen-
otyping data was described in our previous paper51. We used the
Benjamini-Hochberg method to control the false discovery rate (FDR)
caused by multiple testing. Phenotypic or genetic correlations
between paired fecal and bloodmetabolites with the absolute value of
correlation coefficients ∣r∣> 0.3 and FDR <0.05 were considered
significant.

Table 1 | Characteristics of the study participants

GNHS
cohort (N = 1007)

Validation
cohort (N = 103)

Age, years, mean (SD) 64.7 (5.6) 71.5 (7.1)

Female, n (%) 695 (69%) 74 (71.8%)

BMI, kg/m2, mean (SD) 23.6 (3.1) 24.2 (3.7)

Current smoker, n (%) 75 (7.4) 4 (3.9)

Current alcohol drinker, n (%) 79 (7.8) 9 (8.7)

Education, n (%)

Middle school or lower 271 (26.9) 10 (9.7)

High school or professional
college

452 (44.9) 16 (15.5)

University 284 (28.2) 68 (66.0)

Unknown 0 9 (8.7)

Income level, n (%)

Low (≤1500 ¥/month) 253 (25.1) 9 (8.7)

Middle (1501–3000 ¥/month) 609 (60.5) 24 (23.3)

High (>3000 ¥/month) 145 (14.4) 58 (56.3)

Unknown 0 12 (11.7)

Physical activity, MET,
mean (SD)

41.2 (14.4) 32.3 (5.8)

Total energy intake, kcal/day,
mean (SD)

1785.9 (547.3) 1312.9 (361.4)

Disease prevalence, n (%)

T2D 160 (15.9) 27 (26.2)

Hypertension, n (%) 472 (46.9) 23 (22.3)

Obesity, n (%) 86 (8.5) 14 (13.6)

NAFLD, n (%) 668 (66.3) –a

Medication use, n (%)

T2D 84 (8.3) –

Hypertension 301 (29.9) –

Dyslipidemia 258 (25.6) –

T2D type 2 diabetes,METmetabolic equivalent of task, NAFLD nonalcoholic fatty liver disease,
SD standard deviation, BMI body mass index.
aData were unavailable.
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Gut microbiota-fecal/blood metabolome association analysis.
Given that there were strong symbiotic relationships among gut
microbes, we treated the gutmicrobiota as a whole and estimated how
well taxonomic composition or microbial pathways could predict the
concentrations of fecal and blood metabolites using several machine
learning pipelines. Random Forest (RF) model with default hyper-
parameters has recently been adopted to predict the fecal metabolites
based on gut microbiota after comparing several machine learning
pipelines18. Meanwhile, Light Gradient Boosting Machine (LightGBM)
model has been used to estimate the associations of gut microbiota
with serummetabolites5. As RF and LightGBMmodels were commonly
used in the gut microbiota-metabolome association studies, we first
used both of them to predict the levels of fecal and bloodmetabolites
based on taxonomic composition or microbial pathways and com-
pared their performances. The machine learning pipelines including
theRF and LightGBMmodels were conducted using the five-fold cross-
validation strategy to avoid the potential overfitting, with 202, 202,
201, 201, 201 held-out samples, respectively, for these five-folds. We
calculated Spearman’s correlation coefficient r and Spearman’s cor-
relation P value between themeasured andpredictedmetabolite levels
for held-out samples. Spearman’s correlation P value was further
transformed into FDR value to correct formultiple testing. We defined
metabolites with r >0.3 and FDR <0.05 as well-predicted metabolites.
The cut-off r value was based on previous studies18,26. We also per-
formed sensitivity analyses by setting the cut-off r value as 0.2 and 0.4.
Sensitivity analyses for participants without T2D medications
(N = 923), hypertension medications (N = 706), dyslipidemia medica-
tions (N = 749), or without any of the above three medications
(N = 530) were also performed, respectively. The RF and LightGBM
methods were implemented using the R package randomForest (ver-
sion: 4.6-14)52 and lightgbm (version: 3.3.1)53, respectively. We used the
RF model with default hyperparameters recommended by Muller
et al.’s study18. The hyperparameters of LightGBM model were deter-
mined according to Bar et al.’s study:5 learning_rate = 0.005, max_-
depth = default, feature_fraction = 0.2, num_leaves = default,
min_data_in_leaf = 15, metric = L2, early_stopping_rounds = None,
n_estimators = 2000, bagging_fraction = 0.8, bagging_freq = 1. Even-
tually, as the RFmodel had a better performance in termsof rootmean
square error (RMSE) and predictability than LightGBM model (Sup-
plementary Notes 1; Supplementary Fig. 1), the main results were
reported based on the RF method throughout this study.

We assessed the differences between the associations of taxo-
nomic composition/microbial pathways with paired fecal and blood
metabolites for each well-predicted metabolite using the method
proposed by Hittner et al.54, which was implemented by R package
cocor (version: 1.1-4)55.

Independent validation for the identified gut microbiota-fecal/
blood metabolite associations. We then attempted to replicate the
above identified associations in an independent validation cohort.
Firstly, the RF model was built in the GNHS (discovery) cohort to
predict the levels of fecal/blood metabolites based on the taxonomic
composition/microbial pathway data. Then, the constructed models
were directly applied in the validation cohort, and the corresponding
Spearman’s correlation coefficient r and Spearman’s correlation FDR
values between measured and predicted metabolite levels were
obtained for each metabolite. We considered the associations with
Spearman’s correlation coefficient > 0.3 and FDR <0.05 as being
validated.

Associations between well-predicted fecal/blood metabolites and
cardiometabolic diseases. We examined the associations of well-
predicted fecal and blood metabolites with prevalent cardiometa-
bolic diseases (obesity [Npatients = 86], T2D [Npatients = 160], hyper-
tension [Npatients = 472], and NAFLD [Npatients = 668]) using

multivariable logistic models, adjusted by age, sex, smoking status,
alcohol status, education, income, physical activity, and total energy
intake for obesity, and by age, sex, BMI, smoking status, alcohol
status, education, income, physical activity, and total energy intake
for T2D, hypertension and NAFLD. We also performed sensitivity
analysis to additionally adjust for T2D, hypertension, and dyslipide-
mia medications in multivariable logistic models. Associations with
FDR < 0.05 were considered statistically significant. The results were
further replicated in the validation cohort. Only T2D (Npatients = 27),
hypertension (Npatients = 23), and obesity (Npatients = 14) were available
in the validation cohort. Pearson correlation between the partial
regression coefficients obtained from the discovery and validation
cohort was calculated.

All statistical analyses were performed using R software (version:
4.1.1) unless otherwise specified.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data of metagenomic sequencing in this study have been
deposited in the Genome Sequence Archive (GSA) (https://ngdc.cncb.
ac.cn/gsa/) at accession number CRA008796. The fecal and serum
metabolomics data have been deposited in the Metabolomics Work-
bench at study ID ST002337 and ST001669, respectively. UCSC hg19 is
available from https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_
human/release_19/GRCh37.p13.genome.fa.gz. The data associated
with this study are presented in the paper (Supplementary Data 1-5 and
Source Data). The metadata are available under restricted access due
to participant consent and privacy regulations of our cohort, access
can be obtained by request to the corresponding author (Yu-ming
Chen: chenyum@mail.sysu.edu.cn) Source data are provided with
this paper.

Code availability
Analysis codes are available via https://github.com/nutrition-westlake/
Paired-comparisons-between-the-fecal-and-blood-metabolites-in-
their-associations-with-gut-microbiota/tree/main56.
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