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Quantifying the resilience of vegetated ecosystems is key to constraining both
present-day and future global impacts of anthropogenic climate change. Here
we apply both empirical and theoretical resilience metrics to remotely-sensed
vegetation data in order to examine the role of water availability and variability
in controlling vegetation resilience at the global scale. We find a concise global
relationship where vegetation resilience is greater in regions with higher water
availability. We also reveal that resilience is lower in regions with more pro-

nounced inter-annual precipitation variability, but find less concise relation-

ships between vegetation resilience and intra-annual precipitation variability.
Our results thus imply that the resilience of vegetation responds differently

to water deficits at varying time scales. In view of projected increases in pre-
cipitation variability, our findings highlight the risk of ecosystem degradation

under ongoing climate change.

The resilience of ecosystems, i.e., their capacity to resist and recover
from external perturbations—natural or anthropogenic—has received
increasing attention in recent years' . Key to this discussion is whether
ecosystems can potentially exhibit multiple stable equilibrium states
with abrupt transitions between them in response to gradual changes
in climatic and environmental conditions. For some regions, it has
even been suggested that alternative stable states may co-exist for the
same climatic forcings; for example, it is thought that several tropical
regions support both a stable rainforest and a stable savanna state fora
considerable range of mean annual precipitations®®, The capacity of
ecosystems to recover to their previous state after a shock—such as a
fire, drought, or deforestation—is a critical open question, particularly
in view of the impacts of anthropogenic climate change’. Changes in
ecosystem function can drastically alter carbon sequestration
capacities'’; for example, the Amazon rainforest appears to have
recently turned from a globally relevant carbon sink to a net source of
carbon'. The potential for abrupt transitions between alternative
stable states—and corresponding risks of further carbon emissions—is
not only confined to the tropics*”, making identifying controls on
ecosystem resilience a global concern. Indeed, recent work*>* has
shown that many regions are losing vegetation resilience; however, the
drivers of spatial heterogeneity in resilience and resilience trends

remain unconstrained. In this work, we therefore aim to improve our
understanding of possible climatic drivers of vegetation resilience.

A wide body of previous research’®” has proposed that the
capacity of a system to recover from external shocks, and hence the
system’s resilience, is closely tied to both the variance and the lag-one
autocorrelation (AC1) of time series encoding the dynamics of the
system in question''®?%; higher values of ACI and variance are asso-
ciated with lower resilience (see Methods). Under some assumptions,
it can indeed be shown analytically that the variance and AC1 are
related to the recovery rate and hence the resilience of the system in
question; an empirical confirmation of these relationships—and
thereby an empirical justification for the use of variance and AC1 as
proxies for vegetation resilience—has recently been provided using
global-scale satellite data*. Based on the results from the latter study,
we will in the following focus on three different ways of estimating
vegetation resilience. The direct empirical recovery rate obtained from
fitting an exponential recovery model to vegetation time series after
experiencing abrupt perturbations will be compared to the theoretical
recovery rate estimates inferred from both variance and ACl1 (see
Methods). The empirical recovery rate is important because it gives a
directly measurable resilience metric for those locations where per-
turbations occurred; on the other hand, the variance- and ACl-based
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Fig. 1| Spatial distribution of data used in this study. Long-term median

A vegetation optical depth (VOD, 1987-2017,%) and B normalized difference
vegetation index (GIMMS3g NDVI, 1981-2015,%*). C IGBP Land-cover classes*®,
masked for anthropogenic influence (Methods). D Global aridity index, adapted
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Normalized Inter-Annual Precipitation Variability (1981-2020)

from WorldCLIM*. Note that higher values correspond to drier conditions. E Walsh-
Lawler Seasonality Index** and F normalized inter-annual precipitation variability
(Methods) based on ERAS data (monthly, 1981-2021°%). See Supplementary Fig. S1
for a similar map of MODIS NDVI.

metrics are important because they yield spatially homogeneous
resilience metrics that also cover locations where no empirical recov-
ery rate can be fitted reliably. Moreover, although not done here,
variance-and ACl-based estimates in principle allow changes in resi-
lience over time to be quantified.

Verbesselt et al.' showed that in the tropics, the ACI of vegetation
systems has an inverse relationship with mean annual precipitation
(MAP), suggesting that vegetation in wetter regions is more resilient.
Here, we rely on both empirical and theoretical resilience metrics to
investigate the effects of water availability and variability—quantified
over multiple time scales from seasonal, annual, to multi-annual—on
vegetation resilience globally, i.e., for all climate zones and land-
cover types.

To investigate global vegetation resilience patterns, we use and
compare three different vegetation datasets: long-term satellite-
derived vegetation optical depth (VOD) (Fig. 1A)*, as well as normal-
ized difference vegetation index (NDVI) data from GIMMS3g (Fig. 1B**)

and MODIS MOD13” (see Methods for details on each dataset). Note
that the first two vegetation datasets rely upon merging data from
different satellite sensors, whereas the latter stems from continuous
measurements by a single sensor; potential impacts of the merging of
data from different sensors on our results can thereby be controlled.
Combining data from different satellite sensors can lead to biases in
estimates of the temporal changes of resilience indicators due to
induced time-varying changes in the higher-order statistics of the
resulting times series®. Here, however, we only compute resilience
indicators over the full available time spans of each dataset; in this
case, a changing satellite composition does not induce systematic
biases in our resilience estimates (Methods).

We analyze the dependence of resilience on aridity (Fig. 1D,
Methods)—an estimate of water surplus or deficit—and both intra- and
inter-annual precipitation variability (Fig. 1E, F, Methods) and also
investigate differences in these relationships for varying land-cover
types. Importantly, we consider the relationships between the
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Fig. 2 | Comparison of aridity and intra- and inter-annual precipitation varia-
bility in their relative importance for vegetation resilience at the global scale.
A, B Vegetation optical depth (VOD), C, D GIMMS3g normalized difference vege-
tation index (NDVI), and E, F MODIS NDVI. Aridity compared to intra-annual (left
column) and inter-annual (right column) precipitation variability. Hexbins colored
by recovery rate computed from ACI1 (minimum five points per bin). Values of the

Aridity (PET/P)

recovery rate A closer to zero imply lower resilience. Transition from water surplus
(aridity <1) to deficit marked with dashed vertical line; there is a sharp increase in
resilience as water availability increases. Higher inter-annual precipitation varia-
bility (right column) consistently leads to lower resilience; intra-annual precipita-
tion variability, i.e., seasonality, has a more varied impact. See Supplementary
Fig. S3 for a direct comparison of intra- and inter-annual precipitation variability.

different climatic predictors and vegetation resilience separately for
each land-cover type; this assures that differences in resilience indi-
cators caused by different land-cover types are not mistaken for dif-
ferences in their actual resilience. Our analysis extends the discussion
of vegetation resilience and its dependence on long-term precipitation
characteristics to the global scale and uncovers succinct and variable
relationships between water availability and both theoretical and
recently introduced empirical® measures of vegetation resilience.

Results

Vegetation structure and productivity are tightly coupled to both
short- and long-term water availability”. Differences in annual pre-
cipitation sums have been proposed as a control on vegetation resi-
lience; e.g., it has been shown that the AC1 computed from the NDVIin
tropical rainforests is negatively correlated with MAP!, suggesting
lower resilience in drier places. However, the relationship between
ACl-based resilience estimates and MAP has not been documented
globally. Furthermore, vegetation growth and health does not only rely
on the amount of water available, but also on the consistency of that
water availability’®*°—even intermittent periods of water deficit will
negatively impact plant functioning and growth.

We consider three ways of globally measuring water availability
and variability as drivers of vegetation resilience, encompassing mul-
tiple overlapping time scales: (1) the Aridity Index (Fig. 1D)*, which
provides a measure of long-term MAP relative to potential evapo-
transpiration; we consider it more appropriate to consider aridity
rather than, e.g., MAP, in order to make the results comparable across
different climate and vegetation zones. In addition, we consider two
measures of intra- and inter-annual rainfall variability: (2) the Walsh-
Lawler seasonality index*?, which measures how precipitation is dis-
tributed throughout the year—from low (precipitation is similar

between months) to high (annual precipitation is concentrated in a
short period) (Fig. 1E); and (3) the year-to-year variability of rainfall,
which we define as the normalized standard deviation of annual pre-
cipitation (AP) sums. As total MAP and the standard deviation of AP are
—as should be expected—highly correlated (Supplementary Fig. S2),
we normalize the standard deviation of AP by the MAP pixelwise,
giving a suitable normalized inter-annual precipitation variability
estimate (Fig. 1F). Further, we consider a reanalysis-based soil moisture
estimate as an additional proxy for plant-available water®.

To measure resilience, we rely here on a direct empirical quanti-
fication of resilience in terms of the recovery rate from large
perturbations®, as well as two different theory-based estimates of the
restoring rate A, derived from the AC1 and from the variance*. We note
that we define the recovery rate A as a negative number; values closer
to zero imply slower recovery and hence lower resilience; corre-
spondingly, higher AC1 and variance values imply lower resilience (see
Methods).

Joint effects of water availability and precipitation variability on
vegetation resilience globally

To assess the first-order relationships between vegetation resilience
and water availability, we first consider all land-cover types and climate
zones together (Fig. 2). For all three vegetation indices (VOD and two
NDVI datasets), we find that the highest recovery rates are generally
found in areas of water surplus (Fig. 2, left of dashed line).

The relationship to shorter-term precipitation variability is less
clear, however. Intra-annual precipitation variability does not scale
cleanly with recovery rate (Fig. 2, left column); there exist highly resi-
lient areas which receive precipitation only during short time periods.
These areas are found exclusively in grass and shrublands globally and
are concentrated in the African Sahel, where plants are adapted to
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highly seasonal precipitation. In contrast, high inter-annual precipita-
tion variability (Fig. 2, right column) leads to almost universally lower
resilience, indicating that more consistent precipitation year-on-year
encourages more resilient vegetation. At the global scale, we thus infer
a clear increase in vegetation resilience with increasing water avail-
ability and with decreasing inter-annual precipitation variability
(Fig. 2B, D, F); the relationship between resilience and precipitation
seasonality is less concise (Fig. 2A, C, E).

Long-term water availability

The revealed concise relationship between aridity and resilience
(Fig. 2) is broadly consistent across most land-cover types (Fig. 3).
Resilience tends to increase non-linearly with increasing water avail-
ability; some land covers show distinctly stronger aridity/AC1-derived A
relationships as landscapes transition from water-balance (aridity - 1)
to water deficit (aridity >1). For example, Savannas (olive line, Fig. 3)
show a sharp transition at aridity -~ 1 for MODIS NDVI (the linear slope
for aridity <1 vs empirical A (AC1 A) is 0.26 (0.18), compared to 0.13
(0.05) for aridity >1). For both VOD and NDVI, vegetation resilience
changes in many land-cover types plateau above aridity >2, which
roughly demarcates the transition into semi-arid environments®. In
these regions, grass and savanna landscapes dominate (Fig. 3); it is
likely that plant adaptations to water limitations* account for some of
this asymptotic behavior.

The relationships between aridity and resilience are overall con-
sistent for the NDVI and VOD data, but not identical. While it is not
possible to identify a single cause across all ecosystems, differences in
the attributes measured by NDVI and VOD, respectively—and the
intrinsic internal variability of each dataset—likely drive the hetero-
geneity. It should be noted that NDVI reflects vegetation chlorophyll
content or photosynthetic activity, whereas VOD reflects vegetation
density and productivity. While some differences regarding the esti-
mated resilience should therefore be expected, the overall similarity
between the results obtained for the three data sources provides a
strong argument that the inferred reduction of resilience with higher
aridity across land-cover types is robust. In particular, the fact that we
obtain similar results for the single-sensor MODIS NDVI as for the other
two, mixed-sensor datasets, implies that the merging of signals for the
latter data products do not affect our results.

Intra- and inter-annual precipitation variability

While there is a clear demarcation between the resilience of vegetation
in water-surplus and water-deficit regions at the global scale (Fig. 2)
and when separated by land cover (Fig. 3), the role of intra-annual
water variability is not as clear (Fig. 4). We find that resilience is broadly
similar across precipitation seasonalities; however, Kendall-Tau coef-
ficients remain generally positive, implying decreasing resilience with
more seasonal precipitation. Relationships vary across land-cover
types; grass-dominated landscapes in particular (woody savanna,
savanna, grasslands) have regions of both positive and negative rela-
tionships between resilience and seasonality. We posit this is due to the
wide distribution of these land-cover zones across the globe (Fig. 1C)—
woody savannas are dominant in both central Africa and at high
northern latitudes in Canada and Siberia.

Vegetation is not only sensitive to the distribution of precipitation
within the year, but also to its distribution between years***. Across all
three datasets and measures of resilience, we find that higher relative
inter-annual variability of precipitation leads to less resilient vegeta-
tion, particularly in grass-dominated landscapes (Fig. 5, Supplemen-
tary Fig. S8). We further find that inter-annual precipitation variability
(Fig. 5) is a relatively stronger control on resilience than intra-annual
precipitation distribution (Fig. 4). We posit that this difference is due
to the characteristic time scales at which vegetation responds to water
deficits, with longer (inter-annual) time scales being relatively harder
to adapt to. In regions with highly seasonal precipitation, vegetated

ecosystems have adapted to annual and short-term water deficits with
a variety of methods (for example, phenotypic plasticity, drought
pruning)**%¥_ In contrast, inter-annual and longer-term water deficits
can cause large shifts in vegetation (and ecosystem) species mixes®. It
is also important to note that inter-annual precipitation variability is
not static; recent research has found spatially heterogeneous changes
in water deficits (i.e., drought events)’*>*%. Our results indicate that
increasingly frequent and extreme water deficits—especially those at
the multi-annual scale—will impact the resilience of vegetation eco-
systems worldwide. Such events will have a relatively larger impact
than intra-annual precipitation variability on vegetation resilience as
ecosystems lose the ability to recover to their previous state.

It should be noted that we do not see a decrease in vegetation
resilience when considering the inter-annual precipitation variability
without normalizing by the total annual precipitation sums (Supple-
mentary Fig. S10); higher absolute precipitation variability estimates
correspond to higher vegetation resilience. This positive correlation is
driven primarily by the absolute MAP itself; the standard deviation of
annual precipitation sums is higher in regions that have overall higher
MAP, since it cannot be negative. If we limit our analysis to only a small
precipitation range around the median (40-60th percentile of annual
precipitation values by land cover) to account for this in an alternative
way to normalizing, the pattern is the same as for the normalized inter-
annual precipitation variability. Namely, we find lower resilience for
higher precipitation variability (Supplementary Fig. S11), even if we do
not normalize inter-annual precipitation variability by MAP (Supple-
mentary Fig. S12).

Discussion

Water availability plays a primary role in controlling the occurrence,
type, and health of vegetation globally. Our work extends that of
previous research’, and documents a global relationship of less resi-
lient vegetation with lower water availability (Fig. 1), lower MAP (Sup-
plementary Fig. S4), and lower soil moisture (Supplementary Fig. S5).
This relationship is consistent across land-cover types, with many land
covers showing the greatest changes in vegetation resilience as aridity
approaches 1 (i.e., a balance between precipitation and potential eva-
potranspiration) (Figs. 2, 3).

The total yearly amount of precipitation, however, is not the only
control on the health and resilience of vegetation. We find a globally
consistent pattern—particularly in grass-dominated regions—of
decreasing vegetation resilience with higher inter-annual precipitation
variability (Fig. 5). While more work is required to fully constrain the
mechanisms behind this response, we posit that vegetation reliant on
surface water and direct precipitation is more strongly impacted
during low-precipitation periods than tree-dominated areas with
deeper root systems and access to longer-term water storage (e.g.,
lakes, rivers, and shallow groundwater). It has previously been shown
that vegetation productivity is tightly coupled to antecedent pre-
cipitation in arid to semi-arid environments®* and that regions with
higher woody biomass are relatively buffered against short-term water
deficits®. Our results confirm these observations at the global scale,
and establish an additional link between precipitation variability and
vegetation resilience.

An important caveat is that we do not examine long-term changes
in precipitation or climatic conditions. All else being equal, changes in
precipitation will engender a change in vegetation, which generally will
be expressed in our resilience metrics. We aim in this study to map
long-term global patterns; our analysis framework here does not allow
us to disentangle whether vegetation resilience has changed®, and to
what degree those changes are driven by precipitation changes.

We further note that differences in resilience between land-cover
types likely reflect mainly intrinsic, physiological differences in vege-
tation—with all other drivers fixed, vegetation will grow more quickly
in a rainforest than in a savanna. The measured differences also
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depend on how well satellite data products capture fine-scale changes
in vegetation of different densities and structures. Our discussion
hence focuses on the relationship between vegetation resilience and
water availability within single land-cover classes. Despite this control,
however, there remain large differences in vegetation within the same
broad land-cover classes at the global scale. Our results (Figs. 2-5) thus
include an array of different vegetation mixes and responses to

precipitation variability; further and smaller-scale work would be
required to constrain how different plant responses to precipitation
variability impact their resilience to changing environmental
conditions.

Despite considerable spatial heterogeneity*’, a large body of work
points to increasing precipitation variability in the coming decades in
response to anthropogenic climate change’. The global tendency is for
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Fig. 3 | Vegetation resilience as a function of aridity* at the global scale,
separated by land-cover type*. Vegetation resilience A estimated empirically
(A, B) and via the ACI (C, D) for vegetation optical depth (VOD, left column) and
MODIS NDVI (right column). Binned medians shown as solid dots (Kendall-Tau (KT)
p <0.05) and transparent arrows (KT p>0.05), with 25-75th percentiles of each bin
shown as connected vertical lines capped with hatches. Land covers with less than
1000 points or less than 10 bins of at least 50 members are omitted. E KT coeffi-
cients (aridity vs ACl-derived A, panels C, D) for each land-cover type. Significant
(p<0.05) KTs shown as a black triangle (KT of median binned data, cf. C, D),

insignificant relationships (p > 0.05) shown as a black circle. Additional box-plot of
1000 randomly sampled surrogates (box edges: 25-75th percentiles, black line:
median) shown with red for MODIS NDVI, orange for AVHRR NDVI*, and blue for
VOD. KT of medians consistently higher than box plots due to random sampling
(see Methods). Both VOD and NDVI exhibit lower resilience—i.e., A closer to zero,
see Methods—with lower water availability across the majority of land-cover types.
Equivalent figure for mean annual precipitation (MAP) shown as Supplementary
Fig. S4, and for mean annual soil moisture shown as Supplementary Fig. S5. Figure
for aridity showing all three instruments and metrics as Supplementary Fig. Sé.

wetter regions to receive more water and drier regions to become
drier, as well as for increases in both wet and dry extremes’*>*°, Based
on our research, it is clear that changes in both precipitation volume
and variability will have a measurable and spatially heterogeneous
impact on global vegetation (Figs. 2-5). Low- and variable-
precipitation regions will face comparably higher burdens in
response to increasing precipitation variability in a warming world; this
shift has strong implications for future ecosystem functioning in vast
parts of the sub- and extra-tropics. Resilience loss, and eventually
potential desertification of grass- and shrublands, could trigger a chain
of destabilizing feedbacks; for example, vegetation resilience loss and
ecosystem transitions could reduce water storage capabilities at con-
tinental scales”, affect rainfall patterns due to atmosphere-vegetation
interactions®, and accelerate greenhouse gas emissions™*,

Our analysis rests on both empirical recovery rates from per-
turbations - direct estimates of vegetation resilience according to
the common definition—and two theory-based estimates (from AC1
and variance) that are hence more indirect. Although our results are
globally coherent, we therefore note that especially our two theory-
based resilience estimates may, in principle, be influenced by local-
scale factors. For example, the varying physiological characteristics
of different vegetation types contained within each time series will
present a mixed signal in many regions. We have minimized this
influence by performing our analyses separately for different land
covers, and by limiting our work to natural land covers. However, it is
possible that some regions retain mixed signals (cf. Fig. 4), which
could influence local-scale resilience estimates. At the global scale,
however, we find overall consistent behavior across climate and
vegetation zones. Using VOD at the global scale, we have previously
empirically confirmed the theoretical relationships between AC1 and
variance on the one hand, and empirically inferred recovery rates on
the other hand, suggesting that the AC1 and variance can indeed
serve as resilience metrics*. The consistency between our results for
the empirical recovery rates and the theory-based estimates across
land-cover types adds strong further independent evidence to this. In
particular, the fact that we find very similar results for the empirical
recovery rates and the theory-based estimates for the MODIS NDVI
data show that this confirmation is not impacted by merging data
from different sensors.

We have presented evidence based on both empirically esti-
mated recovery rates and different theoretical—yet empirically con-
firmed—resilience metrics for concise global relationships between
vegetation resilience and water availability, modulated by land-cover
type. We find overall greater resilience in regions with higher water
availability across climate zones and vegetation types, based on an
aridity index. However, our results also suggest that resilience con-
sistently declines with increasing precipitation variability especially
on inter-annual time scales, and particularly in grass-dominated
landscapes. Simulations from the sixth phase of the Climate Model
Intercomparison Project suggest increased precipitation variability
under global warming scenarios in the coming decades. Based on our
empirical results we hence infer an increasing risk of vegetation
degradation and eventually desertification—especially in regions with
savanna, grass- and shrublands—in response to anthropogenic cli-
mate change.

Methods

Vegetation and land-cover data

To monitor vegetation at the global scale, we use three datasets: (1)
vegetation optical depth (VOD, 0.25°, Ku-Band, daily 1987-2017%)
(Fig. 1A), (2) AVHRR GIMMSv3g normalized difference vegetation
index (NDVI, 1/12°, bi-weekly 1981-2015**) (Fig. 1B), and (3) MODIS
MOD13 NDVI at 0.05° (16-day, 2000-2021%). We correct for spurious
values in the NDVI data (e.g., cloud contamination) using the method
of Chen et al.**>. We resample the VOD data using bi-weekly medians to
agree with the NDVI data time sampling.

For all three vegetation datasets, we remove seasonality and long-
term trends using seasonal trend decomposition by Loess*** based on
the proposed optimal parameters listed in Cleveland et al.** (code
available on Zenodo®). That is, we use a period of 24 (bi-monthly, 1
year), 47 for the trend smoother (just under 2 years) and 25 for low-
pass (just over 1 year). We only use the STL residual—the de-seasoned
and de-trended NDVI and VOD time series—in our analysis.

To contextualize our understanding of vegetation resilience, we
use MODIS MCD12Q1 land cover*¢ (Fig. 1C) as well as a global average
aridity index based on WorldCLIM data™ (Fig. 1D). We exclude from our
analysis anthropogenic and non-vegetated landscapes (e.g., perma-
nent snow and ice, desert, urban), as well as any land covers which have
changed (e.g., forest to grassland) during the period 2001-2020.

Precipitation data and variability metrics

To measure precipitation at the global scale, we rely upon ERAS data
(-30 km, monthly, 1981-2021)**. We process global-scale precipitation
metrics using the Google Earth Engine*” platform. We further use the
sum of soil moisture from the surface down to 28 cm of depth (first
two layers of the ECMWF Integrated Forecasting System soil moisture
estimates) to quantify soil moisture means and inter-annual
variability®>.

It is well-documented that vegetation resilience is responsive to
the MAP of certain regions'. However, the role of precipitation varia-
bility in controlling vegetation resilience has not been well-studied.
Here we examine precipitation variability in terms of both intra- and
inter-annual patterns. Intra-annual precipitation variability is deter-
mined in terms of the Walsh-Lawler Seasonality index* (Fig. 1D), cal-
culated using monthly data from ERAS®.

Partly due to the fact that precipitation is non-negative, simple
inter-annual variability metrics such as the standard deviation of
annual precipitation sums are biased by the absolute precipitation
sums; higher precipitation regions have a higher possible range of
variability. To limit the influence of MAP, we hence investigate the
standard deviation of annual precipitation sums normalized by the
MAP, over the period 1981-2021, based on ERA5 data® (Fig. 1F). We
motivate our normalization by MAP with the strong linear rela-
tionship between MAP and MAP standard deviation (Supplementary
Fig. S2). We further confirm our discovered relationships (Fig. 5)
using only those regions where MAP was between the 40 and 60th
percentile of MAP for a given land cover (Supplementary
Figs. S11,S12). This serves as an additional check that our normal-
ization of MAP standard deviation by MAP does not bias the inferred
relationship between vegetation resilience and precipitation varia-
bility. Similarly, we generate a normalized inter-annual soil moisture
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variability by normalizing year-on-year soil moisture standard
deviation (Supplementary Fig. S8) by long-term mean soil moisture
(Supplementary Fig. S5).

Empirical resilience estimation
Resilience is defined as the ability of a system to recover from per-
turbations, and can be quantified empirically by the speed of recovery

to the previous state'®”. To measure resilience on the global scale, we
employ a recently introduced methodology* which we will briefly
summarize in the following.

We first identify sharp transitions in the vegetation time series
using an 18-point (9 month) moving window to define local slopes
throughout the time series*s. We then identify slopes above the 99th
percentile, and define connected regions as individual perturbations.
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Fig. 4 | Vegetation resilience as a function of precipitation seasonality in terms
of the Walsh-Lawler seasonality index*> (Methods), separated by land-cover
type*S. Vegetation resilience A estimated empirically (A, B) and via the AC1 (C, D)
for vegetation optical depth (VOD, left column) and MODIS NDVI (right column).
Binned medians shown as solid dots (Kendall-Tau (KT) p < 0.05) and transparent
arrows (KT p>0.05), with 25-75th percentiles of each bin shown as connected
vertical lines capped with hatches. Land covers with less than 1000 points or less
than 10 bins of at least 50 members are omitted. E KT coefficients (aridity vs AC1-
derived A, panels C, D) for each land-cover type. Significant (p < 0.05) KTs shown as
a black triangle (KT of median binned data, cf. C, D), insignificant relationships

(p>0.05) shown as a black circle. Additional box-plot of 1000 randomly sampled
surrogates (box edges: 25-75th percentiles, black line: median) shown with red for
MODIS NDVI, orange for AVHRR NDVI*, and blue for VOD. KT of medians con-
sistently higher than box plots due to random sampling (see Methods). Both VOD
and NDVI exhibit lower resilience—i.e. A closer to zero, see Methods—with lower
water availability across the majority of land-cover types. While for all three con-
sidered vegetation datasets empirical recovery rates generally decrease with more
concentrated precipitation, the relationship between Walsh-Lawler seasonality and
recovery rates is less steep than for aridity (Fig. 3). Figure showing all three
instruments and metrics as Supplementary Fig. S7.

The highest peak (largest instantaneous slope) within each connected
region is then labeled as an individual disturbance.

The employed approach does not delineate every rapid transition
in a time series due to our reliance on percentiles; our dataset will be
inherently biased towards the largest transitions. Furthermore, the
same transitions are not guaranteed to be captured for both NDVI and
VOD data in each location, as the percentiles will naturally vary
between the datasets. Finally, our method will in some cases produce
false positives, especially in cases where a given time series does not
have any significant rapid transitions. To limit the influence of false
positives on our results, we discard any perturbations where the
time series does not drop significantly, and where the period
before and after a given transition does not pass a two-sample
Kolmogorov-Smirnov test*.

Finally, using our global set of time-series transitions, we can
identify each local vegetation (NDVI or VOD) minima, and use the five
following years of data to fit an exponential function to the residual
time series, assuming that the recovery after a perturbation to a
vegetation state x, follows approximately the equation

x()=xy€e" )

where x(t) denotes the vegetation state at time ¢ after the perturbation.
Negative r indicates that the vegetation system will return to the ori-
ginal stable state at rate |r|. For positive r, the initial perturbation would
be amplified, suggesting a non-resilient vegetation state. Our empirical
recovery rates are defined as the fitted exponent r, obtained for each
detected transition in the NDVI and VOD residual time series. We finally
use the coefficient of determination R? to remove instances where the
fitted exponential poorly matches the underlying data®.

For the empirical estimate of the restoring rate obtained from
fitting an exponential to the recovery after an abrupt negative devia-
tion of VOD or NDVI, abrupt changes in the mean state induced by
changing sensors rather than an actual vegetation shift may impact the
results. However, all datasets used here are tightly cross-calibrated to
eliminate mean-shifts when new instruments are introduced”*. It is
therefore unlikely that changes in the instrumentation of the various
datasets unduly influence our empirical estimates of A.

Dynamical system metrics of resilience

The lag-one autocorrelation (AC1) has previously been proposed to
measure the stability of real-world dynamical systems in general, and
the resilience of vegetation systems in particular*'**"*°, Based on the
concept of critical slowing down, the ACI has, together with the var-
iance, also been suggested as an early-warning indicator for forth-
coming critical transitions®**’. Mathematically, the suitability of the
variance and ACI as resilience measures and early-warning indicators
can be motivated as follows**>*, First, linearize the system around a
given stable state x":

dx=Axdt+odW )

forx :=x — x’, assuming a Wiener Process W with standard deviation o.
The dynamics are stable for A<0 and unstable otherwise. Upon

discretizing the resulting Ornstein-Uhlenbeck process into time steps
of width At, the variance and AC1 of the resulting order-one
autoregressive process are then related to the restoring rate A via™:

2= T 3
(x%) 2 (3

for the variance, and
a(n) =™ “4)

for the ACI1. Hence, the closer A is to zero, the larger the AC1 and
variance, corresponding to lower stability. Note that theory> suggests
that the recovery rate r is equal to the restoring rate A. An empirical
global confirmation for this relationship for has recently been
demonstrated based on both NDVI and VOD data*. We compare the
dependence of the recovery rate r and two different theoretical esti-
mates of the restoring rate A—obtained via inverting the above equa-
tions for the variance and ACl1—with respect to their dependence on
water availability and its variability.

It is important to note that combining data from different sensors
with varying signal-to-noise ratios (e.g., VOD, AVHRR NDVI) can bias
estimates of temporal changes in resilience indicators because the
higher-order statistics of the resulting time series are not
homogeneous*?. In the present work, however, we do not investigate
temporal trends via estimating resilience indicators in sliding windows
(as in refs. **), but rather estimate resilience indicators for the full
available time series. This excludes the possibility of systematic biases
in our ACI- and variance-based estimates of the restoring rate A. In
principle, the combination of different sensors might lead to larger
uncertainties in the estimates of A: combining different sensor data
leads to temporally varying (yet spatially homogeneous) effects on the
ACl1 and variance and may therefore lead to a wider spread—but not a
bias—in the resulting estimates of A.

Binning and significance testing

The direction and magnitude of our discovered relationships (e.g.,
Figs. 3-5, Supplementary Figs. S4-S12) will be to some degree con-
trolled by the choice of bin sizes. We tested three bin sizes for each
different variable (Supplementary Figs. S13,S14). We also imposed the
conditions that there were at least 50 measurements in each bin to
form a proper median, and that we only report those relationships
which cover ten or more bins.

To better constrain the relationship between each driving vari-
able and resilience, we use the non-parametric Kendall-Tau test™.
Kendall-Tau statistics are calculated over each set of binned medians,
as well as using a Monte-Carlo approach. Over 1000 iterations, we
choose one random point from each bin and recalculate the Kendall-
Tau statistics. These 1000 surrogates are displayed as box plots in
Figs. 3-5. Note that the Kendall-Tau value of the median line will
almost always be larger than the median of the 1000 Kendall-Tau
values resulting from the surrogates due to the smoothing inherent in
taking binned medians. That is, the binned medians represent a
smooth and almost monotonic line with fewer jumps, while the
1000 surrogates will have strong fluctuations from one bin to the
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next, leading to overall lower Kendall-Tau values. The fraction of
Kendall-Tau statistics which share a sign with the Kendall-Tau of the
median line is also reported on Supplementary Figs. S4-S14.

We find that our Kendall-Tau statistics are robust against changing
bin sizes (Supplementary Figs. S13,514), where the direction of trends
does not change from those reported in Fig. 3. The magnitude of the
Kendall-Tau statistic—as well as p-values—shift with different bin sizes,

with smaller bin sizes typically resulting in more robust trends.
Changes in bin size do not have a strong impact upon our data inter-
pretations or conclusions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Fig. 5 | Vegetation resilience as a function of normalized inter-annual pre-
cipitation variability (Methods), separated by land-cover type*‘. Vegetation
resilience A estimated empirically (A, B) and via the AC1 (C, D) for vegetation optical
depth (VOD, left column) and MODIS NDVI (right column). Binned medians shown
as solid dots (Kendall-Tau (KT) p < 0.05) and transparent arrows (KT p > 0.05), with
25-75th percentiles of each bin shown as connected vertical lines capped with
hatches. Land covers with less than 1000 points or less than 10 bins of at least 50
members are omitted. E KT coefficients (aridity vs ACl-derived A, panels C, D) for
each land-cover type. Significant (p < 0.05) KTs shown as a black triangle (KT of

median binned data, cf. C, D), insignificant relationships (p>0.05) shown as a black
circle. Additional box-plot of 1000 randomly sampled surrogates (box edges:
25-75th percentiles, black line: median) shown with red for MODIS NDVI, orange
for AVHRR NDVI**, and blue for VOD. KT of medians consistently higher than box
plots due to random sampling (see Methods). For both VOD and NDVI we infer
lower resilience for higher relative inter-annual precipitation variability. Equivalent
figure for normalized inter-annual soil moisture variability shown as Supplemen-
tary Fig. S8. Figure showing all three instruments and metrics as Supplemen-

tary Fig. S9.

Data availability

The Kendall-Tau statistics generated in this study have been deposited
on Zenodo at 10.5281/zenodo.7436669*. The raw environmental and
satellite data used in this study are publicly available”**"*¢, Direct
links to the datasets can be found at: GIMMS NDVI: https://www.cen.
uni-hamburg.de/en/icdc/data/land/gimms-ndvi3g.html, VOD: https://
zenodo.org/record/2575599, MODIS Land Cover: https://Ipdaac.usgs.
gov/products/mcd12qlv006/, MODIS NDVI: https://Ipdaac.usgs.gov/
products/mod13c1v006/, WorldCLIM Aridity: https://figshare.com/
articles/dataset/Global_Aridity_Index_and_Potential_Evapotranspi-
ration ETO_Climate _Database v2/7504448/4, ERAS Climate Data:
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/eras.

Code availability

The code used for de-seasoning the data via STL, detecting abrupt
transitions, and estimating resilience both empirically and via time-
series metrics (ACl1, Variance) can be found on Zenodo: https://doi.
org/10.5281/zenodo.7436669%. Code is written in Python (3.9.13).
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