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Reconstructing clonal tree for
phylo-phenotypic characterization of
cancer using single-cell transcriptomics

Seong-Hwan Jun 1,8, Hosein Toosi1, Jeff Mold2, Camilla Engblom 2,
Xinsong Chen 3, Ciara O’Flanagan4, Michael Hagemann-Jensen 2,
Rickard Sandberg 2, Samuel Aparicio 4,5, Johan Hartman 3,6,
Andrew Roth 4,5,7 & Jens Lagergren 1

Functional characterization of the cancer clones can shed light on the evolu-
tionary mechanisms driving cancer’s proliferation and relapse mechanisms.
Single-cell RNA sequencing data provide grounds for understanding the
functional state of cancer as a whole; however, much research remains to
identify and reconstruct clonal relationships toward characterizing the chan-
ges in functions of individual clones. We present PhylEx that integrates bulk
genomics data with co-occurrences of mutations from single-cell RNA
sequencing data to reconstruct high-fidelity clonal trees. We evaluate PhylEx
on synthetic and well-characterized high-grade serous ovarian cancer cell line
datasets. PhylEx outperforms the state-of-the-art methods both when com-
paring capacity for clonal tree reconstruction and for identifying clones. We
analyze high-grade serous ovarian cancer and breast cancer data to show that
PhylEx exploits clonal expression profiles beyond what is possible with
expression-based clusteringmethods and clear the way for accurate inference
of clonal trees and robust phylo-phenotypic analysis of cancer.

Cancer is an evolutionary process with ongoing mutational processes
coupled with selection and drift leading to genetic diversity within the
tumor cell populations. Though each cell is fundamentally distinct in
cancer, there typically exist groups of cells that are genomically nearly
identical, so-called clonal populations1. The evolutionary relationship
between clones can be represented by a phylogenetic tree or clonal
tree. Inferring clonal population structure, genotypes, and trees from
sequence data has been an active area of research in the past decade
with implications for cancer treatment2–4. Early approaches used bulk
sequence data coupled with computational deconvolution to address
the admixed nature of bulk data5–9. The limitations of clonal analysis

using only the bulk method is well documented in the literature (e.g.,
refs. 10,11). Recent advances in single-cell DNA sequencing (scDNA-seq)
technologies have prompted the development of approaches better
tailored to these data types12–14 as well as methods that integrate
scDNA-seq data with the bulk data for joint analysis for improved
accuracy15,16.

Though the aforementioned methods can resolve clonal popula-
tion structure, they cannot identify functional differences that result
from the genomic heterogeneity. The increasing availability of single-
cell RNA sequencing (scRNA-seq) data provides an approach to par-
tially address this problem. Recent methods that seek to assign gene
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expression profiles to clones have treated the problem as a two-step
procedure whereby the clonal population structure is identified and
then scRNA data is aligned to clonal genotypes17,18. However, the two-
step approach does not fully utilize the available data as information in
the scRNAdata cannotbeused to improve clonal population structure.
Hence, there is an unmet need for an integrative approach to simul-
taneously identify clonal population structure and the associated
clonal genotypes from bulk DNA- and scRNA-seq data towards iden-
tifying intra-tumor heterogeneity in clonal gene expression profiles.

In this work, we introduce a Bayesian probabilistic method called
PhylEx (Phylo Expression) that integrates bulk DNA- and scRNA-seq
data to meet this need. PhylEx leverages information about the single-
nucleotide variants (SNVs) observed within a single cell to identify
clones, improve clonal tree reconstruction, and facilitate highly accu-
rate mapping of RNA expression profiles to clones. Thus, PhylEx
unlocks the potential for phylo-phenotypic analysis, to discover and
characterize tumor’s progression and relapsemechanisms at gene and
functional (pathway) levels of individual clones in relation to clonal
genotypes, within an evolutionary context. We systematically bench-
mark PhylEx using synthetic data and compare it to existing state-of-
the-art clone reconstruction methods. We then evaluate the perfor-
mance of PhylEx on high-grade serous ovarian cancer (HGSOC) cell
lines, which were thoroughly investigated using the direct library
preparation (DLP) scDNA approach in ref. 19. The experimental results

demonstrate that integration of bulk DNA and scRNA allows for the
identification of clonal population structure with high fidelity. Finally,
we apply PhylEx to breast cancer data along with HGSOC cell line to
characterize patterns of cancer progression using the clonal expres-
sion profiles.

Results
Method overview
PhylEx is a Bayesian statistical method that simultaneously recon-
structs a clonal tree and assigns single-cells, as well as genotypes, to
the clones for a tumor characterized by bulk DNA-seq and scRNA-seq
data (Fig. 1a). Standard bulk data processing is performed, including
variant and copy number calls to identify loci with SNVs and their copy
number profiles. The bulk data consists of the number of reads map-
ping to the variant allele and the total number of reads mapping to
each locus. Similarly, standard scRNA-seq data processing is applied to
align andmap the reads for each cell, yielding data that consists of the
total depth and the number of reads mapping to the variant allele for
each locus (“Methods” section).

The underlying statistical model is based on the tree-structured
stick breaking (TSSB) process, a flexible prior distribution over the
clonal tree structure20, and an infinite site model that define a dis-
tribution over clonal genotypes. The model has an observational
component for the read counts from bulk DNA-seq and scRNA-seq

Fig. 1 | Overview of PhylEx. a Schematic diagram describing the bulk DNA-seq and
scRNA-seq data input. The output of PhylEx includes the tree and assignment of
SNVs and cells to clones. b The cherry shaped tree used in the illustrative example
for identifying branching structure from scRNA-seq. The true values of the cellular
prevalences are indicated for each clone. c Inferred tree and cellular prevalences
from integrated analysis of bulk DNA-seq and scRNA-seq. d Inferred tree and

cellular prevalences using bulk DNA-seq. e The heatmap of the variant read counts
of single-cells across loci and f. the heatmapof the variant readcounts of single cells
after co-clustering of cells and SNVs using PhylEx. All the cells share common set of
ancestral SNVs and we can see two clusters of cells based on their clonal mem-
bership. Source data for e, f are provided as a Source Data file.
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data, conditional on the clonal tree and the genotypes associated with
the clones. The observed variant read counts from the bulk data follow
a binomial distribution parameterized by the read depth and prob-
ability of success parameterized by an unobserved cellular prevalence
and an estimated clonal copy-number. The observed variant read
counts from the scRNA-seq data are modeled using a mixture of two
Beta-Binomial distributions, one for the mono-allelic and one for the
bi-allelic expression. To sufficiently model the stochasticity in the
scRNA-seq data, we have classified the biological processes that
underlie scRNA-seq data into five categories: (1) zero expression (2)
mono-allelic expression of the reference allele; (3) mono-allelic
expression of the variant allele; (4) bi-allelic expression; and (5) no
mutation and provided examples of each of the five categories in
Supplementary Fig. 7h. The zero expression arises when no readmaps
to a locus.The scRNA-seqdata is generally sparse andweexpect a large
number of zero expression (see for example, ref. 21, for a recent dis-
cussion on zeros in scRNA-seq data). The mono-allelic expressionmay
arise due to bursty expression22, where a cell may express only the
reference allele or the variant allele but not both. The bi-allelic
expression arises when both alleles are expressed. Finally, expression
of variant allele depends on the clonality of the cell. If a cell does not
harbor a mutation at a locus, then a variant will only be observed in
errorbe it at the stageof sequencing or bioinformatics processing. Our
exploratory analyses of the real sequencing data shown in Supple-
mentary Fig. 7a–g demonstrate that the scRNA-seq read counts arising
from the aforementioned stochastic processes can be sufficiently
modeled by a mixture Beta-Binomial distributions.

The inference machinery takes advantage of slice sampling to
explore the space of clonal trees23 and Metropolis-Hastings for
exploring the clone fractions6,7. PhylEx marginalizes over all possible
cell-to-clone assignments to evaluate the likelihood of the single-cell
data asmarginalization has the positive effect of removing uncertainty
in scoring the clonal tree due to latent cell-to-clone membership
variables. PhylEx generates samples from the posterior distribution
over the clonal tree as well as amaximum a posteriori (MAP) tree. The
output also includes clonal genotypes and cell-to-clone assignments.
The clone analysis conducted by PhylEx then facilitates a range of
differential expression investigations on the otherwise inaccessible
tumor clones.

Related methods
There have been several approaches that have considered integrating
single-cell and bulk sequencing data. Themethodmost closely related
to PhylEx is ddClone, which performs Bayesian inference of clonal
structure using an integrated likelihood for bulk and single-cell data15.
In contrast to our method, ddClone uses scDNA-seq data and as such,
ddClone cannot infer clonal gene expression profiles; furthermore,
ddClone does not infer a clonal tree. B-SCITE also performs integrated
analysis of bulk DNA- and scDNA-seq data but it targets mutation
trees16; a post-processing step needs to be applied to convertmutation
trees to (sub)clonal trees. As the twomethods are tailored toworkwith
scDNA-seq, they are not well suited to handle the stochasticity in
scRNA-seq data, necessitating the development of a specialized
method tailored for scRNA-seq. Namely, PhylEx is better equipped to
account for sparse nature of the scRNA-seq data due to both biological
and technical reasons and elevated false negative rates due to mono-
allelic expression (Supplementary Fig. 7h).

Also closely related to PhylEx are approaches that consider the
problem of mapping scRNA-seq data to clones. The earliest approach
we are aware of is clonealign, whichmaps the gene expression profiles
in scRNA-seq data to clonal copy number profiles17. In the original
publication, the copy number profiles were inferred from scDNA data,
though in principle they could also be inferred from bulk sequencing
data. In contrast to PhylEx, clonealign does not infer a phylogeny as it
assumes clonal tree along with clonal copy number profiles as given

and fixed throughout inference procedure. Furthermore, clonealign
requires that there is sufficient copynumber variability between clones
to uniquely correlate scRNA expression to genotypes. Thus clonealign
is not applicable to cancers without significant copy number variation.
Cardelino is another method for mapping scRNA-seq to clones; like
PhylEx, Cardelino maps scRNA data to clones using SNVs18. Because
both PhylEx and Cardelino uses the SNVs to facilitate mapping of
scRNA-seq data to clones, the two methods can easily be mistaken as
competitors. The primary goal of Cardelino is to infer the mapping of
cells to clones and a clonal configuration matrix (i.e., assignment of
SNVs to clones), given an initial clonal configuration matrix obtained
from bulk DNA-seq data. Specifically, Cardelino represents clonal
configuration by a binary matrix C∈ {0, 1}N×K, where N denotes the
number of SNVs, K denotes the number of clones and the entries
cnk∈ {0, 1} indicates presence ofmutationn = 1, ...,N in clone k = 1, ...,K.
Cardelino gains someflexibility fromapoorly constructed initial clonal
configuration matrix by re-assigning SNVS to clones; nonetheless, the
mapping of cells to clones is sensitive to the initial clonal configuration
matrix, which is noisy if inferred purely from bulk DNA-seq data as we
demonstrate in this paper. In contrast, the primary goal of PhylEx is to
infer a clonal tree to reveal an evolutionary process underlying cancer
progression. As the clonal tree yields clonal configuration matrix,
PhylEx also provides high fidelity clonal configuration matrix to facil-
itate the mapping of cells to the clones. Note that workflow presented
by Cardelino represents a two-step approach to mapping scRNA-seq
data: first step involves inferring the clonal structure using bulk DNA-
seq, followed by the second step of mapping scRNA-seq data to the
discovered clones. We show that inaccuracies from the first step pro-
pagate to the second step, resulting in an inaccurate mapping (Sup-
plementary Fig. 2) and that PhylEx alleviates this inefficiency by
integrating bulk DNA and scRNA data likelihoods to infer clonal trees.

Finally, some methods perform de novo reconstruction of clonal
configuration matrix or single-cell phylogeny from scRNA-seq data
alone. Two methods that we are aware of are Cardelino-free and
DENDRO18,24. Carlino-free appears to function similarly to Cardelino (a
detailed method description is missing in the original publication): for
a given number of clones, K, Cardelino-free reconstructs the clonal
configurationmatrix by assigning each of N SNVs and single cells to to
oneof theKpre-specified clones. This procedure does not involve bulk
data likelihood nor an initial clonal configurationmatrix inferred from
bulk DNA-seq data. The authors only recommend using Cardelino-free
when bulk data is missing as the performance of Cardelino-free is
found to be inferior to Cardelino (p. 416 of ref. 18). It is important to
note that (i) Cardelino-free serves a different use case than that of
PhylEx, and (ii) the target of inference is a clonal configuration matrix
as opposed to a clonal tree. DENDRO also differs from PhylEx in two
ways. First, it reconstructs a single cell phylogeny. Second, it uses only
scRNA-seq data (i.e., it does not involve an integrative data likelihood
for bulk DNA and scRNA data). De novo reconstruction of single-cell
phylogeny from scRNA-seq data is inherently challenging due to high
levels of sparsity and missingness. By directly targetting clonal trees
and integrating bulk DNA-seq data likelihood, PhylEx aims to alleviate
these concerns.

Integrating scRNA with bulk DNA data improves clonal tree
reconstruction
We begin with an illustrative example to test the strength of the co-
occurrence signal in single-cell data.We simulated bulk and scRNA-seq
data for 100SNVs and 20 single-cells over a cherry shaped tree (Fig. 1b)
under an evolutionary model devoid of copy-number aberrations. We
analyzed this data using PhylEx and compared it to bulk-based clonal
tree reconstruction method PhyloWGS7. Figure 1c, d show the MAP
trees from PhylEx and PhyloWGS respectively. Both methods infer the
cellular prevalences correctly, but the tree inferred by PhyloWGS is
linear as the observed bulk variant allele frequencies (VAFs) are equally
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well explained by the linear tree. In contrast, PhylEx correctly infers the
cherry shaped tree by taking advantage of the co-occurrence of
mutations in the single-cell data and performs co-clustering of the
SNVs and cells (Fig. 1e, f). This example highlights that estimating
clonal trees from bulk DNA data alone is an unidentifiable problem.

We performed a comprehensive study of simulated data on larger
trees and amodel of evolution involving copy-number changes. As the
cancer evolution can involve multifurcating events25, we simulated the
data usingmultifurcating trees as well as a binary tree (Supplementary
Section 2.1). Recall that copy-number variation obfuscate the VAFs,
which renders bulk data-based clonal tree reconstruction an under-
determined problem. We compared PhylEx to clonal tree reconstruc-
tion methods PhyloWGS and Canopy. PhyloWGS requires subclonal
copy number calls as an input; since such data is not available for
simulated data, we implemented the methodology underlying Phy-
loWGS, which we refer to as TSSB, to investigate the performance of
the PhyloWGS methodology. Canopy9 is a Bayesian clonal tree recon-
struction software that takes advantage of clonal copy-number infor-
mation. Canopy has previously been used for single-cell gene
expression analyses that require a clonal tree as input (e.g.,
Cardelino18). We used V-measure and the ancestral reconstruction
error given in Eq. (14) as evaluation metrics. We found that for both
binary and multifurcating trees, PhylEx outperformed Canopy and
PhyloWGS/TSSB (Fig. 2a, b and Supplementary Fig. 1a, b)). The per-
formance of PhylEx improves progressively with the number of cells,
as hoped. Comparing PhylEx to bulk-based clonal tree reconstruction
methods further demonstrates that scRNA-seq data can mitigate the
impact of (subclonal) copy-number changes on clonal tree recon-
struction accuracy.

We conducted additional analyses to illustrate the potential pitfall
of mapping scRNA-seq data to clones using a two stage approach. We
follow the two stage approach proposed in ref. 18 where a clonal tree is
inferred using Canopy using bulk sequencing data alone, and used as
an input to Cardelino, which we refer to as CanopyCardelino. We
inferred a clonal tree using PhylEx and inputted the inferred clones to
Cardelino and PhylEx’s own mapping algorithm, respectively referred
to as PhylExCardelino and PhylEx. Recall that mapping of cells to
clones admits calling the genotypes of each cell (i.e., the presence and
absence of SNVs in each individual cell). Hence, we compared expec-
ted loss, which roughly translates as an average number of SNVs
incorrectly predicted for each cell (defined in Eq. (16)). The experiment
was performed on simulated data from binary trees with and without
copy number evolution (Supplementary Fig. 2). The results are poor
for the two stage method – that even a sophisticated mapping algo-
rithm such as Cardelino cannot overcome poorly constructed clonal
tree. However, given a high fidelity clonal tree, PhylEx’s mapping
algorithm does well andmore importantly, the performance improves
as more cells are added. Also note from the results that Cardelino
achieves the state-of-the-art performance – this is unsurprising as
mentioned in the Related methods section, that Cardelino refines
clonal genotype configuration matrix to achieve the best possible
mapping of scRNA-seq data to clones. In contrast, PhylEx’s mapping
algorithm does not refine clonal configuration matrix. Our recom-
mendation is to use PhylEx to infer the clonal trees and hence, the
clonal configuration matrix coupled with Cardelino to map cells to
clones.

PhylEx reconstructs high fidelity clonal trees from single-region
bulk DNA-seq integrated with scRNA-seq evaluated on syn-
thetic data
Multi-region sequencing is a standard approach to improve the accu-
racy of the clonal tree reconstruction, e.g., to resolve branching3,5–7,26.
For solid tumors, spatial samples are taken as statistical replicates with
common evolutionary history but possibly with different cellular pre-
valences. However, depending on the type of tumor, spatial sampling

maynot be feasible. In particular,multi-regional sampling is difficult to
perform without prior surgical tumor removal, preventing it from
impacting pre-surgical treatment decisions. We evaluated the perfor-
mance of PhylEx on simulated data consisting of a single-region bulk
DNA-seq combined with scRNA-seq data against bulk methods sup-
plied with multi-region DNA data.

We used a multifurcating tree and simulated the bulk DNA data
with and without copy number variation. Devoid of copy number
evolution andgivenmulti-regiondata, the bulkmethods achievedhigh
accuracy (Supplementary Fig. 1c, d): for example, PhyloWGS and TSSB
achieved 0.85 in the V-measure metric on multifurcating trees.
Nevertheless, when supplied with single-cell data, PhylEx performed
better, achieving a V-measure metric upwards of 0.95 using 400 cells
(Supplementary Fig. 1e, f). With data simulated under a copy-number
evolution model, bulk clonal tree reconstruction methods struggled
even when supplied with multi-region data. On the contrary, PhylEx
improved the accuracy given only a single-region bulk DNA-seq inte-
grated with scRNA-seq data in the analysis (Fig. 2c, d). This investiga-
tion shows that PhylEx reconstructs high-quality clonal trees using
single region bulk DNA and scRNA sequencing, increasing applicability
of clonal tree reconstruction methods to various research and clinical
settings that are limited to single-region sequencing.

Investigation on synthetic data reveals that a specialized
method to integrate bulk and scRNA-seq is necessary to over-
come the limitations of existing bulk and scDNA-seq integration
methods
Next, we compared PhylEx to two methods that integrate bulk geno-
mics data with scDNA-seq data, B-SCITE and ddClone15,16, on synthetic
data. One of the challenges of using thesemethods is that they require
cell genotyping as a pre-processing step, i.e., to determine the pre-
sence or absence ofmutation for each cell at each of the identified SNV
loci. Although cell genotyping is an active field of research, it remains a
challenging problemwith the potential for high false positive (FP) and
false-negative (FN) rates, especially when applied to scRNA-seq data as
the expressionprofile is inherently sparse, bursty, with frequentmono-
allelic expression.Oneof the key features of PhylEx is that it workswith
the raw read counts and does not require cell genotyping.

We found that PhylEx outperformed ddClone and B-SCITE on
synthetic data generated from both binary and multifurcating trees,
under evolutionary models with and without copy numbers aberra-
tions (Fig. 2a, b, e, f and Supplementary Fig. 1a, b, e, f). Importantly,
PhylEx exhibited an increase in performance with an increasing num-
ber of cells. In contrast, the othermethods did not benefit from having
more cells, likely because havingmore cells implies a higher incidence
of FP and FNvariant calls.Our results suggest that specializedmethods
for integrating bulk genomics with single-cell transcriptomics are
needed to extract the signal from scRNA-seq data and that given data
for sufficiently many cells, PhylEx reconstructs the correct clonal tree.

PhylEx reconstructs the lineage of high-grade serous ovarian
cancer clones
Toassess theperformanceof PhylExon realdata,we analyzed a related
set of high-grade serous ovarian cancer cell-lines27. The cell-lines are
derived from the same patient, one from the primary tumor (OV2295)
and two from relapse specimens (OV2295R2 and TOV2295R). These
cell-lines have been assayed using the direct library preparation (DLP)
scDNA-seq technology28 and analyzed by some of the leading experts
in the field of computational oncology using multiple genomic char-
acteristics, e.g., copy-numbers, breakpoints, and SNVs, to reconstruct
a clonal tree, which we call DLP clonal tree (Fig. 3h in ref. 19). Since
their evidence-based analysis was supported by multiple genomic
characteristics, DLP clonal tree must be considered very solid, pro-
viding a fertile opportunity to assess performance of PhylEx on real
sequencing data. To that end, we performed Smart-Seq3 scRNA-seq29
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Fig. 2 | Simulated data analysis results with 20 data replicates generated with
100 SNVs in each replicate from multifurcating tree with copy number evo-
lution. a, b Compared PhylEx to competitors on tree reconstruction error and on
V-measure. c,dComparisonof PhylEx using single-regionbulkDNA-seq and scRNA-
seq to bulk-based methods supplied with multi-region DNA-seq using tree

reconstruction error and V-measure. e, f Comparison of PhylEx on multi-region
bulk DNA and scRNA data to the competitors. The box plot shows the median and
inter-quantile range (IQR) at the 1st and the 3rd quantiles; the top (bottom)whisker
indicates themaximal (minimal) point no further than 1.5 × IQR from the third (first)
quantile. Source data are provided as a Source Data file.
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on OV2295 and OV2295R2 (TOV2295R was difficult to grow and we
could not use it).

We constructed a single-region pseudo-bulk data by combining
the scDNA-seq data from the two cell-lines OV2295 and OV2295R2.We
obtained 360 scRNA-seq cells passing quality control and identified 67
SNVs with coverage in the scRNA data. Of the 67 SNVs, 21 SNVs were
removed from evaluation, but not the PhylEx analysis, due to incom-
patible annotation in the original publication19. To elaborate, an SNV is
removed from evaluation only based on whether the authors of the
original publicationmade consistent annotationwith the tree that they
inferred (Fig. 3h of ref. 19); inferred PhylEx tree was not used in deter-
mining which SNVs to remove. The annotation for each of the SNVs
from ref. 19 is given in Supplementary Data 1 along with indication of
which SNVs are excluded from evaluation. Alternative was tomanually
correct the inconsistent annotations and use all 67 SNVs in the eva-
luation; however, we deemed this process would be subject to bias.

There is a strong concordance between DLP clonal tree and the
PhylEx MAP clonal tree. First, when disregarding a node of DLP clonal
tree with a single SNV (labeled EFGHI in Fig. 3a), the trees have the
identical topology (Fig. 3a, b). PhylEx correctly assigned 23 of 24
ancestral mutations. One SNV in ABCD clone was assigned to the CD
clone. The clones EF and EFGHI were clumped together, thereby also
clustering the lone SNV in EFGHI clone with the SNVs in EF clone. We
compared the results of PhylEx to those inferred with Canopy, TSSB,
ddClone, and B-SCITE6,7,9,15,16 on three clustering metrics and ancestral
reconstruction metric. PhylEx significantly outperformed all of the
other methods (Table 1). We have repeated the experiment under
different parameter settings for PhylEx to demonstrate the robustness
of the conclusion (Supplementary Table 3).

To demonstrate a potential problem of two-step approach, we
applied Cardelino to assign cells to the clones inferred from Canopy.
The mutations that Canopy identified as exclusive to Clones 6 and 8
are marked in Supplementary Fig. 4e. However, we found cells
assigned to other clones frequently carried mutations on these loci
(Supplementary Fig. 3a). This is in a stark contrast to cells assigned by
PhylEx (Supplementary Fig. 3b) with clear partition of cells by clones
and their genotypes.

Phylo-phenotypic analysis reveals immunoediting inmetastases
To demonstrate PhylEx’s ability to performphylo-phenotypic analysis,
we performed gene expression analysis on clones discovered by Phy-
lEx on the HGSOC Smart-Seq3 scRNA-seq data. We cannot evaluate the
correctness of cell-to-clone assignment as ground truth does not exist.
However, the co-clustering of SNVs and the cells to clones indicates its
correctness (SupplementaryFig. 3b).Namely,weobserved that all cells
shared the ancestral SNVs (Ancestral clone) while the cells assigned to
the clone in the relapse tumor did not express the SNVs in the primary
tumor and vice versa.

We selected 1000geneswith themost variable expressionpattern
for differential gene analysis. We used a zero-inflated negative bino-
mial model (ZINB-WaVE)30 to reduce the dimensionality of the gene
expressions data to 2-dimensions. There was a clear separation
between the expression of the EF clade (OV2295R) and the primary
ABCD clade (OV2295) (Fig. 3c and Supplementary Fig. 4a–d). Addi-
tionally, cells assigned to CD subclone exhibited separation from the
parental ABCD clone (Supplementary Fig. 3c). We repeated this ana-
lysis using t-SNE31, another dimensionality reduction technique. A
subset of the cells assigned to the ancestral clone, and cells assigned to
the EF clone, were well separated (Supplementary Fig. 3d). The
observation of cluster-specific phenotypes, obtained through two
independent methods, provides biological evidence of the capacity of
PhylEx for phylo-phenotypic analysis.

We next sought to explore the relationship between pseudo-time
trajectories and evolutionary history. Pseudo-time is a popular
approach for looking at dynamic changes in gene expression over

time. It was first applied in developmental biology studies32, but is
increasingly being used in cancer studies33. An open question in the
cancer context is whether pseudo-time trajectories reflect evolu-
tionary history. As pseudo-time analysis is based purely on gene
expression, this is not guaranteed. We applied the pseudo-time
method Slingshot34 on the 2-dimensional representation obtained by
ZINB-WaVE with the cells clustered using (i) PhylEx and (ii) mclust
based on gene expression data35. Trajectories inferred by slingshot did
not reflect the evolutionary histories: (i) the parent-child clones ABCD
and CD appear as siblings (Fig. 3c) and (ii) the gene expression based
clustering using mclust deviated significantly from the DLP cancer
clones (Fig. 3d). These results suggest that phylo-phenotypic analysis
will lead to accurate interpretations of the scRNA-seq data than ones
based purely on gene expression and that trajectory analysis may not
reflect evolutionary history of cancer.

We performed differential gene expression analysis (DGE) using
edgeR36,37 to compare the three major clones: the Ancestral clone, the
ABCD clone (primary tumor), and the EF clone (relapse tumor). The
ancestral clone is represented by the cells assigned to the root node
(161 cells), the ABCD clone is represented by the cells assigned to the
left child of the root and its descendants (152 cells), and the EF clone is
representedby the cells assigned to the right child of the root (47 cells)
in the tree given in Fig. 3b. The resulting volcano plots reveal an
abundance of differentially expressed genes between the Ancestral/
ABCD dominant in the primary tumor, and the EF clone dominant in
the relapse (Fig. 3e, f). There appears to be an evidence of immuno-
editing in the relapse clone, manifested by a substantial number of
down-regulated immune system genes. To verify this, we performed
gene set enrichment analysis (GSEA) using Correlation Adjusted MEan
RAnkgene set test available in limmapackage38,39 on the setMSigDBC5
(gene ontology)40. Several pathways related to the immune system
were significantly down-regulated in the EF clone compared to the
ABCDclone (Table 2 andSupplementaryTable 1) suggesting evasionof
immune surveillance as the primary relapse mechanism.

Taken together, these results demonstrate that insights obtained
by comparing expression profiles in the context of PhylEx clones
provide the capacity for phylo-phenotypic analysis which can be used
to dissect the tumor gene expression patterns beyondwhat is possible
with current single-cell expression analysis methods.

Comparison of 10X and Smart-Seq3 scRNA-seq for clonal tree
reconstruction
Next, we investigate the applicability of PhylEx on widely available 10X
Genomics scRNA-seq data (referred to as 10X for brevity). Smart-Seq3,
like its predecessor Smart-Seq2, is a plate-based, full-length transcript
sequencing technology offering improved sensitivity to detect tran-
scripts over its predecessor29. 10X on the other hand is a droplet based
technology, which allows sequencing of large number of cells. While a
comprehensive study comparing Smart-Seq3 to 10X is unavailable, the
general understanding is that Smart-Seq3 offers better coverage and
possibly depth on a smaller number of cells and 10X allows sequencing
of a much larger number of cells at lower coverage41,42.

We obtained a total of 6616 cells sequenced using 10X 3′
sequencing of theHGSOC cell-lines.We computed sample statistics on
the coverage ofmutations across cellswherewedefine a cell to cover a
mutation at a loci if the read count at the loci contains at least one
variant read. On average, cells sequenced using 10X platform had
coverage of mutations for 0.4527 loci with the median of 0; in com-
parison, a cell acquired using Smart-Seq3 had coverage of mutations
for 3.253 lociwithmedianof 3 (Table 3). The lowmutation coverage is a
direct consequence of shallow read depth (Supplementary Fig. 8a, c)
and the 3′ bias of the 10X data. The average depth at any given loci for
10X data was 1.403, conditional on having aminimumof one read. The
average variant depth, defined as the number of reads mapping to the
variant allele at a loci was 0.1427 conditional on the loci being
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Fig. 3 | Analysis of HGSOC cell line. a DLP clonal tree with the number of SNVs
assigned to each clone indicated beside the clone name. b The inferred tree from
PhylEx; the number of SNVs attached to each node is obtained from the DLP clonal
tree annotation in a. The plot of the gene expressions for cells on ZINB-WaVE
dimensions: c. cells are color-coded after assigning to the clonal tree output from
PhylEx, and the trajectory analysis result is overlaid on the figure with the ancestral

clone specified as the starting cluster; d clustering of cells using mclust with the
trajectory analysis with starting cluster unspecified. The visualization of differential
gene expression analysis using volcano plots: e the EF clone to the Ancestral clone,
and f the EF clone to the ABCD clone. Source data for a is provided as Supple-
mentary Data 1. Source data for b–f are provided as a Source Data file.
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expressed. With shallow depth, combined with possibility of mono-
allelic expression, detecting mutations using 10X 3’ sequencing or
similar approaches is challenging. In contrast, the Smart-Seq3 mean
total depth was 19.37 and mean variant depth was 2.962.

We compared PhylEx supplied with 10X scRNA-seq data to the
bulk deconvolutionmethods TSSB and Canopy. We identified 93 SNVs
for analysis and 540 cells that harbored variant reads on at least one of
these SNVs using a filtering strategy similar to that applied to the
Smart-Seq3 data (see “Methods” section). PhylEx outperformed the
bulk deconvolutionmethods (Tables 4); however, the improvement in
performance was not as significant as when supplied with Smart-Seq3
scRNA-seq data (Table 1). As PhylEx relies on co-occurrence of muta-
tions to resolve temporal ordering ofmutations as well as branching, it
is critical that cells have as high coverage to achieve good perfor-
mance. Computing the statistic on the selected 540 10Xcells, we found
that 428 cells had coverage of 2 mutations, 99 cells had coverage of 3
mutations, and 13 cells with coverage of 4 mutations. However, many
of these had shallow coverage – once we restricted the definition of
coverage to include at least two variant reads, the coverage statistic
were 399 cells with 0 coverage, 129 with 1 mutation, and 11 cells with 2
mutations, and only 1 cell with 3 mutations.

We have conducted simulation study to further corroborate our
findings. We measured the performance of PhylEx on simulated
scRNA-seq dataset with the coverage probability at {0.1, 0.05, 0.02} on
a binary tree and bulk data generated with copy number variation

using birth-death process (Supplementary Section 2.2-2.3). As expec-
ted, the performance improved as the coverage increased (Supple-
mentary Fig. 8d, e). Note that at 0.02, we have very few cells which co-
express variants (Supplementary Fig. 8f) and hence, the performance
of PhylEx is indistinguishable from bulk deconvolution methods.
These results suggest that using full-length transcript sequencing and
higher sequencing depth can dramatically improve the clonal recon-
struction accuracy. Note that our study involving 10X 3′ technology
elected shallow sequencing depth to accommodate sequencing of
thousands of cells. We expect coverage of mutation and PhylEx’s
performance to improve at greater sequencing depth.

Deciphering phenotypic evolution in HER2+ breast cancer
We generated Smart-Seq3 scRNA-seq and bulk whole-exome DNA
sequencing data for five spatially distinct regions of an untreated
HER2+ breast cancer tumor. We applied PhylEx to 369 cells and 418
SNVs thatwereavailable after pre-processing. ThePhylExMAP treewas
a linear expansion, i.e., a path (Fig. 4a), after restriction to clones that
contained more than 1 SNV and at least one cell assigned (Supple-
mentary Fig. 6b). We also applied TSSB on the data without scRNA-seq
data.TheTSSB tree infers a linear expansionuntil the endwherewesee
two clones branching (Clones 5 and 6 in Supplementary Fig. 6a). After
assigning cells to this tree, we see that mutual exclusivity of the
mutations are violated (Supplementary Fig. 6d). In contrast, we see
that cells assigned on PhylEx tree form clear partitions with minimal
violation (Supplementary Fig. 6e); this figure shows single-cell data
support for the linear evolution.

The clone fraction appeared to be well-mixed in each region
(Fig. 4d). The clone fraction of regions D, E differed from the other
regions; this is perhaps explained by the fact that these regions were
relatively far away from the other regions (Supplementary Fig. 5g).

We retrieved the NanoString PanCancer human pathway panel
gene list of 770 curated genes (NanoString Technologies, Seattle, WA)
for the downstream analysis. Focusing on this set of genes helps to

Table 2 | Gene set enrichment analysis results comparing the ABCD clone to the EF clone

Gene ontology P-value FDR

MHC protein complex 4.85e-15 1.32e-11

Antigen processing and presentation of endogenous antigen 6.40e-15 1.32e-11

MHC class I protein complex 6.57e-14 8.08e-11

Response to type I interferon 2.86e-11 1.60e-08

Antigen processing and presentation of endogenous peptide antigen 2.61e-10 1.14e-07

Positive regulation of T cell mediated cytotoxicity 7.96e-09 2.51e-06

Interferon Gamma mediated signaling pathway 2.08e-08 5.72e-06

Regulation of T cell mediated cytotoxicity 2.37e-08 6.07e-06

Positive regulation of antigen processing and presentation 4.99e-07 9.59e-05

Detection of other organism 6.87e-07 1.28e-04

Top 10most significantly down regulated pathways are shown (first column) alongwith p-value (middle column) and false discovery rates (third column). TheCorrelation AdjustedMEan RAnk gene
set test is used, which performs a 2-sided test and uses Benjamini–Hochberg algorithm to produce false discovery rate (FDR) accounting for multiple comparisons38.

Table 1 | Performancemetric comparing PhylEx to Canopy, TSSB, B-SCITE, and ddClone on HGSOC data suppliedwith Smart-
Seq3 scRNA-seq

Method V-Measure Adj. Rand Index Adj. Mut Info Anc. Recon Err

Canopy 0.494 0.386 0.327 0.178

ddClone 0.571 0.240 0.254 NA

B-SCITE 0.445 0.108 0.238 0.259

TSSB 0.237 ± 0.068 0.283 ±0.077 0.180 ±0.075 0.204 ±0.032

PhylEx 0.870 ±0.0132 0.888 ±0.0164 0.839 ±0.0175 0.0379 ±0.0077

Used20 runs for PhylEx andTSSB.Canopy andB-SCITEwere ranwith fourMCMCchains. Thefirst column lists the nameof themethods. Thesecond to fourth columnsare clusteringmetrics used for
comparison. The last column is the ancestral reconstruction error metric. The boldface indicates the best performing method. Source data are provided as a Source Data file.

Table 3 | Coverage statistics for 10X vs Smart-Seq3 on
HGSOC data

Method 1st Quantile Median Mean 3rd Quantile Max

Smart-Seq3 1 3 3.253 5 14

10X 0 0 0.4527 1 4

Source data are provided as a Source Data file.
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identify driver mutations for each clone. Among the SNVs used in our
analysis, 24 overlapped theNanoString list (Fig. 4b and Supplementary
Table 2). We identified a mutation in CDC6 in the progenitor clone
(Clone 1), implicating changes to the cell replication mechanism, and
identified a mutation in TP53 and MAP3K8 in Clone 2, hinting at the
proliferation of cancer beginning at Clone 2. In Clone 3, we noted
mutations to genes involved in PI3K and MAPK pathways (PIK3R3,
CACNA2D2) and to MDC1 (DNA repair). Clone 4 appears to be char-
acterized by changes to the RASpathway as evidenced bymutations to
ETS2. Overall, the clonal tree provides a vital context in which to ana-
lyze and inspect mutations in cancer.

We performed gene set enrichment analysis on the MSigDB
Hallmark gene sets to compare the parent-child clones (Fig. 4c). GSEA
revealed a significant increase of PI3K AKT MTOR signaling pathway
expression in Clone 2 compared to Clone 1. The PI3K AKT MTOR
pathway is a commonly activated therapeutic target in breast cancer43.
An in-depth inspection of the expression revealed an upregulation of
PI3KAKTMTOR signalingpathway in all clones descending fromClone
1 (Fig. 4e). We then performed DGE to compare the clones (Fig. 4f and
Supplementary Fig. 5a–f).We confirmed anoverexpression of ERBB2 in
Clone 2 compared to Clone 1 (FDR <0.1). Clone 1 had a mutation in
CDC6 and only two other mutations, perhaps indicating that its cells
more closely resemble normal cells than the cancer cells.

Overall, the PhylEx analysis identifies the driver mutations
(Fig. 4b), elucidates spatial distribution of the clones (Fig. 4d), and
facilitates a downstream analysis of scRNA expression data that sheds
light on the clones’ functional characteristics (Fig. 4c, e, f).

Discussion
In this work, we have presented PhylEx, for integrating bulk genomic
and single-cell transcriptomic data to reconstruct clonal trees, which
paves the road for characterizing the functional state of individual
clones via phylo-phenotypic analysis. We have shown how PhylEx
enhances downstream analysis by providing a clonal tree and the
opportunity to compare the clones’ functional states – revealing the
interplay between the evolutionary process and the clones’
phenotypes.

We established that specializedmethods for integrating bulkwith
single-cell transcriptomics are necessary. By modeling read counts,
PhylEx bypasses the need for performing cell genotyping and hence,
avoids compounding of errors stemming from dichotomizing counts
into binary values. PhylEx, using only a single region bulk sequencing
combined with scRNA-seq, outperforms state-of-the-art bulk-based
methods supplied with multi-region data. We expect these findings to
shift the paradigm from multi-region sequencing to single-region
sequencing accompanied by scRNA-seq. This approach will simulta-
neously reduce the effort required for data acquisition, improve the
accuracy of the clonal reconstruction, and allow for functional analysis
of individual clones. Moreover, many researchers will realize that the
single-cell RNA data they already possess should be exploited for
clonal analysis or, even, to perform supplementary single-cell RNA
sequencing for this purpose. With the prevalence of bulk DNA
sequencing and rapidly growing studies conducting scRNA-seq, we
expect that PhylEx will prove profitable to cancer researchers studying
the functional implications of cancer evolution.

Furthermore, PhylEx opens the avenue for future extension to
characterize clones by somatic mutations as well as copy number
profiles. In particular, inferring subclonal copy numbers is inherently
challenging to achieve using only the bulk sequencing data. It is cur-
rently feasible using specialized single-cell sequencing techniques
such as DLP19,28,44. There exist methods that perform copy number
inference from scRNA-seq data such as InferCNV, HoneyBADGER, and
CopyKAT45–47; however, these methods do not consider copy number
variation in the context of evolution. For example, CopyKAT, relies on
hierarchical clustering on the expression data. While InferCNV and
HoneyBADGER allow subclonal copy number inference, they are lim-
ited to bifurcating trees. With evidence for multifurcation in cancer
evolution (e.g., ref. 25) as well as linear evolution48, coupled with a lack
of resolution to detecting binary branching from scRNA-seq data, this
is potentially a severe limitation. The performances of these methods
also depend on having a set of normal reference cells as CNV inference
from scRNA-seq data require reference expression levels of the normal
cells. As such, CNV clones did not have high concordance with SNV
clones when applied toHER2+ scRNA-seq data (Supplementary Fig. 6c,
f) where we did not have normal reference cells.

PhylEx, as is the case with other methods, has limitations. A full-
length single-cell transcript sequencing technology with sufficient
coverage and depth of sequencing is necessary to attain accurate
inference of clonal trees. Although the algorithmic complexity is linear
in the number of cells, it also depends on the size of the clonal tree. As
the size of the clonal tree may grow for cancers with complex evolu-
tionary process, we recommend the users to carefully select SNVs to
include in the analysis, e.g., tumor suppressor genes, oncogenes, and
deleterious mutations. We noted that Cardelino’s mapping algorithm
performs slightly better than PhylEx as shown in Supplementary Fig. 2;
therefore, recommended workflow is to infer clonal tree using PhylEx
and map cells on PhylEx clones using Cardelino. Finally, PhylEx uses
copy number profiles inferred from bulk genomics data. While esti-
mating CNV from bulk is a well-established technology and our
approach can mitigate the effects of approximation error via margin-
alization (Methods), PhylEx can benefit from integrating copy number
information in the bulk as well as in scRNA-seq data. We identify that
the next challenge is to perform joint inference of clonal tree, clonal
genotypes including SNVs and copy numbers via integration of scRNA-
seq with bulk DNA-seq data. This calls for a statistical model that
captures the dependence between the copy numbers and the
observed read counts in the scRNA-seq as well as the bulk data, and
tractable computational algorithms to cope with potentially large
computational cost associated with hidden Markov model operating
over tree on the evolving copy number profiles. PhylEx represents an
important first step and a substantial progress in reconstructing the
entire evolutionary trajectory of cancer towards accomplishing
this goal.

Methods
Ethics statement on collection of clinical material for breast
cancer samples
Fresh primary tumor resections were obtained from a breast cancer
patient at KarolinskaUniversityHospital and StockholmSouthGeneral
Hospital. Experimental procedures and protocols were approved by

Table 4 | Performance metric comparing PhylEx on HGSOC data supplied with 10X scRNA-seq data to bulk-based deconvo-
lution methods

Method V-Measure Adj. Rand Index Adj. Mut Info Anc. Recon Err

Canopy 0.305 0.176 0.168 0.245

TSSB 0.203 ±0.0431 0.154 ±0.0490 0.156 ± 0.0495 0.238 ±0.0252

PhylEx 0.360 ±0.0418 0.206 ±0.0323 0.266 ±0.0376 0.233 ±0.0129

Used 20 runs for PhylEx and TSSB. Canopy was executed with four MCMC chains. The first column lists the name of the methods. The second to fourth columns are clustering metrics used for
comparison. The last column is the ancestral reconstruction error metric. The boldface indicates the best performing method. Source data are provided as a Source Data file.
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Fig. 4 |Multi-regionHER2+ breast cancer analysis. a PhylEx inferred treewith the
number of cells assigned to each clone shown under the clone label. b Mutation
absence/presence heatmap. c Heatmap of gene set enrichment analysis on Hall-
mark pathways to compare parent-child clones. d Clone (cellular) fraction plot for
each clone by region. e Box-plot of expression levels for PI3K AKTMTOR signaling

pathway by clone; the 1st, 2nd, and 3rd quantiles are shown with the top (bottom)
whisker indicates the maximal point no further than 1.5 × IQR from the third (first)
quantile. f Differential gene expression analysis to compare progenitor cells
assigned to Clone 2 to the cells to Clone 1. Source data are provided as a Source
Data file.
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the regional ethics review board (Etikprövningsnämnden) in Stock-
holm, with reference numbers 2016/957-31 and 2017/742-32. Biobank
approval was obtained from the Stockholm medical biobank. Before
surgery, informed consent in accordance with the Declaration of Hel-
sinki was given to the patient for signature. The patient was not
compensated since our study did not include any extra steps other
than the standard treatment procedures for the disease.

Whole-exome sequencing for breast cancer samples
Tumor resections and matching dermal biopsies from 4 individual
breast cancer patients were freshly collected. Tissues were manually
homogenized and genomic DNA samples were isolated by using the
QIAamp DNA mini kit (QIAGEN). The library was prepared by using
Twist Bioscience Human Core Exome kit (Twist Bioscience) according
to the manufacture protocol. The bulk DNA samples were then
sequenced in a S4 flow cell lane by the NovaSeq 6000 platform (Illu-
mina) at the National Genomics Infrastructure, Science for Life
Laboratory, Uppsala.

Breast cancer sample preparation for single-cell RNA
sequencing
Tissues were homogenized and cells were released by using the
gentleMACS™ Octo Dissociator with Heaters and the human
tumor dissociation kit (both from Miltenyi Biotec), according to
the manufacturer protocols. Afterwards, the cells were washed
two times with F12-DMEM medium (Gibco) and collected by
centrifugation at 300g for 5 minutes. The single-cell suspensions
were further generated by passing the resuspended cells through
the 70mm cell strainers. The single cell suspensions were then
further stained with the Zombie Aqua Fixable viability dye (1:100,
Biolegend, 423101) at room temperature for 20min, then washed
with phosphate-buffered saline (PBS). The cells were incubated
with Human TruStain Fc block (1:100, Biolegend, 422302) for
10min to limit unspecific antibody binding, then stained for
20 min with anti-EPCAM (1:40, Biolegend, 324206) and anti-CD45
(1:40, Biolegend, 304021) in FACS buffer (PBS + 0.5% Bovine
Serum Albumin). The cells were subsequently washed and resus-
pended in FACS buffer. Fluorescence-activated cell sorting (FACS)
using an influx flow cytometer (BD Biosciences) was performed to
sort live EPCAM+CD45- single-cells into 384 well plates for Smart-
Seq3 analysis. The list of antibodies is provided in Supplemen-
tary Data 2.

Ovarian cancer cell lines preparation for Smart-Seq3
Culture of ovarian cancer cell lines OV2295, TOV2295, and OV2295R
cells were cultured in a 1:1mix ofMedia 199 (SigmaAldrich) andMCDB
105 (Sigma Aldrich) supplemented with 10% FBS in a humidified
environment at 37C. For single-cell RNA sequencing, all cells used in
this study were sorted on a BD Influx into 384 well plates using index-
sorting and single-cell purity mode directly into lysis buffer(6,67%
Polyethylene Glycol, 0.1% Triton X-100, RNAse Inhibitor (Takara),
dNTPs (0.67mM/each), and Oligo-dT (0.67uM)). Sorted plates were
stored at −80 °C and thawed immediately prior to library generation.
The cell line originates from ref. 27.

Smart-Seq3 library preparation and sequencing
For single-cell RNAseq libraries, the Smart-Seq3 method was used
according to the published protocol (PMID: 32518404). In brief, plates
were quickly centrifuged before reverse transcription (25mMTris-HCl
pH 8.3 (Sigma), 30mM NaCl (ThermoFisher), 2.5mM MgCl2 (Ther-
moFisher), 1mM GTP (ThermoFisher), 8mM DTT (ThermoFisher),
0.5μ/μl RNase inhibitor (Takara), 2μM TSO (IDT), 2μ/μl Maxima
H-minus reverse transcriptase (ThermoFisher)), and amplified using
KAPA HiFI Hotstart polymerase (Roche) to generate full-length cDNA

libraries (22 cycles PCR). Final library concentrations were determined
and normalized for each cell using Picogreen. Diluted cDNA of 100pg
per sample was used for tagmentation (Nextera Library Preparation
Kit, Illumina, ATM at 0.1μL per cell). The final samples were analyzed
using a Bioanalyzer (Hi-Sensitivity Kit, Agilent) and sent for sequencing
on a Novaseq S Prime lane, PE 2x150bp (Illumina). Library quality was
compared to index sorting results to confirm that negative wells yiel-
ded low complexity libraries. The list of oligonucleotides are available
at https://doi.org/10.17504/protocols.io.bcq4ivyw and provided as
Supplementary Data 3.

PhylEx probabilistic model
PhylEx performs Bayesian posterior inference over the clonal tree,
assignment of SNVs to clones, cellular prevalences by integrating bulk
DNA- and scRNA-seq data. The graphical model for PhylEx is provided
in Supplementary Fig. 9 and the table of notation along with brief
description for each variable is given in Supplementary Table 4.

Model overview. We define the latent clonal tree T as a rooted tree
with the nodeset denoted by V. The nodeset represents the set of
clones; we will use the term node and clone interchangeably. The root
node r represents healthy cells and has exactly one child; the lone child
of the root represents the cancer progenitor clone. Each non-root
node v has one parent, denoted ρ(v) but each non-root nodemay have
any number of children (zero or more), the set of children of v is
denoted κ(v). We achieve flexibility in modeling the number of chil-
dren by using tree-structured stick-breaking process (TSSB) prior20,
which is a prior over arbitrary tree depth andwidth, particularly useful
in modeling clonal trees where the number of branching events is
unknown in advance. We denote the number of SNVs under con-
sideration by N. The clonal membership of SNVs is represented by
z = (z1,…, zN), where zn∈V for n = 1,…,N. The aforementioned TSSB
defines a joint distribution over T, z, which we denote P0(z, T).

Each node of the tree is associated with cellular prevalence
parameter denoted ϕ= ðϕvÞv2V . Note that we can associate cellular
prevalence parameter to each SNV n = 1, ...,N as follows: ϕn =ϕzn

(i.e.,
the cellular prevalence parameters are shared by SNVs given the latent
clonal membership). The prior distribution over the cellular pre-
valences is given by hierarchical priors conditional on T, z, first intro-
duced in PhyloSub and PhyloWGS6,7, which we denote as P0(ϕ∣z, T).
The hierarhical priors enforce the following restrictions on the cellular
prevalence parameters: (1)∑u∈κ(v)ϕu ≤ϕv and (2) 0 ≤ϕv ≤ 1. The cellular
prevalence of a clone represents the proportion of cell population that
inherit the genomic profiles of the clone (in our case, SNVs). Therefore,
one important property thatmust be satisfied is the sumof the cellular
prevalence of the descendants of a clone v to not exceed its own
cellular prevalence ϕv. The first restriction enforces this property. The
second restriction enforces the fact that we are dealing with the pro-
portion of cell population (i.e., a number between 0 and 1).

From the bulk data, we assumeclonal copy number information is
available along with the number of reads mapping to the variant and
referencealleles. The clonal copynumber canbeobtainedusing awide
range of public software (e.g., refs. 49–52); we use TitanCNA51, from
which we obtain major and minor copy numbers, (Mn,mn), for each
SNV, n = 1, ...,N. Hence, we denote the bulk data by
B= fðbn,dn,Mn,mnÞgNn = 1, where bn, dn denote the variant reads and
read depth at locus n. The scRNA-seq data is denoted by
S = ffbc,n,dc,ngNn= 1gCc= 1, where C denotes the number of cells and
bc,n, dc,n denote the variant reads and read depth at locus n for cell c.

The likelihood of the bulk and single-cell data is assumed to be
conditionally independent given T, z,ϕ:

‘ðB, S∣T , z,ϕÞ= ‘ðB∣T , z,ϕÞ‘ðS∣T , z,ϕÞ: ð1Þ
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The posterior distribution over the latent variables,T, z,ϕ is expressed
in terms of this likelihood and the prior distributions as follows:

PðT , z,ϕ∣B, SÞ / ‘ðB∣T , z,ϕÞ‘ðS∣T , z,ϕÞP0ðϕ∣T , zÞP0ðz,TÞ, ð2Þ

where P0(z, T) is given by tree-structured stick-breaking process
(TSSB) prior20 and P0(ϕ∣T, z) is adopted from ref. 6.

Prior distributions. The tree structured stick breaking (TSSB) process
is a Bayesian non-parametric prior defined on infinite trees where a
unit length stick is recursively partitioned by nodes of the tree. The
TSSB process has proven to be useful in cancer phylogenetics, e.g.,
refs. 6–8. In PhylEx, TSSB is used as a prior distribution over the SNV
assignment and the tree topology, P0(T, z∣λ0, λ, γ) with hyperpara-
meters λ0 > 0, λ∈ (0, 1], γ > 0. We briefly summarize the role of
hyperparameters on the shape of the tree topology as described
in ref. 20.

TSSBprior definespartitionof unit length stick to thenodes of the
tree, where this partitioning is determined by ν-sticks andψ-sticks. The
ν sticks are used to allocate the size of the stick assigned to the nodes
while theψ sticks determine the size of the sticks to be allocated to the
children. Let υu denote the portion of the stick available to be broken
up by node u and πu denote the portion of the unit length stick
assigned to node u. To determine πu, we first sample νu ~ Beta(1, λ0λ

∣u∣),
where ∣u∣ denotes the height of node u in the tree. Then, we set
πu = νuυu to determine the portion of the unit-stick assigned to node u.
The remaining stick, (1 −πu)υu, is allocated to the children of u in the
following manner: sample ψu,k ~ Beta(1, γ) for children k = 1, 2, ... of u
and then setting υu,k = (1−πu)υuψk ∏j<k(1−ψu,j).

The prior probability of an SNV being assigned to node u is pro-
portional to πu, hence, the height of the tree is closely related to the
size of the ν-stick. The larger the ν-sticks broken by an ancestral nodes,
smaller the stick length available for the descendant nodes. Therefore,
the hyperparameters λ0, λ govern the height of the tree. It is straight-
forward to see that the width of the tree depends on γ. We found that
setting γ ≤ 1 makes the most sense for cancer phylogenetics applica-
tions since the number of branches in a clonal tree is relatively small;
note that γ = 1⇒ψu,k ~ Uniform(0, 1). We provide details on setting the
hyperparameters to control the TSSB parameters in Supplementary
Section 3.

The prior distribution on the cellular prevalences, P0(ϕ∣z, T), is
adopted from ref. 6. In essence, this amounts to converting the cellular
prevalences to clone fractions,

ηu =ϕu �
X

u02κðuÞ
ϕu0 : ð3Þ

Note that∑uηu = 1 for a fixed tree T and hence, we can place a Dirichlet
distribution on ηu as a prior distribution, conditioned on tree T.

Modeling the bulk DNA-seq data. The bulk data likelihood assumes
site independence conditional on T, z:

‘ðB∣T , z,ϕÞ /
YN
n = 1

Pðbn∣T , z,ϕ,dn,Mn,mnÞ: ð4Þ

All possible copy number profiles is marginalized to compute the
likelihood of the observed reads

Pðbn∣T , z,ϕ,dn,Mn,mnÞ=
X

gn2GðMn ,mnÞ
Pðbn∣dn, gn,ϕzn

ÞPðgn∣Mn,mnÞ,

ð5Þ

whereGðMn,mnÞ arepossible genotypes compatiblewith a givenmajor
andminor copy number profile. We use uniformprior over all possible

genotypes, i.e., PðgnÞ= 1=∣GðMn,mnÞ∣. A detailed description of the
marginalization process over the genotypes is provided in the Sup-
plementary Text in ref. 5, under section heading The PyClone model
description; we also provide an example to illustrate the margin-
alization process in the Supplementary Section 1.1. The probability
distribution for the observed variant read at each site is given by
Binomial distribution:

bn∣dn, gn,ϕzn
∼ Binomial ðdn, θðgn,ϕzn

, ϵÞÞ, ð6Þ

with θðgn,ϕzn
, ϵÞ being the probability of success given as a function of

the genotype, cellular prevalence of clone zn, and sequencing error
probability, ϵ. Note that ϕzn

is the cellular prevalence of the clone
where the n-th SNV is assigned since zn∈V denotes the assignment of
SNV n to a clone (recall that all SNVs assigned to the same clone share
the same cellular prevalence). Letting v(g), c(g) be the number of var-
iant copies and total copy numbers for a genotype g, the success
probability is given by,

θðgn,ϕzn
, ϵÞ=

ϵ if vðgnÞ=0
ϕzn

ð1� ϵÞ+ ð1� ϕzn
Þϵ if vðgnÞ= cðgnÞ

ϕzn
vðgnÞ
cðgnÞ + ð1� ϕzn

Þϵ otherwise :

8>><
>>: ð7Þ

Modeling the scRNA-seq data. We assume that the scRNA-seq like-
lihood is conditionally independent over cell and locus given T, z and
cell-to-clone membership, ζ = ðζ cÞCc = 1:

‘ðS∣T , z,ϕ, ζ Þ /
YC
c = 1

YN
n = 1

Pðbc,n∣T , z, ζ c,dc,nÞ: ð8Þ

The cell-to-clone membership variable completely determines the
SNVs harbored by cells: for a cell assigned to node u, it inherits all of
the SNVs assigned to ancestral nodes of u. We denote the mutation
status of cell c for locus n by μc,n∈ {0, 1}, which can be seen as a
function of T, z, ζc (i.e., can be read off from these quantities).

As a first step tomodeling the number of variant reads, we plotted
the histogram of the ratio of variant reads to depth over all sites and
cells i.e., bc,n/dc,n for HGSOC data (Supplementary Fig. 7d) and HER2+
scRNA-seq data (Supplementary Fig. 7e). These plots clearly depict the
mono-allelic nature of the expression data, with inflation at 0 and 1.
Note that zero-inflation is pronounced because there are two cases
that can lead to non-expression of variant: (1) mono-allelic expression
of reference allele and (2) absence of variant allele or no mutation
(Supplementary Fig. 7h). We plotted the bi-allelic sites by selecting a
subset of the data such that bc,n >0 and bc,n/dc,n < 1 (Supplementary
Fig. 7f, g). These plots point towards a mixture of distributions as a
suitable model for the scRNA-seq read counts as the mixture can
account for stochastic nature of scRNA-seq, in particular, we need one
distribution tomodelmono-allelic expression and another for bi-allelic
distribution. Similar techniques are employed in refs. 18,24,53.

For cell c that does not harbor mutation at locus n, we have a
simple error model:

bc,n∣dc,n, ϵ∼ BetaBinomial ðdc,n, ϵ, 1� ϵÞ: ð9Þ

The error distribution uses sequencing error probability ϵ (Supple-
mentary Fig. 7c). For cell c that harbors the mutation at locus n, we
assume the following generative process:

δc,n ∼Bernoulliðδ0
n Þ

χc,n∣δc,n ∼δc,nBetaðαn,βnÞ+ ð1� δc,nÞBetaðα0,β0Þ
bc,n∣dc,n, χc,n ∼Binomialðdc,n, χc,nÞ

ð10Þ
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where δ0
n is the prior probability of bi-allelic expression at locus n and

δc,n∈ {0, 1} is an indicator variable denoting bi-allelic (δc,n = 1) ormono-
allelic (δc,n = 0) expression, and χc,n as the probability of expressing the
variant allele for cell c at locus n. The parameters of the Beta
distribution, α0, β0, αn, βn are hyperparameters of themodel. For small
values of α0, β0, the Beta distribution places most of the probability
mass at the two ends as shown in Supplementary Fig. 7a, b, making it
suitable for modeling mono-allelic distribution; setting α0 = β0 makes
the distribution symmetric. We use α0 = β0 = 0.01 for HGSOC and
HER2+ analysis and set δ0

n =0:5 for n = 1, ...,N. The parameters αn, βn
determine the levels of bi-allelic expression and are estimated as part
of data pre-processing step (Supplementary Section 1.2). The above
generativemodel canbe combined into Beta-Binomialmixture so as to
suppress explicit dependence on χc,n:

bc,n∣dc,n, δc,n, ϵ∼

ð1� δc,nÞBetaBinomialðdc,n,α0,β0Þ+ δc,nBetaBinomialðdc,n,αn,βnÞ if μc,n = 1

BetaBinomialðdc,n, ϵ, 1� ϵÞ otherwise:

(

ð11Þ

In the computation of the likelihood, we marginalize out δc,n as well.
The prior probability of cell assignment to clone u can be given by

the clone fraction, ηu. However, such an assumption may not hold as
cells with certain characteristics may be preferentially selected for
sequencing. Therefore, we use Uniform distribution:

Pðζ c∣z,T ,ϕÞ / 1: ð12Þ

In evaluating the single-cell component of the likelihood for a given
tree, we marginalize over the cell-to-clone assignments,

‘ðS∣T , z,ϕÞ=
YC
c = 1

X
ζ c

YN
n= 1

Pðbc,n∣T , z, ζ c,dc,nÞPðζ cÞ: ð13Þ

Runtime analysis
Inference is performed using slice sampling as described in ref. 20 and
MH sampler is as described in ref. 6. One iteration considers re-
assignment of each of the SNVs in some predetermined order much
like Gibbs sampling. After re-assignment of all SNVs, MH sampler is
invoked to update the cellular prevalences. As the original slice sam-
pler only requires bulk likelihood computation, the runtime for re-
assigning an SNV is O(1). One iteration of the slice sampler for PhylEx
requires computation of bulk data likelihood as well as the single cell
data likelihood. As we marginalize over the clone assignment of the
single cells, the computational cost requires O(C ⋅ ∣V∣).

Evaluation metrics
We used V-measure, adjusted rand index, and adjusted mutual infor-
mation as implemented in scikit-learn (version 0.23.1)54. To evaluate
the reconstruction accuracy, we use an ancestral reconstruction error,
defined on a pair of SNVs as follows. For two nodes u, v in the tree, we
say u < v to mean that u is ancestral to v. We can extend this definition
to SNVs i, j. Wewill say i < j if and only if i is assigned to node u and j to v
such that u < v. We formulate an ancestral matrix of dimension N ×N,
where the (i, j)-th is set to 1 if i < j. We denote the ancestral matrix for
the ground truth SNV-to-clone assignment byA*, then we can compute
the absolute error (AE) of an ancestral matrix A by summing over
unique pairs:

AEðA*,AÞ=
X
ði,jÞ

∣A*
i,j � Ai,j ∣: ð14Þ

The mean absolute error is given by dividing AE by the number of
unique pairs. We define the loss function on predictedmutation status

of SNVs for cells as:

Lðμc, μ̂ðζ c, z,TÞÞ=#½μc ≠ μ̂ðζ c, z,TÞ�, ð15Þ

where μc = ðμc,nÞNn= 1 is a vector of length N denoting the true mutation
status for cell c, μ̂ðζ c, z,TÞ is a vector of length N denoting the pre-
dicted mutation status for cell c, and #[a ≠b] denotes the number of
entries where vectors a, b disagree. The expected loss marginalizing
over the cell-to-clone assignment is then defined as,

Eζ c
½Lðμc, μ̂ðζ c, z,TÞÞ�=

X
v2V

Pðζ c = vÞ×#½μc ≠ μ̂ðζ c,z,TÞ�: ð16Þ

Processing of bulk DNA sequencing data
The bulk tumor andmatching normal samples are to be pre-processed
following standard guidelines as per GATK standard practice55. For
variant calling, we used Strelka v2.9.2 and Mutect2 as part of GATK
v4.1.4.056,57. We processed the VCF file using vcfR v1.12.058 to obtain for
eachSNV (i) position in the genome (loci), (ii) the variant and reference
alleles, (iii) the number of reads mapping to variant and reference
alleles. We used the PASS filter to select the high-confidence SNVs.
PhylEx requires major and minor copy number profiles for the SNVs;
we used TitanCNA v1.24.051. Given these input data, we provide func-
tionalities to prepare the input data for running PhylEx in the code
repository: https://github.com/junseonghwan/PhylExAnalysis. We
used Falcon v0.252 to obtain copy number profiles needed for running
Canopy9.

Processing of single-cell RNA sequencing files
Individual fastq files for the cells are obtained using Illumina bcl2fq
tool, then converted to ubam format with cell and UMI tags using a
script thatdetect Smart-Seq3 specificpattern at thebeginningof reads
with UMI. STAR v2.7.359 with GRCh37 version of Human Genome and
Ensembl version 75 annotations were used to align the reads60. UMI-
tools v1.1.161 was then used to correct the UMI and groupUMI reads. An
in-house script was used to intersect the reads with bam files and
obtain read and UMI counts for each gene; we used Rsamtools v2.2.362

to obtain the reads mapping to the variant and the reference alleles
from the BAM file needed for running PhylEx and used Rsubread
v2.0.163 to generate feature counts for downstream gene expression
analysis. For 10X Chromium data 10X Genomics CellRanger v6.0.1 was
used to generate BAM files and the count matrix64.

Data processing steps specific to the high-grade serous ovarian
cancer cell-line
The pseudobulk DNA-seq data are obtained by combining scDNA data
analyzed in19 using samtools v1.965. The copy number profiles are
obtained from the bulk samples using TitanCNA and the scRNA-seq is
aligned using STAR aligner. A list of SNVs are provided in the data
repository provided in ref. 19; therefore, we did not need to make
variant calls. Among the list of SNVs provided in ref. 19, 634 SNVs were
found to be exonic. We further filtered these set of SNVs using scRNA-
seq data. For each loci n = 1,…, 634, we selected it for analysis if there
were at least two cells such that bc,n ≥ 2, which resulted in 67 SNVs.
Including SNVs that do not have sufficient single-cell coverage does
not help to evaluating different methods and their capacities for
inferring the branching events and the ancestral relationship. We
retrieved the reads at each of these 67 loci for each cell using Rsam-
tools v2.2.3. A similar approachwas adopted for 10X analysis, however,
due to shallow depth, we used bc,n ≥ 1 as using a more stringent con-
dition resulted in dropping most of the SNVs from the analysis.
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Software used for data analysis
We randdClone v0.2, B-SCITE v2.0, PhyloWGSv1.0, Canopy v1.3.0, and
Cardelino v0.6.4 for benchmarking7,9,15,16,18. The downstream gene
expression analyis was performed in R v3.6.3 (also tested on v4.0.3)66.
We used biomaRt v2.46.3 for converting and unifying gene names67.
We used SingleCellExperiment v1.12.0 for filtering and processing of
feature counts matrix from scRNA-seq data68. We used edgeR v.3.32.1
and limma v3.46.0 for differential gene expression and gene set
enrichment analysis36,39. We used zinbwave v1.12.030 and Rtsne v0.1569

for dimension reduction, slingshot v1.8.034 for trajectory analysis, and
mclust v5.4.735 for cluster analysis in the reduced dimensions. The
plots were generated using ggplot v3.3.370.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The simulation data and results, processed bulk DNA-seq and scRNA-
seqdata forHGSOCandHER2+data alongwith the results are available
at [https://doi.org/10.5281/zenodo.4950446]. The novel Smart-Seq3
sequencing data for HGSOC have been deposited in the European
Genome-Phenome archive (EGA) under accession number
EGAS00001006868. The DLP scDNA-seq data used for forming the
pseudo-bulk data for HGSOC are available at the European Genome-
Phenome archive with accession EGAS00001003190. The 10X single-
cell RNA-seq data used for HGSOC are available at the European
Genome-Phenome archive with accession EGAD00001004552. The
novel Smart-Seq3 and whole-exome DNA sequencing HER2+ data are
hosted on the federated EGA node in Sweden (EGA-SE) with accession
number EGAS00001006851. The novel sequencing data have restric-
ted access in line with the general data protection regulations (GDPR)
of the European Union, which considers human sequencing data as
sensitive personal information. The application for access will be
granted if the subject of the applicants’ study where the data will be
used is covered by the informed consent given by the individuals
sequenced, and if there is ethical permission that covers the research
project. Once the access is granted, the applicant may download and
use the data as long as needed to complete the research. The
remaining data are available within the Article, Supplementary Infor-
mation or Source Data file. The source data are provided with this
article. The GRCh37 of Human Genome release 75 is available for
download from Ensembl [https://grch37.ensembl.org/info/data/ftp/
index.html]. Source data are provided with this paper.

Code availability
The PhylEx software is implemented inC++ and its accompanying gene
expression analysis code along with installation instructions and
guides for conducting the analysis are available on Github at https://
github.com/junseonghwan/PhylExAnalysisand version of the software
used for analysis is available at https://zenodo.org/badge/latestdoi/
335060186. The code for runningother software is alsoprovided in the
above Github repository, with the settings used described in Supple-
mentary Section 3.
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