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Universal expressiveness of variational
quantum classifiers and quantum kernels for
support vector machines

Jonas Jäger 1,2 & Roman V. Krems 1,3

Machine learning is considered to be one of the most promising applications
of quantum computing. Therefore, the search for quantum advantage of the
quantum analogues of machine learning models is a key research goal. Here,
we show that variational quantumclassifiers and support vectormachineswith
quantum kernels can solve a classification problem based on the k-FORRELATION
problem, which is known to be PROMISEBQP-complete. Because the PROMISEBQP
complexity class includes all Bounded-Error Quantum Polynomial-Time (BQP)
decision problems, our results imply that there exists a feature map and a
quantum kernel thatmake variational quantum classifiers and quantum kernel
support vector machines efficient solvers for any BQP problem. Hence, this
work implies that their feature map and quantum kernel, respectively, can be
designed to have a quantum advantage for any classification problem that
cannot be classically solved in polynomial time but contrariwise by a quantum
computer.

Quantum machine learning (QML) has recently emerged as a new
research field aiming to take advantage of quantum computing for
machine learning (ML) tasks1–4. It has been shown that embedding data
into gate-based quantum circuits can be used to produce kernels for
MLmodels by quantummeasurements5–11. Quantumkernels have been
used as kernels of support vector machines (QSVM) for
classification12–18 and Gaussian process models for regression
problems19,20. Variational quantum circuits have been used to devise
variational quantum classifiers (VQC)5,21,22. However, for QML to
become a new computational paradigm, it is necessary to prove and
demonstrate the computational advantage of ML models based on
quantum circuits.

Computational problems are classified in computational com-
plexity theory according to the scaling of time and memory require-
ments in a computational model with the problem size. For example,
the classical complexity class P encompasses all decision problems
that are solvable on a deterministic Turing machine in time which
scales polynomially with the problem size. Analogously, class NP can
be defined to encompass problems solvable on a non-deterministic
Turing machine in polynomial time. Problems solvable in polynomial

time are considered efficient. Hence, decision problems in P are effi-
ciently solvable by classical computers, but it is assumed that this is not
the case for problems inNP (P ≠NP). Problems can further be in special
relations to complexity classes. A problem is complete relative to a
complexity class, if every problem in this class can be reduced to this
problem under an efficient transformation. Another relation is hard-
ness. A hardproblem relative to a complexity class is at least asdifficult
to solve as any problem in this class. Importantly, this implies that
hardness is a stronger property than completeness since a hard pro-
blem is also complete for a particular class, if it is in this class, but it can
be in a hierarchically higher class.

Quantum computing problems are classified by quantum com-
plexity theory23. In particular, class BQP — bounded-error quantum
polynomial time — encompasses decision problems solvable in poly-
nomial time by a quantum Turing machine (the uniform family of
polynomial-size quantum circuits), with at most 1/3 probability of
error. While BQP includes P, because all efficient classical computa-
tions can be performed deterministically using quantum circuits with
polynomial depth, BQP is assumed to also include problems that are
not in P. This means that BQP-complete problems are not in P.
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Otherwise, BQP would be equal to P and there would be no quantum
advantage to any quantum computing algorithm. Thus, (it is believed
that) BQP-complete problems cannot be solved in polynomial time on
a classical computer. The hierarchy and relations of complexity classes
relevant for this work are shown in Fig. 1.

To demonstrate quantum advantage of QSVM, Liu et al.18 con-
sidered the DISCRETE LOGARITHM PROBLEM (DLP). The problem is to find the
logarithm x = loggy in amultiplicative group of integers modulo prime
p (denoted asZ*

p) for a generator g, i.e., such that gx � y ðmod pÞ. DLP
is believed, but not rigorously proven, to be unsolvable with poly-
nomial time in the number of bits n= dlog2pe on a classical computer.
Furthermore, only computing the most significant bit of x = loggy for
the 1

2 + 1
polyðnÞ fraction of x 2 Z*

p is as hard as solving DLP18,24. This forms
a decision problem (DLP1/2), presumed to be in NP, which was adopted
by Liu et al.18 into a classification task to prove separation between
QSVM and classical ML classifiers. Given that DLP1/2 is in NP (as shown
in Fig. 1 by the square), it can be argued that DLP1/2 cannot be a BQP-
complete problem25. Therefore, one cannot generalize the results of
Liu et al.18 to arbitrary problems in BQP.

In the present work, we show that VQC and QSVM can solve a
problem that is complete in a hierarchically higher class in relation to
BQP — namely, PROMISEBQP. As such, our results imply that there exists
a quantumkernel or a featuremap thatmakes VQC andQSVMefficient
solvers for any problem with BQP complexity.

Results
We use the k-FORRELATION problem that is proven to be PROMISEBQP-
complete26. As defined and described in detail in the Methods section,
the k-FORRELATION problem considers k Boolean functions f1,…, fk:
{0, 1}n→ { − 1, 1} yielding

Φf 1 ,...,f k
: = 1

2ðk + 1Þn=2
P

x1 ,...,xk2f0,1gn
f 1 x1

� �ð�1Þx1 �x2

f 2 x2

� �ð�1Þx2 �x3 � � � ð�1Þxk�1 �xk f k xk

� � ð1Þ

with x � y= Pn
i= 1 xiyi. We first introduce a classification problem based

on the k-FORRELATION promise problem including a compact data
encoding scheme. Correctly classifying such a data set requires an
algorithm with PROMISEBQP-complete complexity.

We then show that this classification problem can be solved effi-
ciently and with arbitrary accuracy by both quantum-enhanced clas-
sification algorithms: VQC and QSVM, which are reviewed in detail in
the Methods section. Therefore, the resulting classification models
solve the k-FORRELATION problem in the PROMISEBQP setting and can
represent any algorithm to solve all PROMISEBQP problems. In other
words, we show that these quantum-enhanced classification algo-
rithms are of PROMISEBQP-complete expressive power.

k-FORRELATION classification data set
We formulate a classification problem with the same complexity as
the k-FORRELATION problem. Generally, given a promise problem
Π = (Π+,Π−), one can obtain a data set D= fxi ,yigi2f1,...,mg by encoding
m =m+ +m− instances from Π into input vectors xi where the
m+ instances sampled from Π+ are labeled with class yi = + 1 whereas
the m− instances sampled from Π− are labeled with class yi = − 1.
Deriving a data set based on the k-FORRELATION problem is not
straightforward since the problem instances Π+∪Π− consist of k-
tuples of Boolean functions with n-bit inputs for which the
description length to encode an instance generally grows expo-
nentially in n. Specifically, an arbitrary n-bit Boolean function needs
2n bits to encode the evaluation outcome for the 2n possible inputs.
Since a k-FORRELATION instance incorporates k such functions, the
resulting data set would have dimensionality k2n.

We use the restriction that each Boolean function fi depends on at
most three input bits as allowed for k-FORRELATION to remain PROMISEBQP-
complete as long as the condition is fulfilled that at least one function
depends onexactly three bits26. More specifically, each function canbe
restricted to be either constant fi(x) = 1 or of the form f iðxÞ= ð�1ÞCiðxÞ

where Ci(x) is a product of at most three bits. This enables one to
encode a k-FORRELATION instance using up to three indices per function fi
indicating the input bits involved in the product Ci(x) or none indi-
cating the constant function fi(x) = 1. We propose an explicit and
practically effective multi-hot encoding scheme. Each function fi can
be represented by an n-dimensional binary vector where a 1 in the j-th
component indicates that the j-th input bit xj is incorporated in the
product Ci(x). The constant function fi(x) = 1 can be encoded as the
zero vector. For example, with n = 3, the k = 3 Boolean functions
f 1ðxÞ= ð�1Þx1x3 , f2(x) = + 1 and f 3ðxÞ= ð�1Þx2 would be encoded as
x = (1, 0, 1, 0, 0, 0, 0, 1, 0)⊤. The resulting encoding of a k-FORRELATION
instance and, therefore, the data dimensionality is kn, which is linear in
k and, since k = poly(n), polynomial in n instead of exponential in n.

Aaronson and Ambainis26 established the quantum algorithm to
solve the k-FORRELATION problem with a constant query complexity by
encoding the Boolean functions fi into unitary transformations with
Uf i

∣xi = f iðxÞ∣xi 8x 2 f0,1gn, which are diagonal in the computational
basis, and applying them successively to the initial state ∣0i�n with
leading and subsequent Hadamard gates (H). The full quantum circuit
can be represented as

UF =H
�nUf k

H�n . . .H�nUf 1
H�n: ð2Þ

Note that fi(x) = 1 produces an identity map Uf i
= I, while fi(x) = (−1)C(x)

with the product C(x) comprising one, two and three bits induces Z,
controlled-Z and controlled-controlled-Z gates, respectively, which
causes a relative phase-flip conditioned on the values of up to three
qubits27. In the final state UF ∣0

n�, Φf 1 ,...,f k
is equal to the amplitude of

state ∣0i�n and can be, therefore, estimated by measurements in the
computational basis to decide the k-FORRELATION problem.

We use the feature map ∣ΦðxÞ�=UΦðxÞ∣0i�n =UFðxÞ∣0i�n where
UF(x) is defined by Eq. (2) under the k Boolean functions encoded in the

Fig. 1 | Hierarchy and relations of the complexity classes andproblems relevant
for this work. This includes the discrete logarithm decision problem DLP1/2 (red
square) and (explicit) k-FORRELATION promise problem (red star). We use the fol-
lowing established, but not yet proven, assumptions: DLP1/2 in NP, P ≠NP, P ≠BQP
(⇒ existence of quantum advantage), NP-complete is outside BQP, (PROMISE)BQP-
complete is outside NP.
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data sample x. We show that when used for VQC and for kernel con-
struction in QSVM, this featuremap leads to classificationmodels that
predict the correct class associated with the k-FORRELATION instance
encoded in the data sample x. This classification can be made arbi-
trarily accurate by increasing the number ofmeasurements estimating
the probability of ∣0i�n and is perfect given the exact measurement
probability.

k-FORRELATION training data
Wenowshowhow togenerate positive andnegative training samplesx+

and x− of a classification problem for VQC and QSVM such that the
quantum state ∣Φðx ± Þ�=UFðx ± Þ∣0i�n produced by circuit (2) in the
feature map or quantum kernel corresponds to the positive class sam-
ple if all qubits are in state ∣0i and thenegative class sample if they are in
another computational basis state ∣zi with 0< z < 2n. To do this, we use
the following theorem, which is proven in the Methods section:

Theorem 1. (odd-k-FORRELATION) Explicit k-FORRELATION remains
PROMISEBQP-complete when k is restricted to odd k ≥ 3.

First, we show how to obtain a positive sample x+ such that the
initial state is preserved under circuit (2), i.e., UFðx + Þ∣0i�n = ∣0i�n. For
odd k Boolean functions, circuit (2) includes k + 1 Hadamard gates, an
even number. For all fi(x) = + 1, the initial state is preserved sinceUf i

= I
and the resulting pairs of successive Hadamard gates annihilate. To
fulfill the condition that at least one Boolean functionmust depend on
exactly three bits, we choose, without loss of generality, the first and
third Boolean functions to be f 1ðxÞ= f 3ðxÞ= ð�1Þxixjxl . With this choice,

H�nUf 3
H�nIH�nUf 1

H�n =H�nUf 3
Uf 1

H�n = I ð3Þ

since f 1ðxÞf 3ðxÞ= ð�1Þ2xixjxl = 1. The positive sample x+ encoding these
functions gives UFðx + Þ∣0i�n = ∣0i�n.

Second, we proceed with generating a negative sample x− for
which circuit (2) maps ∣0i�n to a different computational basis state,
i.e., UFðx�Þ∣0i�n = ∣zi with 0 < z < 2n. Observe that the unitary Uf i

with
f iðxÞ= ð�1Þxj implements a Pauli-Z gate, which resolves to the Pauli-X
gate when sandwiched by Hadamard gates HZH = X. This flip in qubit j
transforms from the initial to another computational basis state ∣zi
with zj = 1. Without loss of generality, we fix i = 1 and choose a sub-
sequent f2(x) fulfilling the three-qubit dependence condition for
PROMISEBQP-completeness so that all the following k − 1 Hadamard
gates, an even number, pairwise annihilate when the remaining l > 2
functions are constant fl(x) = 1. Thus, f2(x) might only cause a global
phase-flip on ∣zi, which can be ignored, and preserves the non-zero
basis state of qubit j such that UFðx�Þ∣0i�n = ∣2j�1i≠∣0i.

Universal expressiveness of VQC
Wefirst present the proof for VQC. TheVQCmodel5 uses a featuremap
to encode the input data x into an n-qubit quantum state
∣ΦðxÞ�=UΦðxÞ∣0i�n followedby a parameterized quantumcircuitW(θ).
A decision rule, involving an additional bias term b∈ [ − 1, 1], enables
classification by estimating the binary measurement probability

p± 1ðxÞ= ΦðxÞ∣W yðθÞM ± 1W ðθÞ∣ΦðxÞ� � ð4Þ

to classify x as positive if

p+ 1ðxÞ >
1
2
ð1� bÞ ð5Þ

or negative otherwise.

Proof. We use proof by reductionwhere our goal is to find the decision
rule (5) to predict class +1 for each instance of the k-FORRELATION

problem if and only if it is positive x∈Π+.We startwith a data samplex
that encodes the functions f1,…, fk and note that the choice of
k-FORRELATION feature map UΦ(x) =UF(x), observable M + 1 = ∣0i�n 0h ∣�n

and parameters θ such thatW(θ) = I leads to

p + 1ðxÞ= 0∣�nUFðxÞ∣0
D E�n
����

����2 = Φf 1 ,...,f k

��� ���2: ð6Þ

For the two possible classes for a data sample x, two bounds to b
can be derived as follows:

• If x belongs to class + 1: Φf 1 ,...,f k
≥ 3=5 holds and, therefore,

∣Φf 1 ,...,f k
∣≥ ð3=5Þ2 = 9=25, which, when inserted into the decision

rule (5), yields

p+ 1ðxÞ ≥
9
25

>
1
2
ð1� bÞ: ð7Þ

This only holds if b is chosen to be greater than− 7/25.

• If x belongs to class− 1: Φf 1 ,...,f k
≤ 1=100 holds and, therefore,

∣Φf 1 ,...,f k
∣≤ ð1=100Þ2 = 1=10000. As the decision rule (5) must be

violated, i.e., p+1(x) < (1 − b)/2 for a negative sample x, a second
condition can be derived as

p + 1ðxÞ ≤
1

10000
<

1
2
ð1� bÞ: ð8Þ

This only holds if b is chosen to be less than 4999/5000.

Thus, the VQC decision rule (5) with the choice of b 2 7
25 ,

4999
5000

� �
decides the k-FORRELATION problem. The existence of values of θ and
especially b that allows separation of the two classes was not a priori
guaranteed. The demonstration of their existence ensures that VQC
has PROMISEBQP-complete expressive power. We note again that the
transformation from k-FORRELATION to VQC is polynomial in time. □

Universal expressiveness of QSVM
We now present the proof for QSVM. The QSVM approach uses a
quantum computer to estimate the kernel function

kðxi ,xjÞ= ΦðxiÞ∣ΦðxjÞ
D E��� ���2 = 0j�nUy

Φðxi ÞUΦðxj Þj0
D E�n
����

����2 ð9Þ

which is then used when solving the SVM dual problem5 classically:

maximize
α

Xm
i = 1

αi �
1
2

Xm
i = 1,j = 1

αiαjyiyjkðxi ,xjÞ ð10Þ

s:t: 0≤α ≤C, 0 =
Xm
i= 1

αiyi: ð11Þ

The decision rule for an unseen (test) data sample s, involving an
additional bias term b∈ [ − 1, 1], is then

mðsÞ= sign
Xm
i= 1

αiyikðxi,sÞ+b
 !

: ð12Þ

Proof. We use proof by reduction to show that QSVM can have
PROMISEBQP-complete expressive power. The constraints of the dual
optimization problem in Eq. (11) imply that at least two training sam-
ples, one from each class, must be provided. Therefore, we consider
m = 2 training samples and choose the positive training sample x1 = x+

with y1 = + 1 and the negative training sample x2 = x− with y2 = − 1 as
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defined above. The equality constraint in Eq. (11) yields

0=α1y1 +α2y2 =α1 � α2 () α1 =α2: ð13Þ

We set α = α1 = α2, which simplifies the dual optimization problem to
one-dimensional optimization constrained on the interval 0 ≤ α ≤ C.
Since [0,C] is a closed and bounded (i.e., compact) interval and the
objective function is concave, the Weierstraß’ extreme value theorem
guarantees a maximum on this interval. We thus consider α to be the
optimal solution, which is guaranteed to be non-negative and can be
determined in closed-form in terms of the kernel function evaluated at
the two training samples k(x1, x2).

As shown earlier, the two training samples produce
UFðx + Þ∣0i�n = ∣0i�n and UFðx�Þ∣0i�n = ∣zi with z ≠0n when the
k-FORRELATION feature map using circuit (2) is applied. Under using the
k-FORRELATION feature map to construct the kernel, the prediction
mapping in Eq. (12) of QSVM for (test) data sample s can now
be simplified as

mðsÞ= sign α kðx + ,sÞ � kðx�,sÞ� �
+b

� � ð14Þ

= sign α 0n∣UFðsÞ∣0
n

D E��� ���2� z∣UFðsÞ∣0
n

D E��� ���2� �
+b

� �
: ð15Þ

Here, the two required quantumkernel function estimates correspond
to the probabilities to observe the bit-strings 0n and z in the state
produced by the k-FORRELATION quantum circuit UFðsÞ∣0i�n upon
measurement in the computational basis.

For the two possible cases ± 1 of a test sample s, two bounds can
be derived for the argument in Eq. (15):

∘ If s belongs to class + 1: The measurement probability
∣h0n∣UFðsÞ∣0

ni∣2 is the absolute squared forrelation quantity
∣Φf 1 ,...,f k

∣2 corresponding to the k-FORRELATION instance encoded in s,
which is ∣h0n∣UFðsÞ∣0

ni∣2 ≥ ð3=5Þ2 in this case. Since the probabilities
have to add up to one, every other n-bit bit-string z ≠0n can only be
observed with a probability of at most 1 − (3/5)2 = 16/25, i.e.,
∣ zh ∣UFðsÞ∣0

n�∣2 ≤ 16=25. These observations yield a lower bound of

α
	

0n∣UFðsÞ∣0
n

D E��� ���2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
≥ 3

5

� �2
+ ð�1Þ z∣UFðsÞ∣0

n
D E��� ���2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≥�16
25

�
+ b ≥ � 7

25
α +b:

ð16Þ

Inserting this bound into m(s), we see that it evaluates to
m(s) = + 1 provided b is chosen to be greater than 7α/25.

∘ If s belongs to class− 1: Analogously to the previous case,
it is known that ∣h0n∣UFðsÞ∣0

ni∣2 ≤ ð1=100Þ2 and, therefore,
∣hz∣UFðsÞ∣0

ni∣2 ≥ 1� ð1=100Þ2 = 9999=10000 for any z ≠0n. Then, the
upper bound is

α
	

0n∣UFðsÞ∣0
n

D E��� ���2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
≤ 1

100

� �2
+ ð�1Þ z∣UFðsÞ∣0

n
D E��� ���2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≤ � 9999

10000

�
+b ≤ � 4999

5000
α +b,

ð17Þ

and bmust be smaller than 4999α/5000, which then guarantees
thatm(s) in Eq. (15) evaluates to −1.

Thus, setting b 2 7
25α,

4999
5000α

� �
guarantees the correct evaluation

of the classification mappingm(s) for both cases. Again, the existence
of b that yields the SVM separating the two classes was not a priori
guaranteed. That such an interval exists ensures that QSVM has
PROMISEBQP-complete expressive power. □

k-FORRELATION fixed ansatz
Finally, we show that circuit (2) used in the feature map or quantum
kernel can be implemented using a parameterized quantum circuit

with a fixed ansatz, which is typically used in QML. With a single
Boolean function fi in themulti-hot encoding x, the indices j∈ {1,…, n}
where xj = 1 determine the target and control qubits of Z gates. To
obtain a fixed ansatz, all possible qubit combinations to apply Z gates,
controlled-Z gates and controlled-controlled-Z gates in (2) need to be
covered. There are n

1

� �
=n 2 OðnÞ, n

2

� �
=nðn� 1Þ=2 2 Oðn2Þ, n

3

� �
=nðn�

1Þðn� 2Þ=6 2 Oðn3Þ possible qubit choices, respectively, due to the
gate symmetry27. Instead of a (controlled-) Z gate, a (controlled) rota-
tion about the Z axis RZ(λ) by angle parameter λ can be applied as it is
equivalent to identity if λ = 0 and to the (controlled-) Z gate if λ =π. For
a controlled rotation gate applied to J⊆ {1,…, n} qubits, the sample x
determines λ as

λ=π
Y
j2J

xj

Y
l2f1,...,ngnJ

ð1� xlÞ ð18Þ

which gives λ =0 in all (controlled) rotation gates except λ =π for the
one that implements fi encoded in x.

For k functions, the fixed ansatz requires Oðkn3Þ gates. This
shows that the expressiveness of VQC and QSVM proven here can be
achieved using parameterized quantum circuits with fixed ansatz of
polynomial depth since k = poly(n). This result is important con-
sidering that VQC and QSVM are generally implemented using cir-
cuits with fixed ansatz5–7. However, embedding the data directly
through circuit (2) by applying a single (controlled) Z gate to the
respective qubits, which is no longer a fixed ansatz, results in shal-
lower circuits of depth O(k).

Discussion
The present work demonstrates that the feature map of VQC and the
quantum kernels of QSVM can be used to solve the classification
problem with the complexity of the k-FORRELATION problem that has
previously been proven to be PROMISEBQP-complete. This means that it
is possible todesign the featuremapofVQCand thequantumkernel of
QSVM for any classification problem derived from any promise pro-
blem in PROMISEBQP. Because PROMISEBQP includes all decision pro-
blems in BQP as a special case, our results imply that it is possible to
design the feature map of VQC and the quantum kernel of QSVM that
solve any classification problem derived from any decision problem in
BQP. If BQP ≠BPP (classical bounded error probabilistic polynomial
time), as required for exponential speed-up of quantum computing to
exist, our results imply that VQC and QSVM must have quantum
advantage over classical classifiers.

According to Havlíček et al.5, every problem that can be solved by
VQC can also be solved by QSVM, but the reverse does not generally
hold. This connection is detailed in Schuld7 and briefly outlined here.
QSVMcanbe seen asVQCwith anoptimalmeasurement, i.e.,W(θ)with
an optimal ansatz and parameters, since W(θ) effectively changes the
measurement basis. Generally, a fixed ansatz in W(θ) requires Oð22n Þ
degrees of freedom to express arbitrary measurements. In QSVM, this
reduces to an m-dimensional optimization problem as—in the SVM
dual view—measurements (↔ separating hyperplane) become expan-
sions in the training data (↔ support vectors). Due to the concavity in
Eq. (10), this is optimally solved given the kernel values k(xi, xj) for all
pairs of training data points. Therefore, QSVM is guaranteed to find
better or equally good solutions than VQC. In the present work, we
show that both VQC and QSVM can solve a classification problem
based on the k-FORRELATION problem, which implies that VQC andQSVM
have an equivalent (universal) expressiveness from a computational
complexity theory point of view.

Methods
Quantum-enhanced classification algorithms
Two most common, and related, approaches to solving classification
problemswith quantumcomputers areVQC andQSVM5, schematically
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depicted in Fig. 2. The VQC model first uses a feature map to encode
the input data x into an n-qubit quantum state by a unitary transfor-
mation of the initial state ∣0i�n: ∣ΦðxÞ�=UΦðxÞ∣0i�n. Subsequently, a
parameterized quantum circuit W(θ) transforms the states to enable
classification by a quantum measurement. The parameters θ and an
additional bias term b∈ [ − 1, 1] are learned by classical optimization. A
binary measurement probability

p± 1ðxÞ= ΦðxÞ∣W yðθÞM ± 1W ðθÞ∣ΦðxÞ� � ð19Þ

is estimated to classify x as positive if

p + 1ðxÞ>
1
2
ð1� bÞ ð20Þ

or as negative otherwise under choosing two projectors

M ± =
1
2

I ±
X2n�1

z =0

hz ∣zi zh ∣

 !
ð21Þ

with arbitrary but fixed coefficients hz∈ { − 1, 1}.
The QSVM approach uses a quantum computer to estimate the

kernel function k(xi, xj) that is then used in the dual problem5:

maximize
α

Xm
i = 1

αi �
1
2

Xm
i = 1,j = 1

αiαjyiyjkðxi ,xjÞ ð22Þ

s:t: 0≤α ≤C, 0 =
Xm
i= 1

αiyi: ð23Þ

The optimal solution is obtained classically by efficient quadratic
optimization anddetermines the classificationmapping of a (test) data
sample s as

mðsÞ= sign
Xm
i= 1

αiyikðxi,sÞ+b
 !

: ð24Þ

Fig. 2 depicts the quantum circuit to obtain the kernel function

kðxi ,xjÞ= ΦðxiÞ∣ΦðxjÞ
D E��� ���2 = 0∣�nUy

Φðxi ÞUΦðxj Þ∣0
D E�n
����

����2 ð25Þ

as the measurement probability of the 0n bit-string.

FORRELATION

The complexity classes suchasPorBQPare for decisionproblemswith
inputs necessarily belonging to ‘+’ or ‘–’ instances. If inputs include a
set that corresponds to neither ‘+’ nor ‘–’, the decision problems are
generalized to become promise problems28. To make decisions, pro-
mise problems consider only inputs from the subsets corresponding

to the ‘+/–’ instances (i.e. inputs that are promised to lead to a ‘+’ or ’–’
decision).

An example of a promise problem is the FORRELATION problem
introduced in Aaronson29, and refined and extended in Aaronson and
Ambainis26. This problem considers two Boolean functions f, g:
{0, 1}n→ { − 1, 1} where the domain {0, 1}n contains all 2nn-bit strings, i.e.,
the integers from 0 to (2n − 1) in decimal representation. The quantity

Φf ,g : =
1

23n=2
X

x,y2f0,1gn
f ðxÞð�1Þx�ygðyÞ ð26Þ

with x � y= Pn
i = 1 xiyi determines the amount of correlation between f

and the Fourier transform of g, i.e., the “forrelation" of f and g. Ana-
logously to correlation, one can say that f and g are “forrelated" once
the value Φf,g is large or not if it is small.

The FORRELATION problem is solvable with a quantum algorithm29

using a single query with error probability of 2/5, which can be arbi-
trarily reduced by increasing the query complexity by a constant fac-
tor. Therefore, a quantum algorithm exists that solves the problem
with error probability ≤1/3with a constant number of queries while the
query implementing circuit remains polynomial, which makes it a
PROMISEBQP problem26. As any decision problem is a trivial special case
of a more general promise problem, the class of PROMISEBQP problems
includes BQP entirely, as depicted in Fig. 1.

k-FORRELATION: a PROMISEBQP-complete extension
Aaronson and Ambainis26 extended the FORRELATION problem to the
k-FORRELATION problem. Instead of two Boolean functions, k Boolean
functions f1,…, fk: {0, 1}n→ { − 1, 1} are considered and the quantity

Φf 1 ,...,f k
: = 1

2ðk + 1Þn=2
P

x1 ,...,xk2f0,1gn
f 1 x1

� �ð�1Þx1 �x2

f 2 x2

� �ð�1Þx2 �x3 � � � ð�1Þxk�1 �xk f k xk

� � ð27Þ

with x � y= Pn
i= 1 xiyi leads to a promise problem:

Definition 1 (k-FORRELATION). The promise problemΠ = (Π+,Π−) over the
space of k Boolean functions {0, 1}n→ { − 1, 1} with

�8ðf 1, . . . ,f kÞ 2 Π+ : Φf 1 ,...,f k
≥ 3

5�8ðf 1, . . . ,f kÞ 2 Π� : ∣Φf 1 ,...,f k
∣≤ 1

100
is the k-FORRELATION problem. Here, Π± are the sets of ± problem
instances with Π+ \ Π� =+.

This definition generally allows the evaluation of the functions
f1,…, fkby oracle queries. Furthermore, for explicit descriptions,which
we assume in thiswork, Aaronson andAmbainis26 proved the following
theorem:

Theorem 2 (PROMISEBQP-completeness). If f1,…, fk are described
explicitly (e.g., by circuits to compute them), and k = poly(n), then
k-FORRELATION is BQP-complete.

Fig. 2 | Quantum circuits used in the quantum-enhanced classification algorithms. Diagrams of quantum circuits for a variational quantum classifiers (VQCs) and
b quantum kernel support vector machines (QSVMs).
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Also showed that this still holds when the functions are restricted
to depend on atmost three input bits of the form f iðxÞ= ð�1ÞCiðxÞ where
Ci(x) is a product of atmost 3 input bits, or be chosen constant fi(x) = 1,
while at least one fi(x) must depend on exactly 3 bits in x. Note the
crucial difference: k-FORRELATION (under the stated conditions) is not
only a PROMISEBQP problem but a PROMISEBQP-complete problem.

odd-k-FORRELATION

Theorem 1 is used for the construction of the data set in the present
work. It is restated and proven in the following:

Theorem 1 (odd-k-FORRELATION). Explicit k-FORRELATION remains
PROMISEBQP-complete when k is restricted to odd k ≥ 3.

Proof. By construction, odd-k-FORRELATION is a special case of
k-FORRELATION, which trivially implies that odd-k-FORRELATION is in
PROMISEBQP. For PROMISEBQP-completeness, it remains to show that
odd-k-FORRELATION is PROMISEBQP-hard via a proof by reduction: we
provide a polynomial mapping from every instance of k-FORRELATION

to an instance of odd-k-FORRELATION that preserves the forrelation
value Φ, which indicates that odd-k-FORRELATION is at least as difficult
as k-FORRELATION.

If k is odd in an instance of k-FORRELATION, it is trivially an instance of
odd-k-FORRELATION. If k is even in an instance of k-FORRELATION, we add
4⌈n/2⌉ − 1 Boolean functions resulting in odd k + 4⌈n/2⌉ − 1. The addi-
tional functions are chosen such that they are either constant f(x) = + 1
or of the form f ðxÞ= ð�1Þxixj with i, j∈ {1,…, n}, fulfilling the necessary
conditions. We show that Φf 1 ,...,f k

=Φf 1 ,...,f k +4dn=2e�1
as follows.

The proof of Theorem 25 in Aaronson and Ambainis26 uses a
gadget applied to two qubits i and j with i ≠ j that converts an even
number of H⊗2 gates into an odd number. Namely,

H�2 CZ H�2 CZ H�2 CZ H�2 � SWAP H�2 ð28Þ

using three controlled-Z gates (CZ), which implement f ðxÞ= ð�1Þxixj .
We apply this gadget successively to ⌈n/2⌉ non-overlapping pairs of
qubits to reproduce the final layer of Hadamard gates. The gadgets
require 3⌈n/2⌉CZ gates and ⌈n/2⌉ − 1 constant functions, so that every
fourth of the additional functions produces an identity between two
gadgets. In total, an odd number of Boolean functions fk+1,…fk+4⌈n/2⌉−1
is added.Obviously, this extends the problem instance fromaneven to
an odd number of Boolean functions, while keeping the circuit
equivalent (under SWAP operations) to the original one defined by
even k Boolean functions. In other words, the value Φ is preserved
since SWAP operations do not affect the amplitude of ∣0i�n. For the
pairwise application of the 2-qubit gadgets in the case of an odd
number of qubits n, one can introduce an ancilla qubit in ∣0i. The final
result remains unaffected as this (n + 1)-th qubit ends up in ∣0i and is,
therefore, not entangled.

Data availability
Data sharing is not applicable to this article as no data sets were gen-
erated or analyzed during the current study.
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