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The gut microbiome and early-life growth in
a population with high prevalence of
stunting

Ruairi C. Robertson1,11,12, Thaddeus J. Edens2,12, Lynnea Carr 3,12, Kuda Mutasa4,
Ethan K. Gough 5, Ceri Evans 1,4, Hyun Min Geum6, Iman Baharmand 6,
Sandeep K. Gill6, Robert Ntozini 4, Laura E. Smith4,7, Bernard Chasekwa4,
Florence D. Majo4, Naume V. Tavengwa4, Batsirai Mutasa4, Freddy Francis 8,
Joice Tome4, Rebecca J. Stoltzfus9, Jean H. Humphrey5,
Andrew J. Prendergast 1,4,5 & Amee R. Manges 6,10

Stunting affects one-in-five children globally and is associated with greater
infectious morbidity, mortality and neurodevelopmental deficits. Recent evi-
dence suggests that the early-life gutmicrobiome affects child growth through
immune, metabolic and endocrine pathways. Using whole metagenomic
sequencing, wemap the assembly of the gut microbiome in 335 children from
rural Zimbabwe from 1–18months of age who were enrolled in the Sanitation,
Hygiene, Infant Nutrition Efficacy Trial (SHINE; NCT01824940), a randomized
trial of improved water, sanitation and hygiene (WASH) and infant and young
child feeding (IYCF). Here, we show that the early-life gut microbiome
undergoes programmed assembly that is unresponsive to the randomized
interventions intended to improve linear growth. However, maternal HIV
infection is associated with over-diversification and over-maturity of the early-
life gut microbiome in their uninfected children, in addition to reduced
abundance of Bifidobacterium species. Using machine learning models
(XGBoost), we show that taxonomic microbiome features are poorly pre-
dictive of child growth, however functionalmetagenomic features, particularly
B-vitamin and nucleotide biosynthesis pathways, moderately predict both
attained linear and ponderal growth and growth velocity. New approaches
targeting the gut microbiome in early childhood may complement efforts to
combat child undernutrition.

Stunting, or linear growth failure, arises from a network of underlying
factors including inadequate dietary quantity and quality, and affects
22% of children under 5 years of age worldwide1,2. Stunting is asso-
ciated with infectious morbidity, reduced childhood survival and
impaired cognitive development3. The lifelong impacts of poor growth
contribute to an intergenerational cycle of stunting and impaired
development, lower educational attainment, and reduced adult

economic productivity4. Nutritional interventions, however, only
reduce stunting by ~12%5, suggesting that other pathophysiological
mechanisms contribute to chronic undernutrition, which may inform
new therapeutic strategies.

The determinants of stunting and other forms of child under-
nutrition are complex and include a myriad of biological, environ-
mental and social factors including breastfeeding and complementary
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feeding practices, household water, sanitation and hygiene (WASH)
practices, birthweight, maternal HIV status, maternal anthropometry
and maternal education. Growing evidence suggests that a subclinical
disorder of the small intestine, termed environmental enteric dys-
function (EED), may also play a role in impaired child growth6. EED is
characterized by blunted intestinal villi, increased gut permeability,
and microbial translocation into the circulatory system resulting in
both local and chronic inflammation andnutrientmalabsorption7,8. It is
hypothesized that high enteric pathogen carriage, as seen in poor-
hygiene, low-resource settings, contributes to the pathophysiology of
EED9–11; however, interventions to improve WASH and reduce the
pathogen burden in children have failed to demonstrate improve-
ments in linear growth12. Additionally, both enteric pathogen load and
common biomarkers of EED are not consistently associatedwith linear
growth in different geographical cohorts13–16, suggesting that the
pathway linkingmicrobial exposures, impaired gut function and early-
life growth remains to be fully elucidated.

In addition to research investigating the influence of diarrhoeal
pathogens on child undernutrition and EED, emerging evidence sup-
ports the role of the commensal gut microorganisms in mediating
child growth. Healthy-growing children exhibit a patterned ecological
assembly of the gut microbiome through the first 2 years of life, which
is defined by delivery mode, breastfeeding, complementary feeding
practices and geography17–20. This microbial succession impacts a
number of metabolic, immune and endocrine pathways in early life
that contribute to early-life growth and development21. Disturbances
to this normal microbiome maturation therefore may impair these
critical growth and developmental pathways. Immaturity of the early-
life gut microbiome is associated with severe acute malnutrition22,
whilst reduced microbiome diversity is associated with higher risk of
future diarrheal episodes23. Indeed, a ‘malnourished’ early-life gut
microbiome can recapitulate phenotypes of faltering growth and EED
when transplanted into germ-free mice and pigs24,25. Furthermore,
nutritional interventions designed to specifically target the impaired
gutmicrobiome in acutemalnutrition inboth animal studies and small-
scale human trials have recently demonstrated a positive effect on
ponderal growth26,27, but not on linear growth.

Microbiome differences that may contribute to stunting are likely
influenced by a number of environmental factors including household
WASH, infant feeding practices and maternal HIV infection. To date,
little research has investigated the effect of improved WASH or infant
feeding interventions on the assembly of the infant gut microbiome in
low resources settings. However, recent data show that children who
are HIV-exposed but uninfected (CHEU), consume breast-milk with an
altered oligosaccharide composition from theirmothers28, andmay be
exposed to abnormal microbiome profiles from their mothers, which
have been reported in people living with HIV29,30. CHEU also receive
prophylactic antibiotics, to prevent infectious morbidity associated
with HIV exposure. Each of these exposures may influence the seeding
and succession of the gut microbiome in CHEU31,32, which may con-
tribute to the high prevalence of stunting observed in CHEU33. Evi-
dence of the effect of other early-life environmental exposures on the
assembly of the infant gut microbiome in low resources settings is
scarce but may provide insights into the influence of microbial and
microbiota-modifying exposures on child growth in the context of
undernutrition.

Previous cross-sectional data from sub-Saharan Africa hypothe-
sized that decompartmentalization of the gastrointestinal tract occurs
in stunted children, as demonstrated by the overgrowth of orophar-
yngeal bacterial taxa in the intestine34,35, whilst a handful of other cross-
sectional studies report variations in gut microbiota composition in
stunted children that are inconsistent across geographical settings36–38.
We previously reported that the maternal gut microbiome can predict
birthweight and neonatal growth in rural Zimbabwe30. However, there
are few studies mapping the compositional and functional maturation

of the gut microbiome throughout early childhood, accounting for
feeding, WASH, maternal HIV infection and other environmental
exposures, in populations from low-resource settings and at high risk
of stunting.

Here, we characterize the succession and maturation of the fecal
microbiome from 1–18months of age in 335 children from rural Zim-
babwe who were enrolled in the Sanitation, Hygiene, Infant Nutrition
Efficacy (SHINE) Trial39. We hypothesized that randomized nutrition
and hygiene interventions would alter gut microbiome development
and that gutmicrobiomecomposition and function couldpredict child
growth. We show that the early-life gut microbiome undergoes pro-
grammed assembly that is unresponsive to the randomized interven-
tions intended to improve linear growth. Maternal HIV infection is
associated with over-diversification and over-maturity of the early-life
gut microbiome in their uninfected children in addition to reduced
abundance of Bifidobacterium species. Usingmachine learningmodels
(XGBoost), we show that taxonomic microbiome features are poorly
predictive of growth; however, functional metagenomic features,
particularly B-vitamin and nucleotide biosynthesis pathways, moder-
ately predict both attained linear and ponderal growth and growth
velocity through the first 18months of life.

Results
Sub-study population characteristics
The fecal microbiota was characterized in 875 samples from 335 chil-
dren from 1–18months of age (Supplementary Fig. 1). A mean (SD) of
2.6 (1.3) samples were analysed per child (Supplementary Table 1). The
children in the microbiome sub-study largely resembled the popula-
tion of all live-born infants in the overall SHINE trial cohort (Supple-
mentary Table 2); however, the microbiome sub-study included a
larger number of children who were born to women living with HIV
(29.6%) compared to the whole SHINE cohort (15.6%), due to the
deliberate over-sampling of mothers living with HIV and their infants.
In addition, the microbiome sub-study included infants with slightly
older mothers and longer gestational ages. The majority of infants
werebornby vaginaldelivery (94.5%) in an institution (89.9%) andwere
exclusively breastfed (91%at3months). Prevalenceof stunting (length-
for-age Z-score (LAZ) < −2) varied from 18–34% across study time-
points. Only 2–8% of HIV-negative mothers reported infant antibiotic
use across visits, compared with 55–76% of HIV-positive mothers,
which was largely attributed to infant cotrimoxazole use as part of
WHO guidelines for HIV-exposed children.

Metagenome sequencing performance
Overall, 875 unique whole metagenome sequencing datasets were
used. On average, 12 million ± 4.2 million quality-filtered read pairs
were generated per sample. Sixteen negative controls produced a
mean of 655 quality-filtered reads (range = 149 to 1,425; SD = 456). The
medianpercent of human reads detectedwas 0.05%but rangedwidely
by age group and decreased over time (Supplementary Fig. 2a). The
median percent un-annotatable reads detected in each sample was
58.6% and increased over time (Supplementary Fig. 2b). Thirty-six
samples were subject to repeated extraction and metagenome
sequencing to assess technical variation. These samples originated
from 4 unique children, each with 3 visit samples, where each visit
sample was extracted and sequenced in 3 replicates. Principal coor-
dinates analysis (PCoA) of Bray-Curtis distances and phylum-level
relative abundances revealed little variation between replicates (Sup-
plementary Fig. 2c, d).

Succession of gut microbiome composition in early childhood
After prevalence and relative abundance threshold filtering, 161
annotated bacterial species were identified. Seven Eukaryotic and 4
Archaeal species were detected in a small proportion of samples, but
these did not meet the prevalence thresholds (Supplementary
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Table 3). Bifidobacterium longum was the predominant species at all
time-points up to 12months of age. Four other Bifidobacteria speces
(B. breve, B. bifidum, B. pseudocatenulatum, and B. kashiwanohense),
Escherichia coli, Bacteroides fragilis and Veillonella species were con-
sistently amongst themost abundant species at the earlier time points
before being outnumbered by Faecalibacterium prausnitzii and Pre-
votella copri at 12 and 18months of age. Taxonomicα-diversitymetrics
and gene richness tended to decline or remain stable over the first
4–6months of life, during exclusive breastfeeding, but increased as
expected with infant age from 6–18months of age (Supplementary
Fig. 3a, b), with the introduction of complementary feeds. A large
proportion of variation in both compositional (PERMANOVA;
R2 = 0.198, P <0.001) and functional β-diversity (R2 = 0.144, P < 0.001)
was explainedby age category (Fig. 1a, b and Supplementary Fig. 3c, d).

Age is the most influential variable defining microbiome compo-
sition and function in early childhood17. We employed extreme gra-
dient boosting machines (XGBoost), a machine learning approach, to
train and test a model of compositional and functional microbiome
maturation, with child age as an outcome. Children who were born to
HIV-negative mothers, who were non-stunted at 18months (LAZ > −2)
and had at least 2 stool samples collected were used as a ‘healthy
training set’ (n = 265 samples and 97 infants), which was then used to
predict child age in a ‘healthy test set’ (n = 66 samples and 66 infants)
and an ‘unhealthy test set’ (n = 528 samples and 169 infants). Using
species composition, the microbiome was highly predictive of child
age (Model pseudo-R2 = 0.77, Mean Absolute Error [MAE] = 1.4
months). This ‘microbiota age’ score was also strongly correlated with
chronological age in the independent subset of children from the
‘healthy’ test set who were also non-stunted and born to HIV-negative
mothers (pseudo-R2 = 0.65). The species most strongly predictive of
age included Faecalibacterium prausnitzii, Blautia wexlerae, Prevotella
copri, Staphylococcus hominis, Dorea formicigenerans, Bifidobacterium
longum, Agathobaculum butyriciproducens, Bifidobacterium bifidum,
Bacteroides thetaiotaomicron, Streptococcus vestibularis andVeillonella
parvula (Fig. 1c). Metagenomic pathways also predicted age with high
accuracy (Model pseudo-R2 = 0.68; MAE = 1.5; Fig. 1d). The pathways
most strongly predictive of age includedmethanogenesis fromacetate

(METH-ACETATE-PWY),multiple nucleotide and amino acidmetabolic
pathways, including L-tryptophan biosynthesis (TRPSYN-PWY), purine
ribonucleosides degradation (PWY0-1296), pyrimidine deoxyr-
ibonucleotides de novo biosynthesis I (PWY-7184), L-histidine degra-
dation I (HISDEG-PWY), dTDP-L-rhamnose biosynthesis I
(DTDPRHAMSYN-PWY), flavin biosynthesis I (RIBOSYN2-PWY) and
nitrate reduction I (DENITRIFICATION-PWY). This ‘metagenome age’
was also correlated with age in the independent subset of children
from the ‘healthy’ test set who were also non-stunted and born to HIV-
negativemothers (pseudo-R2 = 0.56). Using thesemodels, we created a
microbiota-for-age Z-score (MAZ) and metagenome-for-age Z-score
(MetAZ),which accounted for variance ofmicrobiota ageswith respect
to chronological ages at each study visit (see Methods). The top 20
features contributing most strongly to age predictions are plotted in
Fig. 1e, f. In summary, both composition and function of the gut
microbiome are highly predictive of child age from 1–18months,
suggesting apatterned, assembly of the gutmicrobiome in this setting.

WASH and IYCF interventions have little impact on the infant
gut microbiome
We have previously reported in the SHINE trial that the WASH inter-
vention had no impact on infant growth, whilst the IYCF intervention
increased LAZ scores by 0.16 in HIV-unexposed children and 0.26 in
CHEU, leading to a 20–23% relative reduction in stunting by 18months
of age. We tested whether these randomized interventions impacted
anymetrics of gutmicrobiomediversity ormaturity in each age group.
By performing PCoA on Bray-Curtis distances of taxonomic data and
functional data, we found no significant differences in β-diversity
between IYCF and non-IYCF arms at any time-point. There were some
weak differences in Bray-Curtis distances formicrobiome composition
between WASH and non-WASH arms at the 3-month time-point (PER-
MANOVA, P =0.041; R2 = 0.009) and 18-month time-points (P =0.02;
R2 = 0.01), but at no other time-points (Fig. 2a–d). No significant dif-
ferences were observed in α-diversity metrics or gene richness
betweenWASHversus non-WASH armsnor IYCF versus non-IYCF arms
at any time-point (Fig. 2e, f). Using multivariable regression analyses
(MaAsLin2), and following adjustment for covariates (age in days at

Fig. 1 | Compositional and functionalmaturation of the gutmicrobiome of 335
infants from rural Zimbabwe from 1–18months of age. PCoA of Bray-Curtis
distances of species (a; PERMANOVA; two-sided, p <0.001) and metagenomic
pathways (b; PERMANOVA; two-sided,p <0.001) colouredbyage category. The top

20 features and model pseudo-R2 from XGBoost models predicting age using
species (c) or pathways (d) are ranked by scaled feature importance and relative
abundance(0–1) plotted by age (e, f) to visualize taxonomic and functional
microbiome succession from 1–18months of age. n = 875 samples.

Article https://doi.org/10.1038/s41467-023-36135-6

Nature Communications |          (2023) 14:654 3



stool sample collection, exclusive breastfeeding status, deliverymode,
and randomised trial arm) therewere also no differences in the relative
abundance of species or pathways between intervention arms apart
from a small number of features at 3months in the WASH arms
(increased Klebsiella pneumoniae, reduced Collinsella aerofaciens and
more abundant metagenomic pathways involved in biotin and folate
synthesis) and at 18months in the IYCF arms (reduced Eubacterium
siraeum, E. rectale and Agathobaculum butyriciproducens; Supple-
mentary Data File 1 and Supplementary Data File 2). The SHINE WASH
and IYCF had little impact on infant microbiome composition or
function.

HIV exposure is strongly associated with infant gut microbiome
composition and function
We previously reported in this cohort that maternal HIV exposure
significantly impacts infant growth, whereby CHEU displayed sig-
nificantly poorer linear growth compared with children who are HIV-
unexposed (CHU)30. We assessed diversity metrics and microbiome
maturity in CHEU versus CHU adjusting for covariates (n = 847 stool
samples total; children with ‘unknown’ or ‘positive’ HIV status at
18months were excluded). The proportion of CHEU receiving pro-
phylactic cotrimoxazole (caregiver-reported) ranged from 56–83%
across the 3, 6, 12 and 18-month study visits, and themajority of CHEU
were exclusively breastfed to age 6months. Using multivariate
regression analyses adjusting for exclusive breast-feeding status,
delivery mode, age in days at stool sample collection and trial arm, we
found that CHEU displayed significantly greater alpha diversity
(Shannon index β =0.28, P =0.01; Evenness β =0.06, P =0.02) com-
paredwith CHU at 12months of age (Fig. 3a, b); we used a permutation
test, as the sample size was imbalanced in this age category (n = 91
CHEU, n = 27 CHU) and the significant differences persisted (Shannon

P =0.002; EvennessP =0.022).Metrics ofα-diversitywere significantly
lower in CHEU at 2months of age (evenness β = −0.09, P = 0.038).
Metagenomic gene richness was also elevated in CHEU at 1, 6 and
12months after adjusting for covariates (P =0.002, P = 0.006,
P =0.025 respectively; Fig. 3c). Analysis of taxonomic β-diversity
between CHEU and CHU also revealed significant differences at 1, 3, 6,
12 and 18months suggesting that in utero HIV exposure was sig-
nificantly associated with differences in gut microbiome succession
and development throughout the first 18months of life (Fig. 3d, e). HIV
exposure also explained a significant proportion of the variation in
metagenomepathway β-diversity (PERMANOVA; R2 = 0.035; P =0.008,
two-sided) at 1month of age (Fig. 3h, i), but not at later ages. We next
tested the association between HIV exposure and gut microbiome
maturity. We found that CHEU displayed greater microbiome age and
MAZ, and hence microbiota over-maturity, compared with CHU at
6months (6.0 vs 5.4months; multivariate regression; β = 1.58,
P =0.037, two-sided) and 12months of age (median 14.7 vs 9.2months;
β = 3.05, P = 0.005; Fig. 3f, g). However, at 18months CHEU displayed
lower microbiome age (15.3 vs 16.4months; β = −1.2, P = 0.023). Simi-
larly, CHEU displayed significantly greater metagenome ages and
MetAZ scores compared with CHU at 1month (β =0.89, P =0.05) and
6months of age (β = 1.7, P = 0.039; Fig. 3j, k) after adjustment for
covariates, suggesting that HIV exposure drives both compositional
and functional microbiome over-maturity. Taken together, children
born to mothers living with HIV and exposed to HIV during pregnancy
exhibited greater compositional and functional microbiome diversity
and over-maturity, especially in the first 12months.

We next explored which species were differentially abundant
between CHEU and CHU by performing multivariable regression ana-
lyses, adjusting for important confounding factors (age in days at stool
sample collection, exclusive breastfeeding status, delivery mode, and

Fig. 2 | Impact of randomized WASH and IYCF interventions on infant gut
microbiome. PCoA of Bray-Curtis distances species composition coloured by
WASH vs non-WASH arms (a), including PERMANOVA model results, and IYCF vs
non-IYCF arms (b) are plotted (dotted lines represents 95% confidence ellipses;
two-sidedp-value) in addition to thefirst component (PC1) fromPCoAof species (c)
and pathways (d; lines represent smoothed conditional means and grey shaded
areas represent 95% confidence intervals). The IYCF intervention was introduced
after 6months of age, therefore direct comparisons of IYCF vs non-IYCF arms are

not shown in the 1-, 2- and 3-month age categories. No significant differences were
observed in Shannon alpha diversity (e) and gene richness (f) according to trial arm
(the band indicates the median, the box indicates the first and third quartiles and
the whiskers indicate ±1.5 × interquartile range). n = 875 samples. WASH water
sanitation and hygiene arm, IYCF infant and young child feeding arm,WASH+ IYCF
combinedWASH and IYCF arm, SOCstandard of care arm,Non-WASH the two arms
that did not contain WASH interventions, Non-IYCF the two arms that did not
contain IYCF interventions.
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randomised trial arm). Between 1–3months of age, two Bifidobacteria
species, B. longum and B. bifidum (Fig. 4a, b), in addition to Veillonella
seminalis were significantly less abundant in CHEU versus CHU (mul-
tivariate regression; q <0.1; Supplementary Data File 1). Conversely,
Flavonifractor plautii was significantly more abundant in CHEU at
3months (q =0.02). At 18months, B. bifidum was again significantly
less abundant in CHEU (q = 0.04), whilst two other Bifidobacteria
species were also weakly associated with CHEU, whereby B. breve was
lower and B. pseudocatenulatum higher (both q =0.25). Regression
analyses of metagenomic pathways with CHEU status generated simi-
lar outcomes. Following adjustment for covariates, a number of sig-
nificant, yet weak, associations between HIV exposure status and
metagenomic pathways were present at 1 and 3months of age. At
1month of age, these included significant negative associations
between CHEU and amino acid synthetic pathways (superpathway of
L-threonine biosynthesis, superpathway of L-isoleucine biosynthesis I
and L-lysine biosynthesis I; Fig. 4c–e) and positive associations with
pathways involved in the degradation of sugar derivatives, including
fructuronate, glucoronate and galacturonate (PWY 7242
D-fructuronate degradation, PWY 6507 4-deoxy-L-threo-hex-4-eno-
pyranuronate degradation, GALACTUROCAT PWY D-galacturonate
degradation I, GALACT GLUCUROCAT PWY superpathway of hexur-
onide and hexuronate degradation and GLUCUROCAT PWY super-
pathway of beta D-glucuronide and D-glucuronate degradation;
Fig. 4f–h, Supplementary Data File 2). A handful of pathways involved
in fatty acid oxidation and fermentation (fatty acid beta oxidation
peroxisome and succinate fermentation to butanoate) were also sig-
nificantly positively associated with CHEU at 3months of age. Collec-
tively, these data suggest that maternal HIV infection may disrupt the

early-life gut microbiome, leading to reduced Bifidobacteria, reduced
amino acid biosynthesis and elevated sugar degradation.

Microbiome functionality, but not composition, predicts linear
and ponderal growth
We next examined the relationship between taxonomic and functional
features of the gut microbiome and attained growth (length-for-age
Z-score [LAZ] and weight-for-height Z-score [WHZ]) and growth velo-
city (WHZ and LAZ velocity, increase in z-score increments per day
between visits) from 1–18months of age using XGBoostmodels. These
models were used to test whether the composition or function of the
gut microbiome could predict child growth. Models were run sepa-
rately for each of the six age groups, stratified by maternal HIV status
and run in two combinations of predictive features: (i) microbiome
features alone (species or pathways); and (ii) microbiome features and
epidemiological variables, which included maternal anthropometry,
baseline WASH and infant diet variables, amongst others (Supple-
mentary Data File 3). In models combining microbiome features with
epidemiological features, birthweight, maternal height, maternal mid-
upper arm circumference, and household wealth were all important
predictors of attained infant LAZ and WHZ and growth velocity.
Models including microbiome taxonomic features (species) alone
performed poorly for both attained and growth velocity at every age
category and regardless of HIV exposure status (Fig. 5a), with a
majority of models resulting in pseudo-R2 values <0. Model perfor-
mance for linear growth improved when epidemiological features
were included, suggesting that gut microbiota composition alone was
poorly predictive of linear growth. Taxonomic features were weakly
predictive of WHZ velocity at 2 and 3months (pseudo-R2 0.19 and

Fig. 3 | Maternal HIV infection comprehensively alters infant gut microbiome
diversity andmaturity. Shannon alpha diversity (a), species richness (b) and gene
richness (c) shows significant over-diversification in CHEU vs CHU (multivariate
regression, two-sided *p <0.05; the band indicates the median, the box indicates
the first and third quartiles and the whiskers indicate ±1.5 × interquartile range).
PCoA of Bray-Curtis distances (d) and PC1 (e) of species composition in CHEU vs
CHU show significant differences throughout 18months of life (PERMANOVA; two-
sided p-value; dotted lines represent 95% confidence ellipses). Microbiome age (f)
and microbiome-for-age Z score (MAZ; g) shows significant differences in gut

microbiome maturity in CHEU vs CHU (multivariate linear regression analyses;
*p <0.05, two-sided). PCoA of microbiome gene pathways shows differences in
CHEUvsCHUat 1monthof age (h, i; PERMANOVA, two-sidedp-value) in addition to
differences in metagenome-for-age Z-score (MetAZ) at 1 and 6months of age (j, k;
multivariate linear regression analyses; two-sided, *p <0.05). Lines represent
smoothed conditional means and grey shaded areas represent 95% confidence
intervals. n = 859 samples. *p <0.05. CHEU children who are HIV-exposed but
uninfected, CHU children who are HIV-unexposed and uninfected, PC1 principle
component 1.
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0.08) and LAZ velocity at 12months (pseudo-R2 = 0.25), but only in
children born to HIV-negative mothers (Figs. 5a and 6a). Conversely,
models containing functional metagenomic pathways were moder-
ately predictive of both attained and future growth from 1–18months
of age (pseudo-R2 = 0–0.66; Figs. 5a and 6a; n = 856 samples and
n = 854 for LAZ and WHZ models respectively) albeit with relatively
largeMAE scores for both linear (0.54–0.99 LAZ) and ponderal growth
models (0.71–1.15 WHZ). The inclusion of epidemiological variables in
the metagenomic models added little to performance suggesting that
pathway features were independently predictive of both linear and
ponderal growth. MAE decreased in all models as age increased
(Supplementary Fig. 4a–d). Models predicted WHZ better than LAZ
and models including children born to HIV-negative mothers also
tended to perform better. Hence, microbiome functional pathways
moderately predicted child growth.

Microbiome features associated with linear growth
Birthweight contributedmost strongly to prediction of attained LAZ in
a majority of models. Metagenomic pathways consistently performed
better as predictors than other epidemiological features including
maternal height. The most predictive pathways were largely similar
between infants born to HIV-positive and HIV-negative mothers. At
1month and 2-months, metagenomic pathways encoding purine and
pyrimidine biosynthesis, lipid biosynthesis and biosynthesis of B

vitamins were consistently predictive of both attained LAZ and LAZ
velocity (Fig. 5b). Accumulated local effects (ALE)40,41 plots show the
average effect of some of the most important features on model out-
comes (Fig. 5c). At 3months and 6months, pathways encoding fer-
mentation and carbohydrate biosynthesis were consistently predictive
of attained LAZ and LAZ velocity, whilst carbohydrate and amino acid
degradation pathways, amongst others, were predictive of growth at
the oldest age groups. In particular, pathways involved in vitamin B
biosynthesis (flavin, folate, biotin, thiazole and cobalamin biosynthetic
pathways) were consistently predictive of attained LAZ, and included
flavin biosynthesis I, 6-hydroxymethyl-dihydropterin diphosphate
biosynthesis, superpathway of thiamin diphosphate biosynthesis,
adenosylcobalamin salvage from cobinamide I, and thiazole bio-
synthesis I. Increasing abundances of B vitamin biosynthesizing genes
contributed to increasing predicted growth in ALE plots, apart from
thiamin biosynthesis,whichpredicted lower LAZ at 12months (Fig. 5c).
At 12months of age, 4-coumarate degradation (anaerobic), a pathway
involved in plant polysaccharide degradation, was the most predictive
pathway of LAZ in children born to HIV-positive mothers, with greater
abundance associated with greater LAZ. We also assessed pathways
predicting growth velocity and found similar results to that of attained
growth (Supplementary Fig. 5a). At 2months of age, folate biosyn-
thetic pathways (folate transformations II and N10-formyl-
tetrahydrofolate biosynthesis) were amongst the top predictive

Fig. 4 | Maternal HIV infection is associated with reduced abundance of Bifi-
dobacteria abundance and amino acid biosynthesis genes. Relative
abundance(0–1) of Bifidobacterium longum (a) and B. bifidum (b) in the gut
microbiome of CHEU and CHU at each age category via multivariate regression
analyses (*q <0.1; n = 859 samples total. Lines represent smoothed conditional
means and grey shaded areas represent 95% confidence intervals). Multivariate
regression of gene pathways demonstrates reduced abundance of amino acid

biosynthetic pathways (c–e) and increase in abundance of pathways involved in
degradation of sugar derivatives at 1month of age (f–h; n = 32 CHEU, n = 107 CHU;
multivariate linear regression analyses adjusted for multiple comparisons using
Benjamini–Hochberg correction; the band indicates the median, the box indicates
the first and third quartiles and thewhiskers indicate ±1.5 × interquartile range; two-
sided p-value). Significance thresholds defined using MaAsLin2 defaults
(*p <0.05, q <0.25).
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features of linear growth velocity in children born to HIV-negative
mothers, whilst at 3months, purine and pyrimidine pathways were
amongst themost predictive features of linear growth velocity. Amino
acid and fatty acid biosynthetic pathways were strongly predictive of
growth, as in the attained growth models, and glycogen biosynthesis
pathways were consistently predictive of linear growth velocity at all
ages from 2months onwards. In summary, vitamin B biosynthesis,
purine and pyrimidine and lipid biosynthetic pathways were all
important pathways for infant linear growth prediction in early
infancy, whilst carbohydrate degradation pathways were predictive of
growth from 6months onwards.

Microbiome features associated with ponderal growth
In the few models incorporating taxonomic features that weakly pre-
dictedWHZ andWHZ velocity, Escherichia coli, Bacteroides fragilis and
Megasphaera micronuciformis were amongst the most predictive fea-
tures between 1–3months of age (Supplementary Fig. 6). Many of the
same categories of biosynthetic microbiota pathways were predictive
of bothWHZ and LAZ, including amino acid and nucleotide (especially
purine biosynthesis) biosynthetic pathways in addition to a number of
lipid synthesis pathways at older age groups (Fig. 6b, c). The most
predictive pathways were largely similar between infants born to HIV-
positive and HIV-negative mothers. O-antigen biosynthesis pathways
(PWY-7328 UDP-glucose-derived O-antigen building blocks biosynth-
esis & PWY-7332 UDP-N-acetylglucosamine-derivedO-antigen building
blocks biosynthesis and OANTIGEN-PWY pathway), which did not
appear in LAZ models, were consistently amongst the most predictive
features of attained WHZ and WHZ velocity at 1, 3, 6 and 12months,
whereby greater abundance was associated with reduced growth.

Pyrimidine and purine synthetic pathways were consistently the
strongest predictors of WHZ velocity (albeit with varying directions of
effect), including superpathway of pyrimidine deoxyribonucleotides
de novo biosynthesis (PWY0-166) which was the strongest predictive
feature of WHZ velocity at 12months in children born to HIV-negative
mothers (Supplementary Fig. 5b). Similar to the attainedWHZmodels,
O-antigen biosynthesis pathways, amino acid synthetic pathways and
glycogen biosynthesis pathways were all strongly predictive of pond-
eral growth velocity. Hence, metagenomic amino acid, nucleotide and
O-antigen biosynthesis pathways are predictive of ponderal growth in
this cohort.

Discussion
We report the succession and maturation of the early-life gut micro-
biome in a cohort of 335 children from rural Zimbabwe from
1–18months of age. We find that taxonomic composition of the gut
microbiome is poorly predictive of child growth; however, functional
composition moderately predicts both attained LAZ/WHZ and LAZ/
WHZ velocity, with pathways including B vitamin and nucleotide bio-
synthesis genes amongst the most predictive of child growth. We also
report that randomized WASH and IYCF interventions have little
impact on early-life gut microbiome composition, whilst maternal HIV
infection, which is associated with impaired infant growth, is asso-
ciatedwith over-maturity of the gutmicrobiome, featuring a depletion
in Bifidobacteria species and amino acid synthetic pathways. Collec-
tively, these data suggest that disturbances in the functional potential
of the infant gut microbiome may contribute to poor infant growth
and that interventions targeting the infant gut microbiome may serve
as novel solutions to combat child stunting, particularly in CHEU.

Fig. 5 | Prediction of attained LAZ and LAZ velocity using XGBoost models.
Performance of XGBoost models as assessed by pseudo-R2 values for prediction of
attained LAZ and LAZ velocity (LAZ increase per day to next study visit) using
species or metagenomic pathways, stratified by age category and maternal HIV
status (a). Models were run using microbiome features alone (species or metage-
nomic pathways; blue points) and in combination with epidemiological variables
(yellow points). The top ranked pathways predicting LAZ at each age category are
plotted (b), stratified by maternal HIV status and coloured by scaled importance in
the XGBoost model (darkness of blue shading indicates feature ranking in the
model). Accumulated effect plots (ALE) of representative pathways ranking highly

in XGBoost model predictions display change in predicted linear growth (LAZ or
LAZ velocity) by percentile of the feature abundancedistribution (c). Tickmarks on
the x-axis are a rug plot of individual feature abundance percentiles. ALEs were
generated using the ALEplot package and were plotted using ggplot2. Standard
deviations (sd)were calculatedper increment inmicrobiome feature andwere used
to calculate and plot increment-wise 95% confidence intervals as the average
change in the outcome ±1.96(sd/sqrt(n)), where n is the number of observed fea-
ture values, and sd is the standard deviation of the change in the outcome variable
in an interval. n = 856 and n = 460 samples for models predicting LAZ and LAZ
velocity respectively.
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This study is strengthened by the inclusion of a large longitudinal
cohort of rural sub-Saharan African mother-infant pairs enrolled dur-
ing pregnancy, covering much of the first 1000days of healthy infant
development. These novel data thereby add to the literature of infant
microbiome succession, which, to date, has largely focused on high-
income, industrialized populations17,20. High levels of exclusive
breastfeeding, randomized complementary feeding interventions,
high prevalence of maternal HIV infection and extensive environ-
mental metadata allowed for comprehensive examination of nutri-
tional and environmental features defining non-industrialized infant
microbiome succession and its association with child growth in a
population with a high prevalence of stunting. These results, gener-
ated using gold-standardwholemetagenomesequencing, suggest that
the functional activity of the infant gut microbiome in early infancy
could act as a novel target for nutritional interventions combatting
child undernutrition.

The SHINE trial found that the WASH intervention had no
impact on linear growth, whilst IYCF improved growth by 0.16 LAZ in
CHU and 0.26 in CHEU39,42. Furthermore, WASH had no impact on
carriage of enteropathogens or diarrheal incidence14. Here, we show
that the improved WASH and IYCF interventions also had little
impact on the infant gut microbiome from 1–18months of age. Our
results support observations from other geographical settings,
showing a structured, programmed assembly of the gut microbiome
in healthy children who are born by vaginal delivery and exclusively
breastfed17,18,20,43. This cohort adds to the literature showing that the
gut microbiome in this rural sub-Saharan African population
undergoes a similar assembly. These data suggest that this pro-
grammed microbial maturation is driven strongly by age, and is

robust to changes in WASH and complementary feeding, as deliv-
ered in this trial, and that potential microbiome-mediated pathways
affecting early-life growth occur independently of these specific
interventions. Improvements in growth as a result of the IYCF
intervention are not driven by the microbiome, as supported by
previous reports showing that the gut microbiome does notmediate
the effect of lipid-based IYCF nutrient supplements on child
growth44. More intensive interventions that target WASH, microbial
exposures, nutrient intake andmicrobiota-directed foods during the
first 2 years of life may be required to modify this programmed tra-
jectory of gut microbiome succession.

The data reported here complement previous research associat-
ing the gut microbiome with infant growth. The composition and
maturity of the gut microbiota has been shown to be disturbed during
severe acute malnutrition (SAM) and could be used to predict growth
recovery22. More recently, an “ecogroup” of 15 bacterial taxa has been
identified that exhibits consistent covariation, thereby representing
microbiota maturation, throughout the first 2 years after birth across
different geographical cohorts and which is predictive of ponderal
growth45. However, little research has examined microbiome matura-
tion in the context of stunting, chronic undernutrition or adequately
nourished children from low-income settings. We report similar
maturation of the early-life microbiome in this stunting cohort, driven
by many of the same age-predictive taxa as previously reported,
notably Faecalibacterium prausnitzii. We extend this to report func-
tional maturation of the early-life gut microbiota and find that, in
addition to amino acid and B-vitamin biosynthetic pathways, metha-
nogenesis from acetate (METH-ACETATE-PWY) was the pathway most
predictive of age, despite the apparent lack of methanogens. The

Fig. 6 | Prediction of attained WHZ and WHZ velocity using XGBoost models.
Performance of XGBoost models as assessed by pseudo-R2 values for prediction of
attained WHZ and WHZ velocity (WHZ increase per day to next study visit) using
species or metagenomic pathways, stratified by age category and maternal HIV
status (a). Models were run using microbiome features alone (species or metage-
nomic pathways; blue points) and in combination with epidemiological variables
(yellow points). The top ranked pathways predictingWHZ at each age category are
plotted (b), stratified by maternal HIV status and coloured by scaled importance in
the XGBoost model (darkness of blue shading indicates feature ranking in the
model). Accumulated effect plots (ALE) of representative pathways ranking highly

in XGBoost model predictions display change in predicted linear growth (WHZ or
WHZ velocity) by percentile of the feature abundance distribution (c). Tick marks
on the x-axis are a rug plot of individual feature abundance percentiles. ALEs were
generated using the ALEplot package and were plotted using ggplot2. Standard
deviations (sd)were calculatedper increment inmicrobiome feature andwere used
to calculate and plot increment-wise 95% confidence intervals as the average
change in the outcome ±1.96(sd/sqrt(n)), where n is the number of observed fea-
ture values, and sd is the standard deviation of the change in the outcome variable
in an interval. n = 854 and n = 455 for models predicting WHZ and WHZ velocity
respectively.
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predictive strength of this pathway may reflect accumulation of
acetogenic species, including Blautiawexlerae, that feed into reactions
upstream of the METH-ACETATE-PWY. However, our results contrast
with previous cross-sectional studies reporting an association between
the taxonomic composition of the gut microbiome and stunting34–37. A
previous study fromsub-SaharanAfrica (Afribiota) reported significant
differences in the fecal microbiome of stunted and non-stunted chil-
dren between 2–5 years of age, hypothesizing that decom-
partmentalization of the gastrointestinal tract and overgrowth of
oropharyngeal taxa are associatedwith stunting34,35. We report here no
association between the taxonomic composition of the gut micro-
biome and linear growth, however our study examined children at
younger ages to that of the Afribiota cohort, suggesting that differ-
ences in the taxonomic composition of the gutmicrobiomemediating
linear growth may only manifest later in childhood.

We identified a range of metagenomic pathways that predicted
linear and ponderal growth through 18months suggesting that the
potential influence of an altered gut microbiome on child growth is
dependent upon a number of interactingmetagenomic pathways. This
discrepancy in the ability of functional metagenomic features versus
taxonomic features to predict growth may suggest that metagenomic
pathways contributing to differences in early-life growth may be har-
boured across a number of functionally redundant species. Pathways
encodingbiosynthesis of B vitaminswereconsistently amongst the top
predictive features in models predicting both attained and LAZ and
WHZ growth velocity. Previous evidence supports the importance of B
vitamins in early-life growth whereby maternal folic acid supple-
mentation increases infant birthweight46. In infants, vitamin B12 status
is predictive of both linear and ponderal growth47, however the largest
randomized trial of B12 supplementation on infant growth to date
showed no effect48,49. The gut microbiome biosynthesizes and meta-
bolises B vitamins, including cobalamin (B12) and folate (B9), at levels
similar to dietary intake, and abundance of B vitamin-synthesizing
genes in the infant gutmicrobiomediffers by deliverymode, antibiotic
exposure50, exclusive breastfeedingpractices andgeographic location,
where vitamin biosynthesis genes are greater in Western settings43.
Greater relative abundance of B vitamin biosynthetic pathways such as
thiazole, tetrahydrofolate and flavin biosynthesis in the maternal gut
microbiome predicted greater birthweight and neonatal growth in
this same cohort, whilst biotin biosynthesis predicted reduced
birthweight30. The gutmicrobiome transferred frommother to infants
may influence the metabolic capacity of the infant microbiome to
biosynthesize essential nutrients and influence downstream growth
pathways.

Purine and pyrimidine biosynthetic pathways consistently con-
tributed to growth predictions across all age groups. In mothers from
this same cohort, purine and pyrimidine salvage pathways were asso-
ciated with increasing birthweight30. Meta-analyses have also found
that dietary nucleotide supplementation in infants significantly
increases headcircumferenceand rate ofweight gain51, suggesting that
microbiome-derived nucleotide metabolism may play an important
role in, or be a marker of, nutritional status in early infancy. Indeed,
microbial purine and pyrimidine biosynthesis is critical for survival of
both pathogens and commensals52 and therefore alterations in meta-
genomic nucleotide biosynthesis may disruptmetabolic activity of the
gut microbiota. Furthermore, glycogen synthase was the pathway
most predictive of birthweight in maternal microbiomes, whereby
higher abundance predicted lower birthweight. Here, 2 related path-
ways (PWY-622 starch biosynthesis, GLYCOGENSYNTH-PWY glycogen
biosynthesis I (from ADP-D-Glucose)) were also ranked as highly pre-
dictive of growth velocity. Glycogen synthesis occurs as a starvation
response in bacteria which facilitates transition into a biofilm state
suggesting that microbiome starvation or slowed microbial multi-
plication/proliferation responses are associated with infant growth as
early as the first months after birth53,54. Collectively, we identified B

vitamin and nucleotide synthesis metagenomic pathways, amongst
others, as predictive of child growth, suggesting that metabolic
activity of the gut microbiome may influence early-life growth and act
as a target for future dietary interventions.

An important observation, however, is that many of these path-
ways predicting growth, including B vitamin and purine/pyrimidine
biosynthesis, were also predictive of age and hence microbiota
maturation. There was a strong association between age and growth in
the SHINE cohort, whereby LAZ declined steadily between
1–18months of age. This highlights the difficulty in delineating the
independent effect of the gut microbiome on growth during infancy,
when the microbiome is concurrently undergoing age-related
maturation, which is by far the strongest contributor to gut micro-
biome variability. We also found that the accuracy of models predict-
ing growth increased with age, as observed by a reducedMAE in older
compared with younger age groups (Supplementary Fig. 4). Reasons
for the decreasingMAE are unclear; however, it is possible that the gut
microbiome of 12–18month old children is better at predicting growth
than at 1–6months of age, thereby producing less error in XGBoost
models. Our own data (Supplementary Fig. 3c, d) and previous data55

show far less inter-individual variability in 12–18month gut micro-
biomes versus 1–6months. This reduced inter-individual variability
suggests that models of microbiome composition/function and pre-
dicted growth perform better at the later age groups. Although we
attempted to account for age-related effects by examining samples
within specified age categories, the microbiome-growth relationship
observed here may be confounded by age. Previous studies, employ-
ing MAZ as a maturation index to account for age have demonstrated
microbiome maturation is disturbed in acutely malnourished
children22 but is not associated with linear growth56. Conversely, our
observations that functional microbiome characteristics moderately
predict changes in linear growth add novel findings to this literature
but need to be replicated in other large cohorts examining the func-
tional maturation of the gut microbiome throughout early childhood
in similar settings.

We report that maternal HIV infection had a significant impact on
the infant microbiome between 1–18months of age. We previously
reported that CHEU have a 16% higher prevalence of stunting, 40%
higher risk of infant mortality and poorer cognitive development
comparedwithCHU33,57. The results presented here raise the intriguing
possibility that altered succession and assembly of the infant gut
microbiome may drive some of these poorer clinical outcomes in
CHEU. These findings are in line with previous reports of disturbed gut
microbiome composition in CHEU28,32. A number of factors may
explain these differences. Firstly, mothers living with HIV receive both
antiretroviral therapy (81% in the SHINE trial) and a broad-spectrum
prophylactic antibiotic (cotrimoxazole), whilst CHEU also receive
prophylactic cotrimoxazole from 6weeks of age. Previous evidence
suggests that cotrimoxazole may impact gut microbiome succession
throughout childhood, increasing resistance gene diversity and the
prevalence of particular pathobionts58,59, which may explain some of
the differences in microbiome maturity and diversity observed here.
However, we found the largest differences in gut microbiome com-
position and function in samples from infants <6weeks of age, prior to
cotrimoxazole initiation, suggesting that these findings were inde-
pendent of antibiotic prophylaxis and that CHEU may acquire an
altered microbiome from their mothers. We saw relatively minor dif-
ferences, however, in the gutmicrobiomeofmothers livingwithHIV or
without HIV in this same cohort30. Although there were significant
differences in compositional beta diversity, the only species that dif-
fered in abundance was Treponema berlinense, which was significantly
less abundant in mothers living with HIV. Secondly, exclusivity of
breast-feeding (EBF) is one of the strongest determinants of infant gut
microbiome composition, however there was no significant difference
in EBF rates between CHEU and CHU in this cohort, suggesting that
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exclusivity of breast-feeding was not responsible for these differences.
Previous research has shown that the HMO content of breast milk
differs between mothers living with and without HIV28. HMOs are the
among the primary substrates for digestion by the infant gut micro-
biome thereby fundamentally determining gut microbiome composi-
tion. Indeed, we found that Bifidobacteria species, which are primary
degraders of HMOs were significantly less abundant in CHEU, as were
genes involved in amino acid biosynthesis. Previous in-depth profiling
of infant immune development found that a lack of Bifidobacteria in
infancy is associated with systemic inflammation and immune
dysregulation24, which are also observed in CHEU60–62, suggesting that
the lack of commensal Bifidobacteria may mediate some of the poor
immune, growth and clinical outcomes observed in CHEU. Impor-
tantly, these microbiome differences between CHU and CHEU were
not reversed by WASH and IYCF interventions, suggesting that novel
microbiota-directed interventions that enhance Bifidobacteria coloni-
zation or prevent the over-diversification of the early-life gut micro-
biome are warranted for future clinical trials in CHEU.

There are several limitations to this analysis: (i) Machine-
learning prediction models are at inherent risk of over-fitting and
bias depending on cross-validation approaches and model com-
plexity. Our conservative approach to model tuning and feature
selection aimed to minimize overfitting. The age models, which
included an out-of-sample (‘healthy’) test dataset, produced com-
parable performance metrics, making overfitting less likely. How-
ever, it remains possible that some degree of over-fitting occurred in
growth models, since an out-of-sample test dataset was not used,
thereby possibly affecting the strength of our reported gut
microbiome-related growth predictions. (ii) the SHINE microbiome
sub-study intentionally included more women living with HIV than
the main SHINE trial (30% versus 15%), and the proportion of HIV-
exposed infants varied by age group. This resulted in some small sub-
groups in some of our age categories by HIV exposure analyses,
which likely resulted in unstable predictions in certain XGBoost
models; (iii) a significant proportion of the sequencing reads inclu-
ded in our datasets were not annotatable (median 58.6%) using the
specified bioinformatic pipelines (MetaPhlAn3 and HUMAnN3). This
large abundance of unknown sequences is common in samples
derived from non-Western populations63 and leads to inferences
solely being made from the assignable fraction, potentially missing
important microbiota features that are predictive of infant growth
but are currently not represented in databases. Kmer-based bioin-
formatic tools (e.g. Kraken) andmarker-based tools (e.g. MetaPhlAn)
each have their own advantages and disadvantages. Tools relying on
metagenome assembly may help in identifying some of these
unknown sequences in datasets from less-studied populations in the
future; (iv) Escherichia coli was one of the most prevalent bacterial
species across all age groups; however, MetaPhlAn3 cannot differ-
entiate between E. coli pathotypes. Different E. coli pathotypes, such
as enteropathogenic and enteroaggregative E. coli have been asso-
ciated with intestinal pathology and EED; however, we previously
reported in the same cohort that some of these pathotypes were not
associated with growth14; (v) we attempted to account for the age-
related confounding of the microbiome-growth relationship by pre-
dicting attained growth and growth velocity in discrete age groups,
but residual confounding may still be present, influencing our ability
to identify microbiome features independently associated with
growth; (vi) data on infant antimicrobial use, aside from cotrimox-
azole use in CHEU, was incomplete (but infrequent), limiting our
ability to confidently assess this as a potential confounder in early-life
gut microbiome maturation; (vii) differences in microbiome com-
position and function may also be driven by differences in intestinal
microbial load, motility and biogeography, which were not assessed;
and (viii) finally, we chose mother-infant pairs with the most com-
plete sample collection during follow-up, in order to strengthen our

inferences about development of the gut microbiome over time, but
which may introduce selection bias. Baseline characteristics of the
microbiome sub-cohort were largely similar to those of the larger
trial, suggesting that the microbiome sub-study cohort studied was
largely representative of the larger SHINE trial.

Collectively, these data suggest that HIV exposure shapes
maturation of the infant gut microbiota, and that the functional
composition of the infant gut microbiome is moderately predictive of
infant growth in a population at high risk of stunting. Novel ther-
apeutic approaches targeting the gut microbiome may mitigate the
poor clinical outcomes that are observed in CHEU, a growing popu-
lation of children in sub-SaharanAfrica. By contrast, currentWASH and
IYCF interventions fail to impact the infant gut microbiome and
therefore transformative WASH and microbiome-targeted dietary
interventions may prove to be more successful approaches to target
the microbial pathways mediating early-life growth.

Methods
SHINE trial design
The study design and methods for The Sanitation Hygiene Infant
Nutrition Efficacy (SHINE) trial and for the corresponding micro-
biome analyses, have been reported previously64,65. Briefly, SHINE
was a 2 × 2 cluster-randomized trial, conducted between 2012 and
2017, to determine the independent and combined effects of
improved infant and young child feeding (IYCF) and WASH on child
stunting and anaemia in two rural Zimbabwean districts, Chirumanzu
and Shurugwi (NCT01824940). 5280 pregnant women were cluster-
randomized to one of four interventions: WASH, IYCF, WASH+ IYCF,
and Standard of Care (SOC). The SOC interventions, included in all
trial arms, comprised exclusive breastfeeding promotion for all
infants up to 6months and strengthened prevention of mother to
child transmission (PMTCT) of HIV services. The household WASH
intervention was initiated during pregnancy and was designed to
reduce exposure to human and animal feces, including, at the
household level: construction of a ventilated improved pit latrine,
installation of two hand-washing stations plus monthly delivery of
liquid soap andwater chlorination solution, provision of a play space
for the infant, and hygiene counselling. The IYCF intervention was
designed to improve infant diets using a small-quantity lipid-based
nutrient supplement (SQ-LNS), provided to the infant from
6–18months, and educational interventions promoting the use of
age-appropriate, locally available foods and dietary diversity. Lastly,
a combined trial arm, WASH + IYCF, evaluated the effects of both
improved WASH and infant nutrition. Due to the nature of the
interventions, the study was unblinded. The primary outcomes (LAZ
and haemoglobin concentrations at 18months) were assessed by
comparing length and age of children against standardized World
Health Organization growth standards for LAZ and using a Hemocue
hemoglobinometer, for haemoglobin concentrations.

Infants were followed up at study visits at 1, 3, 6, 12 and 18months
of age. Length and weight were measured at each infant visit, as
described previously39. Length-for-age z scores (LAZ) and weight-for-
height z scores (WHZ) were calculated from length and weight mea-
surements at each visit according to WHO Child Growth Standards.
Epidemiologic data for the infants was collected from the baseline and
follow-up visits using trial questionnaires that included maternal
anthropometry, birth outcomes, baseline household WASH facilities,
household wealth, maternal education, religion, parity, household
size, dietary diversity, changes in breastfeeding and complementary
feeding practices, food security, 7-day and 3-month infant health sta-
tus, and antimicrobial use.

HIV testing
HIV testing was conducted on mothers at the baseline visit using a
rapid test algorithm (Alere Determine HIV1/2 test, followed by INSTI
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HIV-1/2 test if positive). Those testing positive for HIV had CD4 counts
measured (Alere Pima Analyser) and referral to local clinics; women
were encouraged to begin co-trimoxazole prophylaxis and ART, to
exclusively breastfeed, and to attend clinic at 6weeks postpartum for
early infant diagnosis and infant co-trimoxazole prophylaxis. Women
testing negative for HIV were offered retesting at 32 gestational weeks
and 18months postpartum. Children of mothers living with HIV were
offered testing for HIV at each of the study visits. Those who tested
positivewere referred to local clinics for ART.HIVwas diagnosed using
DNA PCR on dried blood-spot samples or RNA PCR on plasma in
samples collected prior to 18months. In samples collected after
18months, HIV was diagnosed by PCR or rapid test algorithm,
depending on samples provided. Children born to women living with
HIV and who tested negative at 18months were classified as HIV-
exposed uninfected (CHEU). Inconclusive or discordant results were
re-tested; if no further samples were available or repeat testing was
inconclusive, children were classified as HIV-unknown.

Microbiome sub-study
All CHEU and a subgroup of CHU from the SHINE study were enrolled
into an Environmental Enteric Dysfunction (EED) sub-study (n = 1,656
mother-child pairs); these infants underwent intensive biological
specimen collection at 1, 3, 6, 12 and 18months of age65. The EED sub-
study was therefore enriched for mothers living with HIV, by design.
Sample selection for inclusion into the current microbiome study
was conducted to enhance longitudinal profiling of the mother and
infants gutmicrobiota. Of themother-infant pairs within the EED sub-
study, those with least one maternal fecal specimen (of 2 possible)
and at least 2 infant fecal specimens (of 5 possible) were included in
the gut microbiome analyses. An additional 94 samples collected at
the 1 and 3-month visits, that did not meet these criteria, but had
microbiome sequencing data available from a separate study exam-
ining rotavirus vaccine immunogenicity in the SHINE trial66, were also
included in these analyses. Infant ages varied at each study visit due
to the allowable window around the visit date for the larger SHINE
trial. Therefore, for this microbiome study, stool samples were re-
categorized into 6 age groups corresponding to important stages in
infant microbiome development: “1 month” (0–6weeks), “2months”
(7 weeks – <3months), “3months” (3–6months), “6months”
(6–9months), “12months” (9–15months), and “18months”
(15–20months). Sample sizes in each age category are provided in
Supplementary Table 1.

Sample collection
Study visits were conducted by trained study nurses in participants’
homes. Sterile stool collection tubes were provided to mothers, who
collected stool samples from their infants on the morning of each
study visit. Samples were placed in cool boxes immediately upon
collection by study nurses and transported by motorbike to field
laboratories where theywere aliquoted and stored at−80 °Cwithin 6 h
of collection before subsequent transport to the central laboratory in
Harare for long-termstorage at −80 °C. An aliquotof each stool sample
was shipped on dry ice by courier to the British Columbia Centre for
Disease Control in Vancouver, Canada. A strict cold chain was main-
tained throughout transport, ensuring no freeze-thaw cycles occurred
between sample collection and processing.

Whole metagenome library preparation and sequencing
DNA was extracted from 100–200mg of stool samples using the
Qiagen DNeasy PowerSoil Kit as per the manufacturer’s instructions.
DNA quantity was assessed by fluorometry (Qubit) and quality con-
firmed by spectrophotometry (SimpliNano). 1 µg DNA was subse-
quently used as input for metagenomic sequencing library
preparation using the Illumina TruSeq PCR-free library preparation
protocol, using custom end-repair, adenylation and ligation enzyme

premixes (New England Biolabs). The concentration and size of
constructed libraries were assessed by qPCR and by TapeStation
(Agilent). DNA-free negative controls and positive controls (Zymo-
BIOMICS D6300) were included in all DNA extraction and library
preparation steps. Libraries were pooled in random batches of
48 samples including one negative control. A set of specimens were
subject to replicate DNA extraction, library preparation and,
sequencing to estimate the magnitude of technical variability and
batch effects among samples. Whole metagenome sequencing was
performed with 125-nucleotide paired-end reads using either the
Illumina HiSeq 2500 or HiSeqX platforms at Canada’s Michael Smith
Genome Sciences Centre, Vancouver, Canada.

Bioinformatics
Quality control and bioinformatic processing of raw sequencing data
was conducted using the publicly available KneadData (https://
huttenhower.sph.harvard.edu/kneaddata/). Sequenced reads were
trimmed of adaptors and filtered to remove low-quality, short (<70%
raw read length), and duplicate reads, as well as those of human,
other animal or plant origin, with default settings. Species compo-
sition was determined by identifying clade-specific markers from
reads using MetaPhlAn3 with default settings67. Relative abundance
estimates were obtained from known assigned reads, and unknown
read proportions were estimated from total, assigned and unas-
signed, reads. Percent human DNA was estimated from KneadData
output, using the proportion of quality-filtered reads that align to the
human genome. Given the smaller viral genome sizes, sequencing
depth, and limitations of MetaPhlAn3 for virus identification, we did
not include viruses in our current analyses. We applied a minimum
threshold of >0.1% relative abundance and ≥5% prevalence for all
detected species. Metabolic pathway composition was determined
using HUMAnN3 with default settings against the UniRef90
database67. Pathway abundance estimates were normalized using
reads per kilobase per million mapped reads (RPKM) and then re-
normalized to relative abundance. We applied a minimum relative
abundance threshold of 3 × 10−7% and ≥5% prevalence for all meta-
genomic pathways.

Statistical analysis
All data were analysed using R (v.4.0.5). Microbiome data were han-
dled using the phyloseq package (v1.34.0). Alpha diversity metrics
were calculated using the vegan package (v2.5.7). A permutation test,
implemented using the coin package in R, was performed to compare
alpha diversity metrics between unbalanced age categories. Beta-
diversity was estimated using the Bray-Curtis dissimilarity index and
analysed by permutation analysis of variance (PERMANOVA). Differ-
ential abundance analysis of species or functional pathways was
assessed usingmultiple regression analyses using theMaAsLin2 v1.5.1
package68 and applying default arguments (significance thresholds
−p < 0.05, q < 0.25). Four covariates were chosen for adjustment in
diversity analyses, microbiome maturity analyses and MaAsLin2
regression models and included age in days at stool sample collec-
tion, exclusive breastfeeding status (recorded at 3months old),
deliverymode (caesarean section versus other), and randomised trial
arm. These covariates were chosen based on biological plausibility
and previous evidence of their influence on gut microbiome com-
position in large birth cohorts17. Adjustment for multiple compar-
isons was performed using the Benjamini-Hochberg false discovery
rate (FDR).

The SHINE trial did not observe an interaction between the
randomized WASH and IYCF interventions and growth; therefore,
randomised trial arms were combined into WASH versus non-WASH
arms and IYCF versus non-IYCF arms for specified analyses. We
restricted the IYCF analysis to the 6, 12 and 18month visits, corre-
sponding to the period during which supplemental infant feeding
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was introduced (from 6months of age). All children, regardless of
HIV status or exposure status were included in the growth analyses
(875 total stool samples). 16 samples had missing ages and were
excluded from age prediction models. Stool samples collected from
children classified as HIV-unknown (24 samples) or HIV-positive
(4 samples) at 18months were excluded from direct comparisons of
CHEU vs CHU infants.

XGBoost models
Relationships between the infant microbiome and age or growth
(attained LAZ/WHZ and WHZ/LAZ velocity) were evaluated using
extreme gradient boosting machines (XGBoost). XGBoost builds an
optimized predictive model by creating an ensemble from a series of
weaklypredictivemodels. XGBoost is also non-parametric, can capture
non-linear relationships, and can accommodate high-dimensional
data69. The XGBoost models were developed using microbiome rela-
tive abundances (species or pathways) and all epidemiologic variables.

XGBoost model selection was performed in 3 stages30. In brief,
the BayesianOptimization function of the rBayesianOptimization
package was used with 10-fold cross-validation to select model
hyperparameters by minimizing the mean squared error (MSE). This
3-stage hyperparameter tuning and model building was performed
for two feature sets, one comprising microbiome features and a
second comprisingmicrobiome plus epidemiologic features; this was
done to assess model performance and to examine the contribution
of epidemiologic versus microbiome features. In stage one, the
model dataset included either microbiome features alone or micro-
biome and epidemiologic features. Models with the lowest MSE (in
the 5th percentile) were retained, and from thesemodels the variables
that contributed to the top 95% of variable importance by proportion
were retained; this filteringwas applied separately to themicrobiome
and epidemiologic features. In stage two, models were built with the
retained features obtained from stage one, and BayesianOptimization
was re-run as for stage one but using leave-one-out cross-validation.
Models containing microbiome features alone, or together with epi-
demiologic features, were again filtered according to feature impor-
tance as for stage one. In stage three, all retained epidemiologic
variables, microbiome features, and hyperparameters selected in
stage two were used to fit our finalmodels, using leave-one-out cross-
validation to minimize the MSE. Separate models were built for
attained LAZ and WHZ and growth velocity outcomes13. Growth
velocity was defined as LAZ/WHZunits of changeper day between the
specified study visit and the subsequent study visit. We assessed
microbiota composition and functional pathways separately.
XGBoost models were fit using the H20.ai engine and h2o R package
interfacewith theXGBoostpackage. XGBoostmodel performancewas
evaluated using pseudo-R2 andmean absolute error (MAE). Pseudo-R2

values <0 indicated that the prediction of the model was worse than
the mean response. Scaled relative importance for each model fea-
ture was used to identify the twenty most informative variables for
further interpretation, where the most important variable is ranked
first, and the importance of subsequent variables are relative to the
first variable. The marginal relationships between the twenty most
important features and each growth outcome were visualized for
interpretation40 using accumulated local effects plots (ALE). ALEplots
can be interpreted as showing a marginal effect, adjusted for all
covariates retained in the final model, showing the expected change
in the outcome variable per increment in a model feature. The
resulting effect sizes are plotted cumulatively and centered about the
average effect size41. ALEs were generated using the ALEplot package,
modified to compute confidence intervals, and were plotted using
ggplot2. Standard deviations were calculated per increment and were
used to calculate and plot increment-wise 95% confidence intervals.
The code for the implementation of XGBoost and the ALE plots is
available at https://github.com/ThadEdens/shine-analysis.

Microbiome age
We investigatedmicrobiomematuration by building an age prediction
model using XGBoost and microbiome features only (species or
pathways). A combination of leave-one-out cross validation and cross
validation out-of-fold predictions was used as an alternative to the
train-test approach. We partitioned the infants and their correspond-
ing datasets into three groups: (1) CHU with LAZ > −2 at 18month of
age, who contributed >1 dataset (“healthy training set”;
n = 265 samples), (2) remaining CHU infants with LAZ > −2 at 18month
of age, who contributed a single metagenomic dataset (“healthy test
set”; n = 66 samples); and (3) CHEU or children with LAZ ≤ −2 at
18months of age (“unhealthy test set”; n = 528). 16 samples that were
missing exact ages were excluded from the model. Age was log
transformed as a response in the XGBoost model. We performed the
same 3-stage tuning and model building procedure, as described
above. We generated model performance metrics, including pseudo-
R2, mean absolute error (MAE) and mean squared error (MSE) for the
three sets. Leave-one-out cross validationwasused to build amodel on
the ‘healthy training set’ (n = 265 samples). Model performance for the
‘healthy training set’ was computed using the observed response and
cross validation out-of-fold predictions. Model performance for the
‘healthy’ and ‘unhealthy’ test sets was computed using the observed
responses and the final model predictions. We exponentiated the
predicted log transformed ages and plotted these values against the
observed age. The predicted age using these models is referred to as
‘microbiota age’ for the models trained using species and ‘metagen-
ome age’ for models trained using pathways. Differences in micro-
biome age and metagenome age scores were assessed using
multivariable linear regression. To account for variance of microbiota
ages with respect to chronological age within the age range of each
study visit, a microbiota for age Z-score (MAZ) and metagenome-for-
age Z-score (MetAZ) was also created using the microbiome age and
metagenome ages as previously described22. A Z-score was calculated
to account for variation in ages within each study visit using the fol-
lowing formula:

(Microbiota age of child—medianmicrobiota age of ‘healthy’ child
at same study visit)/standard deviation of microbiota age of ‘healthy’
child at same study visit.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw metagenome sequencing data generated in this study have
been deposited in the European Bioinformatics Database under
accession code PRJEB51728. The UniRef90 database used to annotate
metabolic pathways is publicly available. (https://www.uniprot.org/
help/uniref). Epidemiologic data files and final processed and anno-
tated metagenome sequencing data files (taxa and pathways) are
available at https://doi.org/10.5281/zenodo.7471082.

Code availability
The code for the implementation of XGBoost and the ALE plots is
available at https://github.com/ThadEdens/shine-analysis.
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