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Higher rank chirality and non-Hermitian skin
effect in a topolectrical circuit

Penghao Zhu 1, Xiao-Qi Sun1, Taylor L. Hughes1 & Gaurav Bahl 2

While chirality imbalances are forbidden in conventional lattice systems, non-
Hermiticity can effectively avoid the chiral-doubling theorem to facilitate 1D
chiral dynamics. Indeed, such systems support unbalanced unidirectional
flows that can lead to the localization of an extensive number of states at the
boundary, known as the non-Hermitian skin effect (NHSE). Recently, a gen-
eralized (rank-2) chirality describing a 2D robust gaplessmodewith dispersion
ω = kxky has been introduced in crystalline systems. Here we demonstrate that
rank-2 chirality imbalances can be established in a non-Hermitian (NH) lattice
system leading to momentum-resolved chiral dynamics, and a rank-2 NHSE
where there are both edge- and corner-localized skin modes. We then
experimentally test this phenomenology in a 2-dimensional topolectric circuit
that implements a NH Hamiltonian with a long-lived rank-2 chiral mode. Using
impedance measurements, we confirm the rank-2 NHSE in this system, and its
manifestation in the predicted skin modes and a highly unusual momentum-
position locking response. Our investigation demonstrates a circuit-based
path to exploring higher-rank chiral physics, with potential applications in
systems where momentum resolution is necessary, e.g., in beamformers and
non-reciprocal devices.

Chirality is a key characteristic of robust gapless modes—only by
coupling a set of such modes with vanishing net chirality can we
destabilize the modes and open an energy gap. For example, a 1D
chiral mode is a one-way conducting channel with a linear dispersion
ω = vk. Its chirality is intrinsically defined as the sign of its group
velocity v without requiring any other constraints. To open a gap in a
chiral channel one needs to backscatter and reverse the current flow,
which can be accomplished only by coupling two such modes that
have opposite group velocity/chirality. This robustness is heralded by
the so-called chiral anomaly: subjecting a chiral channel to an electric
field generates extracharges that break the conservationof the electric
charge current by an amount proportional to the net chirality.

With crystalline symmetries, one can generalize the concept of
chirality, robustness, and anomalies for gapless modes with more
complex dispersion. Indeed, a generalized chirality for gapless modes
with dispersion ω ~ kxky has been recently proposed in mirror sym-
metric systems1. Such a chiral mode has a non-conserved momentum

current (momentum anomaly) in response to an electric field, and has
a non-conserved charge current (charge anomaly) in response to
a strain field. Since the charge anomaly is induced by a rank-2 (two-
index) tensor gauge field (the strain tensor), this generalized chiral
mode has been dubbed a rank-2 chiral mode. In contrast, the usual 1D
chiral mode is anomalous in the presence of a rank-1 (vector) gauge
field, and we therefore refer to it as a rank-1 chiral mode.

Although isolated chiralmodeswidely exist in the band structures
of lattice systems, there is a no-go theorem excluding the lattice rea-
lization of a nonzero net chirality2,3. However, one can avoid the no-go
theorem and observe unusual chiral dynamics on boundaries of
topological phases4, in periodically driven Floquet systems5, or in non-
Hermitian (NH) systems6–8. In the latter case, which is our focus, one
can apply appropriate gain and loss to a lattice system that will effec-
tively generate a chirality imbalance. Unidirectional flows are estab-
lished in the long-time dynamics of such systems9,10, and these lead to
the localization of an extensive number of states at the boundary; a
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phenomenon known as the non-Hermitian skin effect (NHSE)11–15.
Heuristically, if there is a 1D chiral mode that is the most amplified (or
least damped) in a NH system, then this mode is long-lived and can
dominate the long-time dynamics. Such a mode will produce a net 1D
chirality and hence a unidirectional particle current that accumulates
density on a boundary thus forming the NHSE. More details about the
relationship between the dynamics of long-lived modes and the NHSE
can be found in Supplementary Material Section S1.

Generalizing to 2D systems, we construct a non-Hermitian lattice
model hosting a rank-2 chiral mode in its long-time dynamics and
illustrate the resulting unconventional momentum-resolved chiral
dynamics and NHSE. Furthermore, we find skin modes on the edges
and corners of our model on a square geometry. The localization of
these skin modes has amechanism different from previously reported
higher-order skin modes16 or hybrid skin-topological modes17,18, and
can be heuristically understood from the dynamics of the long-lived
rank-2 chiral modes in the lattice model. We further implement our
model in a topolectric circuit platform and experimentally probe key
features of our model, including predictions of momentum resolved
dynamics and a rank-2 NHSE.

Results
Rank-2 chiral mode
A rank-2 chiral fermion mode in 2D has the dispersion1:

EðkÞ= _vξkxky � μ, ð1Þ

where v is a (Fermi) velocity, ξ is a length scale, and μ is the Fermi
energy. The isoenergy contours and dispersion relation for Eq. (1) are
shown in Fig. 1. Importantly, if we impose amirror symmetry about the
line x = y we can define a rank-2 chirality as χ2 � sgn ðvξÞ. Indeed, such
a mirror symmetry guarantees that one cannot continuously deform

kxky→ − kxky without breaking the symmetry, and hence χ2 is a fixed,
well-defined sign.

It is illustrative to regard the rank-2 chiral mode as a collection
of 1D chiral modes with a nontrivial chirality pattern. In particular we
can describe the rank-2 chiral mode as a family of 1D chiral modes
along the x-direction (y-direction) parameterized by ky (kx), having a
set of 1D chiralities given by χ1xðkyÞ= χ2sgn ky (χ1yðkxÞ= χ2sgn kx).
With this understanding, the robustness and the associated
anomalies of a rank-2 chiral mode can be straightforwardly derived
from the properties of the 1D chiral modes. Asmentioned, a 1D chiral
mode with a positive (negative) chirality has an anomalous charge
conservation law proportional to the (opposite of the) external
electric field19. For a uniform system the anomalous conservation
law reduces to:

∂tρ= χ1
e

2π_
Ex ð2Þ

where ρ is the charge density. For example, if we turn on an electric
field Ex via the Faraday effect, e.g., by adiabatically shifting the x-
component of the vector potential, Ax, by h/eL where L is the linear
size of the system along x, then χ1 particles are generated. The rank-2
chiral mode is a collection of 1D chiral modes having momentum-
dependent chiralities, though the net chiralities χX =

P
ky
χ1xðkyÞ,

χY =
P

kx
χ1yðkxÞ in both directions vanish (as they must from time-

reversal symmetry). As such a rank-2 chiral mode does not generate
a net anomalous charge in an electric field. However, since the 1D
chiral modes that comprise the rank-2 chiral mode with opposite
chirality also have opposite transverse momenta, i.e., they have
momentum-chirality locking, there will be an anomalous conserva-
tion law for the momentum density in the i-th direction ρi.
Specifically, for a uniform system the anomalous conservation law

Fig. 1 | Rank-2 chiral mode as a long-lived mode of a non-Hermitian lattice
Hamiltonian and the resulting rank-2 NHSE. The top left panel shows the iso-
energy contours of ReE = sin kx sinky(black lines) and the loss
Im E = cos kx + cos ky � 2. The top right panel manifests the dispersion of long-
lived rank-2 chiral mode around Γ = (0, 0). The group velocity field of the long-lived

rank-2 chiral mode around Γ = (0, 0) is shown in the bottom right panel. States with
momenta in regions with different colors flow to different regions in spatial space,
which leads to bulk-, edge-, and corner- localizedmodes as indicated in the bottom
left panel.
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reduces to:

∂t

ρx

ρy

 !
= χ2

eΛ2

4π2

Ey

Ex

� �
, ð3Þ

where Λ is a momentum-cutoff scale1.
We see from Eq. (3) that a rank-2 mode has an anomalous

momentum response to a charge electric field. Remarkably, there is a
related inverse effect where an anomalous charge response is pro-
duced by a “momentum” electric field. A momentum electric field is
generated by a rank-2 tensor gauge field eaμ (for the translation sym-
metry) that couples to the momentum vector charge ka instead of the
electric charge. Additionally, one can provide an interpretation of the
translation gauge fields in terms of elasticity theory where eaμ = δ

a
μ � ∂ua

∂xμ
where ua is the elastic displacement vector. Now, if we consider
applying the momentum electric field Ey

x =∂xe
y
0 � ∂te

y
x we find that

modes at ky >0(ky <0) see an effective electric field in the + x̂ð�x̂Þ
direction, and analogously for Ex

y =∂xe
x
0 � ∂te

x
y . Thus, instead of the

canceling effects of an ordinary electric field, in this case the con-
tributions from opposite chiralities add up together. As shown in ref. 1

this leads to an anomalous conservation law (simplified for a uniform
system):

∂tρ = χ2
eΛ2

4π2 ðEy
x + Ex

y Þ: ð4Þ

To summarize, since for a rank-2 mode opposite momenta have
opposite chiralities, but also see opposite effective electricfields in the
presence of a momentum electric field Ey

x or Ex
y , there is an anomalous

contribution to the charge density.

NH lattice model
To realize a non-zero rank-2 chirality in the long-time dynamics of a
lattice system, we consider a single-band NH lattice model with Bloch
Hamiltonian:

HðkÞ= sin kx sin ky + iðcos kx + cos ky �mÞ, ð5Þ

which necessarily has a mirror symmetry along x = y, and is reciprocal,
i.e., H(k) =HT( −k) where HT is the transpose of H. From the real and
imaginary parts of the energy dispersion of Eq. (5), shown in the top
left panel of Fig. 1, it is straightforward to see that the most long-lived
mode (mode with largest imaginary energy) near the Fermi energy
E = 0 is a rank-2 chiral mode with χ2 = + 1 around the Γ-point in the
Brillouin zone. Since the iso-energy (Fermi surface) contours of the
rank-2 mode are open hyperbolas, our construction effectively lets us
realize non-closed Fermi lines in a 2D lattice system. Thegroupvelocity
of the long-lived rank-2 mode around the Γ point is given by
v=∂Re EðkÞ=∂k= ðky,kxÞ, which suggests that a long-lived state with
(kx, ky)will contribute a current along the (ky, kx) directionas illustrated
in the bottom right panel of Fig. 1. Similar to the 1D case, since these
currents are not compensated at long-times, they are expected to
produce accumulated states localized on the edge and/or the corner as
depicted in the bottom left panel of Fig. 1. To provide intuition for this
expectation let us consider each case: (i) for (kx, ky) = (0, 0) the
corresponding state will be extended in the bulk (region I) because its
group velocity is zero and thus it does not contribute to a
unidirectional current, (ii) for states on the kx (ky) axis the velocity is
in the y-direction (x-direction), hence states will localize on the top/
bottom (left/right) edges depending on the sign of the momentum
(region II), and (iii) for states off the axes in one of the quadrants the
states will localize near the four corners of the square (region III),
because they have nonzero group velocity along both directions.
Following this picture, in a systemwithN2 sites, one expects to observe
O(1) bulk-localized modes, O(N) edge-localized modes, and O(N2)

corner-localized modes that correspond to states on points, lines, and
areas in momentum space. More details about the topology related to
this rank-2 NHSE can be found in the Supplementary Material
Section S2.We emphasize that the rank-2 NHSE inherits the reciprocity
of the Hamiltonian, i.e., states with opposite momentum localize on
opposite boundaries. This is fundamentally different from the non-
reciprocal NHSE associated with rank-1 chirality imbalances, where
skin modes can only be found on one boundary. Furthermore, the
observed corner skin modes are fundamentally different from
previously studied higher-order skin modes16 or hybrid skin-
topological modes17,18 and appear because of a new localization
mechanism generated by the rank-2 chirality in our model. While a
reciprocal NHSE has been previously observed in a 2D platformhaving
exceptional points20, higher-rank chiral modes and corner skin effects
have not been previously reported in any system.

Experimental implementation
We experimentally implemented the model in Eq. (5) using a topo-
lectric circuit composed of passive elements as shown in Fig. 2—see
also Methods. We use the theoretical foundation discussed in ref. 21 to
map the real space hoppings in the reciprocal tight-bindingmodel into
a network of resistors, capacitors, and inductors (Fig. 2a, b). Additional
details on the topolectric circuit design canbe found alongwith a brief
review in the SupplementaryMaterials Section S3.Using this approach,
we constructed a circuit network containing 8 × 8 nodes (Fig. 2b, c),
whosecircuit Laplacian, J, implements the tight-bindingHamiltonian in
Eq. (5), i.e., J∝ − iH. In this implementation, the dynamics generated by
the Hamiltonian are mapped to a discrete process where we input a
voltage and output a current in one step, and then convert the output
current to a part of the input voltage for next step using an appropriate
impedance normalization factor. Specifically, the input voltage in the
(n + 1)-th step (i.e., Vn+1) is generated by the input voltage in the n-th
step (i.e., Vn) through Vn+1 = (1 + αgn J)Vn, where α is the discrete “time”
interval, and gn is the normalization factor. To illustrate an example for
our circuit network in Fig. 2b, c, we choose α = 0.01 and
gn = 1=maxð JVnÞ to simulate this discrete process, and we indeed
observe the rank-2 dynamics discussed above, i.e., there are flows
toward the edges and corners as shown in Fig. 2d.

For our measurements we first configure the topolectric circuit in
a cylindrical geometry, that is, with a periodic boundary condition
along x, and anopen boundary along y as shown in Fig. 3a. This is easily
achievedwith the help of appropriatewiring in the circuit.Wemeasure
the cross-impedance matrix Gab =V

output
a =I inputb where Voutput

a is the
voltage at any node a in response to input current I inputb at any node b.
This matrix G is the inverse of the circuit Laplacian and therefore has
the same eigenvectors. We can diagonalize G to examine the eigen-
vectors of the circuit Laplacian.Whenwe visualize the eigenstates ofG,
the NHSE is readily observed as an extensive number of eigenstates
localized on the open boundaries. In the Supplementary Material
Section S4 we discuss how the phase information encoded in the
eigenstates can be used to confirm that this NHSE is momentum
resolved.

To further observe the rank-2 phenomenology we configured the
material with a square geometry where both the x and y-directions are
open. The measured G matrix and its eigenstates are visualized in
Fig. 3b. As expected from the intuitive picture (Fig. 1), we find the
eigenstates localized in the bulk, edges, and corners of the system. A
shortcoming of the intuitive picture in Fig. 1 is that it only considers
states in a small energy/momentum window around kx = ky =0, hence
we cannot derive an exact counting rule for bulk-, edge-, and corner-
localized modes for a finite open system. Even so, we observe that the
order of the number of modes matches well with the expectations:
there are O(1) bulk-localized modes corresponding to states with
group velocity vx = vy =0, O(N) edge-localized modes arising from
states with group velocity vx ≠0, vy =0 and vx = 0, vy ≠0, and O(N2)
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corner-localized modes arising from states having group velocity
vx, vy ≠0 (where N=8 for our system).

Another key feature related to the rank-2 NHSE is that the
momentum-chirality locking is converted to momentum-location
locking (i.e., to edges and corners in the context of the rank-2 NHSE)
in response to input excitations. To see this effect, we can experi-
mentally apply voltage signals with relative phase differences that will
introduce excitations with definedmomenta (we note that the applied
relative phase difference directly corresponds to the momentum in
units of radians per node). In Fig. 4 we show the response for the
cylindrical geometry configuration by exciting a row of the circuit with
a nonzero x-directed momentum kx. The measured output voltages
explicitly show the momentum-location locking, i.e., as seen in Fig. 4,
voltage inputs with positive (negative) momentum kx lead to a voltage
accumulation on the top (bottom) edge. The relative phase measured
between adjacent nodes along the respective edges matches the input
signals, confirming the same kx momentum associated with the loca-
lized input.We also remark that the special case of kx =0 leads toonly a
symmetric voltage response around the excited row, i.e. it does not
exhibit a preferred locking effect as is expected from our theory ana-
lysis. These observed responses to input voltages directly indicate a
unidirectional momentum flow in an infinite system with nonzero
rank-2 chirality, i.e., excitations with opposite momenta flow in
opposite directions.

We next open both boundaries, as one would find in a, perhaps
more practical, finite material (as configured in Fig. 2b). Even though
the system is finite and momenta are not well defined, we can still
consider the relative excitation phase as a proxy for x and ymomenta
kx or ky. Results from various excitations are presented in Fig. 5. When
applying excitations purely along x or y (Fig. 5a–c) we can confirm that

the momentum-location locking effect persists. As a curious aside, we
surprisingly find that even though the voltage inputs with ± kx or ± ky
on the boundary row or column lead to quite different configurations
of output voltages (see Fig. 5b, c where we see some responses are
extended into the bulk while some are extremely localized on the
boundary), the effective load experienced by the excitation source is
purely real and symmetric with respect to kx or ky. Interested readers
are referred to the SupplementaryMaterial Section S5 formore details.

More interestingly, if we input signals having non-zero momen-
tum simultaneously along both x and y directions we can see a voltage
accumulation toward the corners as shown in Fig. 5d. This result once
more verifies the intuitive picture about rank-2 NHSE. While we only
present the amplitude responses here, the complete picture including
the corresponding phase response can be found in Supplementary
Material Section S6.

Discussion
In this combined theoretical and experimental study, we have pre-
sented the 2D material that exhibits higher-rank chiral behavior. We
specifically study both the rank-2 NHSE, as well as the remarkable
momentum-resolved response that causes excitations in a finite sys-
tem to lock to edges and corners. The responses observed in Fig. 4 and
Fig. 5 directly confirm that the sign of group velocity of modes with
momentum (kx, ky) is given by ðsgn ðkyÞ,sgn ðkxÞÞ, and thus probes the
rank-2 chirality. Since the rank-2 chirality determines the anomalous
momentum and particle currents1, the observed responses to input
voltage signals can also be understood as an indirect probe of the
charge and momentum anomalies due to a nonzero rank-2 chirality.

Looking forward, our circuit-based approach shows the potential
for exploration of chiral physics in higher dimensions, including the

Fig. 2 | Implementationof rank-2 chiral dispersion in a topolectric circuit. aThe
real space hoppings of the tight-binding model HðkÞ= sin kx sin ky + iðcos kx + cos
ky �mÞ [c.f. Eq. (5)] and their circuit implementations. ResistorsR, inductors L, and
capacitors C are selected to satisfy the relationship ωC : 1

ωL :
1
R = 1 : 1 : 2 for a

selected frequency (4.95 kHz). b Diagram for a 64-node circuit that is an imple-
mentation of the tight-binding model in Eq. (5) on a 8 × 8 square lattice.

c Photograph of the assembled circuit board, of which each row/column corre-
sponds to that in b directly. Each node is wired to a 64-channel data acquisition
system. d Simulation showcasing the dynamical rank-2 behavior in the 64-node
circuit network, where n labels the step and Vn (indicated by the color scale at each
node) is the input voltage in n-th step.
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unusual responses to externally applied electromagnetic and geo-
metric fields. Notably, this ability to resolve 2D vector momentum is
particularly important in practical beamforming and sensor applica-
tions. Compared to the system with reciprocal NHSE discussed in
ref. 20, our system can resolve the momentum along both directions in
2D since it is more isotropic. While the effects we show here are
entirely reciprocal, the highly asymmetric momentum-resolved
responses are also a key ingredient for producing non-reciprocal
metamaterials.

Methods
Circuit construction: The specific component values used for the
topolectric circuit implementation were L = 47mH ( ± 5%), C = 22 nF
( ± 1%), and R = 732 ohm ( ± 1%). This allows the circuit Laplacian to

model the desired Hamiltonian at ~4.95 kHz. All components were
assembled on solderless prototyping breadboards. Data acquisi-
tion: Experimental measurements were performed using Matlab
and its built-in data acquisition toolbox. For cross-impedance
matrix characterization, the drive currents were generated using a
bench-top signal generator set to 4.95 kHz, sending its voltage
output through a 497 ohm reference resistor. For the driven
response tests, the phase-synchronized signals were generated
using a National Instruments NI 9264 voltage output module. All
response signals were captured using Keysight U2331A (64-channel)
data acquisition hardware, with each channel set to one node of the
8x8 array. The magnitude and phase responses were measured
against the drive signals using a digital lock-in that we coded in
Matlab.

Fig. 3 | Measurements of cross-impedance matrix G and its eigenstates under
cylinder and square geometries. a Visualization of the magnitude of measured
matrix G (phase not presented) and its eigenstates under a cylinder geometry,
where x-direction is periodic but y-direction is open as shown in the top left panel.
The lines with different colors in the top left panels correspond to different

hoppings previously shown in Fig. 2. Some representative bulk, top-edge, and
bottom-edge localized eigenstates are zoomed in on the right. b The measured
matrixG and its eigenstates under a squaregeometry,where both x and ydirections
are open as shown in the top left panel. Some representative bulk, edge, and corner
corner modes are zoomed in on the right.
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Fig. 5 | Responses to input excitations for the square geometry. The magnitude
of voltage responses todifferent kx input on (a) thefifth rowand (b) thefirst roware
presented. c Similarly shows the magnitude of voltage responses to different ky
input on the first column. d The magnitude of voltage responses to simultaneous

(kx, ky) input on the central square showing the corner-directed responses. Com-
plete data sets including phase information are presented in the Supplementary
Material Section S6.

Fig. 4 | Responses to input excitations for the cylinder geometry. We apply
voltage inputs on the fifth row (highlighted by the green box) with relative phase
corresponding to momentum kx. The specific momentum values are quantized by

the periodicity and number of nodes in the structure. The top and bottom figures
are paired and show the magnitudes and phase (relative to node driven with phase
0) of the output voltages for each case.
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Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the
corresponding author upon reasonable request.
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