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Parallelized multidimensional analytic
framework applied to mammary epithelial
cells uncovers regulatory principles in EMT
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Christopher S. Chen 4,12, Pingzhao Hu13, Gerald V. Denis 14, Dima Kozakov10,11,
Brian Raught15, Trevor Siggers 5,6, Stefan Wuchty 2,19,
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A proper understanding of disease etiology will require longitudinal systems-
scale reconstruction of the multitiered architecture of eukaryotic signaling.
Here we combine state-of-the-art data acquisition platforms and bioinfor-
matics tools todevise PAMAF, aworkflow that simultaneously examines twelve
omics modalities, i.e., protein abundance from whole-cells, nucleus, exo-
somes, secretome and membrane; N-glycosylation, phosphorylation; meta-
bolites; mRNA, miRNA; and, in parallel, single-cell transcriptomes. We apply
PAMAF in an established in vitro model of TGFβ-induced epithelial to
mesenchymal transition (EMT) to quantify >61,000 molecules from 12 omics
and 10 timepoints over 12 days. Bioinformatics analysis of this EMT-ExMap
resource allowed us to identify; –topological coupling between omics, –four
distinct cell states during EMT, –omics-specific kinetic paths, –stage-specific
multi-omics characteristics, –distinct regulatory classes of genes,
–ligand–receptor mediated intercellular crosstalk by integrating scRNAseq
and subcellular proteomics, and –combinatorial drug targets (e.g., Hedgehog
signaling and CAMK-II) to inhibit EMT, which we validate using a 3Dmammary
duct-on-a-chip platform. Overall, this study provides a resource on TGFβ sig-
naling and EMT.

Although functional genomics studies have identified many factors
driving complex biological processes, they are mostly focused on
either identifying the genetic basis or measuring whole-cell (WC)
transcriptomes and proteomes1. This approach neglects the many
layers of post-transcriptional and post-translational (PTM) regulation
of gene and protein activity in eukaryotic cells. For instance, the
assignment of protein functions based on protein expression in WCs
does not distinguish between the subcellular location-specific protein
function. Also, proteins that do not show expression changes in WCs

could still be differentially localized to specific compartments, such as
exosomes or nuclei.

Recently, single-cell RNA sequencing (scRNAseq) has provided
insights into the cellular heterogeneity of disease processes not pos-
sible using bulk analysis2,3, but this strategy is limited to RNA mea-
surements. Single-cell proteomics currently have poor depth of
analysis (~1000 proteins per cell) and is limited to measuring whole-
cell proteins4. Therefore, workflows that leverage data from cell mix-
tures inferred from scRNAseq to characterize cell types using deep
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multitiered proteomics could greatly facilitate precision medicine
efforts.

Epithelial to mesenchymal transition (EMT) is a complex process
that regulates cell plasticity during embryonic development, wound
healing, fibrosis and cancer, in which polarized epithelial (E) cells
dedifferentiate, transition through intermediate hybrid stages (E/M)
and acquire mesenchymal (M) properties5. Cells in the E/M stage
possess properties of circulating tumor cells (CTCs) and are respon-
sible for EMT-related stemness, chemoresistance, immune evasion,
and metastasis6. Approximately 150 genes curated from hetero-
geneous sources and experimental conditions are currently reported
as hallmarks of EMT (MSigDB database). Since most genomic studies
on EMT have measured transcript expression, EMT is mainly char-
acterized through TFs (e.g., SNAI1, TWIST1, and ZEB1) and miRNAs
(e.g., miR-200) that regulate the underlying transition7,8. Although
thesemolecules indeed play a key role in EMT, evidence suggests that
therapeutic targeting of EMT will require a more inclusive under-
standing of the process than is captured in current models9. For
instance, a recent study in HMLE cells undergoing EMT in response to
overexpression of the key EMT-TF TWIST showed that 65% of differ-
entially expressed proteins were not regulated at the mRNA level10.
Therefore, it is necessary to measure molecular expression across
many modalities, compartments, regulatory layers, and time, to max-
imize the amount of information gained.

In this work we implement a parallelized multidimensional ana-
lytic framework, PAMAF, by combining latest developments in high-
throughput platforms; microarray, scRNAseq and high-resolution
mass spectrometry (MS), together with sophisticated bioinformatics
tools, to capture twelve distinct omics layers from the same set of
samples during TGFβ-induced EMT in MCF10A cells. In addition to
recapitulating many known features of the in vitro EMT process thus
validating our data quality, our study sheds light on several poorly
understood aspects of EMT: how the different molecular layers evolve
and respond to TGFβ in relation to each other; which signaling mod-
ules are associated with the transition from one state to another;
qualitative identities of bona fide molecular signatures of the E/M
states as opposed to quantitative ratios of E or M markers; potential
signals cells in various stages secrete externally; correlation between
the various subcellular proteomic layers informing on the dynamics of
protein distribution landscape during EMT; the extent of metabolic
reprogramming; cellular heterogeneity and trajectories during EMT
and the signaling crosstalk between the various subgroups of cells.
Overall, the central aim of our study is to provide a detailed resource
on TGFβ signaling and EMT for advancing this topic of wide interest.

Results
The PAMAF workflow applied to generate EMT-ExMap
Here, we present PAMAF as an attempt to simultaneously acquire
longitudinal multimodal datasets and address the challenges of their
comparison and integration, to study complex biological processes.
PAMAF has four basic parts: (1) Sample collection and data acquisition
using established omics-specific platforms, (2) Exploring variability
and topological relationships between all omics to probe qualitative
and quantitative overlap, (3) Use hypothesis-driven ad hoc combina-
tions of omics to glean biological insights, (4) Network-based func-
tional data integration building on knowledgebase in public domain.
To reiterate, our goal here is to combine existing state-of-the-art data
acquisition platforms and bioinformatics tools to devise a workflow
which can simultaneously examine several omics modalities.

As a case study to demonstrate its utility, we chose a well-studied
in vitromodel of EMT,where humanmammaryepithelialMCF10A cells
were treated with TGFβ (TGF-β1; 10 ng/mL), sampled at ten timepoints
over 12 days (0, 4 h, 1–6, 8 and 12 days), allowing us to analyze eleven
regulatory layers (Fig. 1a–c; Supplementary Fig. 1a, b; Supplementary
Data file 1). To assess transcriptional remodeling, we measured 23,787

gene transcripts (MRNA) and 2578 microRNAs (MIR) using micro-
arrays. We also assessed transcriptional dynamics at single-cell reso-
lution by quantifying 9785 genes in 1913 cells undergoing EMT using
scRNAseq. To track cellular metabolism, we quantified 4259 HMDB-
matched endogenous metabolites by untargeted nanoLC-MS/MS
metabolomics (METABOL). In parallel, we captured multiple layers of
the proteome by nanoLC-MS/MS proteomic analyses of whole cells
(WCP; 6540 proteins), nucleus (NUC; 4198 proteins), plasma mem-
brane (MEM; 2,223), exosomes (EXOS; 1,209), secretome (SEC; 1133
proteins), phosphoproteome (PHOS; 11,215 phosphosites, 8741 Class 1
mapping to 2,254 proteins), and N-glycoproteome (GLYCO; =
Surfaceome; 549 proteins). Subcellular enrichments were performed
using previously established MS-compatible protocols yielding high
purity, as determined through keyword matching to a cellular com-
partment annotation database (Supplementary Fig. 1c). Protein sam-
ples from all ten time points were multiplexed using 10-plex isobaric
tandem mass tags (TMT).

We compiled all these datasets into a near-comprehensive,
systems-scale expressionmapof progressive fate changes during EMT,
which we call the EMT-ExMap (Fig. 1d). In total, EMT-ExMap provides
bulk quantification data for >61,000 features, i.e., proteins, phospho-
sites,mRNAs,miRNAs, andmetabolites, in addition to 9785mRNAs for
1913 single cells (Fig. 1c). The quantitative robustness across the three
biological replicates was excellent (Supplementary Fig. 1d), and we
reproduced the expected expression behavior of several hallmarks of
EMT, including increases in the M markers VIM and CDH2 and
decreases in the E markers SCRIB and MUC1 (Fig. 1e).

EMT-ExMap is freely accessible through an interactive website
(https://www.bu.edu/dbin/cnsb/emtapp/) (Supplementary Fig. 1e).

Extensive regulatory autonomy between layers revealed by
integrative analysis of EMT-ExMap
Since PAMAF is resource intensive, we wanted to find evidence to
justify its implementation.Wefirst asked if EMT-ExMap canbe used for
exploring how the different regulatory layers are affected during EMT.
Expression heatmaps in Supplementary Fig. 2a show that TGFβ treat-
ment impacted all examined layers (SupplementaryData file 2) and not
just MRNA, WCP and PHOS which have been historically the most
widely studied. Further, each of these layers were found to contribute
significantly to the overall variation (Supplementary Fig. 2b, c), pro-
viding direct quantitative evidence of a systems-wide reorganization
during EMT.

However, this widespread reorganization does not answer an
open question in EMT, i.e., whether the various layers are quantita-
tively and qualitatively coupled to one another, because this reflects
operational autonomy and the flow of information between the lay-
ers during EMT. Therefore, we first compared the distributions of
adjusted coefficient of determination (R2) computed using log2FC
values of gene-pairs from various regulatory layers with respect to
either MRNA or WCP resolved over time (Fig. 2a; Supplementary
Fig. 2d). This analysis revealed marked discordance between either
MRNA or WCP and the various proteomic layers (Fig. 2b, c), indi-
cating that gene expression in one layer may not be readily extra-
polated to another layer. We found that 88%, 80%, 37%, 65% and 57%
of proteins exhibiting differential expression in EXOS, SEC, GLYCO,
MEM and NUC, respectively, did not show corresponding alterations
in WCP (i.e., r ≤0.1) (Supplementary Fig. 2e). Pearson’s correlation
coefficient (PCC) between differential gene-pairs further revealed a
strikingly poor qualitative and quantitative overlapwithin the various
subcellular layers themselves (Fig. 2d), indicating extensive reg-
ulatory autonomy.

Since understanding the principles of gene regulation is funda-
mental to undertaking hypothesis-driven studies and tailoring target-
ing strategies, we categorized the 3965 genes that were quantified in
≥2 proteomic layers (Supplementary Fig. 2f) into two classes based on
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PCCs of their expression profiles: Class I genes (1424) consistently
displayed a high correlation (r ≥0.4) across all layers, suggesting that
their regulation occurs primarily at or before the translation step
(Fig. 2e, f; Supplementary Data file 3); while Class II genes displayed
uncorrelated (Class II-A; between r ≥ –0.4 and ≤0.4; 2775 genes) or
anticorrelated trends (Class II-B; r ≤ –0.4; 1204 genes) between any two

layers, implying active post-translational control of their localization
and function (Fig. 2g, h; Supplementary Fig. 2g; Supplementary Data
file 3). As expected, a lower proportion of the genes currently impli-
cated in EMT belong to Class II than in Class I, showing that post-
transcriptionally or post-translationally regulated genes are under-
represented in the EMT literature (Supplementary Fig. 2h).
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More generally, our analysis led to the concept of distinct reg-
ulatory classes of genes, namely Class I and Class II-A/B, prompting us
to wonder if genes maintain their class-membership across biological
conditions, or if classes are dynamic and context dependent. In the
absence of an analogous study, we used the RNA and protein expres-
sion profiles of 332 cell lines in the cancer cell line encyclopedia (CCLE)
database11 and, surprisingly, found that >50%of genesmaintained their
respective class identities (Supplementary Fig. 2i), suggesting a fun-
damental framework for assigning gene function.

We wanted to determine if EMT-ExMap contains biological
information that is not captured in EMT-specific databases, further
justifying the implementation of PAMAF. First, a comparison of regu-
lated proteins andmiRNAs identified in EMT-ExMapwith EMT-specific
databases identified 1,667 proteins and 1,066miRNAs that have not yet
been associatedwith EMT (Fig. 2i).Moreover, sinceno similar database
of EMT-specific metabolite alterations is currently available, our study
provides a valuable resource to the community.

Next, we used the PCSF (prize collecting Steiner forest)
algorithm12 and combined upregulated molecules (proteins, metabo-
lites, miRNAs) in EMT-ExMap with known functional interactions in
public databases, to recover signaling modules (i.e., protein-protein,
protein-metabolite, and gene-miRNA interactions) active during EMT.
Our analysis recovered >1600 molecular interactions, out of which
only ~200 interactions were observed using all genes currently con-
sidered EMT hallmarks in MSigDB (Fig. 2j). Comparisons of key net-
work statistics of EMT-ExMap and MSigDB suggests a robust
underlying network inferred by PCSF (Fig. 2k). Together, these
observations demonstrate the utility of EMT-ExMap.

A key rationale for subcellular proteomics is that proteins without
expression changes in either MRNA orWCP could still be differentially
localized to specific compartments, e.g., EXOS (which also partly
explains the observation in Fig. 2i). Indeed, we found that several
proteins were dysregulated exclusively in EXOS, but not in either
MRNAorWCP, in as early as 4 h (Fig. 2l; Supplementary Fig. 2j). Among
others, downregulated proteins included histones H3F3B and HIS-
T1H4A. In particular, histones have been detected in exosomes, but
their specific function outside of chromatin is controversial13 and
remains unexplored in EMT. Similarly, several proteins were upregu-
lated, including SCPEP1 which was missed (as far as we know) in pre-
vious EMT focused studies, at least partly because it’s a Class II gene.

Overall, these observations justify our longitudinal multitiered
approach and shows the breadth of insights providedby PAMAF.While
mRNA is a reliable predictor for Class I genes, neither mRNA nor total
proteins are reliable predictors of post-translational modifications and
subcellular distribution of Class II genes, which ultimately determines
the signaling output. We believe this framework will guide inter-
pretation of existing and future studies.

EMT-ExMap captures topological relation between layers, tran-
sition points and stage-specificmolecular characteristics of EMT
Having shown that PAMAF could capture a wealth of information, we
next wanted to leverage EMT-ExMap to (1) discover topological cou-
plings between the datasets, (2) define the stages and transition points

and, (3) explore stage-specific molecular characteristics. Under-
standing these aspects is key to model the underlying biology of EMT
more realistically.

We asked if EMT-ExMap could be used to capture the topological
relationships between the layers, i.e., howmuch information is shared
between them? Using partial matrix correlation (PMC) and graph
reconstruction based on PMC as implemented in iTOP14 (Fig. 3a, b), we
observed that NUC, WCP and GLYCO would reveal similar configura-
tion (clusters) of the molecular data and thus were redundant if
inferring clusters were the objective. Strikingly, METABOL followed a
distinct kinetics than other datasets, highlighting the pitfalls ofmaking
conclusions on metabolic alterations based exclusively on gene
expression data. The graph (Fig. 3b) showsMEM influencing PHOS and
NUC (RV =0.86, for both), indicating the importance of membrane
proximal signaling during EMT. Surprisingly, iTOP inferred GLYCO
influencing NUC, suggesting a key role for GLYCO in EMT. Tunicamy-
cin, an inhibitor of N-glycosylation, is known to suppress metastasis15.
The link between O-glycosylation and nucleocytoplasmic shuttling is
known16, and there is evidence pointing to nucleocytoplasmic shut-
tling of N-glycosylated proteins and/or N-glycosylation within nucleus
itself17. However, since we cannot deny the possibility of minor ER
contamination in our NUC fractions, further studies will be needed to
independently evaluate this provocative observation.

Mathematical modeling has predicted critical transition points
(=sudden and large shifts in state of a system) in EMT. Our EMT-ExMap
offers an opportunity to examine the kinetic paths of up to 11 bio-
molecular layers, the critical shifts during EMT, and the underlying
sources of such shifts in relation to the quantified layers, which
remains unclarified. To address these issues, we employed two com-
plementary approaches: (1) multiple co-inertia analysis (MCIA)18 using
the top fourmost variable layers (for visual simplicity), which informed
on the relative dynamical states of the layers during EMT (Fig. 3c), and
(2) phylogenetic clustering19 (Fig. 3d) by co-analyzing expression
changes in MIR and proteomic layers (i.e., EXOS, SEC, GLYCO, MEM,
PHOS,NUCandWCP),whichestimated thedistances between the time
steps. Based on this data-driven integrative approach, we observed
that up to 24 h cells preserved their overall parental E type, while day 2
marked a switch-like exit from the E state. We believe that at day 2 the
E/M state(s) begins and last until day 4, after which the cells gradually
settled into theM state. Cells inday2–4 canbe further sub-divided into
E/M–1 (day 2/3, late E) and E/M–2 (day 4, earlyM) states. The transition
at day 5 occurred relatively slower than on day 2. Importantly, how-
ever, the kinetic paths of individual layers exhibited relative non-
linearity (Supplementary Fig. 3a–c). For example, GLYCO, WCP and
NUC grouped control, 4 h, and day 1 together, and therefore likely is
driving the clustering in Fig. 3d. On the contrary, METABOL layer was
the earliest to deviate away from the E stage within 4 h of TGFβ
treatment. While our results are consistent with critical transition
theory of EMT, it has implications for how EMT stages are categorized
and studied depending on which layers are being considered.

As opposed to classifying genes asmarkers of either E orM stages,
we exploited the temporally resolved EMT-ExMap to extract stage-
specific molecular fingerprints using self-organizing maps (SOMs)20,21

Fig. 1 | The PAMAF workflow applied to generate EMT-ExMap. a MCF10A cells
were exposed to TGFβ for ten time points in three biological replicates. Condi-
tioned media and cells were collected for each of the 30 sample conditions and
processed to extract the variousmolecular layers as shown. Parts of this panel were
created using BioRender.bMultiple omics-specific technologies were employed to
acquire data. Specifically, microarray for MRNA and MIRNA; high-resolution mass
spectrometry for all proteomics layers and METABOL. Also, WCP, PHOS and NUC
were TMT-10 plex labeled with extensive basic reverse phase (RP) offline fractio-
nation to achieve the best data quality. Parts of this panel were created using
BioRender. c Overview of data analysis scheme in PAMAF, which takes a flexible
approach accommodating ad hoc supervised data integration to investigate

hypothesis-driven questions. Also shown are the major freely available R packages
used inPAMAF. In addition, amoreextensive list of software andRpackagesused in
this manuscript are provided in Supplementary Table S7. Parts of this panel were
created using BioRender. d An overview of the numbers of molecules quantified
and differentially regulated in various layers. We usedmaSigPromethod to identify
differential features with a conservative statistical criteria of adj. p-value ≤0.05;
r2 ≥0.6 and |log2FC| ≥ 1 (relative to Control). The statistical method and R imple-
mentation is described in Differential Expression Analysis subsection of Methods.
e Expression snapshots of some well-known EMTmarkers. Heatmaps show log2FC
values of indicated genes.
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(Fig. 3e, Supplementary Fig. 3d–f, Supplementary Data file 4, see
“Methods” for details). We observed that cells in the E-state expressed
ACTG1MEM, OGFRGLYCO and EPHB2GLYCO on the plasma membrane, while
the secretion of LOXEXOS and EVC2EXOS was suppressed (Fig. 3e), sug-
gesting a multipronged mechanism inhibiting spontaneous EMT. The
E/M-1 cells were marked by the downregulation of OGFRGLYCO and
HIST2H2ABNUC, among othermarkers, which could be key events in the
E→E/M transition. E/M-2 cells overexpressed MCAMMEM and MMP9SEC,
consistent with the acquisition of invasive properties at this state. The
reversal of the ARHGAP33SEC expression pattern in this state relative to

E could be important for EMT progression. Although ARHGAP33 was
also quantified in EXOS, its regulation specifically in SECpoints toward
a mechanistic distinction in how cells respond to signals in EXOS or
SEC, although the biological significance of this distinction is not yet
clear. Cells in M state overexpressed proteins with known functions in
EMT, including CALD1WCP, SHARPINWCP and ALCAMWCP. DDX60LWCP, a
probable ATP-dependent DExD/H-box RNA helicase, was also found to
be highly expressed in the M state, with no known function in EMT.
Using immunofluorescence microscopy (IFM), we confirmed the ele-
vated expression of DDX60L after TGFβ treatment (Fig. 3f). Another
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interesting observation was the upregulation of TGFBINUC, a 68-kDa
secreted protein that is known to promote metastasis22, while its
subcellular distribution during EMT is however unclear. Consistent
with previous reports, expression of both TGFBI mRNA and protein
was found to be elevated after TGFβ treatment. Our analysis in Fig. 2
identified TGFBI as a Class I gene. IFM data in Fig. 3g and Supple-
mentary Fig. 3g clearly demonstrates an upregulation of TGFBI in both
WCP and NUC during EMT, thus validating our observations.

To gain state-specific thematic insights, we performed active
subnetwork analysis23 of the signatures which identified 237 significant
pathways (Supplementary Data file 4). For example, ‘beta oxidation of
hexanoyl-CoA to butanoyl-CoA declined as cells exited E and entered
E/M (Fig. 3e), indicating the reprogramming of mitochondrial fatty
acid β-oxidation, consistent with a metastatic phenotype24. Con-
versely, ‘RHO GTPase-mediated activation of ROCKs/PAKs/IQGAPs’
increased as cells exited E/M and entered M, suggesting their key role
in this state of EMT. The E/M state was also associated with migration-
associated pathways such as ‘anchoring fibril formation’, ‘ECM pro-
teoglycans’ and ‘laminin interactions’, consistent with the shared
attributes of cells in E/M with CTCs.

Overall, the EMT-ExMap resource allowed us to discover the
coupling between the datasets and to determine the overall topolo-
gical rearrangements of individual layers in relation to each other
during EMT. We catalogued complex but thematic kinetics of thou-
sands ofmolecules spanningmultiple layers.We also identified critical
transitionpoints and stages during EMTandpredict signatures specific
to each stage. We provide compelling evidence that categorization of
EMT stages could be dependent on which biomolecular layer is being
studied. Finally, we link DDX60L and TGFBI with EMT using direct
experimental support.

Analysis of PHOS reveals stage-specific kinase vulnerabilities
As phosphorylation could play a key role in EMT. We performed
phosphoproteomics analyses of EMT in HMLE cells stably expressing
TWIST10, NMuMG cells treated with TGFβ for 2 days25 and HaCaT cells
treated with TGFβ for 20min26.

Here, wequantified8,741 phosphosites (p-sites; 6975 Ser, 962Thr,
and 140 Tyr residues) (Supplementary Fig. 4a–c) over a dynamic range
of 106 orders of magnitude and phospho–STY frequencies (Supple-
mentary Fig. 4a–e) mapping to 2,254 proteins (Supplementary Fig. 4f).
Of all p-sites, 3,138 (35.8%) were differentially regulated in at least one
time point (Supplementary Fig. 4g). Overall, EMT-ExMap presents a
detailed temporal picture of phosphoproteome landscape during
various stages of EMT extending up to 12 days (Fig. 4a).

We observed that the fraction of regulated p-sites on several
proteins, e.g., VIM, increased linearly with progressive stages of EMT
(Fig. 4b, c), while their mechanistic basis or functional implications are
currently unknown. We also observed that in ~50%, p-sites dynamics
were not explained (r <0.4) by a corresponding change at the protein

level (Fig. 4d, e). Interestingly, for ~26%, a directionally opposite
change between phosphorylation and the corresponding protein
abundance was noted (r ≤ –0.1), suggesting effects on protein stability.
Phospho-regulated proteinswere enriched for ‘nucleus’, ‘cytoskeleton’
and ‘focal adhesion’ annotations (Fig. 4f) reflecting the importance of
compartmentalized signaling during EMT.

Since kinases are central to phospho-regulation and represent key
therapeutic targets, the ability to link alterations in kinase activities to
various disease conditions and/or stages is critical. We used regulated
p-sites in our PHOS dataset to compute enrichment Z-scores for
kinases (Supplementary Fig. 4h) and associated them with temporal
steps of EMT using a ternary model (Fig. 4g). To assess its predictive
validity, we found that ~83% of kinases (70 out of 84) predicted here
are linked to EMT, strongly validating the model outcome, while 14
kinases are currently not known to play a role in EMT. Because the
temporal (de)activation kinetics of all these kinases relative to other
kinases and EMT stages along the differentiation path is not always
clear, our model addresses this longstanding puzzle.

Mechanisms of nuclear translocation revealed by joint analysis
of PHOS and NUC
A particular strength of EMT-ExMap is that it allows hypothesis-driven
on-demand integration of selected layers. For instance, we asked if
correlation-based integration of temporal profiles of p-sites (PHOS)
and corresponding proteins detected in subcellular locations (e.g., in
NUC) (Fig. 4h) could yield mechanistic insights into protein localiza-
tion? As an example, the phosphorylation patterns of MICAL3 at resi-
dues T684, S685, and S687 (Fig. 4i, MICAL3), which are in the
consensus nuclear localization signal (NLS) (Fig. 4e), suggest that these
p-sites play a role in regulating the nuclear translocation of
MICAL3 specifically at the E→E/M transition (day 2). Structural analysis
validated that the bipartite NLS motif of MICAL3 interacts with
importin-α, and p-sites T684, S685, S687 that are directly adjacent to
the binding interface (Fig. 4j), suggesting a role of MICAL3 in reg-
ulating EMT. Using immunofluorescence microscopy, we provide
direct evidence that MICAL3 is nuclear translocated following TGFβ
treatment (Fig. 4k), and its knockdown could inhibit TGFβ-induced
EMT in MCF10A cells (Fig. 4l), as predicted.

Insights into stage-specific metabolism by integrating META-
BOL, WCP, and PHOS
Amino acid metabolism (AM), lipid metabolism (LM), glycolysis (GL)
and OXPHOS have historically been major areas of focus in cancer
research27. Although integrative metabolomics during EMT has been
investigated with transcriptomics in heterogenous steady-state
systems28, a global untargeted time-resolved metabolic profiling of
TGFβ-induced EMT is still lacking.

Here, we provide quantification results for >4200 HMDB-indexed
compounds, covering awide rangeof chemical classes (Supplementary

Fig. 2 | PAMAF reveals extensive regulatory autonomy between layers. a Pie
chart showing the overall fraction (in %) of regulated molecules (orange slice)
relative to all molecules that were quantified in each layer (Source Data file –

Fig. 2a). b Distribution of adjusted coefficient of determination (R2) averaged for
each time point computed using log2FC values of overlapping genes from various
regulatory layers with respect to MRNA (Source Data file – Fig. 2b). c As in B, with
respect toWCP (Source Data file – Fig. 2b). d The schematic displays themedian of
all Pearson’s correlation coefficient (PCC) computed using log2FC values of over-
lapping proteins between indicated layers. Each pie chart depicts the fraction of
differentially expressed proteins (orange slice) with respect to all proteins quan-
tified in the layer (Source Data file – Fig. 2d). e Top 25 Class I proteins ranked by
PCC. Each pair of layers is represented by a different shape. f Expression profiles of
the top 3 Class I genes. Each colored line represents a regulatory layer. g Top 25
Class II-B genes ranked by PCC. Each pair of layers is represented by a different
shape. h Expression profiles of the top 3 Class II-B genes. Each colored line

represents a regulatory layer. i Overlap between established EMT databases
(MSigDB, dbEMT2.0) and regulated proteins and miRNAs from this study (Source
Data file – Fig. 2i). j Regulated molecules (proteins, miRNAs, metabolites) in EMT-
ExMapwere used to assess the number of coherent functionalmodules (i.e., known
interactions between molecules) by employing the PCSF algorithm to an interac-
tion network compiled from PathwayCommons, miRTarBase and STITCH (Source
Data file – Fig. 2j). k Network visualization of the molecular interactions in ‘j’.
Analysis was performed on 1621 and 203 nodes in the PCSF network of ‘This study’
and ‘Hallmarks’, respectively. The centerline of box plot denotes themedian; lower
and upper bounds indicate 1st and 3rd quartiles, respectively; whiskers reach the
maximumandminimumpointwithin the 1.5x interquartile rangewhile data beyond
the end of the whiskers are outliers (Source Data file – Fig. 2k). l Scatterplots
depicting the overlap of regulated gene-products in EXOS andMRNA (left panel) or
EXOS and WCP (right panel) after 4 h of TGFβ treatment.
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Fig. 5a). In contrast to binary comparisons (e.g., TGFβ versus Control),
our time-resolved metabolite profiles allowed us to identify five major
metabolic stages during EMT, that were characterized by distinct
metabolite signatures identified using SOMs (Fig. 5a). Several mole-
cules, such as N-acetyl-histidine, 1,5-anhydrosorbitol and the sugars
L-fucose and L-rhamnose, were strongly associated with untreated
MCF10A cells. Conversely, the levels of some compounds, such as 5-
deoxyadenosine, rapidly increased and remained high. The M stage
wasmarkedby retinoic acidmetabolites suchas 4-hydroxyretinoic acid
and glucocorticoids such as dihydrocortisol. Considering the two
identified E/M hybrid metabolic stages, E/M-1 cells shared the

expression of cortisone and aldosterone with E cells but did not
express N-acetyl-histidine or isoprothiolane. In contrast, the E/M-
2 stage expressed alkaloid calycanthine and several glucocorticoids,
such as corticosterone and cortexolone, an observation that is con-
sistent with increased glucocorticoid receptor activity reported in
distant metastases29.

Pathway-based integration of metabolite signatures with regulated
molecules in WCP and PHOS using MetaboAnalyst30 identified 21 meta-
bolic pathways, including arachidonic acid metabolism (AAM) (Supple-
mentary Fig. 5b), which is not well studied in EMT. To probe the
enzymatic basis of AAM activation, we computed correlations between
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metabolite levels ofAAMpathway andexpressionof annotated enzymes
in WCP and PHOS (Fig. 5b; Supplementary Fig. 5c). In particular, we
observed higher correlations between adjacent metabolites (i.e., sub-
strates and products of a particular enzyme) than between nonadjacent
metabolites, indicating that our data reflect true biological differences
instead of artifacts. We found that AAM metabolites either increased
rapidly and then stabilized (cytochrome P450, CYP450, branch) or
showed a delayed but consistent increase over the examined time
course (cyclooxygenase, COX and lipoxygenase, LOX, branches)
(Fig. 5c), indicating stage-dependent regulation of different AAM bran-
ches as a previously unknown aspect of AAMand EMT. As expected, our
enzyme-metabolite correlation map identified the AAM pathway rate-
limiting enzyme PLA2G4A31. Interestingly, the expression pattern of
PLA2G15, another phospholipase, indicated that this enzyme may med-
iate the switch from the CYP450 to COX/LOX branches during E→E/M.
Notably, PLA2G15 has been proposed as a clinical target in pancreatic
ductal adenocarcinoma32, while LOX reportedly promotes the invasion
of human gastric cancer cells33. Specifically, our observations suggests
that inhibition of PLA2G15may be effective in suppressing EMT. Indeed,
we provide direct experimental evidence that knockdown of PLA2G15
inhibits TGFβ-induced EMT in MCF10A cells (Fig. 5d).

Overall, the integration of METABOL and WCP revealed the
kinetics of metabolic reprogramming during TGFβ induced EMT. We
foundmetabolites andprotein signatures coordinating processes such
as AAM, GPLM and LD during key stages of the transition. We also
demonstrated how our enzyme-metabolite correlation map could be
used to predict enzymes (e.g., PLA2G15) for observed metabolic
changes and provide rationale for their therapeutic targeting.

Intercellular crosstalk revealed by integration of scRNAseq with
SEC, MEM, and GLYCO
Although analyses of scRNAseq data have revealed cellular dynamics
associated with tumor growth34, EMT-ExMap enables integration of
scRNAseq and subcellular proteomics datasets to decipher principles
of intercellular crosstalk during EMT. This approach is a conceptual
and methodological advancement as it aims to alleviate uncertainties
arising from mRNA-protein discordance in assigning protein localiza-
tions, as explained below.

After quality control, we retained 1913 single cells with a com-
bined depth of 9785 genes (Supplementary Fig. 6a, Supplementary
Data file 1). Many of the top expressing genes (TGFBI, TPT1, KRT6A,
TMSB10, MT2A) are known players in EMT (Supplementary Fig. 6b),
showing the reliability of our scRNAseqdataset. The scRNAseq analysis
tool Monocle3 identified 20 cell clusters in three disjoint partitions
(Fig. 6a, Supplementary Fig. 6c), where P2 (12 clusters) represents the
primary EMT axis while P1/P3 predominantly expressed genes related

to cell cycle (Supplementary Fig. 6d, Supplementary Data file 5-
GOBP_modules) and were ignored for further analysis. We observed
that cluster C3 responded strongly to TGFβ (Fig. 6b), C4/6 resisted
EMT, C5/C8were the transition states andC13/14 represented terminal
M cells (in terms of hallmark M markers; Fig. 6b, right panel). SCENIC
analysis35 of major hierarchical subgroups (=subtypes) of these clus-
ters identified TFs active during the various stages of EMT (Fig. 6c,
SupplementaryData file 5-Subtype_TFs). Several of these TFs are known
EMT hallmarks, which provides supporting evidence to our predic-
tions. Interestingly, SCENIC predicted several TFs as active in the early
subtypes S1–S3, which are not currently associated with EMT. To
examine the validity of these predictions, we used a human TF-binding
array (Supplementary Fig. 6e, Fig. 6d), and experimentally verified that
the active DNA-binding forms of the early TFs, ZNF263, SP1 and GLIS2,
displayed significant upregulation in MCF10A nuclear extracts pre-
treated with TGFβ for 24 h in comparison to untreated controls.

To identify cell–cell communications during EMT, we devised a
strategy in which we combined scRNAseq-derived cell clusters with
subcellular proteomic data (Fig. 6e). First, using a database of >2500
curated binary L–R (Ligand–Receptor) interactions36, we searched for
pairs of L and R in our SEC and MEM/GLYCO datasets, respectively. If
codirectional expression changes in L and/or R of a pair (FDR adj. p-
value < 0.05 and combined L-R | log2FC | ≥1) were indicative of either
activation or suppression, our analysis identified 67 upregulated and
12 downregulated L-R pairs following TGFβ treatment (Fig. 6f). Nota-
bly, none of these pairs have been directly associated with TGFβ sig-
naling or EMT, althoughmanyof the identified ligands (e.g., LAMC2) or
receptors (e.g., CD151, COL17A1, ITGA2, ITGA3, ITGA6, ITGB1, and
ITGB4) occur frequently in the context of EMT and/or cancer. Inter-
estingly, this analysis also suggested a global switch in L–R mediated
signaling at day 2, corresponding to the E→E/M transition. This switch
might thereforemodulate processes characteristic of E/Mcells, suchas
migration (e.g., FN1–ITGB6) and stemness (e.g., TIMP2–ITGA3). Next,
by systematically comparing the expression patterns of L and R of only
active L–R pairs (identified using subcellular proteomics) among the
16 scRNAseq clusters, we identified cell-cell communication networks
(sender → receiver) (Fig. 6g). For example, C13 cells, that appeared
during the E→E/M transition at day 3 and showed the highest expres-
sion of M genes produced the receptor CD44 for the cognate ligand
MMP7 expressed byC17. These results identify potential L–Rmediated
intercellular crosstalk during EMT.

To gauge the generalizability of these observations, we hypothe-
sized that their expressions could be correlated in other physiologi-
cally relevant systems if the predicted L–R pairs are functionally
relevant. Indeed, positive correlations were observed for several
identified L-R pairs in human breast invasive carcinoma samples37,38

Fig. 3 | EMT-ExMap captures topological relation between layers, transition
points and stage-specific molecular intricacies of EMT. a Since all datasets have
the same set of ten time points, they were first converted to configuration (i.e.,
similarity) matrices which were then used to compute partial RV coefficients
(=matrix correlations) between them (as implemented in iTOP package in R)
(Source Data file – Fig. 3a). b Thematrix correlations in ‘a’were used to summarize
the topology of interactions between the datasets using the PC algorithm (as
implemented in iTOP package in R). c MCIA plot. Different shapes represent the
datasets which are connected by lines whose lengths are proportional to their
divergence from a common reference point which aims to maximize covariance
between the datasets. Only the top 4 highest variation layers (Supplementary
Fig. 2c) are being displayed for visual simplicity. d An integrative phylogenetic
neighbor-joining tree constructed from all layers except MRNA and METABOL.
Since we had protein data, we deemed the transcript measurements redundant.
Because METABOL followed a distinct kinetics than other datasets (Fig. 3b), it was
treated separately in Fig. 5. Please see the “Methods” section ‘Self-OrganizingMaps
(SOMs) & Neighbor Joining’ for details. e Top panel. SOM portraits. The color
gradient indicates the over- or under-expression of metagenes at each time point

compared to the mean expression level of the metagene in the pool of all time
points: red=high, yellow/green=intermediate and blue=low. Middle panel. Repre-
sentative signature molecules that appeared among the highest-ranking features
(top 1%) at each time point and layer. Please see the “Methods” section ‘Self-
Organizing Maps (SOMs) & Neighbor Joining’ for details of the SOM analysis. Bot-
tom panel. All genes with adj. p-value ≤0.01, logFC ≥ 0.6 in each SOM was used as
input to perform pathway enrichment analysis using the pathfindR R package.
Parameters for pathfindR: pin_name = “IntAct”, p_val_threshold=0.01, gene_sets = “

Reactome”, search_method = “GR”, iterations=10. P-values were obtained using
one-sided hypergeometric testing followed by Bonferroni adjustment. Repre-
sentative enriched pathways are shown. f Widefield immunofluorescence micro-
scopy (IFM) images of MCF10A cells treated with TGFβ for 6 days were acquired
using MICA imaging system (Leica). Antibodies used, and scale bars are shown in
the images. Staining intensities were normalized to DAPI acquired at constant
settings. Representative images are shown from two independent experiments.
g Imaging system and cells same as in Fig. 3f. Antibodies used, and scale bars are
shown in the images. Representative images are shown from two independent
experiments.
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(Fig. 6h), supporting our predictions. Notably, despite tumor tissues
being highlyheterogeneous, stronger positive correlationbetween the
L–R pairs was observed in CPTAC proteomic datasets compared to
mRNA-based TCGA. Similarly positive correlations were also observed
in the CCLE database (Fig. 6i).

Overall, we uncovered cell–cell communication pathways via L-R
interactions that drive EMT, highlighting untapped clinical potential.
Notably, this approach is a conceptual and methodological advance-
ment as we combined scRNAseq with concurrently acquired sub-
cellular proteomics datasets, i.e.,MEM/GLYCO forR andSEC for L, thus
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alleviating uncertainties from mRNA-protein discordance in assigning
protein localizations.

A mechanistic model of EMT built by integrating EMT-ExMap
with prior knowledge
Systems biology approaches that combine the analyses of multiple
types of molecules (proteins, mRNAs, miRNAs, metabolites) into a
framework of established knowledge allows for a rich assessment of a
biological system39. Using EMT-ExMap, we combined experimentally
validated functional priors (compiled from ENCODE, PhosphoSitePlus,
SignaLink 2.0, SIGNOR 2.0, HINT, miRTarBase and MetaBridge) with
causal inference40 and PCSF to construct a hierarchical mechanistic
model of the EMT program (Fig. 7a, see “Methods” for a detailed
description of the pipeline). This network consists of 3255 edges,
connecting 2217 molecules, including 723 kinase/
phosphatase–substrate, 1407 TF–target, 746 miRNA–target and 31
metabolite–gene interactions (Supplementary Fig. 7a).

To reveal the key factors driving EMT, we performed a controll-
ability analysis41 on this EMT network and identified 146 controllers
(Supplementary Fig. 7b). Notably, the fractionof controllers (6.5%of all
nodes) is much less than that of a global directed human PPI network
(36%)41, indicating a dense, coordinated and highly directed informa-
tion flow during EMT. Approximately 50% of these controllers are
captured as EMT hallmarks in current databases, while 77, including
MEF2A, SPI1, CSNK2A1, ABL1, NCLAF1, and GATA2, are not yet recog-
nized as key drivers of EMT (Fig. 7b), although some are reported to be
involved in metastasis. Surprisingly, as many as 1881 non-controller
genes are not included in any existing EMT databases (Fig. 7c), again
highlighting the limitations of current models. Survival analysis per-
formed using publicly available clinical data from primary breast
cancer patients37 showed a significantly worse prognosis associated
with altered expression of our hubs identified at the various E/M andM
stages as compared to MSigDB hallmarks (Fig. 7d, Supplemen-
tary Fig. 7c).

A key application of this network is the reconstruction of EMT
stage-dependent signaling following TGFβ induction (Fig. 7e). Since
EMT has been studied for decades, albeit in heterogeneous systems,
the recapitulation of key signaling pathways is critical to establish the
validity of our model. We observed that TGFβ stimulation led to acti-
vation of SMAD2 and SMAD3 TFs, as expected. Another early respon-
der was the RHO GTPase RAC1, an effector of both KRAS42 and TGFβ
signaling43, suggesting the coactivation of SMAD-dependent and
SMAD-independent pathways by TGFβ. The downstream effector of
RAC1, MAPK14 (p38 MAPK), was also regulated early in EMT. Our
model suggests that SMAD3 regulates two other TF hubs, CEBPB
(CCAAT/enhancer-binding protein β) and FOXA1. The loss of CEBPB
reportedly switches the TGFβ signaling pathway from growth

inhibition to EMT induction44, while FOXA1 is reportedly a key TF
during EMT45. We observed that STAT3 is suppressed in later stages of
EMT which is consistent with a recent study in KRAS-driven lung and
pancreatic cancer reporting that STAT3 is required formaintaining the
E stage and is lost during the acquisition of M phenotypes46.

Identification of druggable hotspots to target EMT
Having established the validity of themodel,wenext sought to identify
compoundswhich could be used to inhibit EMT. Specifically, wemined
theDrugBank database and literature to identify compounds targeting
the controllers in our EMT network, which were then prioritized based
on their FDA approval status, target specificity and availability. We
further pruned this list by retaining only inhibitors for targets that are
active at the E→E/M boundary. This pipeline identified six candidate
drugs for the inhibition of TGFβ-driven EMT in MCF10A cells.

To assess the effects of these drugs individually and in combina-
tion treatments, we developed a medium-throughput brightfield
microscopy-based pharmacological assay (which quantifies cell shape)
(Supplementary Fig. 7d). The positive control EMT inhibitor-1 (C19)
and several predicted single drugs (Autocamptide, Sonidegib), and
drug combinations (LB-100+Barasertib, LB-100 + PP1, Sonidegib
+Autocamptide, Sonidegib+LB-100) emerged as effective treatments
for suppressing EMT (Supplementary Fig. 7e).

Because Sonidegib inhibits the Hedgehog signaling receptor SMO
and Autocamptide inhibits the calcium-dependent Ser/Thr kinase
CAMK-II, our analysis raised the possibility that combinatorial target-
ing of Hedgehog signaling, and CAMK-II could be effective against
PI3K-AKT-driven invasiveness. Using a biomimetic 3D mammary duct-
on-a-chip platform47, we tested the invasive capacity of MCF10A cells
engineered to stably express PIK3CαH1047R, a PI3K variant associated
with chemo-refractory disease in ~8% of TNBC patients48. Notably, we
observed that the combination of Sonidegib+Autocamptide sig-
nificantly inhibits invasion in these cells, as predicted by our
model (Fig. 7f).

Overall, our network and controllability analysis provide a unified
time-resolved mechanistic model of EMT and reveal previously
unknown EMT drivers and potential drug targets.

Discussion
As simultaneous acquisition of multiple layers of biological informa-
tion from the same samples is key to maximize the amount of infor-
mation gained49 we implemented PAMAF to study TGFβ-induced EMT
as an example model system. Since EMT is well-studied, albeit with
notable molecular and omics bias, we provide comparisons with
existing knowledge to gauge the validity of our modeling outputs and
predictions. For additional support, we provide direct experimental
validations for several key predictions in our study. Below we discuss

Fig. 4 | Analysis of PHOS reveals stage-specific kinase vulnerabilities. a A
comparison of differential p-sites in EMT-ExMap and previous phosphoproteomics
studies on EMT (SourceData file – Fig. 4a).b Fraction of regulated p-sites (in %), out
of all quantified p-sites on VIM during EMT (Source Data file – Fig. 4b). cQuantified
p-sites on VIM and their expression during EMT. Gray lines indicate all p-sites in
PhosphoSitePlus database. Colored circles are log2FCvalues for eachp-site (Source
Data file – Fig. 4c). d Distribution of PCCs between expression of proteins and
p-sites. As indicated, ~50% of p-sites had poor correlation (PCC ≤0.4) including
~26% which had expressions opposite (PCC ≤ –0.1) to that of corresponding pro-
teins (Source Data file – Fig. 4d). e Schematic showing two examples where
expression of proteins and p-sites showed either low (PCC ≤ –0.1; CDS2, CBX1) or
high (PCC ≥0.4; MISP, MICAL3) correlation. Colored circles are log2FC values for
each p-site binned into three major stages of EMT. Post-TGFβ = 4 h and day 1; E/M
hybrids = day 2 to day 4; M stages = day 5 – day 12. f GO enrichment of ‘cellular
components’ was evaluated on genes with at least a single regulated p-site (Source
Data file – Fig. 4f). The tool Enrichr was used which computes adjusted p-values
using a one-sided hypergeometric testing followed by Benjamini-Hochberg

correction for multiple comparisons. g Regulated p-sites at each time point were
used to compute kinase activity scores. Absolute scores were then summed and
categorized into three broad stages of EMT (i.e., 4 h andday 1 = E, day 2 to day 4 = E/
M, and day 5 to day 12 =M). h Distribution of PCCs between the expression of
proteins detected in NUC and p-sites detected in PHOS (Source Data file – Fig. 4h).
iHeatmap of Z-scored expression values of a few exemplarymolecules in NUC and
PHOS. j The structural model ofMICAL3 p-sites (T684, S685, S687), Importin-α and
the nuclear localization signal (NLS) onMICAL3.k Imaging systemand cells same as
in Fig. 3f. Quantification of nuclear and cytoplasmic staining of MICAL3 was per-
formed using CellProfiler (Source Data file – Fig. 4k). The adj. p-value indicates the
significance of difference between the groups as evaluated using an unpaired two-
sided Wilcoxon test (n = 460 cells in each group), with Benjamini-Hochberg cor-
rection for multiple testing. l MCF10A cells were transfected with either non-
targeting siRNA or pre-validated siRNA against MICAL3, as shown. All cells were
treated with TGFβ for 6 days. Representative images are shown from two inde-
pendent experiments.
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some of the highlights of this study and how it extends existing
knowledge at a systems-scale.

Resource
PAMAF enabled a detailed investigation of TGFβ-induced EMT, quan-
tifying >61,000molecules from 12 omics layers in MCF10A cells across
10 timepoints over 12 days, with three independent biological repli-
cates. In addition, using TMT to multiplex all 10 time-points of each of
7 proteomic layers increased sensitivity. We also performed deep
scRNAseq to quantify expression of >9700 genes in >1900 single cells.
A key strength of the resulting datasets is that all data are acquired
concurrently from the exact same set of samples, unlike

heterogeneous sources in existing EMT databases. We compiled all
generated datasets into the EMT-ExMap resource which is freely
available at https://www.bu.edu/dbin/cnsb/emtapp/. In addition to
transcriptomeandmiRNAome, we demonstrate that EMT is associated
with widespread subcellular proteomic and metabolomic alterations.
Apart from being a resource EMT-ExMap also opens opportunities for
multimodal integration with other co-acquired datasets, potentially
encouraging bioinformaticians to develop integrative tools.

Inter-relationships between layers
The ability of neighbor-joining clustering to group the time points
into sequential major stages of EMT suggested a topologically

Fig. 5 | Insights into stage-specific metabolism by integratingMETABOL, WCP,
and PHOS. a The phylogenetic tree for METABOL dataset retained after maSigPro
analysis. Representative signaturesdetermined from the SOManalysis are shown as
heatmaps. Z-scores are smoothed with two adjacent points. b Quantified metabo-
litesofAAMpathway in SOM for 4 h andday 1were taken andPCCcomputedon the
temporal expression patterns of KEGG metabolic enzymes quantified in PHOS and
WCP in EMT-ExMap (Source Data file – Fig. 5b). c Schematics of information flow

from TGFβ to AAMpathway, mediated by known enzymes. Line plots of quantified
metabolites, andheatmapsof corresponding enzymes, display Z-scored expression
values. Parts of this panel were created using BioRender. d Imaging system same as
in Fig. 3f. MCF10A cells were transfected with either non-targeting siRNA or pre-
validated siRNA against PLA2G15, as shown. All cells were treated with TGFβ for
6 days. Same primary and secondary antibodies were used as in Fig. 4l. Repre-
sentative images are shown from two independent experiments.
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coordinated differentiation program which transitioned each
molecular layer from E to M. However, the overlap between the
omic layers was not absolute, and each layer evolved distinctly
during EMT. At themolecular level, while only 8% of GLYCOproteins

were altered as much as 40% of SEC proteins were differentially
expressed, indicating heterogeneity in the extent of omic-level
reprogramming during EMT. Such results emphasize that a more
complex concept of EMT in addition to the prevalent concepts of a

Fig. 6 | Integrationof scRNAseqwithSEC,MEMandGLYCOreveals intercellular
crosstalk. aUMAPprojection inferred byMonocle3. Dots represent single cells and
are colored according to their inferred clusters. These clusters, in turn, are arran-
ged according to their progress along the learned pseudotime trajectories. ‘Parti-
tions’ group cells which are significantly distinct from others and have their own
trajectories. b Heatmap showing the number of cells (log2) in each cluster of par-
tition P2. Mean RNA expressions of some well-known E and M markers in each
cluster are also shown (Source Data file – Fig. 6b). c SCENIC analysis identified
active transcription factors (TFs) for each subtype. Someof theseTFs are annotated
as EMT hallmark in MSigDB database. Notably, TFs in subtypes S1-S3 identified in
this study are potentially key players in EMT as they are not currently identified as
EMT hallmarks. d A human TF-binding array was used to assess the DNA-binding
activities of indicated TFs as a proxy of their activation. In the density plots of the
∂B-scores of DNA-bindings of indicated TFs we applied a two-sided Kolmogorov-
Smirnov test to evaluate the significance of difference between the control and

TGFβ-treated conditions. The statisticD is themagnitude of differencebetween the
two distributions while the p-value signifies the likelihood of observing such values
(or greater) of D (Source Data file – Fig. 6d). e Schematics of the analysis workflow
for discovering active L-R pairs. See “Methods” for details. f Heatmap showing
summed log2FCs of L-R pairs in the SEC andMEM/GLYCO datasets. gNetwork plot
showing L–R interactions mediated potential intercellular crosstalk between dif-
ferent cell clusters of P2 (Source Data file – Fig. 6g).h Scatterplots of PCCs between
the indicated L–R pairs in breast invasive carcinoma samples (n = 74 for CPTAC,
n = 1084 for TCGA). The p-value is 2×P(T > t) where T follows a t distribution with
n–2 degrees of freedom, as implemented in ggpubr R package. The regression line
is colored red (Source: cBioPortal). i Scatterplot of PCCs between the indicated L–R
pairs in cancer cell lines (n = 375) in the CCLE database. The p-value is 2×P(T> t)
where T follows a t distribution with n–2 degrees of freedom, as implemented in
ggpubr R package. The regression line is colored red (Source Data file – Fig. 6i).
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core set of TFs and miRNAs is necessary for a better understanding
of the subtleties of this highly dynamic process.

Regulatory autonomy between proteomics layers
Transcript–protein discordance has been contextually attributed to
the physical properties and stability of mRNA, alternative splicing,
ribosome dynamics, local availability of resources, protein stability,

translation control and delay. Notwithstanding, meta-analysis of EMT-
ExMap revealed a remarkably poor concordance between even the
proteome layers themselves (i.e., WCP, EXOS, SEC, GLYCO, MEM and
NUC). For example, the qualitative and quantitative differences
between EXOS and SEC are striking (Figs. 2a, d, 3c) yet not widely
appreciated or understood. Moreover, several proteins exhibited
nonlinear or even opposite temporal expression patterns between the

Fig. 7 | A mechanistic model of EMT identifies druggable vulnerabilities.
a Schematics of the causal modeling workflow. Distinct genes were obtained by
ranking based on Hotelling’s T2 statistic which incorporates the correlation struc-
ture across time points, moderation, and replication (implemented in R package
timecourse). CausalPath-estimated logical networks were used to augment a
custom-built confidence-weighted scaffold interactome, which was then used to
solve the Steiner Forest problem using OmicsIntegrator software. Only regulated
molecules (adj. p-value ≤0.05, |log2FC|≥ 1) were considered as prizes. b Overlap
betweenEMTdatabases and controller nodes identified in the analysis in ‘a’ (Source
Data file – Fig. 7b). c Overlap between EMT databases and non-controller nodes
identified in the analysis in ‘a’. d Kaplan–Meier (KM) plots comparing the prog-
nostic performance of MSigDB hallmarks and hubs (controllers and top non-con-
trollers) identified for each time point in this study. From EMT-ExMap only
regulated genes were considered for this analysis, while all EMT hallmarks were

taken from the MSigDB database. The p-values of two-sided log-rank test com-
paring the survival distributions are shown with 95% confidence bands (N = 1045
patients) (Source Data file – Fig. 7d). e A simplified schematic showing the causal
(directional) relationships between several hubs at the three major stages of EMT.
f A specialized biomimetic mammary duct-on-a-chip apparatus was seeded with
stable MCF10APIK3CA-H1047R cells and treated with Sonidegib and Autocamptide for
3 days. The area of invading cells and the average distance traveled away from the
ducts relative to DMSO-treated controls were quantified using ImageJ (n = 6 repli-
cates). The centerline of box plot denotes the median; lower and upper bounds
indicate 1st and 3rd quartiles, respectively; whiskers reach the maximum and
minimum point within the 1.5× interquartile range. The significance of difference
between the DMSO and Sonidegib + Autocamptide condition was tested using
unpaired one-sided Wilcoxon tests with the alternative hypothesis DMSO>Drug,
where DMSOwas used as the reference (n = 6 replicates) (Source Data file – Fig. 7f).
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regulatory layers during EMT (Fig. 2h, Supplementary Fig. 4i). These
observations indicate the pitfalls of assigning gene function based on a
single layer and reveals fundamental distinctions in regulatory
mechanisms operating at the individual protein level.

Distinct regulatory classes of genes
Integration of transcriptome and various proteomic layers allowed us
to define three classes of genes (i.e., Class I, Class II-A and Class II-B).
The identification of 1,205 Class II genes demonstrated that either
MRNAand/orWCP is insufficient indescribing EMTwhichnecessitated
a near-comprehensive PAMAF-like approach. Interestingly,most genes
maintained their respective classes in other short-term adaptations
(Supplementary Fig. 2i), thus identifying an evolutionary conserved
but poorly understood regulatory mechanism. These results may also
constitute an important step in creating analytical frameworks to
interpret disease-specific datasets. For example, transcriptome analy-
sis of a tumor can be used to extrapolate protein quantity and function
for Class I genes but may not be valid for Class II genes. Similarly, for
clinical samples with limited availability, comparative modeling
between the classes of genes could be useful in choosing the most
appropriate experimental approach.

Integration of scRNAseq and subcellular proteomics
Explicit consideration of cell-cell interactions can provide addi-
tional insights into EMT. Leveraging the richness of EMT-ExMap, we
combined subcellular proteomics (SEC, GLYCO, MEM) and scRNA-
seq to infer L–R mediated intercellular crosstalk between the het-
erogeneous cell-types present at various stages of EMT. We
reported 79 altered L–R pairs in this study. The L-R interactions
derived from bulk subcellular proteomics eliminates uncertainties
associated with extrapolating subcellular protein localization from
measurements of either MRNA or WCP. The iTALK model identified
interactions including the CD44 receptor expressed on C13 and its
ligand MMP7 expressed by C17 cells as well as interaction between
ITGB4 receptor expressed on C13 cells and LAMC2 ligand expressed
by C12 cells. These observations are well-supported in the literature
and suggest that our approach has the potential to identify biolo-
gically meaningful interactions, although the challenge remains to
determine the causal importance of individual L–R pairs in driving
EMT. Regardless, given that many therapeutics target cell-cell
interactions, our approach can be used to identify potential targets
and/or to validate that a target of interest is present. In experi-
mental models that examine patient-specific responses (e.g., pri-
mary cells, organoids) this approach can identify interactions that
are predictive biomarkers of response to therapy for subsequent
use in patient stratification.

EMT-specific global metabolic resource
Metabolic rewiring based on gene regulation has been studied in the
context of both cancer and EMT. However, EMT-ExMap enables the
analysis of direct untargeted global metabolite measurements along-
side WCP, PHOS, MRNA and several other layers. In particular, the
enzymes and metabolites of AAM pathway were shown to be coordi-
nately modulated during EMT, which enabled the identification and
validation of PLA2G15 as a key player and possible therapeutic target in
EMT. Our analysis also suggested a branch-switching mechanism
within the AAM pathway at the E→E/M boundary, pointing to potential
therapeutic interest.

EMT network model
Our final network modeling approach was to integrate EMT-ExMap
with the mechanistic knowledge in the literature to build a causal
network to explain the dynamic but directional signaling cascades
during EMT. By design, the dependency on experimentally vali-
dated priors makes this ‘pathway extraction’ approach inherently

more robust than the ‘pathway inference’ approach which can
predict relations but requires further validation. Indeed, despite
feeding in >10,000 differential molecules the final network
retained a modest 2217 nodes. Thus, our approach consolidates a
wealth of high-quality knowledge gathered from diverse contexts
into a unifying experimentally validated mechanistic model of
EMT. Our model recapitulates known signaling pathways related to
TGFβ and cancer but also predicts the activation and deactivation
of several other pathways. While our controllability analysis iden-
tified 146 key nodes, 77 are not recognized in the context of EMT.
Furthermore, integration with DrugBank and literature identified
several active pharmacological targets, including Hedgehog sig-
naling and CAMK-II, which we experimentally demonstrated to
inhibit EMT-related invasiveness. This external support implies the
model will be a useful tool in identifying potential therapeutic
targets for the suppression of EMT.

Study limitations and future directions
Performing longitudinal studies is essential to capture steps of
disease progression but is either not possible or prohibitively
expensive in post-mortem clinical samples and/or mice models.
Therefore, in the present form, we have implemented PAMAF in an
in vitro model which allowed quantification of diverse omic layers
and was also well-suited for the follow up high-throughput drug
perturbation assays. Here, we used TGFβ to induce EMT in MCF10A
cells, but EMT can also be induced in a variety of other conditions,
including different cytokines (FGF, EGF, HGF, Wnt/β-catenin,
Notch) and cell/tissue models. The next iterations of the PAMAF
workflow could include its implementation in iPSCs and/or orga-
noids and decreasing sample requirements by incorporating low-
input sample processing advancements. With further improve-
ments in bioinformatics tool to handle and analyze such large and
diverse datasets, the limitations of current tools will be overcome.
In addition to cancer biology, PAMAF-like workflows could generate
detailed molecular expression landscapes for interrogating multi-
faceted biological processes such as heart, metabolism, and neu-
ronal disorders.

Methods
Contact for reagent and resource sharing
Information and requests for resources and reagents should be
directed to the corresponding author, Andrew Emili
(emili@ohsu.edu).

Experimental model and subject details
Cell culture and TGF-β1 treatment. Human breast epithelial MCF10A
cells were kindly provided by Prof. Senthil Muthuswamy (Beth Israel
Deaconess Medical Center, Harvard Medical School). Cells were
cultured in DMEM/F-12 supplemented with 5% Horse serum, EGF
20 ng/mL (Sigma), Insulin 10μg/mL (Sigma), Hydrocortisone 0.5mg/
mL (Sigma), Cholera toxin 100 ng/mL (Sigma), 100 units/mL Peni-
cillin and 100μg/mL Streptomycin (HyClone) and grown at 37 °C in a
humidified incubator with 5% CO2. To induce EMT, cells were sti-
mulated with 10 ng/mL TGF-β1 (Invivogen) and treatments were
staggered such that all cells (plates) were harvested at the same time.
To minimize cross-contamination (Exos & Sec) and promiscuous
background signaling (particularly for Phos), cells were cultured in
serum-free conditions for 16 h prior to harvesting. At the time of
harvest, conditioned media were first transferred to fresh 5mL tubes
and kept on ice. Cells were washed once with ice-cold PBS and
scraped off the plates in ice-cold PBS. Each sample was then dis-
tributed into multiple aliquots for multi-omics extractions, cen-
trifuged at 800 × g for 5min at 4 °C and stored as dry pellets at
–80 °C. Live cells were imaged in their culture vessels before har-
vesting using ZOE fluorescent cell imager (Bio-Rad).
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Method details
Subcellular fractionation
Extracellular vesicles (EXOS). Serum-free conditioned media were
centrifuged at 800× g for 10min at 4 °C and sequentially passed first
using 0.22 µm filter (Fisher) and then through a 100 kDa cut-off filter
(Thermo Scientific). The retentate was resuspended in 1mL PBS and
used for EXOS extraction using the Total Exosome Isolation Reagent
(from cell culture media) as per manufacturer’s instructions (Thermo
Scientific)50. Exos pellets were stored at –80 °C.

Secretome. To the flow-through from Exos extraction, 10% (v/v) Tri-
chloroacetic acid (Sigma) was added, and proteins were precipitated
overnight at 4 °C with rocking. Protein pellets were washed twice with
500μL chilled Acetone (Fisher), air-died and stored at –80 °C.

Plasma membrane (MEM). We used Minute PM isolation kit for
separating MEM and nuclear fractions from cell pellets as per manu-
facturer’s instructions (Invent Biotechnologies)51. MEM pellets were
stored at –80 °C.

Nucleus. The nuclear fractions generated from PM isolation kit were
immediately processed using a protocol as previously described52 and
stored at –80 °C.

Sample preparation for LC-MS2 metabolomics. Each cell pellet was
thawed on ice and resuspended in 500 μL ice-cold water by vortexing
for 3 s and 500μL of chilled (–80 °C) 90%methanol + 10% chloroform
solution was immediately added and vortexed for another 10 s and
then kept on ice. Samples were incubated for 30min at 4 °C while
rotating and then centrifuged at 800 × g for 10min at 4 °C. The
supernatants were transferred to fresh tubes and centrifuged at
16,000× g for 45min at 4 °C. The cleared supernatant containing
metabolites were cleaned using a SPME (solid phase microextraction)
protocol adopted from Mousavi et al.53, vacufuged to dryness and
stored at–80 °C. The cell pelletswereused for protein extractionusing
GuHCl lysis method as described below.

Sample preparation for LC-MS2 proteomics
Protein extraction, trypsin digestion, and peptide desalting. Sample
pellets were solubilized in 3× volume of GuHCl lysis buffer (6 M Gua-
nidine-HCl, 100 mM Tris-Cl pH 8.5, 10 mM TCEP, 40 mM CAA, 6 mM
CaCl2) and heated for 5min at 75 °C. Lysates were cooled on ice for
10minutes, sonicated (Branson probe sonifier, 10% power, 3 × 20 s On,
10 s Off cycles), and heated again at 75 °C for 5min, followed by cen-
trifugation for 30min at 3500 × g and 4 °C. Cleared lysates were
transferred to fresh tubes, diluted 8× with 100 mM Tris-Cl pH 8.5 and
protein concentration was determined using BCA assay (Thermo Sci-
entific). Equal amounts of proteins were digested overnight with MS-
grade Trypsin (Thermo Scientific) with 1:50 (protein: enzyme) ratio at
37 °C with agitation (900 rpm on an Eppendorf thermomixer). Diges-
ted peptides were acidified with 10% TFA (final 1% v/v), vacufuged to
remove TFE and desalted using Sep-Pak (Waters Corp).

Isobaric tandem mass tags (TMT) labeling. For relative quantifica-
tion, 5–200 µg of desalted peptides (measured using Quantitative
colorimetric peptide assay, Thermo Scientific) per sample was labeled
with TMT-10 isobaric tandem mass tags reagents following the man-
ufacturer’s instructions (Thermo Scientific). TMT labeled peptides
were combined and desalted using Sep-Pak.

HPLC fractionation and concatenation. We used basic reverse
phased chromatography to reduce sample complexity. Approximately
2mg of desalted peptides were reconstituted in buffer bRP-A (2%ACN,
0.1% NH4OH) and fractionated with a 4.6mm× 250mm XBridge
Peptide BEHC18 column (WatersCorp) fitted on an Agilent 1100 Series

HPLC instrument. We used a flow rate of 500μL/min and an increasing
gradient of buffer bRP-B (98%ACN, 0.1% NH4OH)with 3 slopes (8–40%
in 38 min, 40–90% in 1min, 90% for 4min, 90–4% in 1 min, 4% for
4 min). Eluting peptides were collected at intervals of 30 s in 96 frac-
tions. Every alternate row was combined to generate 24 fractions. For
total proteome, 5% of the samples (by volume) were kept separately.
With the remaining 95%, all rows were combined to generate 12 frac-
tions and used for phosphopeptide enrichment. For nuclear pro-
teome, 96 fractions were combined into 12 fractions. For Exos, Sec,
Pep, Mem and PTMs (except Phos) no fractionation was performed.

Serial enrichment of PTMs
STY-phosphorylated peptide enrichment. Dried fractions and TiO2

beads (10mg beads permg peptides) (GL Sciences) were resuspended
and mixed in TiO2 binding buffer (80% ACN, 6% TFA, 20mg/mL
Dihydroxybenzoic acid) and incubated for 20min at room tempera-
ture with agitation (1400 rpm on an Eppendorf thermomixer). Beads
were washed with agitation for 5min each; 1× with binding buffer, 1×
with 40% ACN+6% TFA, 2× with 20% ACN+ 1% TFA and 1× with 20%
ACN+0.1% TFA. Bound phosphopeptides were eluted 1× with 20%
ACN+ 15% NH4OH and 1× with 15% NH4OH in H2O.

N-glycosylated peptide enrichment. Flowthroughs from TiO2

enrichments were combined into 1 fraction, desalted, and used for
glycopeptide enrichment using the ProteoExtract glycopeptide
enrichment kit (Millipore). Briefly, 200μL of ZIC resin was used for the
enrichment. To release peptides, the resin was resuspended in 100μL
of 100mMNH4HCO3 pH 8.0 and incubated with PNGaseF overnight at
37 °C with agitation (750 rpm on an Eppendorf thermomixer).

Liquid chromatography – tandem mass spectrometry (LC-MS2).
Peptides were reconstituted in buffer LC-A (2% ACN, 0.1% FA) and
analyzed with a Proxeon EASY-nanoLC system (Thermo Scientific)
interfaced to a Q-Exactive HF-X (for proteomics) or Q-Exactive HF (for
metabolomics) mass spectrometers (Thermo Scientific) through a
nanoEASY source (Thermo Scientific). Peptides were resolved on a
PepMap RSLC C18 analytical column (2μm beads, 50μm internal
diameter, 50 cm long) separated from nanoLC by an Acclaim PepMap
100 C18 nanoViper trap (3μm beads, 75μm internal diameter, 2 cm
long). We used a flow rate of 200nL/min and an increasing gradient of
buffer LC-B (80% ACN, 0.1% FA). The spectra were acquired using the
XCalibur software (Thermo).

Constructionof single cell RNA libraries and sequencing. Single-cell
suspensions of MCF10Awerewashed and resuspended in ice-cold PBS
containing 0.1% BSA at a concentration of ~2500 cells/µL. Single cells
were captured in the ddSEQ microfluidic system (Bio-Rad), mRNA
libraries were built using the SureCell WTA 3′ Library Prep Kit (Illu-
mina), libraries sequenced on NextSeq 500 (Illumina) using 150 cycle
high output kit (Illumina) and processed using BaseSpace (Illumina)
with hg19 as the reference for alignment. Protocols recommended by
the manufacturers were followed at each stage.

Human transcription factor protein binding microarray (hTF array).
Nuclear extracts were generated from untreated (UT) and TGFβ sti-
mulated MCF10A cells using 120 million cells per condition as pre-
viously described54. Microarray DNA double stranding and PBM
protocols are used as previously described54–57, and any deviations
made to those protocols are described here. For each PBM experi-
ment, 378μg of nuclear extract was applied to each chamber on the
array. To profile DNA-bound transcription factor (TF) - cofactor (COF)
complexes, primary antibodies specific to the COF, BRD4, was applied
to the array and followed with either an AlexaFluor488- or
AlexaFluor647-conjugated secondary antibody. PBM experiments
were performed in duplicate. Microarrays were scanned with a
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GenePix 4400A scanner and fluorescence was quantified using Gene-
Pix Pro 7.2. Exported fluorescence data were normalized with Micro-
Array LINEar Regression55. The PBM was designed to include the
consensus binding sites for many known TFs. To facilitate binding
motif generation, the microarray contained probes for the TF con-
sensus sites (seed probes) and every possible single-nucleotide variant
(SV probes) of the consensus site. For all seed and SV probes included,
∂B-scores were obtained for each probe by normalizing against
includedbackgroundprobes, as previouslydescribed58. The calculated
∂B-scores were used for motif generation, as previously
described54,57–59. Generated COF recruitment motifs were compared to
TF bindingmotifs from the JASPAR database to confirm the identity of
the underlying TF60, and to identify active TFs. The following anti-
bodieswereused: Primary antibody: BRD4 (Bethyl Laboratories, A300-
985A100). Secondary antibody: Goat anti-mouse IgG (H + L) Highly
Cross-Absorbed Secondary Antibody, AlexaFlour 647 (Invitrogen,
A32733).

Quantification and statistical analysis
Peptide andprotein identification. RawMSfileswereprocessedusing
MaxQuant (version 1.6)61. Tandemmass spectra were searched against
the reference proteome of Homo sapiens (Taxonomic ID= 9606)
downloaded from UniProt on April-2017. The search included fixed
modification of cysteine carbamidomethylation and variable mod-
ifications of methionine oxidation and N-terminal acetylation. For
PTMs, additional variable modifications of phosphorylation (STY),
acetylation(K) and deamidation(N) were used for phosphoproteome,
acetylome and N-glycosylome, respectively. Peptides of minimum
seven amino acids and maximum of two missed cleavages were
allowed. False discovery rate of 1% was used for the identification of
peptides and proteins.

Metabolite identification. For metabolite identifications we used the
R package MAIT62, which integrates peak detection, peak annotation
and statistical analysis. Briefly, XCMS63 is used to detect and align
peaks followed by annotation with CAMERA64. A special function
‘Biotransformations’ is applied to refine annotations and measured
ions are then putatively identified by matching mass-to-charge ratios
to a reference list of calculated masses of metabolites listed in the
Human Metabolome Database (HMDB, http://www.hmdb.ca, 2019). It
is to be noted that no further efforts were made to distinguish struc-
tural isomers (i.e., chemically distinct entities that have the same
mass), and small molecules catalogued in HMDB database were used
as such.

Microarray (mRNA and miRNA)
For mRNA. Human Gene 2.0 ST CEL files were normalized to pro-
duce gene-level expression values using the implementation of the
Robust Multiarray Average (RMA) in the affy package (version
1.36.1) and an Entrez Gene-specific probeset mapping (17.0.0) at the
University of Michigan65. Array quality was assessed by computing
Relative Log Expression (RLE) and Normalized Unscaled Standard
Error (NUSE) using the affyPLM package (version 1.34.0). The
expression of several sex-specific genes (XIST, DDX3Y, KDM5D,
RPS4Y1, USP9Y and UTY) was assessed to estimate the dynamic
range of the experiment, as the female-specific marker XIST and
constitutively expressed Y-linked genes serve as strong positive and
negative expression controls in females, respectively (and vice
versa in males). In all samples, the expression of XIST was very high
(~9.6 log2 units) and the expression of the Y-linked genes was lower
(~1.2 log2 units) as expected, indicating that the experiment has
good dynamic range to identify genes with true differential gene
expression. This analysis was performed in R (version 2.15.1) at
Boston University Microarray and Sequencing Resource Core
Facility.

For miRNA. Raw Affymetrix CEL files (miRNA 4.0) were normalized to
produce probeset-level expression values for all probesets using
Expression Console (version 1.4.1.46), using the Robust Multiarray
Average (RMA) and Detection Above BackGround (DABG). Each
microRNA was also assigned a Present (P) or Absent (A) call in each
sample, denoting whether its expression was significantly higher than
that of a collection of negative control probes comprised of anti-
genomic sequences of the same length and GC content. Analysis was
limited to Human microRNAs interrogated by the array. All samples
had similar quality metrics, including mean Relative Log Expression
(RLE) values and percent Present calls (%P), indicating that all samples
were of similar quality. This analysiswas performed in R (version 2.15.1)
at Boston University Microarray and Sequencing Resource Core
Facility.

Quality control, filtering and data preparation. All data wrangling
was performed within the R environment (version 3.5), unless
otherwise noted.

Proteomics. The ‘proteinGroups.txt’ table was filtered to discard
entries marked as ‘Reverse’, ‘Potential contaminant’ and ‘Only identi-
fied by site’. Protein quantitation required a minimum of 2 peptides, 1
unique peptide and ≥70% valid values across the 30 samples (10 time
points × 3 biological replicates). TMT intensity values were ‘log2
transformed’, ‘quantile normalized’ and missing values were imputed
using a ‘local least squares (LLS)’ strategy. Since each biological repli-
cate set of 10 samples was containedwithin a TMT-10 plex, providing a
‘balanced’ design between the 3 replicates, we applied ‘zero-centering’
to remove batch-effects for subsequent analyses.

Phosphoproteomics. The ‘phospho(STY)Sites.txt’ table was filtered to
discard entries marked as ‘Reverse’ and ‘Potential contaminant’. An
‘Andromeda search score’≥40wasused for theMaxQuant search. Class
I sites were defined with a ‘Localization probability’≥0.75. Data filter-
ing, normalization, imputation, and batch-effect correction were done
as above.

Metabolomics. The ‘metaboliteTable.csv’ table from MAIT was used.
Redundancy was removed by keeping features with the lowest ‘p.adj’
(adjusted p-value). Feature quantitation required a minimum of 10
‘spectra’ and at least 80% valid values across the 30 samples. Missing
values were imputed using ‘half-minimum’ with the assumption that
the feature is below the limit of detection. Intensity values were ‘log10
transformed’ and normalized using ‘paretoscaling’. Entries with stan-
dard deviation, SD ≥ 1 (i.e., 68%) from the mean of replicates were
identified as outliers and were removed from subsequent analyses.

Single cell RNA sequencing. Cell level QC was performed using the R
‘scater’ package. QC metrics were computed using calculateQC-
Metrics() function.Outlier libraries and features,with amedian absolute
deviationof 3 at log2 spacewere identifiedusing the isOutlier() function
and were discarded. Low quality cells with <200 genes were removed.
Genes detected in <4 cells and with an average count after normalizing
against size factors <0.1, were also removed. Eventually, we retained a
combined matrix of 9785 genes × 1914 cells for further analysis.

Differential expression analysis. We used the R package maSigPro to
find differentially expressed genes (DEGs) from time-series data66. This
tool uses a two-step regression approach, where the first regression
adjusts a global model and serves to select DEGs, while in the second
step a variable selection strategy is applied to identify significant
profile differences between experimental groups. Since it is a long-
itudinal study design, we foundDEGs only for the variable time. Briefly,
the first step of the maSigPro approach applies the least-squares
technique to estimate the parameters of the described general
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regression model generating N ANOVA tables one for each gene. The
P-value associated to the F-statistic in the general regression model is
used to select significant genes. This P-value is corrected for multiple
comparisons by applying the linear step-up (BH) false discovery rate
(FDR) procedure. In a recent comparative study, maSigPro did not
identify any false-positive candidates and outperformed many com-
monly used tools67.

Multiple co-inertia analysis (MCIA). If each omics layer is a table of
features (rows) and samples (columns), MCIA is performed in 2 steps.
In the first step, PCA (principal component analysis) is applied to
transform each table separately into a comparable lower dimensional
space. The second step is a generalization of CIA (co-inertia analysis)
which solves the problemof simultaneous analysis of a set of statistical
triplets (Xk, Qk, D), where Xk is a set of transformed matrices, Qk

indicates the hyperspaceof features andD is ann ×nmatrixwhich is an
identity matrix indicating equal weight across all columns in all tables.
MCIA provides a simultaneous ordination of multiple tables within the
same hyperspace (eigenvalue space). The contribution of each dataset
to the total variance is extracted as pseudo-eigenvalues.We used the R
package ‘omicade4’ for this analysis18.

Self-organizing maps (SOMs) & neighbor joining. Only significant
features of each omics layer from maSigPro analysis were ‘standar-
dized’ and combined. Sincewehadproteinmeasurements, wedeemed
the MRNA redundant. The METABOL layer followed a distinct kinetics
than other datasets, as observed in Fig. 3, and so it was treated sepa-
rately in Fig. 5. The features in this combined dataset (excludingMRNA
&METABOL) are further ‘centralized’ and ‘quantile normalized’ before
being processed using an artificial neural network method to train
SOMs (self-organizing map). The SOM algorithm assigns the expres-
sion profiles of N input features measured under M conditions to
several K <N rectangular tiles, ormetagenes, each of which serves as a
cluster of features with expression profiles of closest similarity
(Euclidean distance). The metagenes are arranged in a 2D grid with
similar metagenes located adjacent to each other and their relative
positions preserved across the samples (=time points). The SOM
mosaic patterns are constructed by color-coding the tiles according to
their expression profiles, providing a fine-grained portrait character-
istic of the entire dataset. The neighbor-joining method for recon-
structing the phylogenetic tree was originally proposed by Saitou and
Nei68. The principle is to find pairs of operational taxonomic units
(OTUs [= neighbors]) that minimize the total branch length at each
stage of clustering (agglomerative) of OTUs startingwith a starlike tree
(i.e., all branch lengths being equal).Weused the Rpackage ‘oposSOM’

for these implementations of SOM and Neighbor joining21,69. The
detailedmethodological descriptions are given in the vignette and the
associated publications. The values for the key parameters of the
algorithm were: n = 25,272; M = 10; K = 3600.

Active subnetwork enrichment analysis. In general, approaches that
use protein-protein interaction (PPI) information to enhance pathway
analysis yield superior results compared to conventional methods.
Here, we integrated three key information: (i) log2FC and p-values for
each gene from maSigPro analysis, (ii) a PPI network from IntAct, and
(iii) pathway/gene set annotations from Reactome. Briefly the steps
are: (1) The score of a subnetwork is computed as a cumulative func-
tion of individual Z-scores (derived from p-values) of constituent
genes. Using randomly selected genes, 2000 subnetworks (back-
ground) of each possible size are constructed, and the mean and
standard deviation calculated. A Monte Carlo method is then used to
calibrate the subnetwork scores against these values. (2) We used a
‘Greedy search’ algorithmwhich starts with a significant seed node and
iteratively adds a direct neighbor (depth = 1) to maximize subnetwork
score. Because this expansion process runs for each seed, several

overlapping subnetworks emerge, which are handled by discarding a
subnetwork that overlaps with a higher scoring subnetworkmore than
a given threshold (=0.5). (3) All subnetworks with a score larger than
the quantile threshold of 0.80 with at least 10 genes are used for
pathway enrichment analysis on Reactome genesets by one-sided
hypergeometric testing. The test uses genes in the PPI as the back-
ground. The p-values of enriched pathways are Bonferroni adjusted
and duplications are handled by keeping the pathways with lowest
adjusted p-value. Steps 2 and 3 are repeated over 10 iterations. To get
an overview of the sample-wise pathway enrichment scores, the aver-
age value of the scores of the genes in the pathway for the given
sample is computed. This entire analysis is seamlessly implemented in
the R package pathfindR23. The detailed methodological descriptions
are given in the package vignette.

Metabolite set enrichment analysis. Metabolite set enrichment ana-
lysis (MSEA) was performed using the MetaboAnalyst online tool30.

Correlation analyses of genes and samples, matrix correlations
Coefficient of determination. The coefficient of determination (R2) is
the proportion of variance in the dependent variable that is pre-
dictable from the independent variable. The log2FC values of common
genes between two regulatory layers were used to compute the R2

values for each time point. If x and y are two vectors of equal size
(=common genes) from two regulatory layers at time t, then R2

t =
function(xt, yt) summary(lm(yt~xt))$adj.r.squared. The limma package
in R was used for the computation. The raw R2 values were smoothed
using a 3rd order polynomial spline using the geom_smooth() function
of ggplot2 package in R.

Pearson coefficient. The log2FC values of common genes between
any two given regulatory layers were used to compute the Pearson
coefficient (r). The limma package in R was used for the computation.
The raw r values were smoothed using a 3rd order polynomial spline
using the geom_smooth() function of ggplot2 package in R.

Matrix correlations using RV coefficient. Since, each of our datasets
describes the same set of samples, matrix correlations RV(x1,x2) gives
us an idea of how the different datasets are correlated. Each dataset is
first transformed into an equal-sized configuration matrix which are
then used to determine the correlations between matrices using RV
coefficient. Briefly, for each n × p datamatrix X, where n = samples and
p = genes, the corresponding n × n configuration matrix is defined as
S = XXT. Thematrix correlations of two configurationmatrices i and j is
computed by RV coefficient as:RV(Si,Sj) = vec(Si)

T vec(Sj) / √vec(Si)
T

vec(Si) × vec(Sj)
T vec(Sj).

Analysis of single cell RNA measurements
Dimension reduction and trajectory analysis. Dimension reduction
and trajectory analysis were performed on the filtered scRNAseq
dataset (a matrix of 9785 genes × 1914 cells) as implemented in
Monocle370–73. A brief description of the steps are as follows: (1) Using
the preprocess_cds() function, the matrix was log2 transformed and
dimensionality of the data was reduced using PCA (principal compo-
nent analysis) to the top 50 principal components. (2) UMAP (Uniform
Manifold Approximation and Projection) was initialized in this PCA
space to further reduce dimensions to 2 UMAP variables using the
reduce_dimension() function. (3) Using the cluster_cells() function we
performed unsupervised clustering of cells by Louvain community
detection which also calculates partitions using a kNN pruning
method. (4) Finally, the learn_graph() function was used to learn the
trajectories of cells as they transition through the EMT program.

Transcription factor (TF) scoring of clusters/subtypes. Regulon
scoring of individual clusters of cells (as annotated byMonocle3) were
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computed using the R package SCENIC35 to perform cis-regulatory
motif analyses on co-expression modules (regulons) of individual
clusters. SCENIC scored cells for the activity of each regulon (i.e., TF)
by calculating the enrichment of the regulon as anAUC (area under the
curve) across the ranking of all genes in a particular cluster, while
ranking genes by their expression values. The TFs for a given cluster
were ranked by the average value of this cluster.

Ligand-receptor (L-R) pairs
Identification of regulated LR pairs from bulk proteomics. We used
theFANTOM5databaseprovidedbyRamilowski et al.36, which includes
2558distinct L-R interactions, to search for potential L-Rpairs basedon
their expressions in our datasets. We constrained the search space to
specific layers, i.e., Mem/Glyco for R and Sec for L and only to those L
and R genes which were confidently measured (p-value < 0.01). For
each L-R combination, we calculated the combined log2FC (i.e.,
Clog2FC = Llog2FC + Rlog2FC) in each time point relative to time t0. L-R
pairs with Clog2FC ≥ ±1 was defined as regulated.

Integration of identified LR pairs with scRNAseq. Higher (or lower)
expression of an mRNA does not necessarily translate to a corre-
sponding change in protein levels. Similarly, higher (or lower)
expression of a protein may not reflect its subcellular distribution. To
avoid this uncertainty, we filtered the scRNAseq dataset to keep only
L-R pairs identified in the above analysis. Post QC, log transformed and
normalized scRNAseq data (using scater R package) was used as input
for iTALK. To identify putative cell-cell interactions iTALK iteratively
scores a given L-R pair between any two cell clusters (as defined by
Monocle3) as the product of average L expression in all cells of cluster
x and average R expression in all cells of cluster y. The interaction was
defined as either incoming or outgoing depending on whether cells
expressed R or L, respectively. The R package iTALK was used for the
analysis74.

Integrative causal network analysis
CausalPath. CausalPath is a software tool that generates causal inter-
actions between proteins with pathway databases and proteomics/
phosphoproteomics datasets as input75. CausalPath will assign an
interaction between two proteins if a directed interaction between
both proteins is deemed possible by the literature and their relative
abundance is consistentwith such an interaction. Themeasurements at
time t0 were classified as the control and the measurements in the
9 subsequent time points were compared to it. Because each protein
and phosphosite was measured thrice for each time point, we used
pairwise two-tailed t-tests for each time point with respect to time t0 to
assess significance.Wedeemed aprotein/phosphosite significant forp-
values < 0.05. The output is a network for each time point. Each net-
work is directed, and edges are literature supported.

EMT network. CausalPath does not account for features which are
either not measured or differentially expressed for generating the
network. Such hidden nodes may be of interest because they may
serve as conduits to propagate information between nodes which are
captured as differentially expressed in the dataset(s). To address these
shortcomings and to incorporate miRNA andmetabolite data into our
temporal network analysis, we assembled a directed human inter-
actome of known interactions (protein-protein, gene-miRNA, protein-
metabolite) compiled from several databases (ENCODE, PhosphoSi-
tePlus, SignaLink 2.0, SIGNOR 2.0, HINT, MetaBridge). This human
interactome consisted of 115,060 edges and 15,647 nodes. Each edge
represents one of seven different types of directed interactions: kinase
→ target, TF→ target, TF→miRNA, signaling, miRNA → gene, gene →
metabolites, and phosphatase→ target. For each time point (except for
the control, time t0), we appended the corresponding CausalPath
network to the human interactome to create the input network for the

Steiner-forest algorithm. We did this to allow the Steiner-forest opti-
mization to consider edges that contain information about whether a
protein A activates or inhibits (sign change) a protein B, since the
human interactome only contains information about directionality
and not sign changes.

Prize-Collecting Steiner Forest. The Steiner-Forest problem is a
method of network optimization. Formally, given a weighted graph
G(V, E) with node set V, edge set E, function p(v) that assigns a prize to
each node v∈ V, functionw(e) that assigns a weight to each edge e∈ E,
it seeks to find a forest F(VF,EF) that minimizes the following objective
function

f Fð Þ=
X
v=2VF

β � p vð Þ � μ � k vð Þ+
X
e2EF

c eð Þ+ω � κc eð Þ+ω � κ ð1Þ

where c(e) = 1 – w(e), β is a scaling factor that affects the number of
prized nodes included in the optimal forest, μ is a parameter that
penalizes hub nodes (nodes with high degree k), κ is the number of
trees in the forest, and ω is a parameter that controls the number
of trees.

In particular, for each edge e in the input network, the Steiner
Forest problem requires the assignment of aweight or probabilityw(e).
Those edges with low-cost c(e) = 1 –w(e)wasmore likely to be selected
in the optimal forest. Given a directed edge e = (x, y), where the node x
is the tail or the source of the interaction and node y is the head, we
defined the weighting function as the reciprocal of the outdegree of x,
kout(x) (i.e. the number of outgoing links of x):

w eð Þ= 1
koutðxÞ

ð2Þ

Consequently, edges containing tails with high outdegree will be
more likely to be removed during the Steiner-forest optimization,
penalizing nodes with high outdegree (hub nodes). It may be the case
that a node has a high outdegree simply because it is over-represented
in the literature, not necessarily because it is highly influential in the
present context. We can then bemore confident that edges selected in
the optimal forest are important interactions specific to EMT and not
simply because they were widely studied in the past.

Equally central to the Steiner-forest problem is the assignment
of non-zero prizes to a subset of the nodes in the input network for
each time point. We assign non-zero prizes to those nodes we are
most interested in including in the optimal forest. To apply the same
threshold for significance across the proteomic, phosphopro-
teomics, miRNA, and metabolite data, we selected log2-fold changes
for each time point with respect to the control as the criteria.
Because, here we are interested in the magnitude of the fold change
and not the sign, we define a biological molecule v as significantly
changing in time point i if

���log2
miðvÞ
m0ðvÞ

���>1 ð3Þ

where mi(v) is the mean measurement of the biological molecule v in
timepoint i across the replicates. For the proteomic, phosphopro-
teomics, and metabolite data in which there are triplicate measure-
ments for each time point i, mi(v) is the average of the triplicates. We
chose the widely used value of 1 as the log2 fold change threshold for
significance. Because none of the nodes in the input networks repre-
sent specific phosphosites and if a protein appears in both the pro-
teomic and phosphoproteomics data or in the phosphoproteomics
data multiple times (several different phosphosites can be measured
for the same protein), we take the max absolute value of the log2 fold
changes across all measurements corresponding to the protein in a
given time point I to represent the protein’s magnitude of change. If
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this max value fulfills the inequality in (2), then we classify the protein
as significantly changing.

To avoid generating nine networks that do not show how inter-
actions evolve in a cohesivemanner aswith CausalPath, we assign non-
zero prizes in a time point to not only those molecules that are sig-
nificantly changing according to (2) in that timepoint, but also to those
molecules that are significantly changing in the previous time points.
Formally, for a node v and time point t, we define a prize p(v, t) as

pðv,tÞ=
�
1, if ∣log2

miðvÞ
m0ðvÞ ∣> 1, 8i 2 1∪ . . . ∪ t

0,otherwise
ð4Þ

We assign a uniform prize value of 1, rather than the log2 fold
change, to nodes that are significantly changing in the current time
point or preceding time points for two reasons. First, a node v can be
significantly changing inmultiple time points, but itmayhave different
fold change values for different time points that satisfy (2). Because we
solve the Steiner Forest problem separately for each timepoint, we can
only assign one prize value for each node. Assigning a uniform value of
1 resolves the issue of which fold change to choose to represent the
prize of a node v in a time point t. Secondly, we aremore interested in
connecting as many significantly changing nodes as possible to get a
good representation of molecular interactions in each time point. A
uniform value of 1 would prevent the Steiner-forest optimization
algorithm from favoring or over-representing those significantly
changing nodes with especially high fold changes.

The cumulative nature of prize assignment in (3) nudges the
optimization algorithm to produce optimal forests that build on the
optimal forests from preceding time points. Because we induce EMT
by way of TGF-β receptors, we wanted to include this source of inter-
action flow in our cumulative forests. Omics Integrator allows the user
to specify which nodes to connect to the dummy node. We chose
TGFBR1 and TGFBR2 as the neighbors of the dummy node for each
time point. When the optimization algorithm removes the dummy
node in thefinal step, TGFBR1, TGFBR2, or bothnodeswill be left as the
roots of the optimal forest.

In addition to root node specification, prizes, and edge costs,
Omics Integrator requires the user to assign values to certain para-
meters that affect the topology of the optimal forest. The parameters
of interest are μ, β,ω, and D. We assigned a value of 0 to parameter μ
because we found μ to be too punitive, and the resulting optimal
forest would either be empty or leave out all but a couple of nodes
with non-zero prizes, even for small values μ~10-4. In addition, our
edgeweight-assignment in (1) already punishes hub nodes thatmight
be over-represented in the literature. We assigned the median
acceptable values of 10 and 5 to β and ω respectively. Lastly, we
assigned a value of 5 to D. The values chosen for μ, β, ω, and D were
constant across time points because any differences in network size
and structure among the nine optimal forests could then be attrib-
uted to the experimental data and the input networks and not to
different parameter values.

Prior to computing the optimal forest, a dummy node is attached
to a subset of the nodes in G. Once the optimization is complete, the
dummy node and all its artificial edges are removed to reveal a forest
with each tree in the forest rooted at a node that was connected to the
dummy node. We used the Omics Integrator package to solve the
Steiner Forest problem76.

Controllability analysis. Driver nodes that are sufficient for the
structural controllability of linear dynamics were determined in
directed unweighted networks of interactions77. Such a structural
controllability problem can be mapped to a maximum matching pro-
blem, assuming that a network of direct interactions is a graph-based
proxy of the underlying dynamical system. The maximum matching
problem can be solved in polynomial time by the Hopcroft-Karp

algorithm78, mapping a directed to a bipartite network. Specifically, we
mapped directed links to edges between partitions of nodes that start
and end edges. In the matching, a subset of edges M is a matching of
maximumcardinality in adirectednetwork if no twoedges inMshare a
common starting and ending vertex. Vertices that do not appear in M
are unmatched and have been shown to be nodes that structurally
control the underlying network1. As a corollary, a maximummatching
implies the presence of aminimum set of such driver nodes of size ND.
To assess the impact of network nodes on the controllability of the
underlying directed networkwe applied the following heuristic41: After
a node is removed from the underlying network, we determined the
size N′D of driver nodes in the changed network. N′D >ND, the node is
classified as indispensable (i.e., a control node) if the number of driver
nodes increased. In other words, the deletion of a node increased the
number of nodes that allow the control the underlying network. In
turn, if N′D≤ND the node is classified as non-controlling as the number
of driver nodes remained unchanged (neutral node) or decreased
(dispensable node).

Clinical correlation
Survival analysis. We downloaded breast cancer RNA-sequencing
based gene expression data for 1,098 patients from TCGA79. The data
were normalized using TPM (Transcripts Per kilobase Million) and
TMM (Trimmed Mean of M values) approach. After removal of
missing values, 1045 patients and 15,843 genes were retained for
further analysis. To make expression values comparable across
samples, we calculated Z-scores for each gene (z = X�μ

SD ), where X is
the expression profile of the gene of all samples, SD is the standard
deviation and µ is the mean of the expression profiles. This Z-score is
used for subsequent analysis. Top 100 bottlenecks from each EMT
network were then selected from the normalized data matrix to
perform survival analysis. To do this, we computed sample-specific
risk scores (Ri

j =

PKi

k = 1C
i
k*Ejk; where i is the ith gene list, j is the jth

sample, Ki is the size of gene list i, Ci
k is the coefficient of gene k in

gene list i from its LASSO model and Ejk is the expression profile of
sample j in gene k) for each gene set using the LASSO Cox model
implemented in R package glmnet. The advantage of using LASSO is
that it could automatically perform gene selection for the final fitted
model for each of the gene lists. LASSO also provides us the coeffi-
cient for each gene kept in the final model. The Cox model imple-
mented with the LASSO can be evaluated using Cindex [0-1]. Using
the sample specific risk scores, we further applied the function
‘surv_cutpoint()’ and ‘surv_categorize()’ in the R package survminer
to select the optimized cut-off of the patients’ risk scores in each
gene list to categorize patients into high and low risk groups. Given
the risk scores of the patients in a specific gene set, it looks for the
cut-off where the log-rank test for survival analysis can produce the
maximum statistic (lowest p-value). We classified the patients into
high-risk and low-risk groups based on the cut-off for each gene list.
We used the Kaplan–Meier plots to show the survival difference
between the high-risk and low-risk group, focusingonoverall survival
analysis.

Association analysis of clinical features and gene list-specific risk
scores/groups. We selected five clinical characteristics (tumor stage,
subtype, ER, PR, HER2) which are of great importance in the evaluation
of breast cancers, tumor stage is a 3-level categorical variable, subtype
is a 5-level categorical variable and ER, PR, HER2 are binary. Since risk
scores are continuous risk score and high- and low- risk score groups
are binarized, we applied t-test, one-way anova, and chi-square-test to
find significant differences. We used t-tests for continuous risk score
and binarized clinical characteristics such as ER, PR, and HER2, while
one-way anova was utilized for continuous risk scores and categorical
clinical characteristics such as stage and subtype. Chi-square tests was
used for the binarized risk score groups.
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Gene differential analysis. For the high- and low-risk patient groups,
we performed gene expression differential analysis using the retained
genes in the LASSO model of each of the nine gene lists. The analysis
was done using limma R package based on the normalized
expression data.

Antibodies. Antibody and dilutions used in the studies: Rabbit poly-
clonal DDX60L (Novus Biologicals, Cat#NBP2-56253, 1:50), Mouse
monoclonal CoraLite®488-conjugated TGFBI/BIGH3 (Proteintech,
Cat#CL488-60007, Clone 3E11D11, 1:50), Rabbit polyclonal MICAL3
(Novus Biologicals, Cat#NBP2-56826, 1:50), Rabbit monoclonal Alexa-
Fluor™488-conjugated E-Cadherin (Fisher, Cat#3199, Clone 24E10,
1:40), Mouse monoclonal Vimentin (Novus Biologicals, Cat#NB100-
74564, clone J144, 1:50). Anti-rabbit secondary conjugated with Alex-
aFluor™594 (ThermoFisher, Cat#A32740, 1:1000), anti-mouse sec-
ondary conjugated with AlexaFluor™594 (ThermoFisher, Cat#A32742,
1:1000). All antibodieswere diluted in0.3%BSA in PBSwith0.1%Tween
20. Primary and secondary antibodies were incubated overnight at
4 °C, and 1 h at room temperature, respectively.

siRNAs. siRNAs were reverse transfected with Lipofectamine RNAi-
MAX in 24-well format as per manufacturer’s protocol. Duplex siRNAs
were purchased from Qiagen: Non-targeting control (Cat#1027280),
MICAL3 (Cat#SI04776044) and PLA2G15 (Cat#SI05023417).

Morphometry screening andGENIMASEG image analysis software.
MCF10A cells grown in 24-well plates were treated with a panel of
cytotoxic drugs either individually or in combination along with TGFβ
for 3 days to study their effects ongrowth andmorphology. Brightfield
phase-contrast images were captured using the Celigo Imaging Cyt-
ometer (Nexcelom Biosciences) which provided an efficient, repro-
ducible, and automated method for assessing the number and
morphology of cells in a high-throughput fashion.

For analysis, we used a standalone software calledGeneric Image
Segmentation (GenImaSeg) developed in-house (Matlab, R2020a,
Mathworks Inc.). The GenImaSeg software has a streamlined GUI and
is an extension of a previously published work by Gopal Karemore80.
The software can be freely downloaded along with the installation
guide, manual, and a tutorial webinar from Ochs et al.80. GenImaSeg
can be used for both 2D and 3D image segmentation. GenImaSeg
provides choice of various image pre-processing and segmentation
algorithms to suit user’s requirement. Result of the segmentations
can be validated in real time as software provides various overlay
options on input image. It also provides post segmentation by
morphology filtering and advanced watershed algorithms. Segmen-
tation results can also be exported in both binary and gray scale
masks to be processed further for object-based shape, morphology,
or texture analysis. Given algorithm settings can be saved for record
or for future processing of data using the same settings. For the given
study, images from each well were cropped into 30 equal sized
patches. Each image patch was then processed through GENIMASEG
as follows: image inversion, Gaussian smoothing (kernel size = 3
pixels), background subtraction (rolling ball size = 15 pixels), Otsu
based segmentation, intensity-based filtering ON [0.18 1.0], mor-
phology filtering by object size [20 2000] pixels, binary image ero-
sion x2, binary image opening x1, binary image thickening x1, clear
border object ON, fill holes ON, object size filter [40 1000] pixels.
Various morphological features can be computed after these pre-
processing steps, we used ‘eccentricity’ for the present study to
compare the cellular phenotypes across wells.

Engineered mammary duct invasion assay. MCF10A cells were len-
tivirally transduced with pBABE-PIK3CA(H1047R) (Addgene plasmid
#12524) and seeded into a biomimetic mammary duct-on-a-chip as
previously described47. Following one day of cell culture in the

engineered duct, cells were treated with the specified inhibitors or
DMSO (Sigma). Devices were imaged daily using a Nikon TE200
invertedbrightfieldmicroscope (Nikon). After three days of treatment,
devices were fixed using 4% paraformaldehyde (Electron Microscopy
Sciences) in DMEM/F12medium for 30min at 37 °C. Devices were then
washed three times in PBS and permeabilized in 0.25% Triton-X
(Sigma) for 30min at room temperature. Devices were washed three
times in PBS and stained with DAPI (1μg/mL, Invitrogen) and Alexa-
Fluor 488 Phallodin (1 µg/mL, Invitrogen) overnight on the rocker in
the cold room. After three further PBSwashes, deviceswere imaged on
a Leica SP8 laser scanning confocal microscope (Leica Microsystems)
using a Leica HC FLUOTAR L 25×/0.95W VISIR controlled by LAS X
software. Fluorescence images were adjusted for contrast and bright-
ness using ImageJ. Invasive area was computed by subtracting the area
of the duct on day 0 (day of initial inhibitor addition) from the area of
the invading cells after three days of treatment. Maximal and average
invasive area was computed by measuring the perpendicular distance
from the edge of the engineered duct to the front of three or more
invading cells in each of six devices for each condition. All measure-
ments were performed in ImageJ.

Statistics and reproducibility. All the analyses and statistical tests
were performed using R (version 3.5). Non-parametric tests were
used for datasets without a normal distribution, as determined by
the Shapiro–Wilk test. For statistical comparisons between groups,
unpaired t-test was used to compare two groups for normally dis-
tributed results; otherwise, a Wilcoxon rank-sum test was used. In
all experiments, the level of statistical significance was defined as p
value ≤ 0.05 and FDR correction for multiple tests was performed
using the Benjamini-Hochberg method, when necessary unless
otherwise stated. Specific statistical tests are denoted in the figure
legends. Three biological replicates were performed as per stan-
dard practice and no statistical method was used to predetermine
sample size. No samples (i.e., time points) were excluded from the
analysis. The experiments were not randomized, and the investi-
gators were not blinded to allocation during experiments and out-
come assessments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All unprocessed (raw) data are available through respective public
repositories, as below:

Proteomics: ProteomeXchange project accession PXD031071,
Metabolomics: National Metabolomics Data Repository [https://www.
metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=
Project&ProjectID=PR001174]

Microarray mRNA: GEO SuperSeries GSE194019
Microarray microRNA: GEO SuperSeries GSE194019
Single-cell RNA sequencing: GEO SuperSeries GSE194019.
The Source data files for figures and tables and Supplementary

Data files are provided with this paper. All processed datasets are
available through an interactive website (https://www.bu.edu/dbin/
cnsb/emtapp/).

Previously published TCGA and CPTAC datasets used in Fig. 6
were accessed through cBioPortal (https://www.cbioportal.org/). Its
freely accessible to the public. The following studies/datasets
were used.

TCGA: Breast Invasive Carcinoma (TCGA, PanCancer Atlas)
CPTAC: Breast Invasive Carcinoma (TCGA, Firehose Legacy)
Previously published CCLE (cancer cell line encyclopedia) data-

sets used in Fig. 6 were accessed through the CCLE website (https://
sites.broadinstitute.org/ccle/). It is freely accessible to the public. The
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direct hyperlinks to the files used from the CCLE database are
given below:

Protein quantification file [https://depmap.org/portal/download/
all/?releasename=Proteomics&filename=protein_quant_current_
normalized.csv]

Sample annotation file [https://depmap.org/portal/download/all/
?releasename=Cell+Line+Annotations&filename=CCLE_sample_info_
file_2012-10-18.txt] Source data are provided with this paper.

Code availability
All data were analyzed using software available in the public domain
(free to download and use). Thermo RAW files were processed using
MaxQuant 1.6 and subsequently analyzed in R (3.5) using published
packages. Microarray andMetabolomics datasets were analyzed using
R packages freely accessible through either CRAN (https://cran.r-
project.org) or Bioconductor (https://www.bioconductor.org). Details
on individual packages and their specific use in this study are descri-
bed in the Methods section and a list is provided in Supplementary
Data file 7. Any specific analysis code(s) can be made available upon
request to AE (emili@ohsu.edu).
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