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Spatially resolved transcriptomic profiling
of degraded and challenging fresh frozen
samples

Reza Mirzazadeh1,9, Zaneta Andrusivova1,9, Ludvig Larsson 1,9,
Phillip T. Newton 2, Leire Alonso Galicia1, Xesús M. Abalo 1, Mahtab Avijgan2,
Linda Kvastad 1, Alexandre Denadai-Souza 3, Nathalie Stakenborg 3,
Alexandra B. Firsova4, Alia Shamikh5,6, Aleksandra Jurek7, Niklas Schultz8,
Monica Nistér 8, Christos Samakovlis4, Guy Boeckxstaens 3 &
Joakim Lundeberg 1

Spatially resolved transcriptomics has enabled precise genome-wide mRNA
expression profiling within tissue sections. The performance of methods tar-
geting the polyA tails ofmRNA relies on the availability of specimens with high
RNA quality. Moreover, the high cost of currently available spatial resolved
transcriptomics assays requires a careful sample screening process to increase
the chance of obtaining high-quality data. Indeed, the upfront analysis of RNA
quality can showconsiderable variabilitydue to samplehandling, storage, and/
or intrinsic factors. We present RNA-Rescue Spatial Transcriptomics (RRST), a
workflow designed to improve mRNA recovery from fresh frozen specimens
with moderate to low RNA quality. First, we provide a benchmark of RRST
against the standard Visium spatial gene expression protocol on high RNA
quality samples represented by mouse brain and prostate cancer samples.
Then, we test the RRST protocol on tissue sections collected from five chal-
lenging tissue types, including human lung, colon, small intestine, pediatric
brain tumor, and mouse bone/cartilage. In total, we analyze 52 tissue sections
and demonstrate that RRST is a versatile, powerful, and reproducible protocol
for fresh frozen specimens of different qualities and origins.

Spatially resolved transcriptomics (SRT) is a set of technologies
used to chart genome-wide mRNA expression within tissue sections,
and it has become widely used in genomics research in the past
decade1–3. SRT has opened up new possibilities to explore the spatial
architecture of cells and their interactions in the tissue context,

exemplified by works in neuroscience4, developmental biology5, and
disease6,7.

The first report of next generation sequencing (NGS) based SRT
method for high throughput spatial mRNA profiling was published in
20168. This work paved the way for unbiased capturing of whole
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transcriptomes from tissue sections. The underlying principle of this
technology is a dense grid of spatially barcoded oligo(dT) probes prin-
ted on amicroscope glass slide, which can be used to capture the polyA
tails of mRNAmolecules from a tissue section, thus facilitating spatially
resolved gene expressionprofiling. The tissue section is also stained and
imaged with a microscope, which makes it possible to combine gene
expression profiling with histology. Currently, the most broadly used
NGS with spatial barcoding platform is Visium (10× Genomics)3,
an updated version of the same principles presented by Ståhl et al.,8

currently with 5000 barcoded spots, each with a diameter of 55 µm
(see 10× Genomics webpage https://www.10xgenomics.com/).

In this work, we use the Visium protocol, which is currently opti-
mized for fresh frozen (FF) tissue specimens and recommends a RIN
(RNA Integrity Number) score higher than or equal to 7. RIN is a critical
metric to assess the quality and level of RNA degradation before
starting an SRT experiment9,10. FF samples are the preferred choice for
unbiased polyA-based SRT technologies due to their high preservation
of polyadenylated transcripts. However, a major limitation with polyA-
based SRT is its reduced ability to process degraded samples. In spite
of the widespread use of Visium for FF samples, there is a need for a
method thatworkswell on sampleswith lowRNAquality. Recently, 10×
Genomics introduced a new chemistry for Formalin-Fixed Paraffin-
Embedded (FFPE) samples. In FFPE samples, it is well documented that
RNA molecules are fragmented, where the degradation often affects
the polyA tails of the RNA11,12. To overcome the aforementioned issue,
the FFPE SRT approach relies on a gene-panel to target and capture
protein-coding regions of the transcriptome instead of targeting the
polyA tails.

Based on this recent development, we propose a strategy for
spatial analysis of FF tissue specimens with moderate/low RIN scores,
that we name RNA-Rescue Spatial Transcriptomics (RRST). This pro-
tocolmakes useof the same targeted gene-panel thatwas designed for
FFPE material with additional modifications to work on FF tissues,
including a gentle formalin fixation step and a baking step to improve
tissue adherence to the slide surface. We demonstrate the capabilities
of our RRSTmethod by profiling the tissue transcriptomes of a variety
of biological specimens, and comparing the results with data gener-
ated by the standard Visium protocol.

Results
RRST implementation in fresh frozen tissue sections
We attempted to make the Visium SRT technology compatible for
analysis of degraded FF samples by introducing specific modifications
to the commercially available Visium FFPE protocol. In the original
FFPE protocol, tissue sections are first deparaffinized through a series
of washes with xylene/ethanol. Then, the tissue sections are stained
with hematoxylin-eosin and de-crosslinked in the Tris-EDTA (TE) buf-
fer at 70 °C for an hour. The sections are then incubated with probe
sets that hybridize in pairs to each transcript, targeting approximately
19 K protein-coding genes. Upon correct probe hybridization tomRNA
transcripts, each pair is ligated to one another and captured by oli-
go(dT) probes attached to the surface of the glass slide, where spatial
barcodes are introduced through a cDNA synthesis step. The cDNA
molecules, which now hold information about the target transcript
and its spatial location, are released from the slide surface for final
library preparation and sequencing.

It should be noted that deparaffinization of FFPE samples fol-
lowed by staining procedure increases the chance of tissue detach-
ment due to the repeated washing steps in the initial steps of section
processing, which might result in low quality/failed data generation
(Supplementary Fig. 1 and Supplementary Video 1). Furthermore, FFPE
specimens are usually heavily crosslinked due to a prolonged formalin
fixation process, and thus crosslink reversal is a critical step to access
theRNAmoleculeswithin tissue sections. This reversal is done through
long incubation at high pH and temperature. We speculated that the

long decrosslinking incubation step used in FFPE protocol may
potentially lead to RNA degradation in the shortly-fixed FF samples.

In the RRST protocol, FF tissue sections are fixed with formalin,
instead of methanol, for 10min at room temperature, followed by a
baking step of 20min at 37 °C, which we found necessary in order to
improve tissue section adhesion to the Visium slides. The cross-linking
reversal step is removed to prevent RNA degradation, which in addi-
tion shortens the duration of the protocol by an hour. A detailed
workflow of the RRST is depicted in Supplementary Fig. 2 and a step-
by-step protocol can be found in the Methods section.

Performance of RRST in high quality FF samples
We first set out a test to evaluate how well the RRST protocol per-
forms on two FF samples with high RIN values: a mouse brain sample
(RIN 8.8) and a human prostate tumor specimen (RIN 10) (Supple-
mentary Table 1). The mouse brain has become the sample of choice
to benchmark SRT technologies because of its well-defined anato-
mical structures, which have been characterized in detail based on
histology and spatial gene expression13.WeperformedbothRRST and
standard Visium on sections collected from the same tissue blocks for
both mouse brain and prostate tumor samples. The sequencing
saturation was comparable between the two protocols (Supplemen-
tary Data 1). We found that RRST can profile the tissue transcriptome
with approximately two-fold increase in the number of detected
genes per spot compared to the standard protocol (Fig. 1b, c).
Moreover, in both the mouse brain and prostate tumor samples, we
observed a high concordance (Pearson R = 0.82, p < 2.2e−16 and
R = 0.76, p < 2.2e−16) between the aggregated gene counts across the
two datasets, excluding genes that were not targeted by the RRST
panel (Fig. 1d). This indicates that the data obtained with the RRST
approach display a high similarity with the data obtained with the
standard Visium protocol. However, the probe panel used for RRST
excludes certain transcripts, such as those transcribed from mito-
chondrial genes, ribosomal protein coding genes or ncRNAs (Sup-
plementary Fig. 3). With the exception of these three RNA types, the
majority of detected transcripts come fromprotein coding genes and
are detected with both methods (Supplementary Fig. 3), although at
drastically different UMI counts and detection rates (Fig. 1d). For the
majority of transcripts, RRST protocol appears to exhibit a higher
capture efficiency.

RRST recovers spatial transcriptomics data from challenging
FF samples
There is a growing number of studies using the standard Visium plat-
form for FF tissues to addressbiological questions14. The assessmentof
RNA quality through RIN measurement (RIN ≥ 7) is suggested as an
important criterion to define the quality of tissues for successful spa-
tial gene expression profiling. In our own experience, some tissue
types are more challenging to retrieve good/high quality Visium data
from. There could be several factors contributing to low/moderate
RNA quality, such as intrinsic biological characteristics of the tissue,
rapid RNA degradation upon surgical procedure or sensitivity to
freezing/thawing during tissue sectioning. Hence, we aimed to apply
RRST to some challenging tissue types that are known to perform
poorly using the standard 3’ capture Visium platform (Supplementary
Figs. 4, 5).

Adult human lung tissue
Todate, spatial transcriptomeprofiling of human lung tissue has rarely
been investigated15. Based on our own experience, FF mouse and
human lung tissue samples are highly challenging to process with the
standard Visium protocol. Therefore, we tested the performance of
RRST in FF healthy adult human lung samples (Fig. 2a and Supple-
mentary Fig. 6a) retrieved from two patients (LNG1, RIN 6.8 and LNG2,
RIN 7.1, Supplementary Table 1), where the 3’ capture protocol
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Fig. 1 | Comparison of RRST and Visium on mouse brain and prostate tumor
samples. a H&E images of a representative tissue section from mouse brain (left)
and prostate cancer (right). The entire dataset consisted of 8 consecutive mouse
brain tissue sections and 4 consecutive prostate cancer tissue sections. Half of the
tissue sections were processed with RRST and the remaining half with standard
Visium protocol. b Spatial distribution of unique genes in two representative tissue
sections for each tissue type, one processed with the RRST protocol and one
processed with the standard Visium protocol. c Distributions of unique genes per
spot visualized as violin/box plots colored by experimental protocol for mouse
brain and prostate cancer data. Box plots are presented asmedian values where the
lower and upper bounds are the 25th and 75th percentiles. The upper and lower
limits of the boxplots are defined by the closest value no further than 1.5*IQR

(inter-quartile range) from the closest bound. Values outside of the upper and
lower limits are highlighted as outliers. The median number of unique genes is
highlighted for each group (sample type and protocol) next to the violin plots.
d gene-gene scatter plots between RRST data (y-axis) and standard Visium data
(x-axis) of log1p-transformed UMI counts and detection rates using the data shown
in (b). The UMI counts and detection rates were calculated across the pooled
technical replicates within each experimental protocol. The red dashed line high-
lights a 1-to-1 relationship. For the log1p-transformed UMI counts scatter plot, only
genes targeted by the probe panel were included. The detection rate for a gene is
defined as the proportion of spots with detected UMI counts. The statistical test is
based on the Pearson product moment correlation coefficient and p-values were
estimated using a two-sided alternative hypothesis.
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performed poorly. Our RRST method detected roughly a 2-fold and
10-fold increase in the number of detected genes per spot in these two
patients respectively, indicating the robustness and power of RRST to
profile gene expression spatially in challenging tissue types (Fig. 2b, c
and Supplementary Fig. 6b, c). As a quality control step, spots with few
unique genes detected are commonly discarded based on an empirical
cutoff threshold, where thresholds between 500 and 1000 unique
genes are common. Here we used a softer cutoff threshold of 300
unique genes to include as many spots as possible from both condi-
tions (Fig. 2d and Supplementary Fig. 6d). Even with this soft cutoff
threshold, ~21–80% of the spots were discarded for the standard

Visium data, while only 1.3–2.3% of spots for the RRST data from the
same tissue blocks (Supplementary Fig. 7). For downstream analysis,
we first focused on one of the patients (LNG1). A common practice in
exploratory SRT data analysis is to perform data-driven clustering
followed by marker detection using differential expression analysis
(DEA). Clusters identified from SRT data typically represent groups of
spots that share similar cell type composition. We reasoned that by
performing this type of exploratory analysis on the two data types,
with the same parameter settings, we can get an idea about how the
difference in data quality affects interpretation. After dimensionality
reduction and clustering, we detected 11 clusters in the RRST and 9
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Fig. 2 | RRST and standard Visium applied to human adult lung tissue. Each
subplot shows the RRST data on the left side and the standard Visium data on the
right side. a H&E images of two representative tissue sections collected from the
same tissue block. b Violin/box plots showing the distribution of unique genes and
UMI counts for RRST (n = 1) and standard Visium (n = 2) data generated from
consecutive tissue sections from the same lung tissue specimen. The y-axis is shown
in log10 scale. Box plots are presented asmedian values where the lower and upper
bounds are the 25th and 75th percentiles. The upper and lower limits of the box-
plots are defined by the closest value no further than 1.5*IQR (inter-quartile range)

from the closest bound. Values outside of the upper and lower limits are high-
lighted asoutliers. cUnique genes per spotmappedon tissue coordinates.d Spatial
visualization showing what spots were discarded due to low quality (less than 300
unique genes detected). eUMAP embedding of adult lung data colored by clusters
detected by unsupervised graph-based clustering (louvain). f Split view of clusters
(same as in e) mapped on tissue coordinates. g Dot plots of the top marker genes
for each cluster. Each cluster was annotated based on its spatial localization in the
tissue and expression of canonical marker genes.
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clusters in the standard Visium data (Fig. 2e, f). Notably, marker
detection by DEA highlighted distinct marker genes for each of the 11
RRST lung clusters, whereas clusters 0, 1, and 2 in the standard Visium
lung data were difficult to distinguish from each other (Fig. 2g).
Moreover, cluster 4 in the standard Visium lung data displayed dif-
ferential expression ofmitochondrial transcripts, which is indicative of
lowquality transcriptomicprofiles16. Someof the topmarkers detected
for cluster 8 (airway epithelium) in the standard Visium lung data were
ncRNAs (LINC00326, ACBD3-AS1, and AC023300.2), which RRST does
not detect, and therefore the use of this targeted approach can be a
limiting factor for certain types of analysis. We characterized the LNG1
clusters (RRST and standard Visium) based on the top markers and
their spatial localization (Fig. 2f, g). Next, we inspected the expression
of top marker genes detected across both conditions in the following
four selected clusters: airway epithelium, megakaryocyte/platelet-
enriched, smooth muscle, and glands. The number of unique genes
detected were higher for RRST in gland, megakaryocyte/platelet-
enriched, and smoothmuscle clusters, but not in the airwayepithelium
cluster (Supplementary Fig. 8a). We found that the shared marker
genes were more consistently expressed in the RRST data, except for
the airway epithelium which displayed comparable expression levels
across the two conditions (Supplementary Fig. 8b). In addition, the
detection rates of DEGs within each cluster displayed a similar trend
(Supplementary Fig. 8c), reiterating that the increase in data gained
with RRST strengthens the signal of region-specific marker genes. We
also applied the same analysis workflow on the second patient sample
(LNG2), and observed similar trends with clearer biological signal in
RRST data compared to standard Visum data (Supplementary Fig. 6).
Although the results of data-driven clustering are influenced by a
number of different parameters (not only data quality) this compar-
ison suggests that the higher quality RRST data makes it easier to
characterize molecular profiles of lung tissue sections using popular
exploratory analysis methods.

Adult human colon tissue
Next,we investigated if theRRSTprotocol canbeused toobtain spatial
gene expression data from samples for which the standard Visium
failed. For this purpose, we investigated FF adult humancolon samples
collected for the Gut Cell Atlas consortium. After extensive efforts to
generate good-quality data from these tissue blocks, we could con-
clude that the intestinal epithelial tissues are particularly susceptible to
mRNA degradation and consequently difficult to process with the
standard Visium protocol. It is of note that the gut is a highly delicate
tissue that is filledwith digestive enzymes and amicrobiomeof varying
quality and quantity, which in turn can lead to a rapid degradation of
RNA17. We processed colon tissue sections obtained from two patients
(Fig. 3a) with moderate RNA integrity (RIN of 4.5 and 5.1, Supplemen-
tary Table 1). To assess whether mRNA degradation differs between
tissue types, wemanually annotated the data into threemajor regions:
mucosa, submucosa, andmuscularis (Fig. 3a). Notably, in the standard
Visium data, we observed low numbers of unique genes and UMI
counts in the cell dense epithelial layer (mucosa), while we could still
recover decent numbers of unique genes and UMIs counts in the
muscularis (Fig. 3b–d). This observation was in line with what has been
reported previously in literature, where it was shown that mRNA
degrades more rapidly in the intestinal epithelium compared to the
intestinal muscle tissue17. However, with the RRST protocol, we were
able to recover good-quality data both from the mucosa and sub-
mucosa in tissue sections collected from the same OCT block
(Fig. 3b–d). The RRST method generated more even data coverage
across different tissue regions (Fig. 3b), indicating that the method is
able to mitigate the effects of tissue-specific degradation. To demon-
strate the effect of tissue-specific degradation, we investigated
expression in the mucosa of 11 intestinal epithelial markers (Fig. 3e)
selected from the Gut Cell Atlas18. These results show that the RRST

data providedhigher detection rates andmoreeven expression values,
thus indicating that the method can be used to profile regions with
degraded mRNA.

Adult human small intestine tissue
The mRNA quality of FF tissue blocks depends on a number of dif-
ferent factors, such as sample collection, handling, and storage19. To
estimate the overall quality of a specimen, it can be useful to measure
RIN and/or DV200. However, for certain sample types, we have
observed that mRNA can degrade rapidly even when they are properly
stored in freezers, which in turn means that quality measurements
become less reliable over time. One such sample, where we could
observe a rapid degradation, was a FFOCT-embedded tissue specimen
fromanadult humansmall intestine (Ileum)obtained from theGutCell
Atlas project. Approximately one month after sample collection, we
processed four tissue sections from the FF OCT block using the stan-
dard Visium protocol, which generated high-quality data from all tis-
sue regions: mucosa, Tertiary Lymphoid Tissue (TLS), submucosa,
muscularis and serosa (Fig. 4a, b and Supplementary Fig. 9). Surpris-
ingly, when we repeated the experiment using the same tissue block
six months later (eight tissue sections), we observed an almost com-
plete loss of gene expression data in the mucosal/submucosal layers,
while the data in the muscularis remained stable and comparable to
the first experiment (Fig. 4b). These results reiterate whatweobserved
in the adult human colon tissue, that mRNA degradation can vary in
different tissue types and even within the same section, which cannot
be assessed by bulk RIN quality check prior to the SRT assay. More-
over, it became clearer that themain challengewith running Visium on
intestinal lower GI tract epithelial tissues is the rapid mRNA degrada-
tion. To test whether we could use our RRST method to recover high-
quality data from the same block, we processed two tissue sections
from the same OCT block approximately two years after sample col-
lection (RIN 7.8, Supplementary Table 1). As indicated by the number
of unique genes, wewere able to detect higher numbers in themucosa
and submucosa compared to the second attempt, albeit with lower
numbers than the initial experiment conducted two years earlier
(Fig. 4b). Notably, the second attempt with the standard Visium
method (~ sixmonths after sample collection) resulted in an average of
159 unique genes per spot in themucosa,whereas the RRSTdata (~ two
years after sample collection) resulted in an average of 814 unique
genes per spot in the mucosa (Fig. 4b). Moreover, a large fraction of
the expression data obtained with standard Visium comes from
mitochondrial transcripts, ribosomal protein coding transcripts or
lncRNA, which are commonly filtered out prior to downstream analy-
sis, whereas RRST only targets protein coding genes (Fig. 4c). Next, we
looked closer at themucosa region to determine how the difference in
quality affects the expression profiles. For each time point and gene,
we plotted its average expression against its detection rate for spots
annotated as mucosa (Fig. 4d.). We found that the initial dataset
(~1month after sample collection) providedboth the highest detection
rates and expression levels. The detection rates and expression levels
dropped substantially in the second dataset (~6 months after sample
collection) and were partially recovered in the third dataset generated
with RRST after ~2 years. Next, we took five enterocyte markers from
the Gut Cell Atlas and visualized their expression across the tissue
sections in the three datasets. Thesemarkers were clearly visible in the
mucosa in the first dataset and the RRST dataset but not in the second
dataset (Fig. 4e). Based on these results, we speculate that gut epi-
thelial tissues contain high amounts of RNAses and, therefore, repe-
titive freeze/thaw cycles and long-term storage lead to mRNA
degradation, hence our RRST approach can help overcome these
effects. Overall, these results demonstrate that our RRST protocol
can be used in FF samples with low/moderate RNA integrity and to
recover data from FF tissue blocks that have been stored for long
periods of time.
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Fig. 3 | Comparison of data quality in RRST and standard Visium datasets
generated from adult human colon tissues. a Representative H&E images and
annotated regions for two patient samples processed by either RRST (n = 4) or
standard Visium (n = 2) protocol. The spots in each tissue section were labeled into
three categories: mucosa, submucosa, and muscularis. b Distribution of UMI
counts in the tissue sections shown in (a). The color scale represents log10-
transformed counts. cDistribution of unique genes per spot in the three annotated
regions (mucosa, submucosa, and muscularis) visualized as violin plots, for all

tissue sections. The y-axis shows log10-transformed counts. d Distribution of UMI
counts per spot in the three annotated regions (mucosa, submucosa, and muscu-
laris) visualized as violin plots. The y-axis shows log10-transformed counts.
e Expression of 11 epithelial markers in themucosa for the two adult colon samples
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plot. The detection rate is defined as the percentage of spots (in themucosa) where
the gene is detected.
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RRST revives spatial transcriptome profiles of precious
clinical samples
Spatial gene-expression profiling of clinical samples can enable dis-
coveries required to develop new strategies for early diagnosis and
individualized therapies at molecular levels20. Treatment of pediatric
brain tumors is continually being improved upon; however, there is a
great need for new treatment options. Due to the limited amount of
tissue available for research, there is usually not enough material for

tissue optimization and RIN measurement to assess whether the
sample quality is sufficient for the standard 3’ capture protocol. In
order to investigate how RRST performs in such precious clinical
samples, we processed two pediatric brain tumor specimens (RIN 7.0
and 7.1, Supplementary Table 1) fromwhichwe hadpreviously failed to
generate data using the standard 3’polyA capture protocol. In contrast
to previous samples described in this study, the pediatric brain tumor
samples passed the recommended RNA quality threshold for the
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standard Visium assay. We speculate that the underlying reason for
why these experiments failed was due to either tissue detachment or
inefficient permeabilizationof the tissue. ByapplyingRRSTprotocol to
these samples, we could reach an approximate 12 to 100-fold increase
in thenumber of detected genes per spot (Fig. 5a, b). This suggests that
the RRST approach is less sensitive to changes in tissue composition
compared to the standard Visium protocol.

Basedon the lowdata quality of the standardVisiumdata,wewere
first discouraged to proceed with data analysis. However, with the
RRST data, we could assess how the difference in quality affects

characterization of these tumors. For this purpose, we focused on the
medulloblastoma sample, which was classified as a WNT subtype,
characterized by activation of the WNT signaling pathway21. The
medulloblastoma tissue sections were annotated by a pathologist,
showing thatmost of the tissue sectionswere composed of tumor cells
(Supplementary Fig. 10). To compare the data quality of RRST and
standard Visium datasets obtained from the pediatric brain tumor
samples, we examined the expression of WNT-signaling genes,
including AXIN2, DKK4, LEF1 and CTNNB1 and two known targets of the
WNT pathway SP5, GAD122,23. We were able to detect these marker

Fig. 4 | Comparison between RRST and standard Visium on an adult human
small intestine sample over time. a Representative H&E image (top) and spots
colored by five major tissue regions (bottom): mucosa, TLS, submucosa, muscu-
laris, and serosa. TLS, Tertiary Lymphoid Tissue. The full small intestine dataset
consisted of 14 tissue sections collected from the same specimen at different time
points. Only sections collected at the last point were processed with RRST, while
the other sections were processed with standard Visium protocol. b Overview of
data quality in the five annotated tissue regions over time, visualized by violin plots
of the number of unique genes per spot. The time points represent the approx-
imate storage time after sample collection: ~1 month, ~6 months, and ~2 years.
Replicates obtained for each time point are shown on the x-axis. The fill color of the
violin plots indicates the applied protocol. For each time point, labels on the left

side of the violin plots represent the average over all replicates. c RNA biotype
content for the three datasets visualized as a pie chart. Proportions represent the
UMI counts detected for each biotype. The targeted RRST data include protein
coding, immunoglobulin, and T-cell receptor transcripts. d Mean-detection rate
relationship in themucosa for data collected at the three different time points. The
y-axis shows log10-transformed average number of UMIs for each gene, and the
x-axis shows the detection rate for each gene. The detection rate is defined as the
fraction of spots where the gene is detected. e Spatial visualization of five enter-
ocyte markers. Each row represents one selected tissue section from each time
point with their corresponding H&E image in the leftmost column. Spot colors
represent normalized gene expression.
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Fig. 5 | Comparison between standard Visium and RRST protocols in eight
pediatric brain tumor tissue sections. a Violin plots showing the number of
unique genes per spot in all eight tissue sections (medulloblastoma n = 4, NOS
n = 4). The fill color represents the protocol used to generate the data. The average
number of unique genes for each sample and protocol are highlighted by dashed
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replicate 2. Norm. Expr., normalized gene expression. d Spatial visualization of
WNT-signaling module scores in the WNT medulloblastoma samples.
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genes in theRRSTdataset, but not in the standard Visiumdata (Fig. 5c).
Moreover, we also tried estimating theWNT-signaling pathway activity
by calculating a module score using a larger gene set of 42 genes24,
which detected enrichment of the pathway in the RRST data but not in
the standard Visium data (Fig. 5d). These results highlight the impor-
tance of high quality data for molecular characterization of clinical
samples, which for this particular sample could be achieved by RRST.

RRST sheds light on cartilage and bone biology
Analysis of RNA profiles of cartilage and bone is a challenging task
because cells in these tissues are embedded in dense extracellular
matrices, which are also often mineralized25. Extensive enzymatic
digestion is typically required to isolate cells from these tissues, but
the influenceof suchprocedureon the transcriptional profiles of these
cells is not fully understood, and whether sub-populations of cells
remain in the undigested tissue is typically not reported26. SRT offers a
major advantage to study these tissues since gene expression can be
analyzed without the need to isolate cells, together with the benefit of
added spatial information.

The long-bones elongate via a process called endochondral ossi-
fication, in which streams of chondrocytes from the epiphyseal carti-
lage undergo successive differentiation stages and produce a
mineralized cartilage matrix, which is subsequently remodeled and
used as a scaffold on which new bone tissue is deposited27. One of the
later developmental stages in this process is the formation of a bony
structure called the secondary ossification center (SOC) within the
epiphyseal cartilage27. In the proximal tibia of humans, this event
occurs around birth28, whereas in mice, it is precisely determined to
occur between postnatal days 7 and 1129. Within these few days, the
SOC contains many different cell-types, including osteoblasts, hema-
topoietic cells, mesenchymal stromal cells and endothelial cells, which
are suddenly located within a few cell-diameters of the resting-zone
chondrocytes, potentially influencing these cells30. To investigate
potential effectors that derive fromthe newly forming SOC,we applied
RRST to mouse growth plate specimens before SOC formation (post-
natal day 4, P4) and immediately after SOC formation (postnatal day
11, P11)9.

First, we aimed to benchmark our RRST protocol with the stan-
dardVisiumprotocol. In linewithprevious results onother tissue types
processed in this study, we observed a 3- to 9-fold increase in the
number of uniquegenes detectedwithRRST (Fig. 6a). Importantly, this
trend was particularly clear in the cartilage and bone tissue, where we
observed between 1298 and 1750 unique genes and between 2822 to
4000 UMIs on average with RRST, whereas the standard Visium pro-
tocol recovered less than 100 unique genes and UMIs on average
(Supplementary Fig. 11a, b, e, and f). The difference in the number of
genes and UMIs was also evident in the surrounding tissues, and in
addition we observed more even distribution of unique genes and
UMIs in the RRST datasets (Supplementary Fig. 11e, f). Based on these
observations, wedecided to proceedwith the higher quality RRSTdata
for downstream analysis of the cartilage and bone tissue.

Non-negative matrix factorization (NNMF) analysis identified
several factors containing chondrocytes in the resting and proliferat-
ing zones (eg. Col2a1, Col9a1, Fig. 6b and Supplementary Fig. 12a)31,
hypertrophic chondrocytes and bone cells within the primary spon-
giosa (eg. Col10a1, Mmp9, Phospho1, Dmp1, Acp5, Fig. 6c and Supple-
mentary Fig. 12b)32,33, as well as the cruciate ligament (eg. Scx, Dkk3,
Fig. 6d and Supplementary Fig. 12c)34,35 and cells at the perichondrium/
periosteum (eg. Thbs2, Tnn, Fig. 6e and Supplementary Fig. 12d)36,
which appeared in the distinct, expected anatomical locations. To
explore possible secreted factors deriving from the newly forming
SOC, we used the histological images to manually assign the spots
within the cartilage into seven sub-clusters: “resting zone”, “pro-
liferating zone”, “pre-hypertrophic”, “hypertrophic zone”, “SOC”,
“SOC-adjacent resting zone” and those surrounding the cartilage that

we grouped as “peripheral cells” (Fig. 7a and Supplementary Fig. 11d).
To identify novel markers for these sub-clusters, we conducted dif-
ferential gene expression analysis (Fig. 7b).We identified several genes
specifically upregulated in the SOC and SOC adjacent zone; interest-
ingly, one of these factors, Plxnd1, has previously been found to be
expressed in newly forming ossification centers37. Furthermore, we
identified several soluble factors that were significantly upregulated
within the SOC (namely Ccl9, Basp1, and Apln) and SOC-adjacent zone
(Msmp). Thus, these results show that with RRST approachwe open up
an exciting possibility to gain deeper understanding ofbone formation
and other processes occuring in the skeleton in spatial context.

Discussion
Here we present the RNA-Rescue Spatial Transcriptomics (RRST)
profiling method, designed specifically for genome-wide spatial gene
expression analysis of moderate to low quality fresh frozen (FF) sam-
ples. Recent developments in the field have made it possible to gen-
erate SRT data from FFPE samples, which is the preferred fixation
method for storing biological material in biobanks. Formalin-fixation
provides better preservation of morphology and makes the material
compatible with spatialmRNA-protein co-detection assays.While FFPE
sample preservation has its advantages, overfixation leading to heavily
crosslinked RNA is a common issue, whichmay introduce biases in the
analysis of both RNA and DNA in those samples38. Hence, we modified
the commercially available Visium FFPE spatial gene expression pro-
tocol to be applicable onFF tissues by introducing threemodifications:
(1) a short formalin fixation step tomake RRST compatible with Visium
FFPE protocol, (2) a baking step for reinforced tissue section adhesion
and prevention of detachment and (3) removal of the crosslink-
reversal step to prevent RNA degradation and which shortens the
overall protocol time. In addition, we believe that RRST will increase
flexibility for researchers working with snap-frozen samples, in parti-
cular, to make SRT compatible with other modalities that rely on FF
specimens, such mass spectrometry in order to obtain paired data
from the same tissue block.

In this work, we analyzed 52 tissue sections across seven different
tissue types to demonstrate the versatility of RRST protocol. Although
standard Visium protocol, which relies on methanol-fixation, has been
shown to work in high quality FF specimens, our analysis of mouse
brain and prostate cancer tissue demonstrates that RRST performs
equally well in tissues with high RIN values and exhibits better per-
formance in low-quality samples as demonstrated by the increased
number of detected genes and transcripts in several different tissue
types. We show that in samples collected from the human small
intestine and colon, we observed severe RNA degradation in epithelial
tissues; however, with the RRST protocol, we were able to recover
spatial data from these tissues when the standard protocol failed.

Notably, RRST allowed us to identify characteristicWNT-signaling
pathway genes in a medulloblastoma WNT subtype of pediatric brain
tumors, which would have been otherwise overlooked in standard
Visium-derived data. Moreover, the RRST protocol does not require
tissue optimization, making it advantageous in situations where little
material is available, as is often the case with precious clinical speci-
mens. In addition,wedemonstrate thatRRSTprotocol can successfully
generate transcriptomic profiles in challenging tissue types such as
adult human lung or mouse cartilage/bone. For example, by applying
RRST to adult human lung tissue we are able to provide a more
detailed, data-driven characterization of different tissue compart-
ments. The additional information that we observe in the RRST data
makes the technology more relevant for studies of the respiratory
system.

To the best of our knowledge,wehave generated the first spatially
resolved transcriptomicsdataset fromcartilage and bone tissue, which
opens up new possibilities to study the composition and commu-
nication of cells in the skeletal system, for example, to better
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understand cellular micro-environments within the bone marrow39,
the crucial gradient of cell identities at attachment sites between
muscle and bone33, as well as to study diseases such as osteoarthritis
whose step-wise progressive degeneration involves complex interplay
between various tissues, including cartilage and bone40,41. We
demonstrate that by applyingRRST tomouse cartilage/bone tissue, we
could identify four soluble factors expressed within the SOC or the
SOC-adjacent zone, which have the potential to influence the chon-
drocytes, based on their close proximity. SinceApln has been shown to
be involved in endothelial cell activation during angiogenesis42, and
Ccl9 in thematuration of osteoclasts43, their expressionmay reflect the
ongoing growth and remodeling of the SOC. However, further
research is required to reveal the precise roles of the four soluble
factors in the SOC and their possible influence on bone growth.

In summary, we show that our RRST protocol recovers higher
amounts of mRNA than the standard Visium protocol from degraded
or otherwise challenging FF tissue blocks. By applying this targeted
approach, we are able to obtain information about gene expression
even from transcripts with fragmented or missing polyA tail, which
standard Visium protocol cannot capture. Taken together, our results
indicate that RRST is a powerful and versatile method, which can be
used to accelerate discoveries in developmental biology, disease
pathology, and clinical translational research.

Methods
Ethics declaration
The study was performed according to the Declaration of Helsinki,
Basel Declaration, and Good Clinical Practice. All human subjects were
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provided with full and adequate verbal and written information about
the study before their participation. Written informed consent was
obtained from all participating subjects before enrollment in
the study.

Use of prostate cancer samples was approved by the Regional
Ethical Review Board (REPN) Uppsala, Sweden before study initiation
(Dnr 2011/066/2, Landstinget Västmanland, Sari Stenius).

Lung samples were obtained from deceased donors by the Cam-
bridgeBiorepository for TranslationalMedicine (CBTM)with informed
consent from the donor families and approval from the NRES Com-
mittee of East of England – Cambridge South (15/EE/0152), the project
has received funding from the European Union’s Horizon 2020
research and innovation program under a grant agreement (no.
874656, discovAIR).

GI tract specimens were approved by the medical ethics com-
mittee of University Hospitals Leuven (approval no. S62935).

Use of pediatric brain tumor samples was approved by the
Regional Ethical Review Board (EPN), Stockholm, Sweden (DNR 2018/
3–31, Monica Nister).

Mouse bone samples were collected according to DNR 16673/
2020, approved by Stockholm’s animal experiment ethics committee
(Stockholms djurförsöksetiska nämnd).

Mouse brain sample was purchased from Adlego Biomedical
company, that operates under ethical permission nr. 17114–2020.

Samples information
Mouse brain. A mouse brain sample was selected from a batch of
commercially purchased specimens from Adlego Biomedical.

Prostate cancer sample. Prostate cancer sample was obtained from a
surgically removed prostate at Västerås Hospital in Sweden.

Lung specimens. Postmortem samples from lung tissue were col-
lected at the department of Molecular Biosciences, Science for Life
Laboratory, Stockholm, Sweden. Autopsy samples were selected from
two healthy donors.

GI specimens. Samples were collected from patients undergoing
colorectal surgery. Collection of small intestine and colon samples
biopsies was performed at the department of Chronic Disease and
Metabolism, Katholieke Universiteit Leuven, Belgium.

Pediatric brain tumor samples. Samples were obtained from The
Swedish Childhood Tumor Biobank.

Mouse cartilage/bone. Tissues were collected from postnatal mice
(C57/BL6) at four andelevendays of age.Micewere group-housedwith
the parentmouse on a 12 h light-dark cycle at 22 °C with 50% humidity.
Sex of mice was not determined due to difficulties of sex determina-
tion at these early stages of development. Briefly, hind-limbs were
dissected, the skin and surrounding soft tissues were quickly trimmed.
Femora and tibiaewere dissected through the diaphysis and the tissue,
including the knee joint, proximal tibia and distal femur (with
remaining soft tissues) was embedded into OCT in a cryomold. The
samples were rapidly frozen using a hexane bath.

RNA quality evaluation
After tissue snap-freezing and prior to sample processing, 8–10 tissue
sections were collected for RNA quality evaluation using the RNeasy
Mini kit (Qiagen, Catalog number 74104). Extracted total RNA was
measured using the Agilent Bioanalyzer (Agilent, RNA 6000 Pico kit,
Part number 5067–1513) to obtain RINs. In the case of small intestine
specimen, the reported RIN in this manuscript was obtained from
measurements prior to the last experiments (~two years after sample
collection).

Standard Visium Spatial Gene Expression library preparation
Fresh-frozen samples were cryo-sectioned at 10 µm thickness, placed
onto Visium glass slides, and stored in −80 °C before processing.
Spatial gene expression libraries were generated following 10× Geno-
mic Visium Spatial Gene Expression protocol (User Guide, CG000239
Rev F, Product number 1000187). Libraries were sequenced on Next-
seq2000 (Illumina). Length of read 1 was 28 bp and read 2 150bp.

RRST Gene Expression library preparation
All samples used for comparison between standard Visium and RRST
were collected from the same tissue blocks.

The fresh-frozen samples were cryo-sectioned at 10 µm thickness,
placed onto Visium glass slides, and stored in −80 °C before
processing.
1. Sample fixation and H&E staining
• Retrieve the slide with tissue sections from −80 °C freezer and

place on a thermocycler pre-heated to 37 °C for 1min.
• Immediatelyproceed to thefixation stepusing 4%methanol-free

formaldehyde (Thermofisher, Catalog number 28906) solution
for 10min at room temperature.

• Wash Visium slide twice in 1 × PBS (Medicago, Article number
09–9400).

• Using a thermocycler, incubate the Visium slide at 37 °C
for 20min.

• After incubation, wait for 5min for the slide to cool down
and proceed with tissue staining using Hematoxylin (Dako, Part
number S330930-2) and Eosin (Sigma-Aldrich, Product number
HT110216) (used staining times depend on tissue type).

• Add ~100 µl of 85% Glycerol (Thermofisher, Catalog number
15514011) and, apply coverslip, proceed with tissue imaging.

• Remove coverslip using a beaker filled with Milli-Q water.
2. Probe hybridization
• Place Visium slide into a cassette.
• Add 100 µl of 0.1 N HCl (Sigma-Aldrich, Product number H1758)

into each well and incubate for 1min at room temperature.
• Remove 0.1N HCl from each well and add 100 µl of 1 × PBS to

wash each well.
• Remove 1 × PBS.
• Immediately continue with the Pre-hybridization step according

to The Visium Spatial Gene Expression for FFPE reagent kit (10×
Genomics, User Guide CG000407 Rev C, mouse transcriptome
Product number 1000339, human transcriptome Product
number 1000338).

• Add 100 µl of Pre-hybridization mix into each well and incubate
for 15min at room temperature.

• At the end of incubation, remove the Pre-hybridization mix, add
100 µl of Hybridization mix.

• Incubate Visium slide with the Hybridization mix at 50 °C
overnight.

3. Probe ligation, probe release and extension, probe elution, and
library preparation

• For the rest of the library preparation, including Probe Ligation,
Probe Release and Extension, Probe Elution, and FFPE Library
Construction follow The Visium Spatial Gene Expression for
FFPE reagent kit (10× Genomics, User Guide CG000407 Rev C,
mouse transcriptome Product number 1000339, human tran-
scriptome Product number 1000338).

Finished libraries were sequenced on Nextseq2000 (Illumina).
Length of read 1 and read 2 were 28 base pairs and 50 base pairs,
respectively.

Data processing
Sequenced libraries were processed using Space Ranger software
(version 1.2.1 for standard Visium data and version 1.3.1 for RRST data,
10× Genomics). Reads were aligned to the pre-built human or mouse
reference genome provided by 10× Genomics (GRCh38 for human
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data ormm10 formouse data, version 32, ensembl 98), which includes
a GTF file, a fasta file and a STAR index.

Data filtering and pre-processing
Processing and analysis of spatial transcriptomics data obtained with
either RRST or standard Visiumwas performed using R (v4.1.3) and the
single-cell genomics toolkit Seurat and the spatial transcriptomics
toolkit STUtility. Adult human colon and small intestine data was
manually annotated into major tissue compartments based on tissue
morphology (H&E image) using the interactive shiny app provided
with the ManualAnnotation function in STUtility. Adult human colon
data was categorized into three groups: “mucosa”, “submucosa” and
“muscularis” whereas small intestine data was categorized into five
groups: “mucosa”, “TLS”, “submucosa”, “muscularis” and “serosa”.
Table 1 provides a summary of the filtering settings used for each
dataset. Detailed instructions for each sample type are provided in the
section below.

Mouse brain and human prostate cancer. A total of eight mouse
brain tissue sections (4xRRST and 4xstandard) and four prostate
cancer tissue sections (2xRRST and 2xstandard) were used for
the analysis. Spatial visualization of unique genes were created using
the ST.FeaturePlot function (STUtility) and violin plots with the ggplot2
R package. The median number of unique genes were calculated for
eachprotocol and sample and visualized next to the violin plots. Gene-
gene scatter plots comparing log-transformed UMI counts were cre-
ated as follows: (1) raw expression matrices were extracted for each
data type (RRST or standard Visium) followed by aggregating the
expression values for each gene, (2) aggregated expression values
were log-transformed with a pseudocount of 1 (log1p). Pearson R
scores and p-values were calculated using the stat_cor function from
the ggpubr R package. Gene-gene scatter plots comparing detection
rates were created as follows: raw expression matrices were extracted
for each data type (RRST or standard Visium) and the detection rates
were estimated for each gene as the proportion of spots with detected
UMI counts.

Adult human lung. A total of six adult human lung tissue sections
(2xRRST and 4xstandard), collected from two samples were used for
the analysis. After filtering out spots with fewer than 301 unique
genes detected, the data was normalized and subjected to a basic
analysis workflow using functions from the Seurat R package. The
filtered data was split by sample (LNG1 and LNG1), which were ana-
lyzed separately. Normalization and scaling of the data was con-
ducted using the NormalizeData and ScaleData functions. The top
2000 most variable genes were detected using the vst method
(FindVariableFeatures) followed by dimensionality reduction by PCA
(RunPCA). A shared nearest neighbor (SNN) graph was constructed
based on the first 20principal components (FindNeighbors) followed
by graph-based clustering with the resolution parameter set to
0.8 (FindClusters). Finally, a Uniform Manifold Approximation and

Projection (UMAP) embedding was computed based on the first 20
principal components (RunUMAP, min.dist = 0.3, n.epochs = 1000).
Marker detection was conducted by calculating differential expres-
sion for each cluster against the background (remaining clusters)
with a log fold change threshold of 0.25 and an adjusted p-value
threshold of 0.01 using the FindAllMarkers function. Cluster anno-
tations were assigned based on the expression of canonical markers
(obtained from a scRNA-seq atlas of the human lung44) and spatial co-
localization with histological landmarks. Cluster marker genes
shared across the two datasets (RRST and standard Visium) were
selected for the following four clusters: airway epithelium, glands,
smoothmuscle, andmegakaryocytes/platelet-enriched. Only marker
genes that were identified in both datasets were considered with a
maximum number of 100 markers selected per cluster. The markers
were selected based on decreasing avg_log2FC values, obtained by
averaging across the two conditions. Detection rates (pct. 1) were
obtained from the tables produced by FindAllMarkers.

Adult human colon. A total of six adult human colon Visium datasets
(4xRRST and 2xstandard), obtained from two samples were used for
the analysis. Spots in these datasets were manually labeled using the
ManualAnnotation function from STUtility into three major regions
based on histology: “mucosa”, “submucosa” and “muscularis”. Unla-
beled spots were removed prior to downstream analysis using the
SubsetSTData function from STUtility. Datasets 2, 3, 4, and 6were used
for the spatial plots in Fig. 3a, b (see Table 1). Violin plots showing the
distribution of unique genes in the three major regions were created
for all six datasets using the ggplot2 R package. Prior to normalization,
the data was filtered to only keep genes expressed in both RRST and
standard data. The dataset was then normalized using the Normal-
izeData function from Seurat. 11 intestinal epithelialmarker geneswere
selected basedon twocriteria: (1) high spatial variability in the spatially
resolved transcriptomics data (the data presented here), and (2) high
differential expression in epithelial cells identified in the Gut Cell
Atlas18. The normalized expression of these 11 intestinal epithelial
marker genes were then visualized as violin plots for spots annotated
as “mucosa”.

Human small intestine. A total of fourteen adult human small intes-
tine Visiumdatasets (2xRRST and 12xstandard), obtained from a single
specimen collected over a time span of ~two years, were used for
the analysis. Spots in these datasets were manually labeled using the
ManualAnnotation function from STUtility into five major regions
based on histology: “mucosa”, “TLS”, “submucosa”, “muscularis” and
“serosa”. Unlabeled spots were removed prior to downstream analysis
using the SubsetSTData function from STUtility. Violin plots showing
the distribution of unique genes in the fivemajor regions were created
for all fourteen datasets using the ggplot2 R package, with the average
number of unique genes highlighted for each time point. The biotype
content was calculated for ten biotypes: IG(C|J|V), TR(C|J|V), lincRNA,
protein coding, mitochondrial protein coding and ribosomal protein

Table 1 | Overview of spatially resolved transcriptomics samples and filtering settings used in pre-processing steps

Dataset # RRST replicates # Standard visium
replicates

# Biological
replicates

Filter

Mouse brain 4 4 1 No filter

Human prostate cancer 2 2 1 No filter

Adult human lung 2 4 2 Keep spots with > 300 unique genes

Adult human colon 4 2 2 Keep spots annotated as “mucosa”, “submucosa” or “muscularis”

Adult human small intestine 2 12 1 Keep spots annotated as “mucosa”, “TLS”, “submucosa”, “mus-
cularis” or “serosa” and spots with > 100 unique genes

Mouse bone 2 4 2 Keep spots with > 500 unique genes

Pediatric brain tumor 4 4 2 No filter
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coding genes. All other transcripts were labeled as “other”. For each
biotype and within each time point, a percentage was calculated by
dividing the UMIs for the biotype with the total number of UMIs. The
gene annotations were obtained from the GTF file used for mapping
with spaceranger. Note that the RRST protocol only targets protein
coding transcripts, immunoglobulin transcripts and T-cell receptor
transcripts. The average expression and detection rates were calcu-
lated for each time point for spots labeled as “mucosa”. Average
expression values were log10-transformed for the plot shown in
Fig. 4d. Next, we split the dataset by time points,filtered out spotswith
less than or equal to 100 unique genes, and normalized each subset
with the NormalizeData function. For DEA of the mucosa, we used the
FindMarkers function to identify marker genes with a log fold change
threshold of 0.25 and an adjusted p-value lower than 0.01 (max.cell-
s.per.ident = 1000, ident.1 = ”mucosa”, only.pos = TRUE). Six intestinal
epithelial marker genes were selected based on two criteria: (1) high
spatial variability in the spatially resolved transcriptomics data (the
data presented here), and (2) high differential expression in epithelial
cells identified in the Gut Cell Atlas18. The normalized expression of
these six intestinal epithelial marker genes were then visualized as
spatial maps with ST.FeaturePlot (STUtility) in three selected tissue
sections, one from each time point.

Pediatric brain tumor. A total of eight pediatric brain tumor tissue
sections (4xRRST and 4xstandard), collected from two tissue blocks
(medulloblastoma and NOS subtypes), were used for the analysis. The
distribution of unique genes for all eight tissue sections were visua-
lized as violin plots colored by protocol, and with the average number
of unique genes highlighted next to the violin plots. One representa-
tive tissue sectionwas selected fromeach combinationof protocol and
sample to show the distribution of unique genes together with the
corresponding H&E image. Next, we downloaded cancer hallmark
gene sets from MsigDB45,46 for WNT β-catenin-signaling and TGFβ-
signaling. These gene sets were then used to compute enrichment
scores from the normalized medulloblastoma data with the AddMo-
duleScore function from Seurat. These module scores were then
visualized as spatial maps on one representative tissue section from
each protocol (RRST or standard). Next, we selected six known WNT-
signaling marker genes and visualized their normalized expression
distributions as violin plots in the medulloblastoma data.

Mouse bone. A total of six tissue sections (4xRRST and 2xstandard),
collected from two tissue blocks (P4 and P11), were used for the
comparison shown in Fig. 6a and Supplementary Fig. 11. The spots
were manually annotated into two regions: “cartilage/bone” and
“surrounding” tissue. Distributions of unique genes and UMIs at the
two post-natal stages and in manually annotated regions (split by
protocol) were visualized with violin plots using the ggplot2 R package
and spatial maps were created with the FeatureOverlay function from
STUtility. Only the RRST samples were used for subsequent data ana-
lysis. First, the “cartilage/bone” region was manually annotated into
seven sub regions: “resting zone”, “proliferative zone”, “pre-Hyper-
trophic zone”, “hypertrophic zone”, “SOC”, “SOC-adjacent resting
zone” and “articular cartilage” (shown in Fig. 7a). Spots with at least
500 unique genes were kept prior to normalization using variance
stabilizing transformation (vst) implemented in the SCTransform
function from Seurat. The NNMF was computed on the filtered and
normalized data using the RunNMF function from STUtility, with the
number of factors set to 30. Based on visual inspection we identified
eight factors colocalized with various structures of the cartilage/bone
tissue region: factor_12, factor_2, factor_1, factor_11, factor_6 and fac-
tor_7 (shown in Fig. 6b–e and Supplementary Fig. 12). Next, we created
a subset of the data including only the seven sub regions defined
within the cartilage/bone, with the goal of extracting marker genes
from each sub region by DEA. Prior to running the DEA, we first

renormalized the raw UMI counts with the NormalizeData and Scale-
Data functions. The DEA was conducted using FindAllMarkers from
Seurat, while filtering out genes with adjusted p-values lower than 0.01
and average log fold change values higher than 0.25. Marker genes
visualized in Fig. 7 were selected by keeping those with average log
fold change values higher than 0.6 and maximum 15 genes per sub
region.

Statistics and reproducibility
Samples used in this study were selected based on RNA quality (RIN).
No statistical method was used to predetermine sample size. In order
to verify the reproducibility of the presented laboratory approach, the
majority of the samples presented in this study were processed in
technical replicates, here defined as consecutive sections taken from
the same tissue block. Biological replicates (samples from the same
tissue from two different donors) were used for adult human colon,
adult human lung, mouse bone, and pediatric brain tumor (see Table 1
and Supplementary Data 1). Samples processed by standard Visium
had technical or had biological replicates, with exception of a mouse
bone due to the difficulty to obtain good quality data and the price for
each experiment. The experiments were not randomized. All data
provided was included in the data analysis. The investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data required to replicate the analyses, including spaceranger
output files, H&E images and additional files are available at Mendeley
Data with the following DOIs: “https://doi.org/10.17632/4w6krnywhn
[https://data.mendeley.com/datasets/4w6krnywhn]” and “https://doi.
org/10.17632/442mhsrpcm.1 [https://data.mendeley.com/datasets/
442mhsrpcm/1]”. Sequence data from the mouse brain and mouse
bone/cartilage samples have been deposited at GEOwith the accession
number “GSE221571”. Sequence data for the pediatric brain tumors,
colon/intestine, lung and prostate samples that require controlled
access following the GDPR legislation are available through aMaterials
Transfer Agreement with Monica Nister (monica.nister@ki.se), Guy
Boeckxstaens (guy.boeckxstaens@kuleuven.be), Christos Samakovlis
(Christos.Samakovlis@su.se) and Niklas Schultz (niklas.schultz@scili-
felab.se), respectively. The data are available under Data Use 807
Conditions (DUO) and are limited to non-for-profit use as well as
health/medical/biomedical 808 purposes. Access is granted if the
above is fulfilled and local institutional review board/ethical 809
review board approvals are provided. Data coordination committees/
persons will respond accordingly and timely to requests. All other
relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files or from the
corresponding author upon reasonable request. Source data are pro-
vided with this paper.

Code availability
The code used to generate the figures, as well as instructions for
running the code with a docker container, are available at https://
github.com/ludvigla/RRST. A permanent version of the code is avail-
able at Zenodo: https://zenodo.org/record/7524632#.Y76J2ezMKX047.
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