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Estimation of cell lineages in tumors from
spatial transcriptomics data

Beibei Ru 1,6, Jinlin Huang2,3,6, Yu Zhang1,2,5, Kenneth Aldape 4 &
Peng Jiang 1

Spatial transcriptomics (ST) technology through in situ capturing has enabled
topographical gene expression profiling of tumor tissues. However, each
capturing spotmay contain diverse immuneandmalignant cells, with different
cell densities across tissue regions. Cell type deconvolution in tumor ST data
remains challenging for existing methods designed to decompose general ST
or bulk tumor data. We develop the Spatial Cellular Estimator for Tumors
(SpaCET) to infer cell identities from tumor ST data. SpaCET first estimates
cancer cell abundance by integrating a gene pattern dictionary of copy num-
ber alterations and expression changes in common malignancies. A con-
strained regression model then calibrates local cell densities and determines
immune and stromal cell lineage fractions. SpaCET provides higher accuracy
than existing methods based on simulation and real ST data with matched
double-blind histopathology annotations as ground truth. Further, coupling
cell fractions with ligand-receptor coexpression analysis, SpaCET reveals how
intercellular interactions at the tumor-immune interface promote cancer
progression.

Profiling the transcriptomeof cells in their spatial context is critical to a
mechanistic understanding of tumor progression and therapeutic
resistance1. Recent years have seen the rapid development of spatial
transcriptomics (ST) with gene coverage from a few targets to
genome-wide and various cellular resolutions from subcellular to
multiple cells2,3. As a key branch of ST methods, in situ capturing
strategy based on positional molecular barcodes enables unbiased
capture of the whole transcriptome within intact tissue3. Its repre-
sentative techniques include Slide-seq4, 10x Visium5, and the early
in situ capturing method from which Visium was developed6. Specifi-
cally, the commercial Visiumplatformcan profilemRNA levels in fresh-
frozen and formalin-fixed paraffin-embedded (FFPE) tissues, enabling
their widespread application7. However, the spatial spot of various
capturing strategies with a 10–100μm diameter might measure a
mixture of signals from multiple cells of different lineages.

Consequently, decomposing cell identities in spots is a critical step in
characterizing the spatial cellular landscape of tissues.

Many methods exist for cell type decomposition in general ST
data8–13 and bulk transcriptomeprofiling14–17. However, it is challenging
for these methods and their underlying strategies to address the
unique issue of tumor ST data. Severalmethods, such as Stereoscope8,
RCTD11, and CIBERSORTx15, predict cancer cell fractions relying on the
availability of suitable malignant reference profiles. Other methods,
such as EPIC14, estimate malignant cell fraction without references by
estimating the unknown cell fraction not covered by predefined cell
signatures. However, this strategy does not distinguishmalignant cells
from truly unknown cell types14. Further, cellular density may vary
significantly across tumor regions; thus, cell fractions decomposed by
existing methods, which normalize overall fractions to 1 in each spot,
are incomparable across different locations.
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Another strategy to deconvolve cell fractions is to generate the
single-cell RNA sequencing (scRNA-seq) data paired with ST data on
the same tumor sample18,19. However, single-cell experiments are
challenging in frozen or FFPE tissue samples because it requires fresh
samples and additional costs. Even if fresh samples are available,
scRNA-seq may not reliably capture certain cell types, such as neu-
trophils, due to their sensitivity to rapid RNA damage20.

This study introduces a computational framework, SpaCET
(Spatial Cellular Estimator for Tumors), to decompose cell iden-
tities in tumor ST data. SpaCET addresses the challenges of tumor
heterogeneities, tissue density variations, immune cell integrity,
and collinearity among sublineages, which are not sufficiently
considered in existing deconvolution methods. SpaCET outper-
forms other methods on eight tumor ST datasets spanning seven
cancer types based on double-blind histopathology annotations.
Moreover, SpaCET uncovered several potential cell–cell interac-
tions supporting tumor progression. The source code for SpaCET
is publicly available at https://github.com/data2intelligence/
SpaCET.

Results
Decomposing cell lineages in tumor spatial transcriptomics
The SpaCET framework estimates cell lineages and intercellular inter-
actions in tumor spatial transcriptomics data in three stages (Fig. 1a).

First, SpaCET estimates malignant cell fractions based on a gene
pattern dictionary of copy number alterations (CNA) and malignant
transcriptome signatures across common tumor types (Fig. 1b and
Supplementary Fig. 1a). Most tumor ST datasets do not have matched
scRNA-seq data as malignant cell reference. Alternatively, a consistent
feature of most human tumors is chromosomal instability leading to
common CNA patterns in each cancer21. Additionally, in chromosomal
stable tumorswith lowCNA,malignant cellsmay still have transcriptome
characteristics differentiating tumors from normal cells22. Thus, we
created a gene pattern dictionary of CNA or tumor-normal expression
differences from ~10,000 patient samples spanning 30 tumor types
from the Cancer Genome Atlas (TCGA) (Supplementary Fig. 1b, c and
Supplementary Table 1). In each tumor ST data, SpaCET searches for
malignant cell spotswhose expressionprofiles correlatewith theCNAor
expression pattern of the relevant tumor type (see “Methods”).

Fig. 1 | Inferring cell fractions and interactions in tumor spatial tran-
scriptomics. a Three stages from input spatial transcriptomics (ST) data to cell
lineage fractions and intercellular interactions. b Malignant cell fraction inference
throughagenepatterndictionary. For a tumorSTdataset, SpaCETuses adictionary
of copy number alterations or tumor transcriptome patterns to identify tumor
spots and further computes an ST-specific malignant expression profile. Then,
SpaCET correlates the ST-specific malignant profile with the expression profile of
each spot and normalizes the correlation coefficients to 0–1 as the malignant
fractions of all spots. c Hierarchical deconvolution of nonmalignant cell fractions.

Based on a hierarchical cell reference from the public scRNA-seqdata atlas, SpaCET
utilizes a constrained linear regression to estimate cell fractions on two levels. For
level one, SpaCET decomposes the nonmalignant cell fractions into major lineages
and unidentifiable components. For level two, major lineage fractions are further
decomposed into corresponding sublineage fractions. d Cell–cell interaction ana-
lysis by testing cell colocalizations and ligand–receptor interactions. Based on
inferred cell fractions, SpaCET measures cell colocalization through correlations
across spots. Then, for the cell-type colocalized spots, SpaCET tests the significance
of ligand–receptor co-expression as further evidence of physical interaction.

Article https://doi.org/10.1038/s41467-023-36062-6

Nature Communications |          (2023) 14:568 2

https://github.com/data2intelligence/SpaCET
https://github.com/data2intelligence/SpaCET


Second, SpaCET deconvolves nonmalignant cell fractions and
adjusts cell densities under a unified linear model (Fig. 1c). Using
scRNA-seq datasets from diverse cancer types, we defined reference
expression profiles of immune and stromal cells in a hierarchical
lineage (Fig. 1c and Supplementary Table 2). SpaCET utilizes a con-
strained linear regression to estimate cell lineages on two levels.
SpaCET first decomposes nonmalignant cell fractions into immune
lineages, stromal lineages, and unidentifiable components that our cell
lineage reference cannot explain (Fig. 1c). The “unidentifiable” cate-
gory enables our linearmodel to reduce the estimated cell fractions for
ST spots with low cellular content or unknown cell types (“Methods”).
SpaCET then further deconvolves immune sublineage fractions con-
strained on their parental lineage fractions (Fig. 1c). Expression sig-
natures of closely related cell types can result in colinearity, leading to
high result variations23. The hierarchical decomposition scheme will
confine any result variances in sublineages due to collinearity from
affecting cell fractions on the higher level.

Third, SpaCET infers intercellular interactions based on cell colo-
calization and ligand–receptor co-expression analysis (Fig. 1d and
“Methods”). We focus on close contacts between cells within the same
ST spot rather thanbetweendifferent ST spots because the gapbetween
spots (e.g., ~50μm for Visium platform) may span several cells24. Linear
correlations of cell fractions are computed across all ST spots to eval-
uate cell-type colocalization. High positive correlations indicate that
cell-type pairs tend to colocalize together. To infer physical interactions,
we further test the co-expression of ligand and receptor genes within
the same ST spot for the colocalized cell-type pairs.

Performance validation by simulated ST data
To evaluate the performance of SpaCET, we deconvoluted the simu-
lated (this section) and real ST data with double-blind histopathology
annotations (next section). The simulated ST dataset was generated by
mixing 3–10 single-cell transcriptomic profiles from one scRNA-seq
dataset to imitate the signal of a spot. Thus, the actual fraction of cell
types at each synthetic ST spot was known. As evaluation metrics, we
calculated Pearson correlation (r) and root-mean-square error (RMSE)
between the decomposed cell fractions and the actual cell mixing
ratios in simulations.

We collected 10 scRNA-seq datasets from melanoma25,26, breast27,
colorectal28, headandneck29, liver30, andnon-small cell lung31,32 cancers
(Supplementary Table 2). Each study included thousands of single cells
from various cell lineages, which allowed us to build a comprehensive
cell atlas in tumor microenvironments (Fig. 2a, b and Supplementary
Fig. 2a). We conducted intra- and inter-dataset validation to evaluate
the decomposing performance on synthetic ST data. For the intra-
dataset validation, each scRNA-seq dataset was split into two groups
equally by patients. One patient group was used to generate cell
reference profiles, and other nonoverlapping patients were used to
generate synthetic ST data. For the inter-dataset validation, reference
profiles and synthetic ST data were built from distinct scRNA-seq
datasets.

Most intra-dataset validations of cell-type decomposition
achieved high accuracies (Fig. 2c and Supplementary Fig. 2b, right
boxplot). The performance is also robust if the read counts of simu-
lated ST data stay within 50% of the single-cell reference data (Sup-
plementary Fig. 2c). Additionally, specific lineages, such as malignant
cells, cancer-associated fibroblasts (CAFs), neutrophil cells, B cells, and
plasma cells, have high prediction accuracies (Fig. 2c, top boxplot).
However, closely related cell types were challenging to deconvolve, as
sublineages have lower performance metrics than their parental
lineages (Fig. 2c).

In the inter-dataset validation, the reference profile generated in
one single-cell cohort can generally predict the cell fractions in ST data
synthesized from other single-cell cohorts (Fig. 2d and Supplementary
Fig. 2d, top boxplot). We also generated leave-one-out signatures for

the inter-dataset evaluation, wherewe created reference profiles using
all datasets except the one left out to synthesize the testing STdata.On
average, leave-one-out signatures outperformed individual profiles
from one scRNA-seq dataset, indicating that integrating multiple
scRNA-seq datasets can create a generalizable reference for cell
decompositions inmany tumor types (Fig. 2d).Moreover, SpaCETwith
a hierarchical regression outperformed the one decomposing all
sublineages in one single deconvolution level (Supplementary Fig. 2e).
Therefore, in the following analyses, we used a combined hierarchical
reference by averaging transcriptomics profiles for each cell type from
10 scRNA-seq datasets (“Methods”).

We also compared SpaCET with several representative ST and
bulk cell-type deconvolution methods8–17 for decomposing the syn-
thetic ST data. SpaCET outperformed other methods in both major
and sublineages (Fig. 2e and Supplementary Fig. 3) in the simulated
setting. In addition, we computed the running time and memory
consumption of all methods, and SpaCET is among the high-effective
algorithm groups (Fig. 2f).

Validation by real ST data with double-blind histopathology
annotations
Wenext evaluated theperformanceof SpaCETwith real tumor STdata.
The generation of an ST profile typically provides a hematoxylin and
eosin (H&E)-stained image from the same tissue slide. According to the
H&E morphology, pathologists labeled the local tissue density and
regions of tumor, stroma, lymphocyte, and macrophage without
knowing any deconvolution results.We applied SpaCET to decompose
eight tumor ST datasets5,18,19,33 spanning seven tumor types (Fig. 3a and
Supplementary Table 3). The consistency between double-blind
pathology annotations and estimated cell fractions would indicate
cell-type decomposition accuracy.

For example, one breast cancer ST dataset from 10x Visium5

measured 22,953 genes on 3183 spots (Supplementary Fig. 4a). The
H&E staining of the same ST tissue slide enabled pathology annota-
tions of the tumor, lymphocyte, and stroma regions through cell
morphology, and macrophages through hemosiderin deposition34

(Fig. 3b). We observed that the breast cancer-specific CNA signature in
SpaCET was activated to estimate the malignant cell fraction, indicat-
ing that this breast tumor is chromosomally unstable (Supplementary
Fig. 4b). The decomposition results from SpaCET showed that the
breast tumor comprises mainly malignant cells, cancer-associated
fibroblasts (CAFs), endothelial cells, macrophages, and T CD4 cells
(Supplementary Fig. 4c).

We observed that low-density regions have large unidentifiable
components (Fig. 3c and Supplementary Fig. 4c, d). A possible expla-
nation is that sparse tissue regions have a dropout phenomenon,
where many genes have zero read counts in ST data35. Such dropout
will bring high noise to reduce regression coefficients for known cell
types36. Indeed, dropout rates across ST spots are proportional to the
tissue density annotated by pathologists (Fig. 3c and Supplemen-
tary Fig. 4e).

As a simplification, SpaCET only provides one malignant cell type
per tumor ST dataset. However, malignant cells in different spatial
regions may present distinct cellular states determined by cancer
evolutions and interactions with local environments (Supplementary
Fig. 4f–h). Thus, SpaCET also provides additional steps to identify the
substates of cancer cells.

Based on the H&E staining annotations, we compared the pre-
diction accuracy for SpaCET and previous methods8–17 by using recei-
ver operating characteristic (ROC) curves (Fig. 3d, e).Although SpaCET
does not require a malignant cell signature and has a built-in normal
cell reference, most previous methods require a single-cell reference
for deconvolution. Since most tumor ST data do not have matched
scRNA-seq data from the same sample, we build a pan-cancer single-
cell reference from our scRNA-seq data collection for existing tools
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(“Methods”). We found that SpaCET outperformed other methods for
estimating malignant cells, stromal cells, and macrophages (Fig. 3e).
On lymphocytes, several methods (e.g., Stereoscope and RCTD) also
achieved high performance comparable to SpaCET.

We further evaluated seven more ST datasets on seven cancer
types (Fig. 3f and Supplementary Figs. 5–11). In general, SpaCET

yielded more accurate estimates across cell types than other methods
(Fig. 3f and Supplementary Fig. 12). SpatialDWLS and RCTD also
achieved high performance for all cell types. Besides comparing
SpaCET with other approaches, we also evaluated the robustness and
effectiveness of SpaCET algorithm designs. By downsampling the
tumor ST data from 4000 to 500 genes per spot, we found that
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SpaCET still keeps high performance on low-quality ST data (Supple-
mentary Fig. 13a).

For the malignant cell quantification (Fig. 1b and Supplementary
Fig. 1a), SpaCET prepared a pattern dictionary of both CNA and tumor-
normal differential expression for diverse tumor types. All tumor ST
data in our collection utilized the CNA pattern for cancer cell quanti-
fication due to significant correlations between spatial transcriptomic
profiles and cancer type-specific CNA patterns (Supplementary
Figs. 4–11). However, we still used these ST data as surrogates to
evaluate the expression signatures prepared for chromosomal stable
tumors. The expression signatures achieved comparable performance
(Supplementary Fig. 13b), supporting the reliability of our expression-
based procedure, which will start its role for CNA-low tumors. The
unidentifiable component in the SpaCET regression model only
brought minor performance improvements in deconvolving stromal
cells (Supplementary Fig. 13c).

SpaCET can decompose ST data with various resolutions
Different ST platforms have various resolutions of spatial capturing
spots ranging from 10 to 100μm. Thus, we evaluated whether SpaCET
is applicable to a broad set of in situ capturing data with higher and
lower resolutions. In our collected datasets (Supplementary Table 3),
six of eight came from the 10xVisiumwith adetection spotdiameter of
55μm. For evaluations in data with a higher spatial resolution, we
applied SpaCET to analyze a colon cancer Slide-RNA-seq dataset33,
consisting of 18,288 beads with a diameter of 10μm covering 16,270
genes (Supplementary Fig. 10a, b). Pathologists annotated the mat-
ched H&E image for tumor and stroma regions based on cell
morphologies (Fig. 4a). The deconvolution results show that SpaCET
consistently outperformed other methods (Fig. 4b, c and Supple-
mentary Fig. 10d). Since the diameter of a bead is 10μm covering 1–2
cells, SpaCET may enable cell-type maps with a single-cell resolution
(Fig. 4d, e and Supplementary Fig. 10e).

For evaluations in low-resolution data, we collected a pancreatic
ductal adenocarcinoma dataset19 generated by the early in situ cap-
turing method (from which Visium was developed) with a spot dia-
meter of 100μm (Supplementary Fig. 11). SpaCET achieved a reliable
performance compared to other approaches (last row in Supplemen-
tary Fig. 12). According to the matched scRNA-seq data19, the current
pancreatic tumor included acinar and ductal cells, not included in the
in-house cell-type reference of SpaCET (Fig. 1c). SpaCET can accept a
matched scRNA-seq dataset as customized cell-type references (Sup-
plementary Fig. 14a). SpaCET’s decomposition for acinar and ductal
cells agreed well with their annotated locations in the H&E image
(Supplementary Fig. 14b, c).

SpaCET reveals intercellular interactions in spatial contexts
Cell–cell interactions in tumors play a pivotal role in cancer
progression and therapeutic resistance37. The scRNA-seq data
may reveal intercellular communications via analyzing the

ligand–receptor co-expression across cell types38. However, such
analysis loses proximity information and thus may report false-
positive interactions that never come into contact in space. The
deconvolution results by SpaCET should enable cellular interaction
analysis in spatial contexts.

To identify intercellular interactions from ST data, SpaCET uti-
lized a two-step approach, assessing cell colocalizations followed by
ligand–receptor co-expression analysis. Since the gap between ST
spots may spanmultiple cells24, our method investigated cell contacts
within the same spot rather than between different spots. We calcu-
lated the Spearman correlation between cell-type pairs across ST spots
based on estimated cell fractions. The strong positive correlation of a
cell-type pair indicates their cell colocalization. For example, in a
breast tumor, we identified several potential colocalized cell-type
pairs, such as CAFs with endothelial cells andM2macrophages (Fig. 5a
and Supplementary Fig. 15a).

To rule out a high cell fraction correlation caused by similar
reference profiles, we compared the correlations between cell-type
fractions and between cell-type reference profiles. Although the cor-
relation of CAF and endothelial cell fractions is high, their profile
similarity is also proportionally high (Fig. 5b). However, the similarity
between CAF and M2 macrophage references was relatively low
(Fig. 5b), indicating that the CAF–M2 colocalization is not simply due
to profile similarity.

Ligand–receptor interactions within ST spots
Cell colocalization does not directly indicate physical interaction.
Thus, we sought further evidence for cell–cell interactions by analyz-
ing ligand–receptor (L–R) interactions within ST spots. From a pre-
vious study39, we obtained approximately 2500 L–R pairs. We
computed an L–R network score for each spot as the sum of expres-
sion value multiplications between L–R gene pairs, normalized by the
average score from 1000 random L–R networks with the same con-
nection degrees as the real network (“Methods”).

The L–R network score at each ST spot indicates the intensity of
ligand–receptor interactions at each location (Fig. 5c and Supple-
mentary Fig. 15b), but not specific interactions between cell types.
Thus, SpaCET further performed an enrichment analysis of L–R net-
work scores for each cell-type pair. For example, for the colocalization
between CAF andM2 cells in the breast tumor tissue, SpaCET grouped
all ST spots into four categories: CAF–M2 colocalized, CAF or M2
dominated, and others (Fig. 5d, e). We found that CAF–M2 colocalized
spots have more substantial L–R network scores than CAF/M2-domi-
nated spots (Fig. 5f). In contrast, there was no significant difference
between CAF-endothelial colocalized and CAF/endothelial-dominated
spots (Supplementary Fig. 15c, d). These results lead to the prediction
of CAF–M2 interactions but not CAF-endothelial interactions. Mean-
while, the CAF–M2 interaction is consistently significant using esti-
mated cell-type fractions from different deconvolution methods
(Supplementary Table 4).

Fig. 2 | Performance evaluation based on simulated ST data. a Cell lineage
proportions in 10 tumor scRNA-seq datasets used for ST simulation. b Hierarchical
clustering of cell lineage reference profiles from scRNA-seq datasets based on
marker gene set similarities. c Performance in intra-dataset validation for each
scRNA-seq dataset (row) and cell type (column). The color in the heatmap presents
Pearson correlation (r) between predicted versus known cell fractions. The gray
color in the heatmap indicatesmissing cell types in the scRNA-seqdataset. Boxplots
on the top present r values of the same cell type across all datasets (n = 10). Box-
plotson the right present r valuesof all cell typepredictions in the samedataset.We
shuffled spot identities of cell type fraction vectors within each synthetic ST data
and computed r values as random controls. For boxplots, the thick line represents
the median value. The bottom and top of the boxes are the 25th and 75th per-
centiles (interquartile range). The whiskers encompass 1.5 times the interquartile
range. d Performance of inter-dataset validation between scRNA-seq cohorts. The

column and row labels show the scRNA-seq datasets (n = 10) used to generate cell-
type reference profiles and synthetic ST data, respectively. The color in the heat-
mappresents themedian Pearson correlation (r) between predicted and known cell
fractions across all cell types. Boxplots and random controls are plotted as panel c.
e Performance comparison between SpaCET and previousmethods (color ordered
in panel f). A dot represents a simulated ST dataset synthesized from a single
scRNA-seq dataset (n = 10). The y value of an ST dataset presents the median
Pearson correlation r between predicted and known cell fractions across cell types.
All tools used the leave-one-out signature in panel d. The difference between
SpaCET and other tools was evaluated by the two-sidedWilcoxon signed-rank test.
A star indicates that SpaCET is significantly better than others (BH-adjusted p value
<0.05). Bar height denotes the average value across simulated ST datasets; error
bars denote standard errors. f Comparison of running time and memory con-
sumption, using a simulated ST dataset of 1200 spots with default parameters.
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By integrating our collected scRNA-seq datasets (Supplementary
Table 2), we also identified several putative L–R pairs mediating the
crosstalk between CAFs and M2 macrophages for the current breast
tumor (Fig. 5g and “Methods”). The advantage of integrating single-cell
and spatial data is that we could exclude two categories of false posi-
tives: (1) L–R pairs with spatial proximity but not from different cell
types, thus they do not represent interactions between distinct cell

types; and (2) L–R pairs identified from single-cell data but without
spatial proximity, thus they do not represent physical contacts
between cells (Supplementary Fig. 16 and “Methods”).

Cell–cell interactions at the tumor-immune interface
The SpaCET results enabled the systematic analysis of biological
functions of cell–cell interactions in a spatial context. For example, the
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spots of CAF–M2 interactions identified in the breast tumor example
are significantly close to the tumor-immune interface (Fig. 6a, b). We,
therefore, classified malignant cells as “close” or “distant”, based on
their distance from ST spots with CAF–M2 interactions (Fig. 6c). We
generated differential gene expression profiles between close and
distant spots followed by gene set enrichment analysis (GSEA) (Sup-
plementary Fig. 17a). Distant malignant cells showed enrichment in
cell-cycle pathways, a result typical for fast-growing cancer cells
(Fig. 6d). In contrast, genes upregulated in the close malignant cells
primarily belonged to epithelial-mesenchymal transition (EMT) path-
way (Fig. 6d and Supplementary Fig. 17b).

Additionally, GSEA reported several genes from the EMT pathway
(e.g., COL1A1, LRRC15, and LUM), which are highly expressed in the
malignant cells close to CAF–M2 interaction regions (Fig. 6e). These
genes have been demonstrated to drive cancer progression in breast
cancer and other cancer types. For example, collagen type I alpha 1
(COL1A1) is abundant in the extracellular matrix of breast cancer cells,
and knockdown of COL1A1 in cancer cell lines inhibits cancer
cell migrations40. By upregulating MAPK signaling, lumican (LUM)

promotes the proliferation and migration of bladder cancer cells41. In-
vitro and in-vivo studies show that overexpression of leucine-rich
repeat containing 15 (LRRC15) augments metastasis in multiple cancer
types (e.g., breast cancer, osteosarcoma, and soft tissue sarcomas)42.
However, additional experimental evidence is still needed to validate
the biological functions of these genes in promoting cancer
aggression.

Discussion
We present SpaCET with several algorithmic designs to address the
challenge of decomposing cell fractions in tumor ST data. We
demonstrated its superior performance over existing deconvolution
methods on ST data with a broad range of cellular resolutions. SpaCET
estimates cancer cell fractions based on a gene pattern dictionary of
copy number alterations and expression changes across tumor types,
which performs better than the inferCNV-based strategy43 in both
prediction accuracy and running efficiency (Supplementary Fig. 13d).
This dictionary-based approach should also be broadly applicable to
malignant cell identification in scRNA-seqdata analysis, particularly for

Fig. 3 | Performance validation based on double-blind pathology annotations.
a Multiple tumor ST datasets used for performance evaluation. The human body
outlinewasgenerated usingBioRender.bAnexample hematoxylin and eosin (H&E)
image with double-blind pathology annotations. c Unidentifiable component
fractions (left) and unique molecular identifier (UMI) counts (right) across spots in
both high and low cellular density regions. The group values were compared by
calculating the Cohen’s d effect size and the two-sidedWilcoxon rank-sum test. For
the boxplot, the thick line represents the median value. The bottom and top of the
boxes are the 25th and 75th percentiles (interquartile range). The whiskers
encompass 1.5 times the interquartile range. d Fractions of malignant, stromal,
macrophage, and lymphocyte cells, decomposed by SpaCET. e Receiver operating
characteristic (ROC) curves of cell fraction prediction. This example is basedon the

cell region annotation in panel b. For each method, the ROC curve presents false-
positive rates against true-positive rates at different thresholds of cell fraction
across spots. f Performance comparison among methods. Each dot represents a
dataset (n = 8 for each bar). y-axis presents the area under the ROC curve (AUC)
value of cell fraction decompositions for each method. The subpanels represent
the results in distinct tumor regions, and the last subpanel considered data from all
three region types together. In each subpanel, the difference between SpaCET and
other tools was evaluated by the two-sided Wilcoxon signed-rank test. A star indi-
cates that SpaCET is significantly better than others (BH-adjusted p value <0.05).
Bar height denotes the averagevalue across STdatasets; error bars denote standard
errors.
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Fig. 4 | Application of SpaCET to a colon cancer Slide-seq dataset. a The H&E-
stained image with double-blind pathology annotations. b Fractions of malignant
and stromal cells, decomposed by SpaCET. c ROC curves of cell fraction prediction

based on the annotation in panel a, shown as Fig. 3e. d Spatial localization of cell
major lineages. The cell type of a bead is defined by the most abundant cell type in
this bead. e Number of beads for each cell type.
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chromosomal stable tumorswhere the conventional inferCNVpackage
does not work.

Our strategy of hierarchical decomposition constrains the nega-
tive effect of collinearity among closely related cell types within a
sublineage of decomposition results (Supplementary Fig. 2e). A pre-
vious tool, MuSiC16, also performs hierarchical deconvolution by ask-
ing users to define cell hierarchies manually based on the clustering
results of scRNA-Seq data. As an advantage, SpaCET provides a com-
prehensive hierarchical cell-type reference summarized from many
tumor types.Moreover, SpaCET includes an unidentifiable component
to address cell types missing from the reference and cell density var-
iations across regions (Supplementary Fig. 4d, e and Supplementary
Fig. 13c).

The spatial heterogeneity in different tumor regions is driven by
tumor evolution and intercellular interactions between cancer cells
and immune/stromal cells44. Although several strategies45–47 have been
developed for exploring cell–cell communications in subcellular
resolution ST technologies (e.g., seqFISH+ or CODEX), they are not
applicable tomultiple cellular (i.e., spot level) ST data because of gene
coverage and resolution differences. SpaCET can combine colocali-
zation and ligand–receptor analysis to study cell–cell interactions in
multiple cellular ST data.

Several limitations exist for SpaCET. First, when estimating the
malignant cell fractions (Fig. 1b), the ST-specific malignant expression
profile was generated by averaging the expression profiles of all
identified malignant cell spots within tumor ST data. As such, the
estimation accuracy of malignant cell fraction might decrease for
tumor ST data containing very distinct cancer cell states. Second,
during the deconvolutionprocess,we assume that themarker genes of
reference cell types do not express in unknown cell types. However,
our simulation analysis showed that high expression ofmore than 30%
of existing referencemarker genes in unknowncell typeswould lead to
underestimated unknown cell fractions (Supplementary Fig. 18). If this
happens, there should be two fixes: (1) the unknown cell type may
come fromclose lineage to existing cell types, thus should be classified
as known cell types instead of unknown ones; (2) the users should pre-
estimate existing cell lineages for new tissue. If SpaCET’s default
lineages do not comprehensively cover the cell repertoire in the input
sample, users might need additional cell signatures and run SpaCET
with customized references.

SpaCET is a framework for understanding the spatial organization
of cells in tumors and how spatial organizations influence cancer
progression. With the continuous accumulation of spatial tran-
scriptomics data from clinical studies, we foresee that SpaCET will
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Fig. 5 | SpaCET identifies intercellular interactions in the breast tumor.
a Spearman correlations of cell-type fractions across breast tumor ST spots. Each
node in the network represents a cell type, and the size of a node refers to the
average fraction of this cell type across all spots. Each edge represents the colo-
calization of a cell-typepair, and the size of an edge refers to the fractionproduct of
this cell-type pair. b Spearman correlation analysis between reference profiles (x-
axis) and between cell-type fractions (y-axis). Each dot represents a cell-type pair.
The straight line presents the weighted linear regression result with the gray sha-
dow as the 95% confidence interval. c Ligand–receptor interaction network scores
for all spots. d CAF and M2 fractions across all spots. Each dot represents an ST
spot. According to the CAF or M2 cell fractions, spots were grouped into four
categories: CAF–M2 colocalized (top 15% in both CAF and M2, n = 182), CAF-
dominated (Top 15% in CAF and bottom 75% in M2, n = 295), M2 dominated (Top

15% in M2 and bottom 75% in CAF, n = 234), and others (n = 3102). The straight line
presents the linear regression between the cell fractions of CAF and M2 with the
gray shadow as the 95% confidence interval. The Rho and p values are computed
from the two-sided Spearman correlation test (n = 3813 spots). e Spatial distribu-
tion of CAF–M2 colocalized and CAF/M2-dominated spots in panel d. f Difference
of L–R interaction network score between CAF–M2 colocalized spots and CAF/M2-
dominated spots in panel d. For the boxplot, the thick line represents the median
value. The bottom and top of the boxes are the 25th and 75th percentiles (inter-
quartile range). The whiskers encompass 1.5 times the interquartile range. Group
values were compared by Cohen’s d effect size and two-sided Wilcoxon rank-sum
test. g L–R pairs mediating the CAF–M2 interaction in the current breast cancer
tissue. The direction of an arrow source from ligand to receptor.
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provide mechanistic insights underlying many oncogenic processes
and therapeutic solutions to bottlenecks of current antitumor
treatments.

Methods
SpaCET framework design
SpaCET consists of three sequential stages to estimate the cell lineages
and intercellular interactions from tumor spatial transcriptomics
(ST) data.

Stage 1. Malignant cell fraction inference. We designed a three-step
process (Supplementary Fig. 1a) to infer malignant cell fractions
without any reference based on a dictionary of cancer type-specific
gene patterns (Supplementary Table 1 and see the following section:
“Build a dictionary of cancer type-specific signatures”).
(1) Clustering all spots froma tumor ST dataset. All spots froma tumor

ST dataset were clustered by hierarchical clustering, and then the
hierarchical tree was cut into K clusters by specifying K = 2–9. The
optimal number of clusters was determined as the point preced-
ing the largest decrease in the silhouette value, which measures
how similar an object is to its own cluster compared to other
clusters.

(2) Determining the malignant cell clusters. The expression profiles of
all spots within a tumor ST dataset were firstly mean-centralized
across all spots for each gene. Then, the expression profile of each

spot was correlated to the cancer type-specific (CNA or expres-
sion) signature at a genome-wide scale with Pearson correlation.
The spot clusters were identified as malignant cell clusters by
using the following twocriteria: (1) the average coefficient r values
of the spots within a cluster is significantly greater than 0 (one-
sided Wilcoxon signed-rank test, p <0.05); (2) the proportion of
spots positively correlated to the cancer type-specific signature
(Pearson’s r > 0 and two-sided correlation test p < 0.05) within a
cluster is more than the proportion in the whole ST dataset.
When correlating the expression profiles of ST spots to the
cancer type-specific signature, we set the cancer type-specific
CNA signature as the first option because chromosomal
instability is a consistent feature of human tumors21. Alterna-
tively, if no spots significantly correlate with the CNA signature,
the cancer type-specific expression signaturewould be activated.
This situationmight result from chromosomally stablemalignant
cells with low CNA. In the chromosomal stable tumors with low
CNA, malignant cells may still have transcriptomics character-
istics differentiating tumors from normal cells22. For the cancer
types not included in our dictionary, we created a pan-cancer
expression signature by averaging all TCGA cancer type-specific
expression signatures.

(3) Estimating malignant cell abundance across all spots. For a tumor
ST dataset, the ST-specific malignant expression profile was
achieved by averaging the expression profiles of the spots in the
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malignant cell clusters from step 2. Subsequently, the expression
profile of each spot within a tumor ST dataset was correlated to
the ST-specificmalignant expression profile. The Pearson correla-
tion coefficients (r) across all spots were normalized to 0–1 as
estimated malignant cell fractions for a tumor ST dataset.

Fmalignant = r=ðrtop5% � rbottom5%Þ ð1Þ

Where rtop5% and rbottom5% are the average r from the top and bottom
5% spots across spots sorted on r. Then, the nonmalignant
(Fnonmalignant) cell faction of a spot is computed as

Fnonmalignant = 1� Fmalignant ð2Þ

Stage 2. Hierarchical deconvolution of nonmalignant cell fractions.
Due to the high transcriptional similarity of cell sublineages (e.g.,
macrophage M1 and M2), collinearity will induce high result variance
for regression analysis23. Thus, based on an expression profile tree of
stromal and immune cells, we utilized a two-level hierarchicalmodel to
decompose the nonmalignant cell fraction. On level one, the fractions
of major lineages are estimated; on level two, the sublineage fractions
are generated based on their major lineage fractions.

Based on a hierarchical atlas of reference profiles in the tumor
microenvironment derived from single-cell RNA-seq datasets from
diverse cancer types (see the following section: “Reference profile of
cell types in deconvolution”), a constrained linear regression model,
non-negative least squares, is utilized to hierarchically estimate cell
fractions in immune, stromal cell lineage, and unidentifiable compo-
nents in transcripts per million (TPM) space. In the level one decom-
position, we keep an unidentifiable component in case several spots
include cell types or random noise (due to low cell density) that our
collected cell reference cannot explain.

For a given spot, S represents its expression profile with the same
gene dimension as the cell reference profile used for deconvolution.
TheRmalignant and Fmalignant donate the ST-specificmalignant expression
profile and the corresponding fraction in stage 1. Thus, the expression
profile S of nonmalignant cells for this spot can be computed as

Snonmalignant = S� Rmalignant × Fmalignant ð3Þ

The Rc and Fc donate the reference and fraction of nonmalignant
cell type c. c is the set of nonmalignant cell types on level one. Runknown

and Funknown represent the reference and fraction of unknown cell
types that our reference collection does not include. Given this,
Snonmalignant can be written as

Snonmalignant =
X

c2CRc × Fc +Runknown × Funknown ð4Þ

Here, we assume that our computed marker genes (details in
“Methods” section: “Reference profile of cell types in deconvolu-
tion”) of immune and stromal cells were lowly expressed in unknown
cell types. In other words, unknown cell types are sufficiently dif-
ferent from our existing immune and stromal cell types. Thus,
Runknown ≈ 0 since all gene dimensions are within ourmarker gene set.
The last equation can be simplified as

Snonmalignant≈
X

c2CRc × FcðFc ≥0,
X

c2CFc ≤ FnonmalignantÞ ð5Þ

This solution can be estimated by a constrained non-negative
least squares optimization. Subsequently, the fractionof unidentifiable
component is computed as

Funidentifiable = 1� Fmalignant �
X

c2CFc ð6Þ

Funidentifiable contains both unknown cell fraction and noise. The
latter mainly results from the gene dropout within ST spots due to low
tissue density (Supplementary Fig. 4d, e).

Based on the above results, the sublineage fractions are further
estimated on level two. For example, the fraction of macrophages is
divided into sublineages M1 and M2.

Snonmalignant �
P

c2C&c≠MφRc × Fc =RM1 × FM1 +RM2 × FM2

ðFM1,FM2 ≥0,FM1 + FM2 ≤ FMφÞ
ð7Þ

Stage3.Cell–cell interaction analysis. Basedon cell lineage fractions
inferred, SpaCET explores cell–cell interaction by analyzing both cell
colocalization and ligand–receptor (L–R) co-expressionanalysis across
all ST spots. The former demonstrates the co-occurrence of cell-type
pairs, whereas the latter provides evidence for cell–cell physical con-
tacts by sending and receiving signals.

Cell colocalization was evaluated using the Spearman correlation
between cell-type pairs across all spots. To further evaluate the sig-
nificance of cell colocalization, we calculated the Spearman correlation
between their reference profiles to rule out high colocalization due to
similar reference profiles. Previous methods, such as stereoscope8,
included the cell colocalization analyses, but without considering L–R
interactions.

The overall level of L–R interactions within a spot was evaluated
by 2558 L–R pairs collected from a previous study39. These ligands and
receptors were filtered within genes detected by the ST platform. We
shuffled the L–R interaction network by using BiRewire package48 to
generate 1000 randomized networkswhile preserving directed degree
distributions. For a spot, an L–R network score is defined as the sumof
expression products between all L–R pairs, divided by the average
random value from 1000 randomized networks. P values were calcu-
lated with the empirical null distribution generated from network
scores of randomized L–R interactions.

Network Score NSð Þ=

P
i
ELi × ERi

<
P
i
ELi × ERi>

, P value =Pr NSrandom ≥NS
� �

ð8Þ

ELi and ERi donate the expression of ligand and receptor from the
ith L–R pair, respectively. The <> represents averaging the product
sums from 1000 random networks.

For a colocalized cell-type pair, SpaCET grouped all ST spots into
four categories: cell-type pair colocalized, either single cell-type
dominated, and others. This colocalized cell-type pair would be con-
sidered to have cell–cell communication and interaction in the current
ST dataset if the colocalized spots havemore substantial L–R network
scores than the single cell-type dominated spots (two-sided Wilcoxon
rank-sum test, p < 0.05).

Our strategy is distinct from CellPhoneDB49 to interrogate L–R
interaction for scRNA-seq analysis, which randomly permutes the
cluster labels of all cells. This strategy does not apply to ST analysis
because the expression profile of each cell in ST data is unknown due
tomixed transcriptomics signalswithin spots. Thus, the computedL–R
network score at each ST spot from SpaCET indicates the overall
intensity of L–R interactions at each spot, but not specific interactions
between the two cell types.

Build a dictionary of cancer type-specific signatures
Based on the SNP6 Array and RNA-seq data from The Cancer Genome
Atlas (TCGA), we built a gene pattern dictionary of copy number
alterations (CNA) and expression changes for 30 solid tumor types
(Supplementary Table 1). The cancer type-specific CNA signature of a
cancer type was computed by averaging bulk tumor CNA values on
gene levels across patients. For each cancer type, the lower quartile of
patients sorted by total CNA burdens was excluded before calculating
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the CNA signature. The cancer type-specific expression signature of a
cancer type was generated as log2 Fold Change of differential
expression between tumor and normal samples by R package limma50.
Several cancer types do not have expression signatures due to a lack of
adequate normal samples (n < 10 patients). The pan-cancer expression
signature was created by averaging all cancer type-specific expression
signatures.

Single-cell RNA-seq data collection
For the validation of SpaCET using ST data simulation and generation
of cell-type references, we collected 10 single-cell RNA-seq datasets
from diverse tumor types, including melanoma25,26, breast27,
colorectal28, head and neck29, liver30, and lung31,32 cancers (Supple-
mentary Table 2). These datasets cover various platforms, including
10x genomics, Smart-Seq2, and InDrop. The cell-type annotationswere
from original studies. We further split macrophages into M1 and
M2 subtypes by using marker genes from a previous study27. We also
used SingleR package51 to split B, CD4T, CD8T, and cDCcells into their
corresponding sublineages (Fig. 1c). The immune cell signatures pre-
sented comparable deconvolution performance compared to a
recently published tumor-immune cell atlas52 (Supplementary Fig. 13e).

Reference profile of cell types in deconvolution
The reference profile of a cell type in a single scRNA-seq dataset was
the average expression profile across all single cells for this cell type in
non-log TPM space. Themarker genes for a cell type were definedwith
the following twosteps: (1) carryingout differential expressionanalysis
through the R package limma50 between this cell type and every other
cell type in log2(TPM/10 + 1) space; (2) selecting genes (log2 (Fold
Change) > 0.25 and adjusted p value <0.01) from the top 500 over-
expressed genes ranked by adjusted p values.

The combined reference profile of a cell type was generated by
averaging the reference profiles of this cell type in all scRNA-seq
datasets collected in Supplementary Table 2. Themarkers of a cell type
were the markers of this cell type that appeared in at least half of
scRNA-seq datasets.

Simulated spatial transcriptomics data
To evaluate ourmethod SpaCET, we constructed simulated (synthetic)
ST data based on scRNA-seq data. For both intra- and inter-dataset
validation, each simulated ST data contains 1200 spots. The simulated
STdata, derived from the scRNAdatasetwithmalignant cells, has three
differentmalignant cell fractions, i.e., 0% (500 spots), 50% (200 spots),
and 100% (500 spots). For a spot, 1–3 cell types and 3–10 cells were
randomly selected from the scRNA-seq dataset using Dirichlet
distribution8, a probability distribution of multiple cell type fractions
that sums to 1. Subsequently, transcriptomic profiles of selected single
cells were averaged as the synthetic mixture. Thus, the “ground truth”
of the cell-type fraction at each spot was known.

Spatial transcriptomics datasets
We collected eight tumor spatial transcriptomics datasets5,18,19,33 on
seven cancer types listed in Supplementary Table 3. The raw count
matrices of ST data were normalized to TPM (equivalent to count-per-
million CPM for 10x data) to be deconvolved by SpaCET. The exact
matched H&E-stained tumor tissue images were annotated by
pathologists for tumor, stroma, and lymphocyte regions through cell
morphologies, and macrophage regions if hemosiderin deposition
features are available34.

Comparison to alternative deconvolution methods
We compared SpaCET with several ST and bulk data decomposition
approaches8–17. Each method was run with its default parameters on a
machinewith a 2.60GHz8-CoreCPUwith 32GMofRAM. Since SpaCET
does not require a malignant reference and has a built-in normal cell

atlas (Fig. 1), we built a pan-cancer scRNA-seq reference for the other
methods by using the 10 scRNA-seq datasets in this study (Supple-
mentary Table 2). Fifty single cells were randomly chosen for each cell
type. For the simulated ST data, both Pearson correlation r and root-
mean-square error (RMSE) were calculated between predicted cell
fraction and ground truth. For the real ST data, area under the ROC
curve (AUC) valueswere calculated for each annotated region fromthe
H&E image by pathologists via double-blind annotations.

Exploration of cancer cell states in spatial transcriptomics data
Based on the deconvolution results, the spots with highly abundant
malignant cells (fraction > 0.7) were selected to carry out clustering
analysis. The optimal number of clusters (i.e., cancer cell states) was
determined by calculating the silhouette value. We then collected 16
cancer genemodules froma recent study53, and computed the average
expression level of eachmodule formalignant cell spots to explore the
function of two cancer cell states. The deconvolution process of can-
cer cell states was the same as estimating the immune sublineage (see
“Methods”: “SpaCET framework design”—stage 2).

Identification of significant ligand–receptor pairs
To investigate L–R pairs mediating the CAF–M2 interaction in breast
tumor tissue, we integrated both ST data and single-cell data because
ST spot data contains themixture transcriptome from a few cell types,
thus cannot directly reveal the cell source of gene expression. First, we
computed the Spearman correlation of ligand and receptor pairs
across CAF–M2 colocalized spots. Then, we examined whether the
highly correlated L–R pairs had significant co-expression between CAF
and M2 across our collected scRNA-seq datasets (Supplementary
Table 2) by using a similar strategy from CellPhoneDB49. Briefly, to
identify significant L–R pairs from scRNA-seq data, we scored an L–R
pair between cell-type X and Y as the product of average ligand
expression across all cells in X and the average receptor expression
across all cells in Y. The p value was calculated based on a null dis-
tribution generated by shuffling the cell type of all cells within the X–Y
pair (1000 times) and repeating the L–R interaction computation. The
L–R analysis in this part aims to identify the specific L–R pairs med-
iating the CAF–M2 interaction, whereas the L–R analysis in stage 3 of
SpaCET refers to the overall interaction level of L–R pairs within ST
spots as evidence of physical interactions between two cell types.

Distance of CAF–M2 colocalized spots to tumor-immune
interface
The distance of a single ST spot to the tumor border is the distance of
this spot to its nearest tumor border spot (Fig. 6a). Furthermore, the
distance of a set of CAF–M2 colocalized spots to the tumor border was
calculated by averaging the distances of all CAF–M2 spots to tumor
border (green dashed line in Fig. 6b). To calculate the null distribution,
we randomly selected the same number of spots from the CAF or M2-
dominated spots and then calculated their distances to the tumor
border.

Pathway enrichment analysis on close anddistant cancer cells to
CAF–M2 interactions
Differential gene expression analysis between close and distant
malignant spots to CAF–M2 interactions was performed using R
package limma50. limma was run with or without adjusting covariate
effects, i.e., malignant, CAF, M2, and CAF +M2 cell fractions. Further,
the ranked gene list based on the t valuewas used to carry out gene set
enrichment analysis (GSEA) by using the R package fgsea54. The hall-
mark pathway gene sets were collected from MSigDB database55.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The single-cell RNA-seq data were acquired from the following acces-
sion numbers: Non-small cell lung cancer (E-MTAB-6149 and
GSE127465), Head and neck squamous cell carcinoma (GSE103322),
Breast cancer (GSE114725), Melanoma (GSE115978 and GSE123139),
Hepatocellular carcinoma (GSE140228), and Colorectal cancer
(GSE146771). The spatial transcriptomics data were acquired from the
following hyperlinks: Breast cancer ([https://www.10xgenomics.com/
resources/datasets/human-breast-cancer-block-a-section-1-1-stand
ard-1-0-0] and [https://www.10xgenomics.com/resources/datasets/hu
man-breast-cancer-ductal-carcinoma-in-situ-invasive-carcinoma-ffpe-
1-standard-1-3-0]), Glioblastoma [https://www.10xgenomics.com/
resources/datasets/human-glioblastoma-whole-transcriptome-anal
ysis-1-standard-1-2-0], Ovarian cancer [https://www.10xgenomics.com/
resources/datasets/human-ovarian-cancer-whole-transcriptome-
analysis-stains-dapi-anti-pan-ck-anti-cd-45-1-standard-1-2-0], Prostate
cancer [https://www.10xgenomics.com/resources/datasets/human-
prostate-cancer-adenocarcinoma-with-invasive-carcinoma-ffpe-1-stan
dard-1-3-0], Squamous cell carcinoma (GSE144240), Colon cancer
(SCP1278), and Pancreatic ductal adenocarcinoma (GSE111672). Details
of single-cell RNA-seq and spatial transcriptomics datasets are descri-
bed in Supplementary Table 2 and Supplementary Table 3, respec-
tively. The Cancer Genome Atlas (TCGA) data are available for
download at https://gdc.cancer.gov/. Hallmark gene sets (v.7.2) are
available at https://www.gsea-msigdb.org. Source data are provided
with this paper.

Code availability
The source code of R package SpaCET and a demo workflow to
reproduce our main results are available at GitHub (https://github.
com/data2intelligence/SpaCET) and Zenodo (https://doi.org/10.5281/
zenodo.7466025)56.
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