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The RESP AI model accelerates the
identification of tight-binding antibodies

Jonathan Parkinson 1,3, Ryan Hard1,3 & Wei Wang 1,2

High-affinity antibodies are often identified through directed evolution, which
may require many iterations of mutagenesis and selection to find an optimal
candidate. Deep learning techniques hold the potential to accelerate this
process but the existing methods cannot provide the confidence interval or
uncertainty needed to assess the reliability of the predictions. Here we present
a pipeline called RESP for efficient identification of high affinity antibodies.We
develop a learned representation trained on over 3 million human B-cell
receptor sequences to encode antibody sequences. We then develop a varia-
tional Bayesian neural network to perform ordinal regression on a set of the
directed evolution sequences binned by off-rate and quantify their likelihood
to be tight binders against an antigen. Importantly, this model can assess
sequences not present in the directed evolution library and thus greatly
expand the search space to uncover the best sequences for experimental
evaluation. We demonstrate the power of this pipeline by achieving a 17-fold
improvement in the KD of the PD-L1 antibody Atezolizumab and this success
illustrates the potential of RESP in facilitating general antibody development.

Monoclonal antibodies are among the most successful of biological
therapeutics1. Despite their impressive versatility and specificity,
development of therapeutic antibodies continues to pose a variety of
complex challenges. Typically initial hits have insufficient affinity and
their binding must first be improved through in vitro affinity matura-
tion, whereby repeated rounds of mutagenesis and selection for anti-
bodies with improved affinity are performed2,3. This process is
frequently time-intensive and may take months to complete3, and
cannot simultaneously optimize for other desirable properties like
good solubility and low immunogenicity4,5. Computational techniques
that could aid in the faster identification of high-affinity antibodies
with desirable properties would likely accelerate this process.

Traditional computational approaches to antibody binding affi-
nity rely on estimation of free energy3,6,7. These are often limited by
high computational cost, low throughput and the limited reliability of
the free energy estimates generated by thesemethods7,8. Alternatively,
machine learning techniques have been applied to both protein engi-
neering and a variety of tasks in antibody design9–25.

Machine learning-based approaches face at least two major chal-
lenges. The first one is the lack of estimated uncertainty in the predic-
tions of the binding affinities or other properties. As the training data
can only ever cover a small fraction of the sequence space, machine
learningmodels typically perform poorly when asked to extrapolate far
beyond the bounds of their training set26. Deep learning models, while
flexible andpowerful, typically (outside of specific architectures) donot
provide confidence intervals or estimates of uncertainty in their
predictions27. Gaussian process models have been suggested as an
alternative that does provide well-calibrated confidence intervals28, but
they scale poorly to large datasets without the use of approximations
and are often infeasible for datasets larger than 5000 sequences29.

The second key challenge is the selection of an appropriate
representation for the input. Many different encoding schemes for
proteins have been described in the literature, includingmost recently
ones adopting language models; some of these are antibody-specific
and some are general to protein sequences30–35. There is however little
consensus on which of these is most appropriate for a given problem.
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The classic one-hot encoding scheme is simple to implement but
unnecessarily high-dimensional and uninformative, since every amino
acid is treated as being completely different from each other9,36,37.

In this paper, we develop an easy to implementmachine learning-
assisted pipeline for the identification of high-affinity antibodies that
addresses these challenges. We train an autoencoder model on over 3
million B-cell receptor sequences and show that this learned repre-
sentationprovides better results for a taskof interest than state-of-the-
art embedding schemes. Next, we develop a Bayesian neural network
trained to perform ordinal regression to model the relationship
between sequence and binding affinity or off-rate using the directed
evolution data. Importantly, this model provides an estimate of the
uncertainty in its predictions that cannot be achieved by the current
deep learning methods. To benchmark this approach, we show it
achieves competitive accuracyon a literaturedataset11, whileproviding
useful uncertainty information not provided by the deep learning
model in the original associated study. Finally, we perform in silico
mutagenesis using a simulated annealing strategy to explore sequen-
ces not present in the mutation libraries and assess their binding affi-
nities for experimental evaluation. Together, the autoencoder, the
Bayesian network for ordinal regression and the search strategy form
the key computational components of our RESP pipeline.

As a proof of concept to demonstrate the power of RESP, we
attempted to improve the affinity of a well-known antibody to a well-
studied antigen by engineering mutants of the heavy chain of Atezo-
lizumab (brand name Tecentriq) with improved affinity for pro-
grammed death ligand 1 (PD-L1)38,39. We randomized a large portion of
the Atezolizumab heavy chain sequence, binned the mutants using
yeast display and FACS, and sampled each bin for sequencing. The
mutant Atezolizumab sequence data was converted to a low-
dimensional representation using the autoencoder model, and the
encoded mutant Atezolizumab sequences were used to train a Baye-
sian ordinal regression model that scores each sequence on the
probability it will be a strong binder to PD-L1. Finally, a modified
simulated annealing algorithm was used to select sequences for test-
ing. We show here that our pipeline discovered a panel of Atezolizu-
mab scFv mutants with improved off-rates towards PD-L1, and one
characterized mutant displayed about a 10-fold decrease in off-rate
and 17-fold improvement in KD between human PD-L1 and Atezolizu-
mab. Our method should be useful as a general approach for
improving antibody-antigen interactions while reducing the experi-
mental effort to do so. The mutant we discovered could be a useful
reagent for treating PD-L1 positive tumors.

Results
Overview of the RESP pipeline
The RESP pipeline comprises four key components. First, we have
developed a simple encoding scheme in which an autoencoder is
designed to learn representations that incorporate features distin-
guishing human B-cell receptor (BCR) sequences from closely related
sequences.We show this learned representation enablesmoreefficient
and accurate modeling of trends in fluorescence-activated cell sorting
(FACS) data thanprovidedbyother popular learned representations of
protein and antibody sequences (see Table 1). This part of the pipeline
is general to any antibody sequence and this representation can be
reused for any project.

Second,weconstruct a yeast surface display library ofmutants for
a starting antibody sequence (Atezolizumab in this study, where resi-
dueswere randomlymutated in the antibodyheavy chain). Themutant
library was incubated with the labeled target antigen (PD-L1 in this
study) and screened for mutants with slower dissociation kinetics
(slower off-rate – i.e. likely tighter binders) by incubation in the pre-
sence of excess unlabeled target antigen. The flow cytometry experi-
ment collects mutants with lower, moderate, and faster off-rates than
the WT antibody, thereby binning the population into a series of

ranked groups (Figs. 1 and 2). The sequences are then determined by
sequencing and their group identities are distinguished using an
encoding scheme.

Third, we predict the sequence off-rate by developing a variational
Bayesian neural network to model the experimental data through
ordinal regression. This affinity model takes as input the encoded
sequences from the yeast surface display library and tries to predict the
likelihood that a given sequencehas a slowoff-rate (i.e. is a tight binder).
The variational Bayesian architecture provides strong regularization
that minimizes the risk of overfitting and estimates the model’s uncer-
tainty on each prediction. By using ordinal regression, wemapped each
sequence to a one-dimensional latent score that indicates the model’s
level of confidence to which sorting group the sequence belongs. This
approach naturally takes into account the ranked ordering of the
groups and is auseful approachaswehavedemonstratedpreviously for
protein engineering problems40. The affinity model should be retrained
for a new antigen or a different starting antibody sequence, while its
architecture can be kept unchanged.

Finally, we have modified the simulated annealing algorithm to
develop an in silico directed evolution algorithm that harnesses the
three previous pieces of the pipeline to efficiently explore the
sequence space surrounding the training set and identify sequences
likely to exhibit off-rates significantly lower than that of the parent
sequence. The resulting analysis pipeline is illustrated in Fig. 3. This
component provides an efficient approach for exploring the sequence
space and can be performed using a Bayesian neural network trained
for any antibody-antigen pairing of interest.

In this study, we have applied the RESP pipeline to improve the
binding affinity of Atezolizumab, an antibody targeting PD-L1. We
selected 21 candidate sequences with predicted slower off-rates than
the WT sequence and experimentally showed that one of them has an
off-rate about 10-fold slower and KD 17-fold tighter than the WT
Atezolizumab scFv.

Furthermore, we have evaluated the core computational compo-
nents of RESPondata acquiredbyMason et al.11 anddemonstrated that
our models showed the same accuracy as the CNN model in the ori-
ginal study while providing additional useful uncertainty information.

We now discuss each component of the pipeline in more detail.

Encoding antibody sequences using an autoencoder model
Wefirst developedanautoencodermodel trained to represent antibody
sequences and distinguish true antibody sequences from other closely
related sequences. We reasoned that the requirement to distinguish
antibodies from closely related sequences might force the encoder to
embed information about typical preferences at specific positions into
its learned representation. To this end, we have built a convolutional
autoencoder consisting of three main modules or components, illu-
strated in Fig. 4 (for details, see “Methods”) and compared its perfor-
mance with one-hot encoding, UniRep33, ESM-1b35, ProtVec34,
AntiBertY31 andAbLang32. This component of the pipeline is general and
does not need to be retrained for a new antigen or wild type.

We drew our training set for the autoencoder from the cAb-Rep
database41, which contains sequenced B-cell receptor repertoires for
121 human donors representing true antibody sequences. Specifically,
we filtered the high-depth repertoire dataset using the ANARCI soft-
ware package42 (see “Methods” for details) to remove incomplete
sequences and numbered the surviving sequences using the Chothia
numbering scheme, resulting in a dataset of 2,725,492 sequences. We
then augmented this dataset with an equal number of decoys, gener-
ated by making a copy of each true antibody sequence and randomly
modifying it at 7 positions. This numberwas chosen to strike a balance:
increasing the number of mutations makes it more unlikely that any
mutant will coincide with actual human B-cell receptor sequences
occurring in nature. Too many mutations however makes it too easy
for the classifier to distinguish the decoys from the rest, so that the
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encoder unit will no longer be forced to learn an information-rich
representation of the input. We experimented with different numbers
and 7 mutations provided a good balance.

To ensure that the decoys were in fact different from typical
human antibody sequences, we scored a random sample of approxi-
mately 50,000 original sequences and decoys with three different
models of BioPhi43, AbLSTM44, and ANARCI42 (see Fig. 5). Using any of
the three models/tools, the decoys exhibit significantly different
human-ness scores from the original sequences (two-sided Mann-
Whitney U test. For all three rating methods, using Python 3.9, Scipy
1.5.4 andPingouin0.5.2, both Scipy andPingouin indicate thep-value is
too small to calculate reliably given floating point error on double
precisionarithmetic and return≈0.0). Thedecoys are therefore clearly
rated by the models as less human, demonstrating that they are sui-
table to serve as decoys.

The autoencoder was trained on the full one-hot encoded cAb-Rep
plus decoy dataset with a test set of 200,000 sequences set aside for 8
epochs at which point the training loss had converged. The recon-
struction accuracy on the test set was > 99.99%, while the prediction
accuracy for the B-cell receptor vsmutant task was 97.4%. These results
suggest the autoencoder can compress the input sequence while
retaining all the information needed to reconstruct or classify it.Wewill
assess the performance of the autoencoder as an input for models to
predict binding affinity below under the Atezolizumab modeling
section.

Generation and screening of the Atezolizumab scFv heavy chain
library for improved off-rates
To use the RESP pipeline to develop antibodies against a target antigen,
we must first generate training data specific to that target antigen, so

Table 1 | Performance comparisons across different encoding types andmodel architectures for classification performance on
the Atezolizumab dataset

Encoding type Model type Num hidden
layer weights

MCC on 5× CV for all class
classification

AUC-ROCon5× CV for RH03 vs
rest classification

MCC on the test set for all-
class classification

One-hot (default) Bayesian NN w/ ordinal
regression (BNN-OR)

84,090 0.717 ± 0.009 0.967 ± 0.001 0.721

Autoencoder BNN-OR 12,810 0.69 ± 0.006 0.966 ± 0.002 0.703

UniRep BNN-OR 114,930 0.62 ± 0.01 0.947 ± 0.003 0.638

ProtVec BNN-OR 3930 0.641 ± 0.003 0.852 ± 0.003 0.650

ESM-1b BNN-OR 39,330 0 (model did not converge) – –

AbLang BNN-OR 23,970 0.636 ± 0.01 0.96 ± 0.002 0.664

AntiBertY BNN-OR 16,290 0.647 ± 0.007 0.961 ± 0.002 0.650

One-hot (default) Fully connected net (FCNN) 84,090 0.73 ± 0.01 0.973 ± 0.001 0.734

Autoencoder FCNN 12,810 0.731 ± 0.003 0.970 ± 0.001 0.734

UniRep FCNN 114,930 0.70 ± 0.01 0.963 ± 0.002 0.699

ProtVec FCNN 3930 0.690 ± 0.003 0.962 ± 0.002 0.683

ESM-1b FCNN 39,330 0 (model did not converge) – –

AbLang FCNN 23,970 0.715 ± 0.003 0.969 ± 0.0008 0.719

AntiBertY FCNN 16,290 0.709 ± 0.008 0.968 ± 0.001 0.707

One-hot (default) Random forest NA 0.673 ± 0.003 0.956 ± 0.003 0.672

Autoencoder Random forest NA 0.7 ± 0.009 0.960 ± 0.003 0.708

This table comparesboth different encoding types (one-hot, theautoencoder, UniRep, ProtVecetc) anddifferentmodels (a randomforestmodel, a Bayesiannetwork anda traditional fully connected
network) based on classification accuracy.
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Fig. 1 | Computational and experimental pipeline. Schematic illustration of the RESP computational and experimental pipeline, U-PD-L1 and B-PD-L1 are unlabeled and
biotin-labeled PD-L1, respectively.
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y-axis represents scFv expression (measured by the level of V5 epitope/AF647)

while the x-axis is PD-L1 binding/PE intensity. % values represent each group’s
percent of the total number of sorted cells.B Testing each sorted population for
binding intensity relative to theWT after 8 h of off-rate competition. LB are low-
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that we can train a model to recognize the types of sequences that will
bind it. In this study, our test case is the antigen PD-L1, and our starting
point is the single-chain fragment variable (scFv) heavy chain of the
Atezolizumab antibody against PD-L1, hereafter termed the wild-
type (WT).

We first tested the WT Atezolizumab scFv for functionality in the
yeast display format by testing binding to human PD-L1 (Supplemen-
tary Fig. 1), and demonstrated robust binding with 6.1 nM of antigen
present. The variable heavy (VH) domain of Atezolizumab was chosen
for mutagenesis because the structures of the Fab of Atezolizumab
bound to PD-L1 show that theheavy chain isprimarily involvedwith the
binding interaction45,46 (PDB codes 5XXY, 5X8L). Also, mutating only
the heavy chain facilitates deep sequencing because of the shorter
region needed to be read by MiSeq (in this case, a region of approxi-
mately 316 bp). Error-prone PCR47,48 of the heavy chain regionwasused
to randomly generate mutations of the gene, followed by transfor-
mation into EBY100 yeast to create a library of up to 78 million

Atezolizumab scFv variants. Because the binding interaction and off-
rate between the WT scFv and PD-L1 was very strong/slow
(KD = 1.75 nM, koff = 1.56 × 10−4 s−1)49, yeast display is better suitedunder
these conditions at decreasing the off-rate rather than directly
improving theKD because of the large volumes necessary tomaintain a
large molar excess of antigen over the scFv on the yeast surface along
with the very long incubation times needed to screen for improved KD

when the off-rate is already very slow50. Using theWT scFv as a control
during sorting, variants with faster,WT-level, and slower off-rates were
isolated from FACS sorts (Fig. 2A) and had their plasmids harvested
and subjected to multiple rounds of PCR to barcode each group for
MiSeq Nano PE250. Notably, the clones selected to have slower off-
rates seemed to split into two populations, one more intense than the
WT (orange cells, suggesting slower off-rates) and less intense than the
WT (green cells, suggesting faster off-rates) (Fig. 2B).

The Atezolizumab dataset consists of sequences derived from
mutants in 3 different bins of decreasing off-rates: RH01, RH02 and
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RH03. RH01 contains weak binders with a faster off-rate, RH02 contains
moderate binders with an off-rate similar to the wild type, and RH03
contains stronger binders with slower off-rates. After filtering for qual-
ity, 92,553 unique sequences (550,215 total sequences, since a sequence
can appearmore than once in a bin ormore than once in different bins)
were identified, among which 15,004 sequences exhibiting mutations
outside the region of the protein targeted for randomization were dis-
carded. There were 15,070, 26,122 and 34,439 unique sequences in
RH03, RH02 and RH01, respectively (Supplementary Table 1).

Each sequence was assigned to the category in which it occurred
with the greatest frequency and assigned a weight given by its fre-
quency in the assigned category plus one divided by the total fre-
quency plus three. If the frequency for a given sequence was equal in
two categories, it was discarded since it could not be unambiguously
assigned. As a result of these filters, 75,631 unique sequences
remained. The weight of each sequence corresponds to the posterior
probability that it belongs to a given category using a multinomial
likelihood and uniform Dirichlet prior (for more details, see

Input sequence, one-hot encoded
132x21 matrix + padding

Convolutional layer, size 21 kernel
40 output channels; gated convolutional

activation

Convolutional layer; size 11 kernel, 6 output
channels; gated convolutional activation

Encoded sequence: 132 x 3 matrix

Logistic regression
model

Linear layer + softmax

p(antibody | x) Predictive
module

Decoder

Encoder

Fig. 4 | The autoencoder architecture. The structure of the task-adapted auto-
encoder. The encoder module generates a learned representation for each input
sequence; the decoder module tries to reconstruct the input sequence, while the

classifier generates a binary prediction for decoy vs. human B-cell receptor in its
training set.

Fig. 5 | Scoring the human-ness of decoys and original sequences from the
autoencoder training set. We randomly sampled 47,772 sequences from the
autoencoder training set (half decoy, half human). We then score these for
human-ness using a the AbLSTM model, b the ANARCI tool and c the BioPhi
model from the literature. In all three cases, the model’s score for decoys is
significantly different from that for non-decoys, and the decoys are less human
than the original sequences. In all three cases, using the two-sidedMann–Whitney
U test as implemented in Python’s Scipy library version 1.5.4, the calculated p-
value is 0.0 (meaning that it is approximately 0 given floating point error). The

following conventions apply for eachboxplot. The upper and lower bounds of the
box are the 25th and 75th percentile of the data, and the whiskers are drawn at
1.5× the interquartile range (the distance from the 25th percentile to the 75th
percentile). The center is drawn at the median of the data, and the “notch”
represents the 95% confidence interval on the median (as determined by non-
parametric bootstrap). The diamonds represent “flier” points which lie outside
1.5× the interquartile range. Four asterisks indicates the p-value is <0.0001.
Source data are provided as a source data file.
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“Methods”). This weighting is important since it enables a model to
distinguish between sequences that can and cannot be reliably
assigned to a single category. A sequence that appears 5 times in both
RH02 and RH03, for example, is clearly less likely to be a strong binder
than a sequence that occurs 5 times in RH03 only.

Affinity modeling of the sorted sequences
The next component of the pipeline is an affinity model which takes as
input a representation of a candidate sequence and predicts its sort
category (RH01, RH02 or RH03) to which the sequence should belong.
This component requires experimental data specific to the antigen of
interest and will need to be retrained with fresh experimental data if a
new antigen of interest is selected.

Unlike most classifiers for protein engineering, the affinity model
is trained to perform ordinal regression and the last layer of the net-
work outputs a latent score value. A traditional classification model
treats the categories as nominal–they have no particular ordering–and
thus the model does not learn any way to rank the categories. This is
clearly inappropriate for ordinal sort data. Ordinal regression solves
this problem by imposing anordering on the categories and by using a
latent score todetermine intowhich category the sequence should fall.
This approach provides a straightforward means to rank sequences
and select them for experimental evaluation40. In past experiments40,
we demonstrated that given protein data with >3 binding categories,
ordinal regression provides improved performance for correctly pre-
dicting which sequences will occur in future, more stringent sorts, and
in particular outperforms the sequence ranking approach suggested
by Liu et al.10 Those experiments are difficult to reproduce on this data
since in this case we have only 3 binding categories, but given our past
results we use ordinal regression here as well.

The affinity model output score quantifies the extent of the
model’s belief that the sequence is likely to be a strong binder–higher
scores indicate the model is more certain the sequence should belong
to a more stringent sort. The score is next added to M − 1 learned
threshold values for M categories, followed by application of the sig-
moid to generate an output vector of M − 1 probability values. Each
element i of this output vector is the model-assigned probability that
the input sequence belongs to a binding category more stringent
than i.

Briefly (for details see “Methods”) our affinity model employs an
architecture similar to the Bayes by Backprop algorithm51, with the
difference that our model is adapted to perform ordinal regression. A
traditional fully connected neural network learns a specific value for
each weight and bias term in each hidden layer during training. A
Bayesian neural network, by contrast, treats each weight as a (usually
Gaussian) distribution and learns the parameters for each weight’s
distribution during training. Instead of fitting using maximum like-
lihood as is typical for neural networks, the Bayesian architecture is
fitted by approximating the posterior probability distribution using a
variational method. By sampling over the weight distributions
repeatedly, we can estimate the uncertainty in a prediction–or if pre-
ferred use themean of eachweight’s Gaussian distribution to generate
a point estimate prediction. In addition to generating an estimate of
uncertainty, the Bayesian neural network also provides strong reg-
ularization on the model parameters by penalizing deviations from
the prior.

The uncertainty information provided by themodel can clearly be
used in one of two ways. Predictions with high associated uncertainty
correspond to sequences that lie in relatively unexplored regions of
the input space. In practice, only predictions with relatively small
associated uncertainty should be selected for experimental evaluation
considering the cost and time, and that is the strategy we pursue here.

We compared the results generated by a vanilla fully connected
neural network trained toperformsimple classificationwith a Bayesian
net trained to perform ordinal regression across various encoding

types (Table 1). Note that both neural networks compared have the
samenumber of hidden layers andweights. Although thenon-Bayesian
network offers a modest improvement in performance, the Bayesian
network offers additional information about the uncertainty asso-
ciatedwith a given prediction that is crucial for analyzing the sort data,
since it enables us to gauge the relative reliability of the model’s pre-
dictions for candidate sequences.

The affinitymodel can use one-hot encoded sequences as input or
another representation. To determine whether the representation
generated by the autoencoder is useful as an encoding for the affinity
model, the Atezolizumab sequences were encoded using (1) the fully
trained autoencoder, (2) one-hot encoding, (3) the ProtVec encoding34,
(4) the UniRep embedding33, (5) the ESM-1b encoding35, (6) the AbLang
embedding32 and (7) the AntiBERTy31 embedding. The encoded data-
sets were split into a training (80%) and test (20%) portion, and a
fivefold cross validation was performed on the training portion for
each encoding type, using a Bayesian neural network trained to per-
form ordinal regression (Table 1).

While different encodings may well prove preferable for specific
tasks, the autoencoder is the only representation equivalent or
superior to one-hot encoding of antibodies for any model type
(Table 1). It offers equivalent performance despite a significant
reduction in model size and computational expense compared to the
one-hot encoding. Note that the autoencoder has roughly 20,000
parameters,while the FAIR-ESMmodel has 750million parameters and
the AntiBERTy model has 26 million.

The autoencoder therefore provides at least two concrete bene-
fits. First, it reducesmodel size and complexity significantly compared
with simple one-hot encoding, and it is substantially cheaper than
language models, since it has a small fraction of the number of para-
meters. Second, it provides a real-valued representation of each
sequence that can be used to cluster sequences ordetermine similarity
between them in later stages of the pipeline. Given these advantages,
we prefer the autoencoder to one-hot encoding even though in this
case they achieve similar performance.

In silico directed evolution to select the most promising
candidates
Weencoded theAtezolizumabdataset using the autoencoder and then
trained the Bayesian neural network (the affinity model) on the full
dataset for off-rates for 30 epochs. At this point, our pipeline uses the
trained affinity model to search for the sequence space surrounding
the training set to generate new candidate antibody sequences not
present in the training set.

At this stage it is desirable to reduce the size of the search space. If
we mutate a 118 amino acid sequence in silico, the search space to be
covered is impossibly vast. We prefer therefore to focus on a smaller
subset of positions that contribute significantly to binding affinity—
thosemost frequentlymutatedpositions in the top-scoring sequences,
i.e. the most promising sequences considered by the model. For this
dataset, we found that, using the top 500, 1000, 2000 or 4000
highest-scoring sequences to select the top ten most frequently
mutated positions, we retrieved the same set of positions that are used
in the subsequent search steps. This step in the pipeline is flexible and
positions can be selected using other criteria (e.g. only frequently
mutated positions present in CDRs).

In the following search steps (for details, see “Methods”), on each
iteration the model randomly selects a position in the wild-type
sequence and randomly mutates it to any amino acid. Note that all
mutants generated through this procedurehave the same length as the
wild-type sequence. The probability of selecting any specific amino
acid at a given position is given by the frequency of that amino acid in
the training set plus one, divided by the total number of sequences in
the training set plus 20. The new candidate sequence is scored by
encoding it using the encoder and scoring it using the trained affinity
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model. The score is assessed using the classic simulated annealing
criterion, whereby the candidate is accepted with a probability deter-
mined by its score, the score of the last accepted candidate and the
temperature. The temperature begins at a high value to allow
exploration of a large sequence space and decreases on each iteration,
so that the probability of accepting a proposed sequence without an
improved score decreases.

Since the average sequence in the training set contains just 7
mutations and the average high-scoring sequence contains even fewer
(3 mutations on average), at most positions the most common amino
acid is the one present in the wild type. Consequently, the algorithm
will tend to heavily sample sequences that are similar to the wild type.
Given the stochastic nature of the algorithm, however, it can explore

combinations not present in the training set and thereby enable us to
find new high-scoring sequences. Figure 6 illustrates how the best
achieved score to date evolves over the course of this optimization.

We ran 10 simulated annealing chains; all converged in under
1000 iterations. The accepted candidates from each chain with scores
> 90th percentile were harvested and duplicates were removed. We
evaluated the uncertainty on the scores by sampling 1000x from the
Bayesian neural net for each sequence. The top 50% of sequences with
the largest standard deviation on assigned scores were removed, since
we are least confident about thesepredictions. The 50% thresholdhere
is arbitrary and this process yielded 127 sequences.

We clustered these using median hierarchical clustering (the
resulting dendrogram is included in the Supplementary Information as

Fig. 6 | Analysis of pipeline results. a The per-position marginal distributions in
the two main clusters. Each main cluster has several subclusters as apparent from
the marginal distribution. Only positions mutated in either cluster are displayed.
Each position is numbered first using numbering from the wild-type sequence and
then in parenthesis using Chothia numbering. b illustrates the distribution of
scores assigned to sequences in each binding category by the variational Bayesian
model, which is designed to perform ordinal regression (classification on ranked
categories). The experimental data does not directly measure off-rates but rather

classifies sequences into three bins: RH01 (high off rate), RH02 (moderate off rate),
RH03 (low off rate). The higher the score assigned by the ordinal regressionmodel,
the more confident the model that the sequence has a low off rate, while lower
scores indicate greater confidence in a high off rate. c The accepted scores vs
iteration for a typical simulated annealing chain. The algorithm initially explores
sequence space impartially and as the temperature is reduced is gradually forced to
focus on themost promising regions it has found thus far. Sourcedata are provided
as a source data file for all panels.
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Supplementary Fig. 11). The results clearly suggest the selected
sequences can be divided into two main subgroups. The marginal
distributions (see Fig. 6) indicate the twomajor groups differ primarily
at position 77 but also contain subgroups with some other interesting
differences. Most selected sequences, for example, exhibit a R98C
mutation, but a subset of cluster 1 is unchanged from the wild type at
that position.

We cut the tree at a lower height to yield 11 subclusters and
selected the two highest-scoring sequences (or one if only one
sequence was present) in each cluster to yield 21 final candidates. This
thresholdwas selected to yield amanageable number of sequences for
experimental evaluation.

Examination of the mutations within the 21 sequences revealed
mutations at residues A40, K43, T58, I70, N77, A79, S85, A97, and R98
(in various combinations, see Supplementary Table 3 and Fig. 7).
Examination of the existing structures of the Atezolizumab Fab and
PD-L1 (PDB codes 5XXY and 5X8L) reveals that none of the mutated
residues contact PD-L1 in theWT sequence (Fig. 7). This suggests these
mutations improve the binding affinity through alterations of the
heavy chain conformation rather than directly improving binding
contacts. Another possibility is that these mutations stabilize the
conformation rather than altering it. Ruffolo et al. demonstrate, for
example, that in some cases stabilizing a specific antibody conforma-
tion can be beneficial for affinity52.

To explore these possibilities, we generated predicted structures
for the top-scoring mutants from the 21 sequences using IgFold53

without antigen. We note that the mutations present in high-scoring
sequences shift the conformation of both antigen-contacting regions of
the protein, especially the CDR H3. In the Supplementary, Supplemen-
tary Figs. 8 and 9 show the conformational change of R98C (amutation
present in many of the top-scoring sequences) and its surrounding
residues as well as and the formation of an apparent hydrophobic
pocket in the top mutant compared to the wild type. Note that the
mutations we describe are not in direct contact with the antigen. These
predicted structures suggest that the mutations selected by our pipe-
line function through changing the conformation of the contact regions

rather than by directly forming new contacts with the antigen by
themselves.

We also use the trained affinity model to computationally assess
the importance of individual mutations. We score (A) how much a
mutation would contribute to binding when only itself is introduced
individually to the WT without other mutations and (B) how much
binding affinity would change if a single mutation is removed from a
beneficial mutation combination. The full results are presented in
Supplementary Tables 4, 5 and summarized here. The results do sug-
gest that somemutationsmaybemore important thanothers, but also
suggest that 12 of the 19 mutations introduced are predicted to be
beneficial even in isolation, i.e. to increase the likelihood that the
sequence in question will be a tight binder. The remainder are very
slightly detrimental in isolation or cause no change, although they are
predicted to have beneficial impact in certain contexts. A[79]I or A[79]
T, R[98]C, I[70]A, A[97]V and T[58]A are predicted by the model to be
mutations with large beneficial impacts even in isolation.

Interestingly, the model is able to predict synergy between indi-
vidual mutations. For example, K43Q is predicted to have an almost
negligible beneficial impact if introduced into the wild type in isola-
tion, but is predicted to have a much larger negative impact on the
score if it is removed from the mutant K[43]Q,A[79]T,A[97]V,R[98]C.
A[97]T is very slightly detrimental in isolation, but is predicted to be
beneficial for A[40]T,K[43]E,T[58]A,N[77]D,A[79]T,A[97]T,R[98]C.
While A[79]T, for example, is predicted to be beneficial no matter in
what context it is introduced, the size of that impacton the score varies
as much as twofold depending on the other mutations present.

Validation of the predicted tight-binding antibodies
The 21 mutants (all in the heavy chain) generated by the model were
purchased as geneblocks and fusedwith theWT light chain sequenceby
PCR, followed by transformation into EBY100 yeasts. The small library
of 21 mutants was screened in a similar manner as the naive library,
except a longer competition time was used in the final screen (39 h) in
an attempt to separate the mutant with the slowest off-rate from the
rest of the 21 mutants (Supplementary Fig. 2). This process did not
result in a clearly separated mutant and sequencing of random clones
after the most stringent sort showed that out of 17 random sequences,
12 separate mutants (occuring in similar frequencies) were found to be
present. This suggests that a significant proportion of the 21-member
pool of mutants had significantly slower off-rates than the WT (which
exhibited significantly reduced fluorescence when compared with the
pool of mutants in the final, most stringent sort (Supplementary Fig. 2,
lower panels). It also appeared that essentially all of the 21 mutants
selected by the model had slower off-rates than the WT upon exam-
ination of the original/unsorted 21-member library after 8-hours of off-
rate competition at RT (Supplementary Fig. 2 top panels).

From the various mutants selected from the 21-member library
after the most stringent sort, we selected the I70A/A79T/A97Vmutant
(namedMutant 4, see Supplementary Table 2 for sequence) for further
characterization. This mutant, unlike the other mutants sequenced
after the stringent sort, did not have cysteine introduced into its
sequence so was more appealing because additional disulfide bonds
would not be formed by its mutations. In order to characterize the
improvement in off-rate/binding towards PD-L1 of the isolatedmutant,
wedetermined theKD and koff values of both theWTandMutant 4 scFv
towards PD-L1 using the yeast display format48,54. First, we determined
the apparent off-rates at RT on the yeast surface (Fig. 8A) and found
that Mutant 4 has a koff approximately 10-fold slower than WT Atezo-
lizumab (6.3 × 10−5 s−1, half-life 3.04 hrs for theWT vs. 6.5 × 10−6 s−1, half-
life 29.8 h forMutant 4). We then compared the koff values of Mutant 4
to the two other FDA-approved anti-PD-L1 mAbs (Durvalumab and
Avelumab, converted to the scFv format on the yeast surface) (Fig. 8B).
Mutant 4 displayed a substantially slower off-rate compared to both
WT Atezolizumab and Durvalumab and a noticeably slower value than
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S85
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Fig. 7 | The locations of mutations in the PD-L1-Atezolizumab complex. Loca-
tion of mutations in the 21 mutants in the structure of the Atezolizumab heavy
chain. Mutated residues are labeled and colored in yellow in the heavy chain
(green). PD-L1 is colored blue while the light chain is orange. Structure from RCSB
Protein Data Bank (5XXY) in Mol* Viewer45, 71.
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Avelumab. The order of off-rates of the FDA-approved mAb PD-L1
scFvs (Durvalumab <Atezolizumab <Avelumab) is consistent with a
previous study of these scFv values by a surface plasmon resonance
(SPR) binding assay49.

Next, we attempted to determine the binding affinity (KD) values
of theWTandMutant 4 scFv by titrating PD-L1 against each scFvon the
yeast surface. The Mutant 4 KD was about 17-fold tighter (on average)
than the WT (5.3 pM vs. 92 pM, Fig. 8C). It should be noted that
determining the KD on the yeast surface at such low concentrations of
antigen is difficult, given the excessive volumes necessary to maintain
a significant molar excess of antigen to scFv on the yeast surface at
lower antigen concentrations48, which also makes performing repli-
cates for each datapoint difficult. However, three separate KD mea-
surements gave significant (>10-fold) improvements in the binding
affinity, providing confidence in the figures listed in Fig. 8C.

In order to assess if the improved binding affinity and off-rate
observed on the yeast surface can be repeated after purifying each
scFv and reversing the orientation of the binding assay (instead of
scFv fused to the yeast surface and binding to soluble PD-L1, PD-L1 is
immobilized and allowed to bind to soluble scFv), we performed a
BLI (Bio-Layer Interferometry) binding assay and found thatMutant 4
has a much slower off rate than the WT, consistent with the yeast
surface display results. The dissociation of the mutant from PD-L1 in
this assay was minimal even after 2 h at RT while the WT was more
significant over about a 60min dissociation time. However, BLI gave
two KD values for the WT (219pM for the major species and 5.93 nM
for the minor species) while the Mutant 4 KD values were immea-
surable because of its very slow off-rate, leading to an inability to fit/
determine the kinetic constant values (see Supplementary Fig. 3). We
suspected the minor species was caused by a minor population of
partially unfolded scFv in the protein preparation. This observation
prompted us to examine whether the scFv and PD-L1 were mono-
meric or formed oligomers, so we tested this by mass photometry (a
method that can image oligomeric distributions of a protein in
solution55). Imaging PD-L1 (residues Met1-T239, expected MW 35-
38 kDa, range in MW due to glycosylation) revealed a predominantly

monomeric protein at the concentrations tested (7.4 nM, 18.5 nM,
and 74 nM) (Supplementary Fig. 4), consistent with previous studies
of human PD-L1 which found it to be monomeric56,57. This data sup-
ports that the KD measured on the yeast surface is between mono-
meric PD-L1 and scFv immobilized to the yeast surface. Imaging of
the WT or Mutant 4 scFv in solution revealed a mixed population of
monomer, dimer, trimer, and possibly higher MW oligomers at
100 nM each scFv. The WT and Mutant 4 scFv were purified twice
(using the sameexactmethod) and tested twice bymass photometry.
For the WT scFv, in both preparations it was a mixture of monomer
and dimer in solution while for an unknown reason the mutant was
either predominantly monomeric (1st batch) or a mixture of mono-
mer/dimer/trimer (batch 2) (Supplementary Fig. 4). Furthermore, we
noticed that the mutant scFv seemed more prone to aggregation
than the WT scFv. Taken together, the oligomerization and aggre-
gation of scFv in solution makes binding assays like SPR (surface
plasmon resonance) or BLI, where scFv is in solution and PD-L1 is
immobilized, inappropriate for KD determination because of the
difficulty of knowing the soluble monomeric concentration of scFv.

Evaluating the generality of RESP on an additional independent
dataset
To ensure the generality of RESP, we next tested it on the data from the
Mason et al. study11. Starting from a nonbinding mutant of trastuzu-
mab, they successfully recovered antibodies with similar affinity to the
original wild-type trastuzumab. Using the same training and test sets,
we encoded their sequence data using our autoencoder and trained a
variational Bayesian network with the same structure we used for our
data to predict binding and nonbinding status.

Our model achieves the same accuracy as theirs (Matthews cor-
relation coefficient 0.68, AUC-ROC0.91) for their test set and correctly
predicts the sequences they experimentally tested to be binders. (For
further details, refer to Supplementary Fig. 10). Our model likewise
assigns high scores to most of these sequences. Trastuzumab, for
example, is assigned a higher score than 94% of the sequences in the
training set, indicating a high confidence that it is a tight binder. The
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Fig. 8 |Determinationof theoff-rate andKDofmutant4. Experimental validation
of the Koff and KD on the yeast surface. A WT vs. Mutant 4 scFv dissociation after
92 h at RT on the yeast surface, T1/2 is half-life. B Comparison of WT Atezolizumab,
Mutant 4,Durvalumab, andAvelumabscFv dissociation over 28h atRTon the yeast

surface. C Binding affinity (KD) measurements determined on the yeast surface
between scFv and PD-L1 (3 independent measurements, also see Supplementary
Fig. 7)). Source data are provided as a source data file for this figure.
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distribution of scores for the training set and for the experimentally
evaluated sequences appear in Supplementary Fig. 10.

Unlike the Mason et al. pipeline, however, ours provides addi-
tional uncertainty information not available from their model. Our
affinity model’s uncertainty about test set predictions which turn out
to be incorrect is significantly higher than its uncertainty about test set
predictions which are correct (p < 1e−23, two-sided Mann–Whitney U
test). Consequently, we can use uncertainty to assist in determining
whether a prediction is likely to be reliable, which is not possible with
the pipeline developed byMason et al., andwedo not need to sacrifice
accuracy to obtain this advantage.

Discussion
We present here a pipeline for efficiently developing antibodies with
the following innovations. First, we develop a simple learned encoding
specific to antibodies. Our encoding contains not only the information
in the original sequence in easily recoverable form but also additional
encoded information describing key sequence features that differ-
entiate human antibodies from the surrounding sequence space. We
demonstrate that when training a model on antigen-specific experi-
mental data to capture trends in binding affinity, the same model is
more accurate if the input sequences are encoded using our
autoencoder-generated representation than if the input sequences are
instead encoded using popular state-of-the-art encodings like UniRep,
ESM-1b, AntiBertY and AbLang. Remarkably, for this particular task,
using all of the models we consider, UniRep, ESM-1b, AntiBertY and
AbLang exhibit performance inferior to one-hot encoding. This is
consistent with results reported by Makowski et al, who found that
UniRep or physicochemical properties did not improve performance
for antibody affinity prediction compared with simple one-hot
encoding58.

Next, we fit our training set using models designed to provide
both straightforward and easy to interpret sequence ranking coupled
with quantitation of uncertainty.We show thedistribution of sequence
reads across categories can be incorporated into model fitting as a
datapoint weight in a principled and straightforward way. Our Baye-
sian ordinal regression model yields an estimate of the predictive
posterior, thereby providing additional information not available from
traditional deep learning classifiers, whose predicted probability dis-
tribution across categories does not indicate the reliability of a given
prediction.

Finally, we design an algorithm to explore the sequence space
spanned by the training set. By estimating the reliability of each pre-
diction and by restricting our search to the space spanned by the
training set, we minimize the time and expense wasted on evaluating
poor candidate sequences.

We experimentally validated the power of this pipeline. By train-
ing ourmodel on a single large library, wewere able to select amutant
with an off-rate/binding affinity improvement of 10-fold/17-fold. This is
consistentwith our past results for protein engineering of CBX1, where
we demonstrated a similar strategy yielded improvement in binding
affinity equivalent to that achieved by a much lengthier directed evo-
lution process40. We note in passing that the Mutant 4 which we
identified could be useful in cancer therapy as an scFv as was a pre-
viously reported high-affinity anti-PD-L1 protein (amutant form of PD-
1, which bound PD-L1 with a KD of 110 pM59). Like PD-1, the Mutant
4 scFv is significantly smaller than a monoclonal antibody (30 kDa vs.
150 kDa) and so could possibly be more effective at tumor
penetration59,60.

We observe that this pipeline has several important advantages
over purely experimental approaches. Phage and yeast display only
permit selection of a small population, not of single clones, so that
additional experiments (such as ELISA or yeast KD measurements) are
needed to assess the clones having the tightest binding affinity. Only
strong binders present in the original library can be identified via these

techniques, so that often very large libraries and/or multiple libraries
are used to maximize coverage of sequence space. It often happens
that the best binders identified through this process still do not pos-
sess sufficiently strong affinity, so that the desired affinity must often
be achieved through so-called affinity maturation. In this process,
random mutations are introduced at selected sites and the resulting
focused library undergoes further rounds of screening and experi-
mental evaluation. Notably, the antibodies generated through this
process are not guaranteed to possess other desirable characteristics
like solubility or stability.

Take for example the process by which the Atezolizumab anti-
body itself was originally discovered (as described in US Patent
US8217149B2). Four rounds of panning on a phage display library
screened against the PD-L1 target were first used to retrieve 96 enri-
ched clones. Two sets of positions were then selected to construct two
further libraries for affinity maturation to improve binding. These in
turnwere used to conduct one plate sort followed by five or six rounds
of solution sorting. Finally, enriched clones from the last sort were run
through high-throughput ELISA screening to find the best candidate. It
is immediately obvious that this procedure, while reliable, is expensive
in time and cost. We note that it is very common that antibody engi-
neering requires construction of multiple libraries and high-
throughput ELISA of thousands of clones; for a couple of other
examples involving antibodies now in clinical trials, see US Patent
20180086848A1 and 8313746B2 among others.

In our approach, we were able to select a tight-binding antibody
after constructing only a single large library followed by FACS-based
sorting for off-rate and binning. This approach does not require any
high-throughput KD determinations or subsequent focused library
screens. We thereby eliminate the time needed to construct multiple
libraries, which is considerable, and the time and expense needed for
high-throughput ELISA screens/KD measurements. We replace this
with some computational steps which are easy to implement and run
quickly on a single computer equipped with a GPU. The Bayesian
neural network will need to be retrained any time a new antigen is
selected on data specific to that antigen and acquired as we descri-
be.The autoencoder, by contrast, can of course be reused and need
not be retrained.Moreover, our approach identified tight binders not
present in the original library, unlike traditional phage and yeast
display, in which only sequences present in the library can be
screened.

It is important to note that our approach can easily bemodified to
introduce in silico screens for stability, solubility and other desired
properties, unlike purely experimental techniques which cannot easily
optimize for these other properties simultaneously. It is straightfor-
ward to add additional filters to the search step of the pipeline – i.e. to
reject candidates suggested by the modified simulated annealing
algorithm if predicted solubility or immunogenicity is poor. In a purely
experimental approach, by contrast, these properties must be opti-
mized separately at considerable additional expense. The ability to
achieve improved affinity while easily introducing additional filters as
desired is a key advantage for a machine learning-assisted approach.

There are other strategies for computer-assisted antibody design
described in recent literature. We find our approach compares favor-
ably and offers several advantages. For example, Mason et al.11 achieve
a 3× improvement in affinity over the wild-type trastuzumab, andmost
of the mutants selected by their algorithm as promising in fact show
weaker affinity for the target, whereas we achieve a 17-fold improve-
ment in affinity. Mason et al. performed multiple rounds of mutagen-
esis and librarygeneration, including a stepwherepositions for further
mutagenesis were selected using rational design based on data from a
previous selection step. They require this additional effort in order to
constrain the search space, which we are able to constrain in silico
using our modified simulated annealing algorithm. Unlike the CNN
they propose, our Bayesian neural network provides uncertainty
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estimates correlated with the accuracy of a prediction so that predic-
tions which are likely to be unreliable can be eliminated.

Warszawski et al.61 describe a rational design approach (as
opposed to amachine learning-based approach). Their rational design
component, however, can only be as accurate as the predictions of the
Rosetta modeling software, which results in a low rate of correct pre-
dictions, nor is it possible to determine which predictions are most
likely to be reliable. They sought for example to improve on the
binding of an antibody called G6 to its target, VEGF, using a compu-
tational search procedure requiring approximately 250 cpu-days,
which is orders of magnitude more expensive than the computational
procedure we adopt here. Of the mutants selected by this AbLift
procedure for experimental evaluation, 60% were worse than the wild
type, and most of the remainder were only comparable. Only one of
the designs suggested by their approach actually improved the KD,
resulting in a fivefold improvement, which is a smaller improvement
than we achieve. It is worth noting that most or all the 21 mutants
selected by our model showed slower off-rates (thus likely higher
binding affinity) than the WT.

Khan et al.62 use a Gaussian process to model trends in binding
affinity as a function of input sequence. These authors did not
experimentally validate their approach, instead using affinity predic-
tions from the Absolut! software63 to determine whether a sequence
was a strong binder; the Absolut! Software is itself based on docking-
generated structures and affinities, so that it is not clear how closely it
tracks experimental data. Importantly, their approach suffers from
some of the well-known limitations of exact Gaussian processes. These
models exhibitO(N3) scaling in the number of training points (orO(N2)
in some more efficient modern implementations), and are thus com-
pletely infeasible for datasets larger than 5–10,000 sequences or so.
Our variational Bayesian network-based approachdoes not suffer from
any such limitation.

While we validated our approach using Atezolizumab as a starting
point and PD-L1 as a target, there is nothing in this approach which is
specific to the selected target, and thus this approach can easily be
adapted to other targets and problems. The pipeline we describe can
easily be modified to optimize only a single CDR or a subset of the
available positions, and to incorporate other models that rank candi-
date sequences for other desired properties in addition to affinity. We
anticipate that this pipeline and modified versions of it may therefore
prove to be a useful tool for accelerated antibody discovery and
development.

Methods
Software
Analysis and modeling was conducted using Python 3.9 with the
PyTorch library version 1.8.1, the Numpy library version 1.19.5, the
Scipy library version 1.5.4 and the scikit-learn library version 0.24.2. 0
was used as a random seed for model weight initialization, train-test
splitting etc.

Autoencoder model for antibody encoding
The training set used for the autoencoder is derived from the cAb-Rep
database41, consisting of sequenced antibody repertoires from 121
human donors (https://cab-rep.c2b2.columbia.edu/tools/). For these
experiments, we used the high-depth repertoire dataset. This dataset
was further filtered by numbering all sequences using the ANARCI
software42 with Chothia numbering. During this process, the ANARCI
software aligns the input sequences to domain-specific hiddenMarkov
model profiles for human antibodies using the HMMer software64. Any
sequences with low bitscores resulting from this alignment are rejec-
ted, thereby minimizing the chance the dataset will contain proteins
that are not actually antibodies. After numbering and filtering using
ANARCI, 2,725,492 sequences remained. Since these sequences are
from a database of antibody sequences and were filtered to select

those that hadahighprobability of being generatedby antibodyMSAs,
we can be quite confident they are antibodies. It should be noted that
the sequences we used here are VH heavy chain only to match the
sequences used in the experimental work.

The autoencoder accepts one-hot encoded sequences as input.
To number the positions of each antibody, we used the Chothia
numbering scheme65. A heavy chain may have as many as 132 amino
acids in this scheme, although ourmutants have fewer since the size
of the complementarity-determining regions or CDRs varies
between antibodies. Consequently, each one-hot encoded
sequence is a matrix with 132 rows and 21 columns. While there are
only 20 amino acids present, the 21st position indicates a blank,
since our heavy chains do not contain the full 132 amino acids
present and therefore have blanks at some Chothia-numbered
positions. It is of course also possible to merely leave blank posi-
tions as all zeros, although we prefer to explicitly encode blanks as
such for clarity and adopt this approach here. Each row contains a 1
at one position to indicate which amino acid (or a blank if no amino
acid) is present.

Frequently in selecting and designing sequences it is important to
determine which positions are most important for affinity or other
desired properties. This consideration suggests the learned repre-
sentationgeneratedby the autoencoder should have the samenumber
of rows (positions) as the input.Moreover, in order to ensure a specific
rowof the encoding contains information relevant to that position, the
decoder should be able to reconstruct the amino acid present at each
position using the information at that position (and possibly the
neighboring positions).

In keeping with these constraints, the encoder portion of the
model was designed to compress the input from a 132 × 21 matrix to a
132 × 3 matrix. The encoder module consists of a convolutional net-
work with two convolutional layers with appropriate padding and a
third linear layer. The first convolutional layer contains 40 kernels,
eachofwidth 21, while the second contains 20 kernels ofwidth 11. Each
convolutional layer uses gated convolutional activation, shown by
Dauphin et al.66 to improve performance of convolutional neural net-
works on language modeling tasks. For this activation function, the
sigmoid function is applied to the first half of the columns in the
output from that layer and these are thenmultiplied elementwise with
the second half. In other words, if the output of a layer for a given
sequence is a 132 × 40 matrix, for gated convolutional activation the
sigmoid function is applied to the first 20 columns, and these are then
multiplied elementwise with the remaining columns to yield a final
output of dimensions 132 × 20.

The final output of the linear layer in the autoencoder is a 132 × 3
matrix, which is an encoding of the original sequence. This encoding
becomes the input both to a decoder module and to a prediction
module. The decodermodule consists of a single layer of the following
form:

softmaxða �W +bÞ ð1Þ

Herea is one rowof the output of the encoder. Since theoutput of
the encoder is a 132 × 3 matrix, a is then a 3 dimensional vector. b is a
learned bias vector andW is a learned 3 × 21 weight matrix. Softmax is
the softmax function:

e zi

Σezj
ð2Þ

Where z is the 21-element vector resulting from a⋅W + b. The decoder
layer is applied to each rowof the encoder output. Thisdesign imposes
a strong constraint on the autoencoder: the model is required to
reconstruct the input using a decoder function with only a relatively
small number of parameters shared across all positions.
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The output of the encoder is also supplied to a predictionmodule
that differentiates sequences of human B-cell receptors from junk
sequences. The prediction module consists of a simple logistic
regression model, where the probability that the sequence is an anti-
body is given by:

1
1 + e�w�a ð3Þ

wherea is the full output of the encoder flattened froma 132 × 3matrix
to a length 396 vector andw is a length 396 learned weight vector plus
a learned bias term. Since both the prediction and decoder modules
have few parameters (by comparison with typical deep learning
models), neither can learn a complicated mapping from encoded
sequence to input, thereby placing the burden on the encoder to
generate as informative and relevant an encoding as possible.

To generate the junk sequences, we began with the
2,725,492 sequences selected from the cAb-Rep database and gener-
ated a mutant version of each. Our goal here is to force the model to
incorporate information about the relative abundance of specific
amino acids at specific positions into its encoding by requiring it to be
able to distinguish true antibody sequences from closely related
sequences.We could of course simplygenerate randomsequences but
this would not force the model to generate an informative encoding;
random sequences are so different from antibodies that the logistic
regression model which predicts whether a sequence is or is not an
antibody would be able to distinguish themwithout anymodifications
to the representation generated by the encoder. It is therefore pre-
ferable to generate decoy sequences that are just similar enough they
will be difficult to distinguish and yet different enough to exhibit
modifications rare in true antibody sequences.

Our experiments suggested 7mutations provided a goodbalance;
consequently, each copy was altered to a randomly chosen amino acid
at seven randomly selected positions. The end result of this process
was thus a library of roughly 6 million sequences, half of which are
human B-cell receptors and the other half of which are not. The
autoencoder model is thus trained both to encode an input sequence
and to embed information about typical features observed in true
antibody sequences. The autoencoder was implemented using the
PyTorch library in Python 3.6.9 and trained on the full 6 million
sequence dataset until convergence. The code for this and all other
steps described in this paper is available online at: https://github.com/
Wang-lab-UCSD/RESP (https://doi.org/10.5281/zenodo.7508853).

Accuracywas assessed separately for both the prediction task and
the reconstruction task using a held-out test set. These metrics are
used only as diagnostics because they assess the ability of the auto-
encoder to reconstruct its input. The true test of the autoencoder is
the degree to which the encoding it generates affects predictive
accuracy of a model trained with that learned representation as input.
To evaluate this more critical metric, we encode the WT and mutant
Atezolizumab library (construction described below) using the auto-
encoder described above, one-hot encoding, the ProtVec encoding
scheme, the UniRep encoding scheme, the FAIR-ESM encoding
scheme, the AbLang seq-coding scheme and the AntiBertY embed-
dings. For AbLang, we use the seq-codings option as recommended in
the documentation. For the AntiBertY embeddings, we average across
all the residue-specific representations in the sequence. For AntiBertY,
we initially tried using all of the residue-specific embeddings without
averaging across them, but found this led to poor performance. We
train a Bayesian neural network (construction described below), a fully
connected neural networkwith the samenumber of layers andweights
as the Bayesian network and a random forestmodel as a baseline using
these available encodings. We evaluate classification performance of
eachmodel on each encoding using 5× cross validation on the training
set and a held-out test set, with Matthews correlation coefficient and

AUC-ROC for identification of RH03 vs rest as metrics. A good
encoding should improve or at least not damage performance relative
to one-hot encoding across all three model types and especially the
Bayesian network, which is the model of most importance for
this study.

Generation of the WT and mutant Atezolizumab scFv library
(see also S2.2)
The WT Atezolizumab scFv49 was first cloned into the pYD1 yeast dis-
play vector to test its function on the yeast surface (see Supplementary
Fig. 1). For the 1st Atezolizumab library, the WT plasmid was used as a
template for PCR to prepare either theWT light chain with Q5 hotstart
DNApolymerase (NEB) or themutated heavy chain by error-prone PCR
with Taq Polymerase (Invitrogen) as previously described48. The 2 PCR
products were assembled into one product by overlap extension PCR
and co-electroporated into EBY100 yeasts along with linearized pYD1
vector as described67. The library transformation resulted in 7.8 × 107

transformants, based on colony counts after serial dilution onto
selection plates.

Atezolizumab scFv library screening by yeast surface display
(see also S2.3)
The optimal competition time for the off-rate screens was determined
as previously described50,54. The WT or mutant library yeasts were
thawed and inoculated into selective growthmedia and grown at 30 °C
for 22 hrs. The library/WTwere induced at 20 °C in galactose induction
media 42 hrs. Afterwards, WT or library was labeled with biotin-PD-L1
(Sino Biological 10084-H08H-B) 3 hrs at RT in TBS-BSA, followed by
incubationwith excess non-biotin-PD-L1 (Sino Biological 10084-H08H)
for the determined competition period (at RT, in TBS-BSA). For FACS,
yeasts were labeled with anti-V5 (Thermo Fisher R960-25, previously
known as 46-0705) at 4 °C in TBS-BSA, followed by SA-PE (BD 554061)
and goat anti-mouse IgG2a AF647 (Thermo Fisher A21241) on ice for
30min in TBS-BSA. Cells were sorted for faster, moderate, and slower
off-rates (see Supplementary Fig. 12). Hits were grown up to high
density at 30 °C and made into frozen stocks at −80 °C.

Preparation of the DNA libraries of mutants with faster, WT-
level, and slower off-rates to PD-L1
To isolate plasmids from each binding group from the initial library
screen, plasmids were harvested from yeasts by Zymoprep Yeast
Plasmid Miniprep II kit (Zymo Research), eluted with ddH20, con-
centrated with the DCC-5 (DNA Clean and Concentrator 5) kit (Zymo
Research), then subjected to the 1st round of PCR using primers SeqF/
SeqR (Supplementary Table 2, designed to only amplify the heavy
chain regions). The 1st PCR was performed with Q5 Hotstart DNA
Polymerase (NEB) using a moderate number of PCR cycles (17, deter-
mined tobeoptimal by qPCR) to avoid over-amplification of the library
and the PCR product concentrated with DCC-5 kit and purified by
agarose gel extraction. The second PCR was carried out with various
primers (Low/Medium/High Binder NGS F, NGS R) to barcode each
binding group (see Supplementary Table 2) for MiSeq Nano PE250
using KAPAHiFi Hotstart ReadyMix (KK2601) for 5 cycles (determined
optimal by qPCR). The PCR products were purified with Ampure XP
beads (A63880) and submitted for QC using TapeStation analysis
(Agilent HS D1000) before submission for MiSeq sequencing at the
Institute of Genomic Medicine, UC San Diego.

Generation and screening of the focused 21-mutant library (see
also S2.4)
Twenty-one geneblock fragments (IDT) for the 21-mutant heavy chains
were fusedwith the light chain by overlap extension PCR (Q5 hotstart),
followed by co-electroporation into EBY100 yeasts with the linearized
pYD1 vector as with the 1st library (>107 transformants). The resulting
library was screened essentially as for the 1st library, except the final
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sort involved a very stringent competition time (39 h at RT). The hits
were harvested by yeast plasmid miniprep, transformed into GC10
competent cells, harvested by bacterial miniprep, and sequenced
using standard Sanger sequencing.

Cloning WT Atezolizumab, Mutant 4, Durvalumab, and Avelu-
mab scFv into the pYD1 vector
The geneblocks for Durvalumab and Avelumab were purchased from
IDT with yeast-optimized codons and PCR amplified using the fol-
lowingprimers: DurvalumabwithAtez LE F&Durv LER, Avelumabwith
Atez LE F&Avel LER (Supplementary Table 2). TheWT/Mutant 4 genes
were PCR amplified from their plasmids using Atez LE F/R primers. The
PCR products were double digested using XhoI/NheI-HF (NEB) and
ligated into linearized/dephosphorylated pYD1 (using the same
enzymes to digest and rSAP/T4 DNA ligase (NEB) to dephosphorylate/
ligate) and the ligation product transformed into GC10 competent
cells (42-658, Genesee Scientific). Plasmids were isolated using a Zippy
Plasmid Miniprep Kit (Zymo Research) and sequence verified before
transformation into EBY100 yeasts. These constructs were used for the
yeast koff and KD determinations.

Determination of the WT/Mutant 4/Durvalumab/Avelumab KD

and koff values on the surface of yeast (see also S2.5)
The koff was determined at RT essentially as described54 and in section
S2.3 in TBS-BSA. The resulting data was fit to a one phase decaymodel
with GraphPad Prism 9.3.0 software using the following equation (Y is
fraction of yeast bound to biotin-PD-L1, X is time, Y0 = 1 (fraction of
yeast bound to biotin-PD-L1 at the 0 s competition time point), plateau
is a constant based on nonspecifically bound yeast, and K is Koff):

Y = ðY0� PlateauÞ× expð�K ×X Þ+Plateau ð4Þ

The KD values on the surface of yeasts were determined basically
as described48 and the data fit to the following equation:

Y =
BmaxX
Kd +X

ð5Þ

(Bmax is maximumMFI value, X the concentration of PD-L1). Due
to the very slow off-rate of Mutant 4, it was necessary to incubate
yeasts with PD-L1 for 6 days at RT.

Cloning and purification of WT/Mutant 4 Atezolizumab scFv
(also see S2.6)
The scFv sequences were PCR amplified from the pYD1 vector and
cloned into the pET27b(+) (69863-3, MilliporeSigma) vector for bac-
terial expression. The vectors were transformed into Rosetta(DE3)
cells (70954-3, MilliporeSigma) and the scFv-His6 fusions purified
essentially as described68. The scFv stocks were frozen in PBS + 10%
glycerol at −80 °C. SDS-PAGE was used to assess purity (Supplemen-
tary Fig. 5) and protein concentration determined by BCA assay
(Pierce #23227).

Determination of theKD values by bio-layer interferometry (BLI)
BLI was performed at the Biophysics and Biochemistry Core at The
Scripps Research institute on an Octet Red96 at 25 °C. Binding reac-
tions were performed in 1× kinetic buffer (Sartorius, 18-1105) consist-
ing of 20mM phosphate buffer, pH 7.6, 2mM KCl, 150mM NaCl, and
0.02% Tween 20, 0.1% BSA, .05% sodium azide. Biotinylated PD-L1
(Sino Biological 10084-H08H-B) was immobilized on SA Biosensors
(Sartorius, 18-5019) bydipping the sensor into 100nMb-PD-L1 until the
signal was saturated. A blank loading channel was used as a negative
control. Kinetic experiments were performed with both scFv WT and
scFv Mutant 4. Experiments were performed using a gradient of con-
centrations, with the scFvWT ranging from475 nM to0.6 nM, and scFv

mutant ranging from 160nM to0.2 nM. Binding kinetics were assessed
via Octet Data Analysis HT Software Version 12 using a 2:2
binding model.

Mass photometry
Mass photometry was performed on a Refeyn TwoMP at the Scripps
Research Institute, at room temperature. The PD-L1 used was biotin-
PD-L1 (SinoBiological 10084-H08H-B) and purified scFv of the WT or
Mutant 4. Each characterization was performed in 1X PBS (phosphate
buffer from Cytiva BR100672). For each experiment, the scFv or PD-L1
(or both) were diluted with PBS to the final concentration. Each
experiment resulted in a 60 s movie, and mass analysis performed
using Refeyn DiscoverMP analysis software v2.3.0. Mass calibration
was performed using Urease (Sigma, U7752) and Thyroglobulin (Mil-
lipore, 609310).

Sequence processing
Rawpaired end reads from theAtezolizumabdataset were checked for
quality (for details of the filtering criteria, see the Supplementary
Information section S2.1). After the sequences had been processed,
they were split into an 80% training set and a 20% test set. All training
and cross validation was performed on the 80% training set only.

Inmany cases, sequences occurred inmore thanone category but
with a different frequency in each. Clearly, our level of confidence in
category assignment is reducedwhen the frequency of the sequence in
the assigned category is notmuch greater than its frequency in others.
To encode our level of confidence, we weight each sequence with the
frequency in the assigned category plus one divided by the total
number of occurrences plus three. This is the posterior probability
using a multinomial likelihood and a uniform Dirichlet prior (a
Dirichlet distribution with α = [1,1,1]).

The ordinal regression model used here employs binary cross-
entropy loss:

XN

i

XM

j

� yi,j log pi,j

� �
+ 1� yi,j
� �

log 1� pi,j

� �� �
ð6Þ

where p for datapoint i is the model-assigned probability that
sequence belongs to a more stringent/tighter-binding category than
category j, out ofM possible categories and forN data points, and y(i,j)
is either 0 or 1 and indicates whether the sequence does or does not
belong to a tighter-binding category. (For details of how p is
calculated, see the next section). This loss function for sequence i is
multiplied by the weight for sequence i so that the model is more
weaklypenalized formisclassifying sequenceswhere our confidence in
the category assignment is low.

Construction of the ordinal regression model
The Atezolizumab mutant library data was analyzed using Bayesian
neural network-based ordinal regression. Each mutant Atezolizumab
sequence is first encoded by the autoencoder, yielding a 132 × 3matrix
which becomes the input to the Atezolizumab model. The model
architecture is illustrated in Fig. 9. At a high level it is similar to the
Bayes by Backprop architecture described by Blundell et al.51, except
our model has been adapted to perform ordinal regression as descri-
bed below. We now walk through the architecture in more detail.

In a traditional neural network, each parameter is a learned
parameter that is fixed once the model is trained. In the variational
network, by contrast, each parameter has an associated Gaussian dis-
tribution described by amean and a standard deviation whose optimal
values we learn during training. To generate predictions, rather than
using the fixed learned parameters as in a traditional network, we
sample from the weight distributions N times to generate N predicted
values. The variance in these predictions provides a measure of our
uncertainty around the final prediction. This approach requires amore
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complicated training procedure than that associated with traditional
neural nets which we now discuss.

Briefly (for a full derivation see ref. 51), we seek parameters θ for a
distribution on the weights w, that will minimize the evidence lower
bound or ELBO given by:

argminθKL½qðw∣θÞ∣∣pðwÞ� � Eqðw∣θÞ½logðpðD∣wÞÞ� ð7Þ

where qðw∣θÞ is a distribution over the weights that approximates the
true Bayesianposterior, p(w) is the prior and pðD∣wÞ is the likelihoodof
the data. The parameters θ are the parameters of the normal dis-
tributions for all of the weights in each hidden layer as illustrated in
Fig. 9. The second term is the negative log likelihood, while the first
term is a regularization term that measures the divergence between
theweight distribution learned by themodel and the prior.We chose a
Cauchy prior with unit scale and location zero, which adds some
additional flexibility since some of the weights are now expected to be
outliers.

We approximate the cost via a Monte Carlo sampling procedure.
Using the current set of parameters θ (the means and standard
deviations of the weight distributions), for each minibatch we draw n
sample sets of weights to yield the following approximate cost

function:

Loss≈ð 1
nM

Þ
Xn

i

log q wi,∣,θ
� �� �� log p wi

� �� �� logðpðD∣wiÞÞ ð8Þ

where M is the number of minibatches and the other terms are as
above. In other words, for each minibatch of training data, we draw n
sets of sample weights and then average the approximate cost func-
tion across these and across the minibatches in the training set.
Backpropagation for this cost function is made tractable by using the
reparameterization trick of Kingma and Welling69. We sample from a
standard normal distribution with mean zero, standard deviation 1,
then add the mean and multiply by the standard deviation of the dis-
tribution for weight j. In order to ensure that the standard deviation is
always positive, instead of using the standard deviation itself as a
parameter, we parameterize each distribution with a parameter ρ that
is converted to the standard deviation using the softplus function:

σ = logð1 + eρÞ ð9Þ

By using this reparameterization trick, the gradient of the
approximate cost function with respect to the mean and ρ of the dis-
tribution for each weight and bias term in each hidden layer is easily
calculated. The advantages of this model structure are two folds. First,
it imposes strong regularization on the model parameters that as

Fig. 9 | The variational Bayesian neural network architecture. aA comparison of
a variational Bayesian neural network with a fully connected architecture. Both
networks map a vector of input values x1, x2,…xn to a hidden layer vector H1_1,
H1_2,…H1_n by a matrix multiplication followed by a nonlinear activation. In the
fully connected network, however, each element of the hidden layer weight matrix
is a learned value and once the network is trained it is a fixed value. In the Bayesian

network, by contrast, each element of the hidden layer weight matrix is a Gaussian
distribution specified by a learned mean and a learned standard deviation. To
generate predictions, we can sample from the weight distributions, which provides
an estimate of the uncertainty on our predictions. b The structure of the ordinal
regression scoring model used in the pipeline.
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demonstrated by Blundell et al.51 can provide improved performance
for some tasks. Second, it enables us to estimate the uncertainty in our
predictions and thereby ascribe greater weight to the most confident
predictions when selecting sequences for testing.

All these features of our model are shared in common with most
Bayesian neural network architectures. We however use our model
instead to perform ordinal regression. As illustrated in Fig. 9, the last
hidden layer of the Bayesian network outputs a single latent score
value. This score is added toM − 1 learned threshold values for the case
where there areM categories. The sigmoid function is then applied to
each of the M − 1 outputs to generate an output vector of M − 1
probability values. Each element i of this output vector is the model-
assigned probability that the input sequence belongs to a binding
category more stringent than i. Since there are three binding cate-
gories (RH01, RH02 and RH03 or weak, moderate and strong), the
output vector is 2-dimensional; the first element indicates the prob-
ability that the sequence belongs to either RH02 or RH03, while the
second element indicates the probability the sequence belongs to
RH03. The model is trained by minimizing the binary cross-entropy
loss described above.

This arrangement treats the categories as ranked: sequences with
a higher latent score are thereby assigned to higher categories70. Note
that it does not predict the actual off rate or binding affinity. Rather,
the score reflects our confidence the sequence will be a strong binder
relative to others in the training set. This approach has been used
previously by Parkinson et al. to rank sequences on a protein engi-
neering task and select them for experimental evaluation40.

Sequence scoring and selection
Wemodify the classic simulated annealing algorithm and equip it with
our trainedmodels toperform in silico directed evolution as illustrated
in Fig. 3. First, we compute the frequency of each amino acid at each
position across the entire dataset, add 1 to all values and divide by the
total number of sequences in the dataset plus 20 to retrieve amarginal
probability for each amino acid at each position. By adding 1 to all
frequencies, we ensure there is a small but nonzero marginal prob-
ability for amino acids not observed in the dataset.

Next, we select the 500 highest-scoring sequences in the Atezo-
lizumab dataset and find the top 10most frequentlymutated positions
in these sequences. The selection of 10 sites here is arbitrary; we could
use more or fewer if desired. On each iteration, we select with equal
probability any of these top ten sites. The selected site is randomly
reassigned to a new amino acid; the probability for the selection of any
given new amino acid is determined by the marginal probabilities
calculated as described above. Assume, for example, that 80% of all
sequences observed in the dataset carry an arginine at position 100,
another 10% carry lysine and so on. If position 100 is selected on a
given iteration, this position will be mutated with an 80% chance of
being converted to an arginine, a 10% chance of being converted to a
lysine and so forth.

The current sequence and the mutated proposed sequence are
both encoded using the autoencoder and the trained ordinal regres-
sionmodel is used to assign a score to each. The proposed sequence is
accepted with a probability given by:

pðacceptanceÞ= e
�ðSbest�Sproposed Þ

T ð10Þ

Where T is the temperature and Sbest and Sproposed are the best score to
date and the score of the proposed sequence respectively.

For a further illustration of this algorithm, refer to Supplementary
Fig. 6. This procedure is a simple approach for exploring the sequence
space while ensuring we do not venture too far from the training set.
To ensure reproducibility and avoid stochastic fluctuations, for this
stage of modeling the Bayesian neural network generated predictions
using themean of the distribution for each weight as the weight value.

Statistics and reproducibility
No statistical method was used to predetermine sample size. When
processing raw sequence data, unreliable sequence reads (reads con-
taining one or more bases with a phred quality score <10 or where the
paired end reads did not match in the overlap region) were discarded
before any further analysis or processing was conducted. These steps
were taken to ensure that only reliable readswere used for analysis. No
data was otherwise excluded from any subsequent analysis or model
training. The test set for evaluating model performance was con-
structed by randomly selecting 20% of the assembled sequences and
assigning these to test. The random partition was generated using the
Mersenne Twister random number generation algorithm as imple-
mented in Python’s numpy library version 1.19.5 with a seed value of 0.
When model performance was assessed using cross-validations, the
cross-validation splits were generated by randomly partitioning the
dataset into 5 splits of equal size using the KFold function in Python’s
scikit-learn library version 0.24.2.

The final evaluation ofmodel performancewas conducted “blind”
by generating predictions for sequences not present in our data and
experimentally evaluating these predictions as described above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequence read data generated for this study has been uploa-
ded to the Sequence Read Archive (SRA) database under accession
code PRJNA813220. The antibody sequence data used to train the
autoencoder used in this study are available in the cAbRep database
[https://cab-rep.c2b2.columbia.edu/]. The construction of the cAbRep
database is described in Guo et al.41. Source data are provided with
this paper.

Code availability
The code used in this study is available online at https://github.com/
Wang-lab-UCSD/RESP (https://doi.org/10.5281/zenodo.7508853),
together with instructions on how to reproduce all key computational
experiments.
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