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Fundamental energy cost of finite-time par-
allelizable computing

Michael Konopik 1,2, Till Korten 3, Eric Lutz2 & Heiner Linke 1

The fundamental energy cost of irreversible computing is given by the Land-
auer bound of kT ln 2/bit, where k is the Boltzmann constant and T is the
temperature in Kelvin. However, this limit is only achievable for infinite-time
processes. We here determine the fundamental energy cost of finite-time
parallelizable computing within the framework of nonequilibrium thermo-
dynamics. We apply these results to quantify the energetic advantage of par-
allel computing over serial computing. We find that the energy cost per
operation of a parallel computer can be kept close to the Landauer limit even
for large problem sizes, whereas that of a serial computer fundamentally
diverges. We analyze, in particular, the effects of different degrees of paral-
lelization and amounts of overhead, as well as the influence of non-ideal
electronic hardware. We further discuss their implications in the context of
current technology. Our findings provide a physical basis for the design of
energy-efficient computers.

There is wide agreement that Moore’s law regarding the exponential
growth of the number of components in integrated circuits1 is
coming to an end2,3. One of the main physical reasons that prevents
further miniaturization is unavoidable heat generation2,3. A much-
improved energy efficiency of computing is therefore a key
requirement for any ‘More-than-Moore’ technology4. The funda-
mental limits to the work cost and the heat dissipation of computing
are given by the Landauer bound of kT ln 2 per logically irreversible
bit operation5, where k is the Boltzmann constant and T the tem-
perature. The existence of such a lower limit has been recently
established in a number of classical6–11 and quantum12,13 experiments.
However, the Landauer bound is only asymptotically reachable for
quasistatic processes14,15. In reality, however, all computing tasks take
place in finite time16–24, and the energy cost per operation necessarily
increases with operation frequency.

Empirically, the rapid growth in power consumption with
increasing processor frequency has triggered, in the past two decades,
a switch to increased parallelization in order to achieve performance
gains25,26. Parallel processors have by now become mainstream27,
however, their finite-time energy consumption limits have not been
investigated so far.We here seek the fundamentalminimal energy cost

of finite-time parallelizable computing using the tools of none-
quilibrium thermodynamics28. Our aim is to complement discussions
of ultimate limits, which, while essential, possess only little practical
relevance29 or do not address the fundamental advantages of parallel
computing30, and of more applied considerations31,32, with only
restricted generality. A key insight of our study is that, when a given
problem is to be solved in finite time, the energy cost per operation of
a parallel computer can be kept close to the Landauer limit even for
large problem sizes, whereas that of a serial computer fundamentally
diverges. We further analyze how this result is affected by different
degrees of parallelization and various amounts of overhead
operations27, as well as the effect of leakage currents and
provisioning33–36. We also consider the case of reversible
computing37,38. We finally place our results quantitatively into the
context of existing and emerging technologies39–43.

We base our analysis on the following assumptions (Fig. 1): (i)
Computing problems with a (variable) number N of logically irre-
versible operations should be solved in (constant) finite time T . In
order to stay within this time limit, (ii) an ideal serial computing
strategy has to adapt dynamically its processing frequency (time per
operation τs; Fig. 1a left), whereas (iii) an ideal parallel computing
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strategy is able to adapt the number n of processors, keeping con-
stant its processing frequency (time per operation τp; Fig. 1a right).
These assumptions are well justified. Assumption (i): While the
available time is not exactly fixed, there is usually a limit on how long
calculations can be run27,44. Assumptions (ii) and (iii) may be viewed
as a minimal model of processors that are implemented in modern
technology. A single CPU core indeed behaves similarly to our
idealized serial computer by adapting its frequency to the workload
using dynamic frequency and voltage scaling31,32. On the other hand,
a multi-core CPU behaves like our idealized parallel computer by
deactivating unused cores using deep-sleep states45.

Results
Nonequilibrium Landauer bound
Let us first consider a single algorithmic computation of duration τ.
Because it occurs in finite time, such a nonequilibrium process is
necessarily accompanied by the dissipation of an amount of workWdis

into the environment28. The energetic cost of a finite-time, logically
irreversible bit operation may hence be written as a generalized
Landauer bound,

W ðτÞ= kT ln 2 +WdisðτÞ, ð1Þ

where Wdis/T ≥0 is the nonequilibrium entropy produced during the
process28. Equation (1) reduces to the usual Landauer limit for quasi-
static computation, indicating that more work per operation is
required for fast operations and, in turn, more heat is dissipated. The

equilibrium contribution kT ln 2 is obtained for fully mixed (that is,
unbiased) memory states15.

Since we are interested in the fundamental energy bound, we
focus on optimal protocols with minimal entropy production16–19,22,24.
In that case, Wdis = a/τ, both for slow and fast bit operations16–19,22,24,
where a is an energy efficiency constant that depends on the system
(Fig. 1). In particular, the optimal 1/τ scaling has been shown to hold
generically for any hardware implementation, for any time region (that
is, slow, moderate and fast driving), for systems that fulfill detailed
balance22. It has also been demonstrated to apply at all times to over-
damped dynamics in the absence of detailed balance16, which is the
case for realistic memories that store information in a nonequilibrium
steady state. Such behavior has been observed experimentally close to
equilibrium in overdamped6–8 and underdamped21 systems; it further
appears for transitions between metastable states46,47. It is worth not-
ing that the kT ln 2 limit is valid for any (biased) statistics of the input
memory state, when driving protocols are designed to be thermo-
dynamically optimal for the fully mixed state48. This remark may be
extended to ‘modularity dissipation’ which occurs when inputs to
various computational units (an issue pertinent for parallelization)
contain correlations49–51: If the computational units are designed to be
thermodynamically optimal for uniform input, then kT ln 2 will be
payed for each bit operation regardless of the true input statistics48.

In view of Eq. (1), the total work cost associatedwith the solution of
a computing problem that requires N bit operations within the finite
time T is given by,

W totðN,τÞ=NW ðτÞ=NkT ln 2 +NWdisðτÞ, ð2Þ

where τ = τðT Þ is in general a function of T . The scaling of the dis-
sipative term with the problem size N depends on the type of com-
puting considered. It may be concretely determined for the two
idealized computer models introduced above: (i) for an ideal serial
computer, the available time per operation decreases with the pro-
blem size as τs = T =N = 1=f op (Fig. 1a left), whereas (ii) for an ideal
parallel computer that solves theproblemwith a number ofprocessors
n(N) = bN (with b∈ (0, 1]) that scales linearly with N, the time per
operation stays constant, τp =nT =N =bT (Fig. 1a right). The quantity
fop can be interpreted as the operation frequency of the serial pro-
cessor, whereas 1/b determines the number of operations performed
by each processor; in the following, we set b = 1 (the effect of different
values of b is discussed in the Supplementary Information, Sec. S3).
The fundamental total energy cost per operation for the serial imple-
mentation, therefore, scales with the problem size as,

W ser
totðN,T Þ
N

= kT ln 2 +
a
T N = kT ln 2 +af op: ð3Þ

The corresponding scaling for the parallel implementation reads,

Wpar
tot ðN,T Þ
N

= kT ln 2 +
a
bT : ð4Þ

Equations (3) and (4) highlight an important, fundamental dif-
ference between serial and parallel computing: whereas the
energy cost per operation for a serial computer necessarily
increases at least linearly with N, the energy cost per operation
for an ideal parallel computer is independent of N (Fig. 2a); it
depends only on the two constants a and b as well as the chosen
T . If the computation task permits to choose a large T , then the
finite-time energy cost per operation for the parallel computer is
bounded only by the Landauer limit, even for very large N.
Equations (3) and (4) further imply that for a computer with a
maximum power budget Pmax =Wmax=T , the maximal problem
size Nmax that can be solved within the (fixed) time limit T is
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Fig. 1 | Assumptions for ideal serial and parallel computers. a Schematic illus-
tration of the threemain assumptions: (i) The total time T available to solve a given
problem requiringN irreversible computing operations is limited; (ii) an ideal serial
computer (left, blue) reduces the time per operation τs with increasing problem
size N; (iii) an ideal parallel computer (right, red) is able to increase the number of
processors n proportional to the size N in order to keep the time per operation τp
constant. bOptimal 1/τ behavior of the energy consumption of a single algorithmic
operation of duration τ, and the effects that the serial (blue) or parallel (red)
computing strategies have on the energetic cost of computation.
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proportional to the square root of the power
ffiffiffiffiffiffiffiffiffiffiffi
Pmax

p
for a serial

implementation

Nser
maxðPmax,T Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aPmax + ðkT ln 2Þ2

q
2ða=T Þ � kT ln 2

2ða=T Þ ,
ð5Þ

whereas it is directly proportional to the power Pmax for a parallel
implementation

Npar
maxðPmax,T Þ= PmaxT

kT ln 2 + ða=bT Þ : ð6Þ

An ideal parallel computer can therefore, in principle, solve
quadratically bigger problems within the same time and energy con-
straints as an ideal serial computer (Fig. 2b). Within the power budget
range of 1W–400MW shown in Fig. 2b, the ideal parallel computer
solves problems that are 7 to 12 orders of magnitude larger than the
problems solved by an ideal serial computer under the same power
constraints. We note that the constants a and b depend on the
topology of the circuit and may be determined empirically. While
different constants would lead to quantitatively different results, the
quadratic advantage of the ideal parallel computer is fundamental and
independent of the specific circuit used.

To understand the practical importance of the finite-time energy
cost, quantitative values for a are required. A state-of-the-art general
purpose processor that is highly parallel, runs at a relatively low clock
rate (60 cores à 4 threads at fop = 1.09GHz), and has been thoroughly
analyzed for its energy consumption is the Intel Xeon Phi: it consumes
4.5⋅10−10 J/32 bit operation or a ⋅ fop = 1.4⋅10−11 J/operation52 (note that
this value accounts only for computation operations and ignoresmore
costly transfers to and from memory). This allows us to obtain
a = 1.0⋅10−20Js≈ 2.3 kTs (T = 330K, the typical operating temperature of
a CPU under load) as an estimate for electronic computers (Fig. 3,
dashed lines). This implies that the finite-time energy cost of an elec-
tronic computer exceeds the (quasistatic) Landauer limit already at a
few Hertz of operation frequency.

Fundamentally, onemay argue that the lowest possible value fora
is quantum mechanically given by Planck’s constant, h = 6.6 ⋅ 10−34

Js ≈ 4.8⋅10−11 kTs (at T = 1K)30, 13 orders of magnitude lower than the
above value for current electronic computers (Fig. 3, solid lines).
However, to our knowledge, no physical system has been proposed
that would reach such a small value for a. In recent experimental stu-
dies of the thermodynamics of finite-time operations, much higher
values have been found. The lowest measured value known to us is
a = 1.1⋅10−29 Js, reported for memory operations using molecular
nanomagnets13, corresponding to a = 8⋅10−7 kTs at the operation tem-
perature of T ≈ 1 K. For comparison, for experiments with optical traps,
a ≈ 2 kTs = 8⋅10−22 Js at room temperature19.

Based on these insights, it is illustrative to compare the funda-
mental energy cost of finite-time computing as a function of problem
size N for fully serial and fully parallel computers (Fig. 3). For a serial,
electronic computer (blue dashed line) with representative a = 2.3 kTs
(T = 330K, the typical operating temperature of a CPU under load), the
finite-time energy cost is dominated by the term aN=T in Eq. (3). A
further increase in N (corresponding to an increase in operation fre-
quency f op =N=T of a serial computer beyond the currently typical
fop ≈ 1 GHz) thus leads to a continued increase in energydissipationper
operation. Given that thermal management is already now the limiting
factor in processor design, this is not an option unless a can be low-
ered, for example through transistor and circuit design. If, on the other
hand, the quantum mechanical limit of a ≈ h were achievable for a
serial computer, then the term aN=T in Eq. (3) would become
noticeable, compared to the frequency-independent Landauer limit,as
soon as N exceeds 1010 operations, corresponding to fop ≈O(10 GHz)
(blue line). By contrast, a fully (ideal) parallel computer does not
increase its energy cost per operation (orange lines). For a = 2.3 kTs
(Xeon Phi) and τp = 1 s, the extrapolated energy cost per operation
(orange dashed line) is only about one order of magnitude larger than
the fundamental Landauer bound (orange solid line).

Partial parallelization
Real-world algorithms may not be completely parallelizable. There-
fore, the ideal estimates, Eqs. (3) and (4), need to be refined. The
impact of non-parallelizable parts of an algorithm on the speedup of
parallel computing is commonly described by Amdahl’s law27.
According toAmdahl53, the timeof the initial serial realization T can be

Fig. 2 | Finite-time Landauer bound for ideal serial and parallel computers.
a Energy consumptionperoperation,W/N, for solving a fully parallelizable problem
of size N by an ideal serial, Eq. (3) (blue), and parallel, Eq. (4) (orange), computer.
The energetic cost diverges with N for an ideal serial computer and remains con-
stant for an ideal parallel computer. bMaximal number of bit operationsNser

max N
par
max

that can beperformed by an ideal serial, Eq. (5) (blue), and parallel, Eq. (6) (orange),
computer in the finite time T = 1 swithin a givenpowerbudgetPmax. Parameters are
T = 1 K, b = 1 and a = 8⋅10−7kTs.
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split into two contributions, a purely serial part s, that cannot be done
by more than one processor at a time, and a parallel part p that can,
ideally, be split equally among all the used n processors (Fig. 4a inset).
We evaluate the energetic consequences of such a splitting for our
ideal computers as follows:We assume that a givenproblemof sizeN is
comprised of a serial and parallel part, N =Ns +Np = sN + pN. The total
computation time is given by the sum of these two parts, T = T s + T p,
where the serial part T s can be tuned by adjusting the time per
operation τs and the parallel part T p is solely controlled by the number
of processors n. We then optimize the combined energy cost function
over T p using the fixed total time constraint and obtain the minimal
energy cost for partial parallelization (Supplementary information,
Sec. S1),

W com
tot

N
= kT ln 2 +

a
bT s

ffiffiffiffiffiffiffi
bN

p
+

ffiffiffi
p

p� �2
: ð7Þ

Equation (7) interpolates between the purely serial implementation
(3) (p = 0) and the completely parallelizable processor (4) (s = 0). In
particular, the quadratic energetic advantage of the parallel com-
puter is seen to be weakened when parallelization is
reduced (Fig. 4a).

Algorithmic parallelization overhead
Another important aspect of real-world algorithms, that ought to be
accounted for, is that of parallelization overhead27. Parallelization
indeed frequently requires the execution of additional overhead
operationsNove. For example, analgorithmmayneed todistributedata
to the parallel workers and then, at the end, another one collects data
back from the workers. Usually, this overhead is a function of the
number of processors used27. Because of the constant T assumption,
the overhead eithermeans that each processor needs to work faster in
order to compensate for the overhead (Fig. 4b inset), or that onemight
use a stronger degree of parallelization 1>b0>b, where nðNÞ /
b0½N +NoveðnÞ� instead of n(N) = bN. We shall assume that the maximal

available parallelization is already used and that overheadmay only be
compensated by adjusting the calculation speed τp. We then obtain
(Supplementary Information, Sec. S2),

τovep =
τp

1 +NoveðnÞ=N
: ð8Þ

Owing to the time dependence of the dissipated work in Eq. (1),
the energy cost of the parallel execution not only increases with the
number of additional operations Nove but also because of the neces-
sary increase inprocessing speed. As a result, weobtain fromEq. (1) the
total energetic cost for a general function Nove(n) (Supplementary
information, Sec. S2),

Wove
tot ðNÞ
N

= ½N +NoveðnÞ�
W ðτovep Þ

N
= 1 +

NoveðnÞ
N

� �

× kT ln 2 +
a
bT 1 +

NoveðnÞ
N

� �� �
:

ð9Þ

The overhead thus causes the parallel computer to be less efficient
than the serial computer for small problem sizes. This is because the
Landauer part adds a fixed cost to Eq. (9), while the dissipative part will
only be dominant for large N. However, the parallel implementation
exhibits better scaling and becomes more energy efficient for larger
problem sizes, even for large overhead, as illustrated, for concreteness
and simplicity in Fig. 4b for a linear overhead, Nove(n) = cn (different
overhead functions are analyzed in Supplementary Information, Sec.
S2). This fundamental advantage of parallel computers holds as long as
Nove(n) scales better thann3/2, or, equivalently,N3/2, sincen∝N because
of the fixed finite-time constraint. This scaling is modified to n5/3 for
current electronic computers (Supplementary Information, Sec. S4).

Leakage currents and provisioning
Non-ideal computers moreover have a base energy consumption
caused by leakage currents33–36. For low-voltage, low-power circuits,
the subthreshold current (also known as the weak inversion current) is
the dominant component of the leakage current34. We assume that the
devices are working in the typical regime where the subthreshold
current scales linearly with the supply voltage V between drain and
source33–36. However, we note that this assumption may not always be
valid in the low-power regime54–56. We also assume that the subthres-
hold current is a linear function of the total processing time T , as the
processors can be put into deep sleep mode after and before running
the computation to reduce leakage dissipation, and of the number of
used processors n33–36. We further, suppose that the supply voltage is
adapted to be proportional to the frequency fop. As a result, we have
W leaðN,T Þ=nαf opT =αN for both serial and parallel realizations,
where α is a circuit-specific constant33. The corresponding energetic
cost per computation, W leaðN,T Þ=N =α, is hence the same for both
serial and parallel algorithms; it simply shifts Eqs. (3)–(4) by a constant
amount (Supplementary Information, Sec. S4). We further note that
one of the main issues that limit the use of nearly infinitely parallel
computers in practice is the fact that all the additional CPUs need to be
provisioned33. This comes with additional hardware and infrastructure
(for example input/output, DRAM memory, data storage and net-
working equipment) that consumes energy even when the CPUs are in
deep sleep mode. We may account for provisioning by adding a pro-
blem size independent constant β to the energetic cost, so that
WproðN,T Þ=N =β=N. The provisioning work creates overhead for the
parallel computer, which makes it inefficient for small workloads.
However, the effect of provisioning becomes largely irrelevant with
increasing problem size, making a parallel computer still the ideal
choice for large problems (Supplementary Information, Sec. S4).

Fig. 3 | Fundamental limit and extrapolated energy cost per operation for ideal
serial and parallel computers. Fundamental limits obtained for a = h (Planck
constant; T = 1K) (solid lines) and extrapolated energy cost corresponding to
a = 2.3kTs (Xeon Phi; T = 330K) (dashed lines) for ideal serial, Eq. (3) (blue), and
parallel, Eq. (4) (orange), computers. The measured value for a Xeon Phi processor
is represented by a black X. For reference, an energy cost of 1 J/operation is shown
as a dash-dotted line. Parameters are T = 1 s and b = 1.
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Reversible computing
For logically reversible computing, the quasistatic Landauer bound of
kT ln 2 may be reduced to zero37,38. As a consequence, only the finite-
timecontributions to the energetic cost (whichare thermodynamically
irreversible) remain in Eqs. (1)–(4). The difference in energy con-
sumption between ideal reversible and irreversible serial computers
becomes negligible at high clock frequencies, while the difference
between ideal reversible and irreversible parallel computers is con-
stant (Supplementary Information, Sec. S5).

Discussion
We have used insights from nonequilibrium thermodynamics to
develop a general framework to evaluate the fundamental energetic
cost of finite-time parallelizable computing, including partial

parallelization and parallelization overheads. Our main result is that
the finite-time energy cost per operation of a fully parallel computer
is independent of problem size and can realistically operate close to
the quasistatic limit, in stark contrast to serial computers. This fun-
damental advantage of parallel computers holds as long as the
overheadNove(n) scales better than n3/2. For serial computers, the key
limiting factor is the finite-time constant a. To enable a drastic
increase in operation frequency without prohibitive energy con-
sumption, a needs to be strongly reduced below its current value of
a ≈ kTs in electronic computers.

On the other hand, the massive advantages of parallel- over
serial computers may make it worthwhile to drastically rethink the
design of computing hard- and software. From an energetic (which
ultimately translates to performance) perspective, massively parallel
computers with extremely high numbers of small cores and aggres-
sive dynamic voltage and frequency scaling techniques could deliver
orders of magnitude better performance per watt compared to CPUs
with few large and complex cores—provided that well-parallelizable
algorithms exist. Such algorithms could be quite wasteful in terms of
the parallelization overhead and still deliver great performance
advantages. Therefore, it seems worthwhile to invest significant
research and development resources in the development of such
CPUs and suitable software algorithms. Moreover, in light of this
work, alternate computing technologies such as massively parallel
DNA-39–41 or network-based42,43 biocomputers may already be closer
to the optimal computers described here than current electronic
computers: These computers use small DNA molecules or biomole-
cular motors as computing agents, which are cheap to mass-produce
and can be added to the computation in amounts matching the
problem size. Both approaches have been estimated to operate close
to the Landauer limit per operation43. From the perspective of finite-
time energy cost, immensely parallel computers, such as biological
computers or computers with massively parallel architectures and
many-core processors, thus offer a potentially large, fundamental
advantage over today’s few-core electronic computer architectures.

Data availability
The authors declare that the data used in this work is available within
the paper, by using the corresponding equations with the parameters
given in the graphs’ legend. The figures are created using python, and
the notebooks canbe found in theGithub repository linked in the code
availability statement.

Code availability
Python code to re-create the figures can be found at https://github.
com/thawn/fundamental_energy.
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