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Smartphone-based platforms implementing
microfluidic detection with image-based
artificial intelligence
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The frequent outbreak of global infectious diseases has prompted the devel-
opment of rapid and effective diagnostic tools for the early screening of
potential patients in point-of-care testing scenarios. With advances in mobile
computing power andmicrofluidic technology, the smartphone-basedmobile
health platform has drawn significant attention from researchers developing
point-of-care testing devices that integrate microfluidic optical detection with
artificial intelligence analysis. In this article, we summarize recent progress in
these mobile health platforms, including the aspects of microfluidic chips,
imaging modalities, supporting components, and the development of soft-
ware algorithms. We document the application of mobile health platforms in
terms of the detection objects, including molecules, viruses, cells, and para-
sites. Finally, we discuss the prospects for future development of mobile
health platforms.

Disease diagnosis in resource-limited environments remains a sig-
nificant challenge, sincemost existing biosensing technologies rely on
advanced infrastructure and well-trained personnel, which limits their
applications in point-of-care testing (POCT) scenarios. Ideally, a POCT
platformshould have characteristics including easeof operation, short
analysis time, low price, high sensitivity, and specificity to meet the
requirements of health monitoring in a POCT setting1–9.

With the advances in optics technology, materials and software
engineering, electrical microchip technology and so on, smartphones
are becoming smaller and more powerful with an enhanced user
experience, providing a promising platform for POCT
developments10–16. In recent years, microfluidic accessories have
emerged to explore the potential of smartphones for POCT, especially
the microfluidic detection modules based on smartphone com-
plementary metal oxide semiconductor (CMOS) cameras, which are
also known as the mobile health (mHealth) platform17,18. The World
Health Organization defines mHealth as the medical and public health

practice supported by mobile devices. Mobile devices include smart-
phones and tablets, as well as devices and wearables that provide real-
time patient monitoring. In this article, we mainly focus on the
advances in smartphone-based mHealth platforms that implement
microfluidic detection and image-based analysis.

ThemHealth platforms take advantage ofmicrofluidic technology
such as automation, integration, miniaturization and multi-functions,
which is ideal for health monitoring in a POCT setting. As the com-
puting power of digital devices such as computers and smartphones
significantly increases, it facilitates the development of artificial intel-
ligence algorithms that require powerful computing and large
amounts of data. Recently, deep learning algorithms such as the con-
volutional neural network (CNN) algorithm have been widely applied
to image processing in mHealth19. The combination of microfluidic
accessories and artificial intelligence algorithms has inspired
researchers worldwide to come up with new POCT tools20–32. On the
one hand, mHealth takes advantage of the microfluidic approach to
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measure traditional biomarkers more accurately, which are detected
by smartphone CMOS cameras and analyzed with machine learning
algorithms. On the other hand, unique patterns and features extracted
by machine learning algorithms from the data can reflect biomedical
information that is difficult to obtain by traditional methods33–35.

At present, an ideal mHealth platform includes three parts (Fig. 1),
that is, a microfluidic chip, a mobile machine, and machine intelli-
gence. The microfluidic chip is responsible for biosample processing
and testing. The resulting signal is sensed by the mobile machine and
preprocessed by software installed on the smartphone. After data is
transmitted to the cloud server, it can be stored and further analyzed
by corresponding machine intelligence.

In this work, we reviewed the progress of research on mHealth
platforms in recent years, especially that regarding microfluidic chips
for testing and mobile machines for sensing data, including imaging
modalities and supporting components.

We will further discuss machine intelligence for analyzing data in
mHealth, particularly the rapid development of deep learning algo-
rithms. Current applications of mHealth will also be documented and
future development will be discussed.

Microfluidic chips for testing
It is essential to use microfluidic technology to realize the integration
and miniaturization of complex biological analysis on mHealth plat-
forms, especially those for applications in remote areas. In comparison
to the microfluidic chips commonly used in laboratories, those used
onmHealth platforms often havemore limitations becausemany large
devices such as pumps and heaters cannot be directly used on them.
Therefore, in many cases, microfluidic chips are employed as simple
carriers containing blood36, tissue37, parasites38, and other biological
samples.

Besides beingused as a slide,microfluidic chips couldbedesigned
with simple reaction chambers for relatively complex detection.

Kanakasabapathy et al. developed a mHealth platform that could
detect the number of CD4 cells to diagnose Acquired Immune Defi-
ciencySyndrome (AIDS)39. CD4 antibodywas immobilized in a reaction
chamber. After CD4 cells were captured in the chamber, a photo was
acquired through the mobile phone camera, and an application pro-
gram was then activated to count the numbers of captured CD4 cells
for AIDS diagnosis. The design of microfluidic chips with reaction
chambers is simple and effective for many applications on mHealth
platforms. However, it is difficult to realize automated detection on
suchmicrofluidic chips because the detection process largely depends
on manual operation by the user, which greatly reduces the practic-
ability of mHealth platforms.

The lateral flow device is also a cost-effective detection method
with a relatively low requirement for external equipment. The simple
and understandable signal amplification and displaymode allow users
to take photos with mobile phones for identification and analysis
without microscopic imaging. For instance, Turbé et al. demonstrated
the use of deep learning to classify images of rapid Human Immuno-
deficiency Virus (HIV) tests, which were collected in rural South Africa
by fieldworkers using newly developed image capture protocols with
the Samsung SM-P585 tablet7. Deep learning algorithms were trained
to classify tests aspositive or negative froma library of 11,374 images. A
pilot field study of the algorithms deployed as a mobile application
demonstrated high levels of sensitivity (97.8%) and specificity (100%)
compared with traditional visual interpretation by humans and
reduced the number of false positives and negatives (Fig. 2a).

The capillary force candrive thefluidwithout external equipment.
However, the uniform flow rate of the lateral flow device requires
several micrometer pore sizes of the paper, which limit the biomole-
cule capturing capability and assay sensitivity. Moreover, it is difficult
for lateral flow devices to realize multiplexed detection40. One of the
ways to improve the lateral flow device is to flow samples vertically
rather than in parallel, known as a vertical flow assay (VFA). A typical
vertical flowdevice contains a porousmembrane with separated spots
for multiplexing assays simultaneously19 (Fig. 2b), and the detection
results can be readout by the naked eye or a smartphone reader, which
holds high potential for mHealth applications.

Fig. 1 | Architecture ofmachine learning-enabledmHealth platforms for POCT.
The microfluidic chip is responsible for biosample processing and testing. The
resulting signal is acquired by the mobile machine and preprocessed by software
installed on the smartphone. After data is transmitted to the cloud server, it can be
stored and further analyzed bymachine intelligence. IoTs and AI denote internet of
things and artificial intelligence, respectively.

a Lateral flow device b Vertical flow device

c Microfluidic capillary device d Microfluidic finger-pump device

finger-pump

Fig. 2 | Microfluidic chips for testing. a A lateral flow device (figure adapted with
permission from Turbé et al. 7). b A vertical flow device (figure adapted with per-
mission from Ballard et al. 19). c Amicrofluidic capillary device (figure adapted with
permission from Ghosh et al. 47). d A microfluidic finger-pump device (figure
adapted with permission from Comina et al. 48).
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It is better to employ microfluidic chips designed with micro-
channels for more complex applications. Traditional micropumps are
usually too large to be integrated into mHealth platforms for fluid
control. To overcome this issue, researchers have developed innova-
tive micropumps, such as capillary, finger, and passive vacuum
pumps41–46, for driving fluid on mHealth platforms. Ghosh et al.
demonstrated a microfluidic chip containing a capillary pump for
microchannel capillary flow assay (MCFA) on a mHealth platform47.
The immunoassay on the chip was entirely controlled by channel
geometry and surface properties without any external pumping
(Fig. 2c). Comina et al. presented an autonomous disposable system
integrating a finger pump supporting repeated pumping actions48, a
calibration range, and 3D-printed optics for universal coupling to
cellphone cameras (Fig. 2d). By integrating heater and other process
control units, it is possible to realize applications such as nucleic acid
detection onmHealth Platforms49–53. For instance, Gou et al. developed
a low-cost, portable, and robust mHealth platform for highly accurate
DNA quantitative analysis54, integrating thermal cycling control, on-
chip digital polymerase chain reaction, data acquisition, and result
analysis.

Microfluidic chips have been the dominant choice for sample
processing onmHealth platforms, which are also increasingly adapted
to artificial intelligence algorithms. POCT detection on mHealth plat-
forms in the early stage is to obtain intuitive detection results so that
inspectors can directly identify them. Therefore, in many early works,
even if the artificial intelligence algorithm is used, it is only simple
transplantation of image recognition, and there is nomicrofluidic chip
specially designed for artificial intelligence algorithm. In recent years,
more andmoremicrofluidic chip designs have emerged for analysis by
artificial intelligence algorithms.

Mobile machines for sensing data
One of the essential factors in the mHealth platform is the hardware
structure, ensuring the quality of the obtained images or data. A
superior hardware structure can not only reduce the cost, but also
simplify the operation process, which is beneficial in resource-limited
areas where medical diagnosis resources are scarce. A complete
mHealth platform based onmicroscope cameras should contain three
basic hardware structures, including mobile phones, imaging mod-
alities and supporting components.

As the core of themHealth platform, the smartphone is the key to
the hardware structure. With the development of integrated circuit
(IC) design technology, the resolution of embedded CMOS image
sensors has greatly increased, allowing smartphones to detect bio-
markers on a relatively small scale with CMOS cameras55–57. In addition,
the computing capabilities of embedded central processing units
(CPUs) in smartphones have been enhanced rapidly. It is possible for
smartphones to process and analyze biomedical images in real time.
Current mHealth platforms are mostly designed according to various
parameters of mobile phones to take advantage of the mobile phone
system for POCT applications. For example, embedded adapters need
to be adjusted according to the size of themobile phone. The external
lens must be designed according to the original focal length of the
mobile phone to achieve a good, clear amplification. Differences in
CMOS components in mobile phones will lead to differences in
acquired images, which must be processed by the corresponding
algorithms before adaptation. The computing performance of the
mobile phone must meet the requirements of algorithms with a large
amount of computation.

To detect micro-scale objects with the smartphone camera, it is
necessary to develop accessories for optical magnification, including
3D-printedphone adapters, lenses, batteries, light sources, controllers,
andmotors. In the following sections, hardware developments related
to mHealth platforms will be introduced in detail based on two
aspects: imaging modalities and supporting components. It is

expected to provide the readers with a guide for designing the
mHealth platform that is suitable for their own needs.

Imaging modalities
Currently, the imaging modalities for mHealth platforms can be
classified into two major categories, which are bright field and
fluorescence imaging. Bright field imaging can be subdivided into
lens-free and lensed imaging. The microscopic image quality
obtained by different imaging modalities varies greatly, including
resolution, field of view (FOV), imaging depth, and signal-to-noise
ratio (SNR). Thus, these imaging modalities have their own advan-
tages in detecting objects of different scales, and an appropriate
imagingmodalitymust be chosen according to the detection objects.
Once an imaging modality is determined, the corresponding hard-
ware structure, especially the optical structure, can be designed
accordingly, as well as a suitable software algorithm for analysis of
the resulting imaging data. Supplementary Table 1 summarizes the
advantages and disadvantages of current imaging modalities dis-
cussed in the rest of this section.

In bright field imaging, since the illumination light enters the
objective lens after passing through the sample, the resulting image
contrast is relatively high, giving a clear morphological image of the
sample. It is usually used to observe objects with a clear structure on a
micron scale, such as cells, tissues and parasites.

As one of the bright field imaging modalities, lens-free imaging
has been applied to the mHealth platform for its simple and compact
optical structure. Upon removal of the original lens from the mobile
phone, it directly uses the embedded CMOS image sensor for data
collection58–60. As a result, lens-free imaging system can provide a
relatively larger FOV than a lensed imaging system with higher image
resolution. For example, a mHealth platform was previously demon-
strated by Tseng et al.58 which employed holographic image recon-
struction to capture the amplitude and phase information of the
objects with the embedded CMOS sensor in a smartphone (Fig. 3a).
When the spatial and temporal coherence of the light source is good
enough, the fringes collected by the camera can be regarded as
interference fringes. In this work, the authors did not use expensive
laser components to generate coherent light sources. Instead, an LED
was used to emit incoherent light, which passed through an aperture
with a diameter of about 100 µM to generate spatial coherence. These
resulting interference fringes could then be used to obtain the inten-
sity and phase information of the object in the focusing plane to
reconstruct a holographic image with a relatively high resolution
through the diffraction image reconstruction algorithm. To further
miniaturize the size of the lens-free imaging system, Lee and Yang

a Lens free imaging b c Fluorescence imaging

50 um

Ac
ce

ss
ar

y
Im

ag
in

g 
re

su
lt

Bright field lens-
based imaging

Fig. 3 | Imaging modalities. a Schematic diagram of an optical accessary for lens-
free imaging and its imaging result (figure adapted with permission from Tseng
et al. 58). b Picture of an optical accessary for Bright field lens-based imaging and its
imaging result (figure adapted with permission from Switz et al. 62). c Schematic
diagram of an optical accessary for fluorescence imaging and its imaging result
(figure adapted with permission from Zhu et al. 197).
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reported the useof ambient illumination in the followingwork59, which
enabled shadow imaging without the need for LEDs or batteries. Sha-
dow imaging was relatively simple. It only required the projection of
the object on the CMOS sensor without the need for high coherenceof
the light source. However, the resulting image resolutionwas relatively
low due to diffraction issues, which could be improved by manual
angle scanning and the use of a super-resolution reconstruction
algorithm.

Although a lens-free imaging system is simple and compact, it
takes a long time and a lot of computing resources to generate high-
resolution images with super-resolution reconstruction algorithms. In
addition, it involves the removal of the smartphone camera lens,which
maydamage the integrity of the smartphone. Thus, it is likely to reduce
user experience for applications. In contrast, there is no such issue for
lensed imaging systems. The optical magnification (M) of a lensed
imaging system can be calculated asM = f 1

f 2
, where f 1 is the focal length

of the built-in lens of the smartphone camera and f 2 is the focal length
of the external lens. The resolution of lensed imaging is inversely
proportional to its FOV. Therefore, the use of an external lens of a
shorter focal length can result in higher magnification and better
spatial resolution, but correspondingly, the FOV will be smaller. Since
the observation of particles of different specifications requires differ-
ent resolutions and FOV, it is necessary to make a trade-off between
the resolution and FOV. For example, Smith et al. described amHealth
platform that used a single ball lens for magnification in place of a
microscopic objective61. It is cost-effective for constructing the
detection system, but images were obtained with significant aberra-
tions that degraded the image quality over the bulk of the FOV. To
capture high-quality wide-field microscopic images, Switz et al.
demonstrated that a reversedmobile phone camera lens could beused
together62 with an intact mobile phone camera to overcome the lim-
itations of the previous design (Fig. 3b). In addition to the above-
mentioned methods, it is also possible to use deep learning image
enhancement methods to improve image resolution and increase FOV
with field-by-field scanning. However, these methods are trading time
for space, which elongates the time for processing to enhance image
resolution or FOV.

In fluorescence imaging, the light of a specific wavelength
irradiates the sample, and the emitted fluorescence is collected
through the objective. As long as relevant imaging parts such as light
sources and filters can be installed onto the mobile phone as acces-
sories, fluorescence imaging can also be conducted on mHealth
platforms. Compared to bright field imaging, fluorescence imaging
has higher sensitivity and specificity, and it is more suitable for
detecting micro- and nano-scale biological targets63. The lens for
fluorescent imaging does not require high resolution but a relatively
large FOV (Fig. 3c). It is conducive to employing fluorescence ima-
ging on mHealth platforms. In addition, the algorithms for proces-
sing fluorescence images are less demanding than those for bright
field imaging. Quantitative analysis can also be achieved by merely
using counting algorithms.

However, fluorescence imaging often yields images of low con-
trast and it is difficult to observe the shape of the detection objects.
The quality of the obtained fluorescence images is related to the SNR.
To enhance the SNR, it is important to select an appropriate light
source and filter for fluorescence imaging. Since traditional laser light
sources are expensive and cumbersome, low-costfilters and LEDs have
been themajor choice for fluorescence imaging onmHealth platforms.
The resulting images usually have strong background lights, and the
signal-to-noise ratio of the images is relatively low. Although image
quality can be further improved by denoising algorithms such as
machine learning algorithms, it is still inferior to those obtained by
bright field imaging. Besides limited image quality, fluorescence ima-
ging often requires sample preprocessing, and such operations might
not be friendly to untrained users.

Supporting components
After the imaging modality is determined, the supporting component
of themHealth platform can be established. The physical components
of a mHealth platform typically include an optical imaging part, pro-
cess control unit, structural part, motor, heater, finger pump
and so on.

The optical imaging part is the basic component of a mHealth
platform, which is dedicated to generating the imaging data. The
microscopic lens is the core component of the optical imaging part
with specifications such as numerical aperture, magnification, imaging
resolution, FOV, and marginal effect. Different specifications may be
employed according to the scenarioof applications, but typically, LEDs
and batteries are necessary for providing light sources. Filters are
required in fluorescence imaging to provide excitation light.

Process control units such as the controller, motor, heater and
micropump are usually selected according to the imaging modality
and microfluidic chip operations. The controller is the kernel of the
process control unit, which generally uses aMicro Control Unit (MCU)
or embedded system to automatically control the whole process of
various integrated components, allowing operations such as USB and
Bluetooth communication, motor motion, heating, and flow control.
Motors are often employed to achieve FOV scanning with high reso-
lution since the resolution of the microscopic lens is inversely pro-
portional to its FOV. For instance, D’Ambrosio et al. reported on a
mHealth testing instrument using a dynamic video method18, which
could achieve FOV scanning of blood parasites with a motor-based
automated stage (Fig. 4a). It could automatically record a video of the
test sample and calculate a differential image by averaging, subtract-
ing, and morphologically filtering each frame of the video to obtain a
count of blood parasites. For mHealth systems involving nucleic acid
amplification, such as polymerase chain reaction (PCR) and loop-
mediated isothermal amplification (LAMP), heaters must be used for
accurate temperature control. Mauk et al. previously described
nucleic acid-based amplification tests (NAATs) mHealth platform for

a Motor b Heater

c Finger pump d Removable components

Fig. 4 | Supporting components. aMotor for FOV scanning. FOV denotes field of
view (figure adapted with permission from D’Ambrosio et al. 18). b Heater for
temperature control. PCM denotes phase-change material (figure adapted with
permission from Liao et al. 51). c Finger pump for flow driving (figure adapted with
permission from Laksanasopin et al. 17). d Attachment with a port for inter-
changeable components interchanging (figure adapted with permission from
Zhu et al. 70).
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quantifying HIV viral load in blood samples64, which used a heater to
accurately control the reaction temperature (Fig. 4b). However, since
the batteries that powered the heater were too heavy to carry, some
researchers instead developed solar and chemical thermal heating
methods. A similar issue also occurred for the use of micropumps in
mHealth systems. The volume and energy consumption of micro-
pumps are usually too large to be adapted to the mHealth
platform65–69. To overcome this issue, Laksanasopin et al. eliminated
the use of a power-consuming electrical pump by employing a one-
push vacuum17, where a user mechanically activates a negative pres-
sure chamber to move a sequence of reagents prestored on a cassette
for enzyme-linked immunosorbent assay (Fig. 4c).

After process control units are determined, a structural part is
required to integrate the functioning components into a working
accessory that can be adapted to a mobile phone. Currently, 3D-
printing technology is widely employed in laboratories for the quick
and cost-effective manufacture of structural components. Previously,
a smartphone-based blood analyzer was reported on by Zhu et al.
using 3D-printing technology to develop a port and three removable
components70 that could be assembled for white and red blood cell
counting and hemoglobinmeasurement (Fig. 4d). In this example, the
adaptation of the structural part to the smartphone uses the embed-
ded mode, where the mobile phone is wrapped within a 3D-printed
shell to fix the position of the external optical component to the
mobile phone camera, and it is connected to the smartphone ports
such as type-C to use computing power and electric power. The
embeddedmode has been the most common choice of researchers to
develop mHealth platforms. However, the embedded mode requires
customization of the structural part according to the overall dimen-
sions of the mobile phone. Since different mobile phones often have
different overall dimensions, it is difficult for researchers to design a
universal part suitable for all mobile phones, let alone the possibility of
establishing a unified production standard to adapt tomodern society.
Another approach to adapting the structural part to smartphones is
patch mode, where the structural part is attached to the smartphone
camera without connecting to the smartphone through various ports.
The patch mode can be applied to various mobile phones, and it is
suitable for developing miniaturized mHealth platforms with small
volumes. For example, Comina et al. demonstrated a quantitative
glucose meter that integrated finger pumps, unidirectional valves,
calibration references, and focusing optics on a disposable unibody
lab-on-a-chip device71. After the preparatory sequence had been acti-
vated, the device was placed on the front-facing camera of a mobile
phone, and the default video acquisition application was run for
quantitative analysis. After analysis, the device could be detached and
disposed of, rendering the phone intact for its regular use. In com-
parison to the embedded mode, the patch mode allows universal
adaptation of the developed mHealth platform to various mobile
phone models. However, it is difficult for the patch mode to integrate
relatively complex process control units, resulting in limited available
detection means. As a common structural part, dark-box mode
reserves a small hole and creates a dark environment for the smart-
phone camera to image fluorescent samples, which is adaptable to
various sizes of smartphones and can integrate other functional units.

Despite this, there are still limitations in current approaches for
adapting different smartphones. We expect modular smartphones to
be a very promising platform for both future mHealth and mobile
communication. Compared to the current mainstream all-in-one
phones, modular smartphones can be customized with hardware
configurations and accessories that can be changed at any time,
making them more conducive to meeting the customized require-
ments of different users. For the POCT field, the heater for tempera-
ture control, electromagnet for bead fixation, andmicrofluidic chip for
fluid manipulations, can be used as smartphone modules; these
modules can be customized on the smartphones according to the

testing scenario. Thus, the modular smartphone not only solves the
difficulty in adapting mHealth accessories but also enables POCT
instruments to be custom equipped according to testing methods.

Machine intelligence for analyzing data
After the image data is collected by the integrated hardware, the col-
lected image needs to be processed by the software algorithm.
Therefore, the applicability of software algorithmsdirectly determines
the detection accuracy of mHealth platforms. In general, there are
three types of software associated with mHealth platforms.

The first type uses mobile software development platforms such
as Android studio to realize image acquisition, transmission and sto-
rage. Mainstream mobile phones use Android or iOS as the operating
system. Researchers can use the officially recommended image sto-
rage or transmission library to call the corresponding interface
through Java language to complete software development.

The second typemainly uses the lower computer, such asMCU, to
accurately control the functioning components. Typically, assembly
language, C language and other development languages are used to
program functions for the underlying hardware using algorithms such
as proportional integral derivative (PID), fuzzy and adaptive control,
and reinforcement learning algorithms, which can accurately control
the motor, heater and micropump integrated on the mHealth
platform.

The above-mentioned two types of software do not involve
complex image processing. The third type of software focuses on
image processing and data analysis. They can be categorized into
general, traditional machine learning, and deep learning algorithms,
which will be discussed separately in the following sections.

General image processing algorithms
A general image processing algorithm is the most direct and easy-to-
usemethod to realize image preprocessing and image analysis. It does
not need a lot of data for model training like machine learning algo-
rithms. The general image processing algorithms used on mHealth
platforms are similar to those commonly used on computers. How-
ever, due to the lower computing power of mobile phones, the
mHealth platform prefers to use algorithms that do not require large
computing power. Since the acquired image quality is often low on the
mHealth platform due to its simple and cost-effective nature, it is
necessary to use general algorithms for image preprocessing such as
image enhancement, restoration, smooth denoising, graying and
binarization to improve the image quality before analysis. Its main
purpose is to enhance the authenticity of the image by eliminating
irrelevant information and restoring useful information so that the
image can be simplified to the greatest extent, facilitating the sub-
sequent use of general image processing or other algorithms for fea-
ture extraction, image segmentation, matching and recognition.

Image enhancement. As an image preprocessing method, the lens-
free image reconstruction algorithm is a necessary step for lens-free
imaging to obtain clear images. Current lens-free imaging has corre-
sponding reconstruction algorithms, such as the pixel super-
resolution method based on multi-angle illumination for shadow
imaging (Fig. 5a) and holographic image reconstruction algorithm for
lens-free holographic phase imaging. For example, Im et al. reported a
generic approach to enable molecular diagnostics on a mHealth plat-
form utilizing molecular-specific microbeads to generate unique dif-
fraction patterns of blurry beads, which could be recorded and
deconvoluted by digital processing60. To accurately detect bead-
bound target cells, they developed a processing algorithm for image
reconstruction that was based on the Rayleigh–Sommerfeld diffrac-
tionprinciple but extended todigitally retrieveboth transmittanceand
phase shift of objects through an iterative optimization. As a result,
cells and beads could be differentiated from transmittance and phase
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correlation respectively. Subsequently, cells labeled with microbeads
could be automatically identified, and their individual bead counts
were recorded.

Region of interest locating. After improving the image quality, to
determine the specific region of interest (ROI) for analysis, location
algorithms must be used to eliminate the irrelevant information of
non-detection regions and locate the ROI. There are two commonly
used location algorithms, namely, geometric transformation and
image segmentation. Geometric transformation is to solve the pro-
blem of geometric distortion caused by imaging angle, perspective
relationship, and even the lens itself. For example, Lopez-Ruiz et al.
demonstrated a paper-based microfluidic colorimetric sensor for the
simultaneous determination of pH and nitrite concentration in water
samples. To locate the ROI in the microfluidic chip for colorimetric
detection, geometric transformation needed to be used for pre-
processing before extracting the color72. According to the reference
coordinates, the rotation matrix and scale factor could be obtained
through the location algorithm and used to correct the spatial dis-
tortion caused by different observation angles to determine the posi-
tion of each sensing area. Then, the H (hue) and S (saturation)
coordinates of theHSV color space are extracted and related to pHand
nitrite concentration, respectively. As another location algorithm,
image segmentation does not need to set reference coordinates in
advance for locating ROI. It only needs to locate according to the
difference in pixels between the detection area and irrelevant areas.
For example, the counting algorithm for extracting object quantity
often uses the image segmentation algorithm method, which is rela-
tively simple and often used for cell and fluorescent marker counting,
such as red and white blood cells73 (Fig. 5b).

Quantitative analysis. After image preprocessing, we can continue to
use general image processing algorithms to extract the key

information from the processed image for biomedical detection and
analysis. For example, many studies directly use the color extraction
function in OpenCV for colorimetric analysis. Since colorimetric
detection is sensitive to external light, this processing method is dif-
ficult to obtain accurate results. Therefore, colorimetric detectionwith
high accuracy often refers to the following process.

Thefirst step is color gamut conversion. Thephotos takendirectly
by the camera areoften stored in the formofRGB (red, green andblue)
color space. RGB color space is a hardware-oriented color space, which
is commonly used, but the images obtained in the natural environment
are easily affected by natural lighting and shading, that is, they are
sensitive to brightness. The three components of RGB color space are
closely related to brightness. Moreover, the sensitivity of human eyes
to these color components is different. In monochrome, human eyes
are the least sensitive to red and themost sensitive to blue. Therefore,
RGB color space is one with poor uniformity. If the color similarity is
directly measured by Euclidean distance, the result will have a large
deviation from human vision. For a certain color, it is difficult for our
naked eyes to infer threemore accurate RGBcomponents to represent
it. Therefore, RGB color space is suitable for the display systembut not
for image processing. In contrast, HSV (hue, saturation and value)
color space is used more in image processing74. It is closer to people’s
perception experience of color than RGB. It can intuitively express the
hue, brightness and brightness of color and facilitate color compar-
ison. Therefore, RGB color space needs to be converted to HSV color
space before color comparison.

The second step is to eliminate light influence. After color gamut
conversion, corresponding algorithms can be used to eliminate the
influence of illumination, such as the gray world algorithm and color
correction algorithm. The gray world algorithm assumes that the
average value of R, G and B of an image with many color changes tend
to the same gray value K. In the physical sense, the gray world algo-
rithm assumes that the mean value of the average reflection of natural
scenery to light is a fixed value in general, which is approximately gray.
The gray world algorithm applies this assumption to the image to be
processed, which can eliminate the influence of ambient light from the
image and obtain the original scene image.

Finally, the use of the color extraction function can result in col-
orimetric detection with enhanced accuracy. Even though the above-
mentioned method is adopted, there is still room for improvement.
For example, the machine learning algorithm can be used to improve
the accuracy of detection. Alternatively, an external light source with
constant lighting conditions combined with a 3D-printed shell to iso-
late the influenceof ambient light cangreatly reduce the complexity of
the detection algorithm, which can be used for colorimetric as well as
fluorescence detection. Previously, Nguyen et al. reported on a
mHealth platform that used CMOS to record the fluorescence change
during real-time fluorescence quantitative LAMP to generate amplifi-
cation curves75 (Fig. 5c). With the logistic model-fitting algorithm, the
reverse transcription loop-mediated isothermal amplification (RT-
LAMP) curve was fitted and was displayed on a smartphone for real-
time quantitative analysis of nucleic acids.

Traditional machine learning algorithms
For mHealth platforms, the acquired images are often affected by
environmental factors due to the complexity of their operating
environment. Since the robustness and anti-interference of general
image processing algorithms are relatively weak, the analytical
results of these algorithms are often different under different
external light and acquisition environments. In this case, it is more
suitable to use machine learning algorithms that can eliminate
abnormal interference76–78.

Compared with the deep learning algorithm, the traditional
machine learning algorithm requires less data, computing power, time
and cost to train the model and is more interpretable. It is suitable for
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Fig. 5 | General image processing algorithms for mHealth platforms. a Pixel
super-resolution reconstruction algorithm. The figure illustrates the use of a pixel
super-resolution reconstruction algorithm to make a low-resolution image clearer
(figure adapted with permission from Lee et al. 59). b Segmentation algorithm. The
figure illustrates the use of a segmentation algorithm to determine ROI (figure
adapted with permission from Zeng et al. 73). c The logisticmodel-fitting algorithm.
The figure illustrates the use of the logistic model-fitting algorithm for real-time
quantitative detection of nucleic acid (figure adapted with permission from
Nguyen et al. 75).
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research fields with high sample collection costs and complex collec-
tion steps. Common traditional machine learning algorithms include
support vector machine (SVM)79, bootstrap aggregation80, k-nearest
neighbor (KNN)81 and decision tree82. Although these methods have
different mathematical principles, they have some common proces-
sing steps, including (1) Establish the type of training examples; (2)
Converge a training set; (3) Resolve the input feature illustration of the
learned function/learned attribute; (4) Resolve the formation of the
learned function and comparable machine learning algorithm; (5)
Assimilate the design and execute the learning algorithm on the col-
lected training set; (6) Evaluate the accuracy/correctness of the
learned function. Among these, data acquisition, feature extraction
and model choosing are key factors of the supervised machine learn-
ing algorithms80.

There are some principles to follow in selecting the appropriate
model onmHealth platforms applying traditional machine learning or
deep learning. First, the model can be selected according to the
detection throughput of microfluidic chips, which determines the
amount of collected data. Different models have different levels of
complexity, which can be judged according to the Vapnik-
Chervonenkis Dimension (VC-dim). The learning ability of the model
is often positively correlated with the VC-dim, but when the data is
insufficient for a model with a large VC Dimension, the effect is often
poor and overfitting happens easily83. When the detection throughput
is relatively low, the dataset is usually small. In this case, it is better to
use statistical machine learning. This is because although deep learn-
ingmodels have a stronger learning capability compared to traditional
models, they produce biases in estimating the actual data distribution
with insufficient training sample and have a very high risk of over-
fitting, while many statistical machine learning models have a higher
generalization capability under such conditions. In addition, few-shot
learning, with much development in recent years, is also a solution to
solve the problem of small datasets, which is very promising for low-
throughput mHealth platforms. In few-shot learning, Siamese Net-
works are frequently employed, which use two identical artificial
neural networks to build a coupled framework. In such a framework,
the contrastive loss function is used to learn from a small dataset84–86.
On the contrary, when the detection throughput is high and the
dataset is huge, it is better to choose the deep learning model, which
more easily achieves high accuracy with the huge dataset, while the
accuracy of traditional models could plateau as the volume of data
grows. Indeed, there are some candidate large-scale deep learning
models with high effectiveness, such as Generative Pretrained Trans-
former 3 (GPT-3), which perform very well inmany tasks usingmassive
datasets and have very good prospects for application in high-
throughput mHealth platforms based on cloud computing.

Second, the form of data also needs to be considered. Image,
sequence, and graph data all have different processing methods. For
image data, CNN is a commonly used model with translation and
rotation invariance, which can accurately extract the features of ima-
ges, and it is also a very commonmodel used inmHealth platforms. In
contrast, sequence- and graph-based models now have been used less
in mHealth platforms but are very promising directions to explore in
the future. For sequence data, RNN, LSTM, and transformer are very
effective models. The transformer, which is particularly effective, can
use amulti-head attentionmechanism for parallel computing, has very
good effects for sequence data analysis, and is expected to be applied
to gene sequence analysis of mHealth. Graph data and relatedmodels,
on the other hand, are areas that have shown greater development in
recent years, such as Graph Attention Networks (GAT), which use
attention mechanisms to effectively predict relationships between
different nodes and can be used in mHealth to analyze interactions
between different compounds and proteins, as well as realize com-
bined diagnosis between different medical IoT edge devices to
determine a user’s health status87–89.

Third, the model can be selected based on qualitative or quanti-
tative analysis. For example, the classification algorithm is generally
used for qualitative analysis, while the regression algorithm is used for
quantitative analysis. Clustering and dimension reduction are also the
basic tasks of machine learning. The model outputs corresponding to
these tasks are very different, as are the algorithms used.

In the following sections, examples of POCT detection using
machine learning algorithms will be discussed so that readers can
more easily understand the usage of machine learning algorithms.

Algorithms for denoising. For traditional machine learning algo-
rithms, images are rarely processed directly, but the corresponding
features areextracted through thegeneral imageprocessing algorithm
and then classified or regressed to obtain the final analytical results.
There is often a large amount of interference in real detection envir-
onments. Thus, it is necessary to use themachine learning algorithm to
reduce noise before analysis and detection. For instance, signal-to-
noise ratio (SNR) is often low in fluorescence images obtained by
mHealth platforms due to strong background noise resulting from the
use of weak light illumination and low-cost filters. Corresponding
algorithms need to be used to reduce noise and improve SNR. Pre-
viously, Kuhnemund et al. demonstrated a cost-effective mobile-
phone-based multimodal microscope for on-site molecular
diagnostics10 (Fig. 6a). A machine learning-based algorithm was
developed to process the acquired fluorescence images to count
rolling circle amplification products. It utilized a random forest
approach to differentiate real amplification signals from background
noise, combining a bootstrap aggregation strategy and the random-
ness of the features to reduce overfitting.

In addition, Koydemir et al. presented a mHealth platform for the
detection and quantification of Giardia lamblia cysts, one of the most
common waterborne parasites90. A custom-developed machine
learning algorithm was developed to count and differentiate cysts
fromother unwanted fluorescentmicro-objects. Themachine learning
algorithm utilizes a bootstrap aggregating strategy to classify particles
using 71 different features extracted for each cyst candidate. In sub-
sequent works, they further studied the advantages and disadvantages
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approach to differentiate real amplification signals from background noise after
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ofmachine learning algorithms, including SVM, bootstrap aggregation
and KNN. As a result, the bootstrap aggregation had the best perfor-
mance, accuracy and fitting speed91. Surveilance et al. classified
nematodes by applying a similar method92. In their following works,
the recurrent neural network (RNN) algorithmwas successfully used to
differentiate live and dead nematodes93.

Algorithms for quantitative analysis. Machine learning can perform
quantitative testing of samples directly. Solmaz et al. developed a
smartphone application employing machine learning classifier algo-
rithms for quantifying peroxide content on colorimetric test strips.
The strip images were taken from five different Android-based
smartphones under seven different illumination conditions to train
binary (Least-Squares SVM) andmulti-class (RandomForest) classifiers
and to extract the learningmodel94. The extracted learningmodel was
then embedded into a remote server that was accessed by a custom-
designed Android app for testing purposes using a Cloud-hosted ser-
vice. It turned out that the developed application was able to detect
the color change in peroxide strips with over 90% success rate for
primary colors with inter-phone repeatability under versatile
illumination.

It is relatively straightforward to use HSV gamut data and
machine learning algorithms to train classifiers for detection. How-
ever, with the increasing number of categories, the classification
accuracy decreases significantly. Even if different machine learning
models such as linear discriminant analysis (LDA) and Artificial
Neural Networks (ANN) were employed95, it is still difficult to
improve the multi-classification accuracy. This verifies a viewpoint in
machine learning that the machine learning model only determines
the lower limit of accuracy, while data and features extracted from
data determine its upper limit. Therefore, we can only improve the
source of data and feature extraction to achieve more detailed and
accurate classification. Feature selection is often based on the spe-
cific characteristics of different applications. For example, Kim et al.
developed a fluorescent array with a Kaleidolizine (KIz) system for
pH classification96 (Fig. 6b). To develop pH-responsive fluorescent
compounds for array composition, various anilines and phenols were
introduced into the KIz core skeleton, allowing for the generation of
30 different colored fluorescent compounds. They confirmed that
each fluorescent compound responded uniquely to pH changes.
Thus, by spotting compounds on cellulose paper, they generated 5 ×
6 fluorescent sensor arrays for pH classification. This small form
factor of the sensor array enabled the smartphone camera to effec-
tively capture fluorescence pattern changes of the array elements
with respect to incubation with various pH buffers. Once images
were captured, they were passed through several software compo-
nents that extracted the color differences from the sensor array
image. A random forest-based machine learning model was then
used to classify the expected pH level of the buffer that the sensor
was exposed to. They applied the developed method to the elec-
tronic nose for detecting organic volatiles, which could successfully
distinguish 35 different volatile organic compounds97.

The above examples show that for microfluidic detection,
researchers can not only select features according to the character-
istics of samples but also combine feature signal amplificationwith the
machine learning algorithm through a specialmicrofluidic chip design
to improve the detection accuracy. In many cases, the mHealth plat-
form is a simple migration to traditional detection methods. Since
people are usually the main operators who analyze test data, the
detection principle and generated test data need to be intuitive and
easy to understand. Traditionalmachine learning can produce analysis
results from more complex data. However, it relies on the manual
extraction of data features. In contrast, the deep learning algorithm
can automatically extract data features, which opens up a new avenue
for developing mHealth platforms.

Deep learning algorithms
With the increasing amount of data, the recognition accuracy of the
traditionalmachine learning algorithmwill reach a plateau, while deep
learning algorithms can start to give full play to their ability98. In recent
years, with the rapid development of information technology, the
progress of sensors has led to an increase in available data, and the
progress of electronic technology has led to advances in computing
power. Both facilitate the development of deep learning algorithms,
especially the Convolutional Neural Network (CNN) algorithm applied
in the field of biomedical imaging99.

Classical CNN algorithm includes the convolutional, pooling, and
fully connected layers and the activation function. The layer is the core
component of the ANN, which consists of fundamental neurons.
Comparedwith classical ANN, the layers of CNN have their own special
structure and function. The convolutional layer mirrors the structure
of the human visual cortex, which can extract features of images. The
pooling layer is used to aggregate features extracted by the convolu-
tional layer to reduce the computational burden. After feature
extraction, the fully connected layer will classify the data into various
classes. The activation function is to give neural network nonlinear
expression ability so that it can better fit the results. Compared with
traditionalmachine learning, which requires professionals tomanually
extract image features, CNNcan realize automated extraction of image
features100–106.

By improving CNN architectures, including MobileNet, U-Net,
Inception, Xception and Residual Network (ResNet), CNN can be used
for various tasks, such as image enhancement, segmentation and
classification, and regression detection. By realizing image processing
and analysis with multi-layer stacking, CNN can achieve classification
and regression without feature extraction. Therefore, it is more sui-
table for bright field imaging and morphology analysis.

Algorithms for image enhancement and segmentation. Due to the
compact and low-costhardware structure of themHealthplatform, the
obtained images are often of low quality due to lens distortion such as
spherical and color aberration. General image processing algorithms
such as specific image degradation models can be used for image
restoration andenhancement.However, thesemethods are effective in
specific hardware settings and operation environments, which cannot
be employed universally due to batch differences and low operation
repeatability. To develop a universal algorithm to improve image
quality onmHealth platforms, Rivenson et al. pioneered the use of the
deep learning algorithm to correct lens distortion introduced by
mobile-phone-based microscopes107 (Fig. 7a), facilitating the produc-
tion of high-resolution, denoised, and color-corrected images,
matching the performance of benchtop microscopes with high-end
objective lenses. This work inspired researchers to explore deep
learning algorithms for the development of mHealth platforms and
biomedical applications.

Besides image enhancement, image segmentation can also be
realized by the deep learning algorithm and combined with image
enhancement through the complementary neural network. Haan
et al. reported on a deep learning framework for the automated
screening of sickle cells in blood smears using a smartphone-based
microscope (Fig. 7b). Two distinct and complementary deep neural
networks employing the U-net architecture were used for image
analysis36. The first one enhanced and standardized the blood smear
images to spatially and spectrally match the image quality of a
laboratory-grade benchtop microscope. The second one acted on
the output of the first image enhancement neural network and was
used to perform the semantic segmentation between healthy and
sickle cells within a blood smear. The segmented images were then
used for the diagnosis of sickle cell disease. Blood samples of 96
patients with 32 positive cases were successfully tested by the
developed method, showing ~98% accuracy with an area-under-the-
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curve (AUC) of 0.998. Although general image processing algorithms
can also be used for image segmentation, it often requires trained
experts who have knowledge of bothmedicine and image processing
to extract image features before compiling the algorithm. In con-
trast, CNN allows experts to mark the data and hand it over to pro-
grammers with limited knowledge of medicine or image processing.
Moreover, when the amount of data is relatively large, deep learning
algorithms are oftenmore universal and accurate than general image
processing algorithms.

Algorithms for image classification. Deep learning algorithms have
also been widely used for image classification on mHealth platforms.
Compared with general image processing algorithms and traditional
machine learning algorithms, deep learning algorithms do not need
manual feature extraction and aremore suitable for classifying images
with complex features that are difficult for manual description and
extraction. Recently, Potluri et al. developed a mHealth platform for
automated ovulation tests using the deep learning algorithm by
detecting fern patterns in air-dried saliva on a microfluidic device.
Typically, images acquired by mHealth platforms are sent to a server
for processing by CNN, and the results will be sent back to the mobile
client device for display, taking advantage of the high performance of
the server and reducing the burden on the mobile device108. In this
work, the MobileNet architecture was used for the neural network to
classify salivary ferning images, which is a CNN architecture specially
designed for deviceswith low computing power, such as smartphones.
Different from the traditional neural network using standard 2D con-
volution, this network uses depth-wise separable convolution to con-
struct a neural network with a lightweight depth, allowing CNN-based
image analysis directly on mobile devices. This technique is called
model compressing, which can decrease the requirements of

computation by reducing the sizes of models. The model size is often
reduced by four model compression techniques, that is, pruning,
quantization, knowledge distillation, and low-rank factorization. Using
this technique, they were able to detect ovulation with an accuracy of
99.5% when tested with 200 images of human saliva collected during
the ovulating and non-ovulating phases of the menstrual cycle among
six women. More recently, the same research group reported a
nanoparticle-enabled smartphone system for rapid and sensitive virus
detection (Fig. 7c). Viral particles were captured on amicrofluidic chip
and labeled with specifically designed platinum nanoprobes to induce
gas bubble formation in the presence of hydrogen peroxide109. The
formed bubbles were controlled to make distinct visual patterns,
allowing simple and sensitive virus detection on an Android smart-
phone with a trained CNN algorithm and without using any optical
hardware smartphone attachment. The CNN algorithm employed the
Inception v3 architecture, which was transfer learned using Google’s
TensorFlow framework, with images of microfluidic chips containing
bubbles analogous to virus samples. As a result, tests with 134 virus-
infected patient plasma/serum samples showed a detection sensitivity
of 98.97% and specificity of 91.89%.

Algorithms for regression. Regression is another common task that
can be accomplished using deep learning algorithms. For example,
Chen et al. reported the use of a microbubbling assay for the quanti-
fication of protein biomarkers by deep learning (Fig. 7d). Target pro-
teins were captured by the antibodies immobilized on paramagnetic
microbeads and further labeled with platinum nanoparticles110. After
the sandwich complexes were loaded on a microwell array via an
externalmagneticfield, the formation ofmicrobubbles in the presence
of hydrogen peroxide could be visualized. Both localization and
regression CNNs were used for image analysis, allowing successful
identification of the boundaries of the microarray areas and micro-
bubble counting in seconds. Using this method, post-prostatectomy
surveillance of prostate-specific antigens could be achieved with a
detection limit of 0.060 pg mL-1 and early pregnancy detection using
βhCG could be achieved with a detection limit of 2.84 pgmL-1. Ballard
et al. reported on a deep learning-based framework to design and
quantify point-of-care sensors. A low-cost and rapid paper-based ver-
tical flow assay was demonstrated for testing high-sensitivity C-Reac-
tive Protein19. CNN was used to select optimal spots and infer analyte
concentration from the multiplexed sensing channels, which greatly
improved the quantification accuracy in comparison to a standard
multi-variable regression.

Algorithms for augmentation of image datasets. Deep learning
algorithms have shown high potential for image processing and ana-
lysis, revolutionizing the use of smartphones in mHealth diagnostics.
However, the high variability in cellphone image data acquisition and
the common need for large amounts of specialist-annotated images
for deep learning model training may limit the application of
smartphone-based diagnostics. For example, in the above-mentioned
work of Shafiee’s research group, a lot of time and resources were
spent on the preparation of microfluidic chips and virus detection to
obtain 15,057 images for CNN training111. To overcome this issue, they
further employed adversarial learning to augment the real image
dataset by generating 16,000 realistic synthetic microfluidic chip
images through style generative adversarial networks (GAN) (Fig. 7e).
The performance of the system was evaluated by detecting five dif-
ferent virus targets using 179 patient samples. The generalizability of
the systemwasdemonstrated by rapid reconfiguration to detect SARS-
CoV-2 antigens in nasal swab samples (n = 62) with 100% accuracy.

Besides GAN, another approach to reduce the requirement of
data volume for diagnostics is unsupervised learning without data
annotation, also known as comparative learning. Shafiee’s research
group utilized a medical domain adaptive neural network in both
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semisupervised and unsupervised learning scenarios to effectively
capitalize on the largely unlabeled medical datasets, employing
Xception and Res-net architectures. Their work showed that adver-
sarial learning could be used to develop high-performing networks
trained on unannotatedmedical images of varying image quality, and
that it could be used with unlabeled data from unseen domain-
shifted datasets to adapt pretrained supervised networks to new
distributions, even when data from the original distribution are not
available. They successfully applied the system to low-quality images
acquired from inexpensive mobile optical systems to train networks
for the evaluation of human embryos, the quantification of human
sperm morphology, and the diagnosis of malarial infections in the
blood13.

Applications
In mHealth platforms, small and low-cost imaging devices are difficult
to achieve high-resolution and high-quality images with a large field of
view. Therefore, it is necessary to select an appropriate imaging
modality, hardware structure, and algorithm according to the appli-
cation scenario and detection object. In this section, the applications
of mHealth platforms will be discussed in terms of the detection
objects, that is, molecules, viruses, cells, and parasites. Examples will
also be documented as a guide for readers to develop their own
mHealth platforms.

Molecules
Biological molecules, such as nucleic acids, proteins and metabolites,
have scales below the Abelian limit (200nm). These molecules cannot
be directly imaged on mHealth platforms. Generally, a detection
strategy such as polymerase chain reaction (PCR), fluorescence in situ
hybridization (FISH), and enzyme-linked immunosorbent assay (ELISA)
is utilized to allow optical detection under the mobile microscope.

For nucleic acid detection, PCR and FISH are the two common
methods that are employed on mHealth platforms. Fluorescence
imaging is typically employed for result collection, and result analysis
could be accomplished with a fluorescence detection or counting
algorithm based on machine learning.

PCR has been the gold standard for disease diagnoses, such as
influenza,HIV, and genetic diseases.With the rapid advances in nucleic
acid amplification technologies, isothermal amplification has drawn
the increasing attention of researchers. Loop-mediated isothermal
amplification (LAMP) has been a particularly promising alternative to
PCR for nucleic acid detection on mHealth platforms. LAMP allows
DNA amplification at 65 °C and the resulting amplificants can be
detected via means including the naked eye, fluorescence, turbidity,
colorimetry, and electrochemistry. Thanks to its tolerance of crude
samples and critical reaction settings, extraction of pathogenic genes
or sample pretreatment can sometimes be bypassed for direct LAMP
reactions. Furthermore, LAMP offers a higher DNA synthesis rate and a
milder reaction condition than PCR, which is ideal for rapid point-of-
care detections withminimal setups. Hu et al. recently demonstrated a
smartphone-based droplet digital LAMP device that integrated rapid
nucleic acid extraction and digital LAMP for highly sensitive nucleic
acid detection within 60min112. A portable microdroplet fluorescence
detection device was developed based on smartphone imaging.
Quantification of low-abundance cfDNA and detection of mutations
were successfully demonstrated.

FISH uses nucleic acid probes modified with chromogenic or
fluorescent dyes to detect specific sequences on fixed histological
specimens. The presence of the target nucleic acid sequence can be
detected and quantified by amicroscope, andmultiple analyses can be
performed based on the number of reporter molecules and micro-
scope filters. Kühnemund et al. demonstrated amHealth platform that
permitted on-site molecular diagnostics with a cost-effective mobile-
phone-based multimodal microscope, which allowed next-generation

DNA sequencing reactions and in situ point mutation detection assays
in preserved tumor samples to be imaged and analyzed10.

As an interesting alternative to fluorescence imaging, microbead
motion-based methods have opened a new avenue for nucleic acid
detection on mHealth platforms. Recently, Draz et al. demonstrated a
mHealth platform integrating cellphone-based optical sensing, LAMP
and metal nanoparticle motion for molecular detection of HIV-111

(Fig. 8a). The presence of HIV-1 RNA in a sample resulted in the for-
mation of large-sized amplicons that reduced the motion of metal
nanoparticles. Themotion change could be accuratelymeasured using
a cellphone system as the biomarker for target nucleic acid detection.

For detecting proteins such as antigens, ELISA is the common
strategy for signal amplification. Previously, Barbosa et al. reported on
a power-free portable smartphone system for ELISA-based colori-
metric and fluorescence quantitative detection of prostate-specific
antigen (PSA)113. The developed system allowed quantitation of PSA in
the range of 0.9 to 60 ng/ml with <7 % precision in 13min using
enzymatic amplification and a chromogenic substrate. The lower limit
of detection was further improved from 0.4 to 0.08 ng/ml in whole
blood samples with the use of a fluorescence substrate. The binding
reaction between antibody and antigen can be directly used for pro-
tein detection. For example, Joh et al. developed a mHealth platform
that was comprised of a custom cellphone-based optical microscope
and an immunodiagnostic chip built upon a non-fouling polymer
brush-coating that could quantify the expression of protein bio-
markers directly from crude cell lysates114 (Fig. 8b). As a result, the
method could evaluate both the cellular morphology and molecular
expression of clinically relevant biomarkers directly from fine-needle
aspiration of breast tissue specimens within 1 h.

For detecting ions, colorimetry is a simple and effective method
that allows optical detection via the mobile phone camera to quantify
ion concentration115–121. Microfluidic paper-based analytical devices
(μPADs) are a relatively simple and economical means for developing
POCT devices. Recently, Xiao et al. reported a stand-alone smart-
phone-based portable reader installed with a custom-designed APP,
which could accurately and reproducibly acquire fluorescence change
from a paper-based microarray for simultaneous detection of Hg2+,
Pb2+, and Cu2+ in water samples122 (Fig. 8c).

The quick-response (QR) code is a widely used recognition tech-
nology, which has recently been combined with μPADs for colori-
metric detection due to its ability to quickly locate and recognize
encoded information, improving detection speed and increasing
detection tolerance. Recently, Katoh et al. integrated QR code recog-
nition into μPADswith distance-based colorimetric signaling, resulting
in a semiquantitative readout fully relying on straightforward barcode
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reader solutions123. A model assay in the form of colorimetric copper
ion detection was demonstrated in the concentration range of
0.4–3.2mM. Consistent results were achieved with a free barcode
reader APP independent of the smartphonemodel and environmental
light conditions.

Due to the excellent signal amplification methods described
above, the above particles can be detected even if their sizes are below
the Abelian limit. By the indirect detectionmethod, small particles can
interact with the detection light source to produce detection signals
that can be easily detected under fluorescence imaging. However,
because of the portable and low-cost optical components (e.g., light
sources, filters) of the mHealth platform, the image SNR of the
mHealth fluorescence imaging platform is often relatively low, so
denoising algorithms, such as machine learning algorithms, are
required to improve the detection accuracy. Owing to the high sensi-
tivity and specificity of fluorescence imaging, analysis algorithms used
after preprocessing are often straightforward, and simple and count-
ing or fitting algorithms will be used to complete the final quantitative
detection.

Viruses
Most viral particles have scales below the Abelian limit, but some
special viral particles, such as coronavirus, are larger than it. Theore-
tically, when the size of the object is above the Abelian limit, it can be
directly imaged and analyzed by a microscopic system. However, due
to the limitation of the smartphone camera lens, the image quality
acquired by the mHealth platform often has problems such as aber-
ration and small FOV, resulting in an imaging resolution of >1 µm. As a
result, the virus cannot be directly imaged on mHealth platforms for
detection.

One strategy for detecting viruses on mHealth platforms is to
detect their specific nucleic acid after lysis utilizing approaches such as

PCR and LAMP. Another strategy is to directly detect the viral par-
ticles, which can also be accomplished by using the microbead
motion-based method with the aid of immunological reaction. For
example, Draz et al. reported the detection of Zika virus through
monitoring the catalytic-based motion of nanostructure under a
mobile optical system124. The presence of Zika virus in a testing
sample resulted in the accumulation of platinum-nanomotors on the
surface of polystyrene beads via immunological reaction, causing
their motion in hydroperoxide solution. As a result, the method
could detect Zika virus in samples with virus concentrations as low as
one particle/μL. Since the motion characteristics of microbeads are
easy to identify, the motion trajectory of microbeads can be cap-
tured directly in the bright field and analyzed by the particle tracking
algorithm. In addition, fluorescent microbeads can be used to cap-
ture motions in the dark.

Cells
Cells and bacteria are generally larger than 1 µm. Thus, they can be
detected on mHealth platforms by direct imaging. Sunny et al.
demonstrated a tele-cytology system in combination with an ANN-
based risk-stratification model for early detection of oral poten-
tially malignant lesions (OPML)37 (Fig. 9a). Following automated
scanning of cytology slides, acquired images were uploaded to a
specialized web-based server for image preprocessing and ANN-
based analysis. The integration of image processing and ANN-
based risk-stratification model improved the detection sensitivity
of malignant lesions and high-grade OPML. Zeinhom et al.
demonstrate a compact and lightweight optical device attached to
the existing camera module of a smartphone for detection of
Escherichia coli O157:H7125 (Fig. 9b). Based on the classical sand-
wich ELISA design, rapid and specific detection of E. coliO157:H7 in
foods was achieved within 2 h.

Semen analysis is the cornerstone of male infertility evaluation.
Previously, Kanakasabapathy et al. developed an automated
smartphone-based semen analyzer to quantify sperm concentration
and motility for point-of-care male infertility screening (Fig. 9c). From
a total of 350 clinical semen specimens, the developed mHealth plat-
formcould analyze anunwashed, unprocessed liquefied semen sample
with <5 s mean processing time, providing a semen quality evaluation
based on the World Health Organization guidelines with ~98%
accuracy126. In the following work, the authors further evaluated the
ability of the developed mHealth platform to provide information on
Hyaluronan Binding Assay score, sperm viability, and sperm DNA
fragmentation. Embryo assessment and selection is a critical step in an
in vitro fertilization procedure. Kanakasabapathy et al. reported the
development of two inexpensive and automated mHealth platforms
that utilized deep learning algorithm for rapid, reliable, and accurate
evaluations of embryo morphological qualities127 (Fig. 9d). Using a
layered learning approach, they showed that the network models
pretrained with high-quality embryo image data could be re-trained
with data recorded on low-cost, portable optical systems for embryo
assessment and classification when relatively low-resolution image
data were used128,129.

Cell-scale objects are often larger than 1 µm, much greater than
the Abelian limit, so they can be imaged directly with bright field
imaging. However, because of the limitations of the smartphone
microscope lens, the quality of microscopic images they take is not
good enough and always has problems such as small FOV, aberration,
and coma. Hardware structures withmotors for field-by-field scanning
are often used to solve the problem of small FOV, and deep learning
methods for image enhancement are used to solve problems of
aberration and coma. At the same time, the directmethod using bright
field imaging lacks high specificity like that of fluorescence imaging, so
deep learning is required for image segmentation and classification to
perform the final analysis of the image.

Cancer cella Bacteriumb

Spermc d Embryo

Fig. 9 | Detection of cells on mHealth platforms. a Cancer cell detection. The
figure illustrates the design of a comparison study on the early detection of
potentially malignant oral lesions by conventional cytology, tele-cytology, and
ANN-based diagnoses (figure adapted with permission from Sunny et al. 37).
b Bacterium detection. The figure illustrates a portable smartphone-based device
with a sandwich immunosensor for E. coli O157:H7 detection (figure adapted with
permission from Zeinhom et al. 125). c Sperm detection. The figure shows an image
of the smartphone accessory and microfluidic chip for sperm detection (figure
adapted with permission from Kanakasabapathy et al. 126). d Embryo assessment.
The figure shows an exploded image of the stand-alone optical system and its
various components. The system is wirelessly controlled using a smartphone to
photograph embryos on a standard embryo culture dish. CMOS denotes com-
plementary metal oxide semiconductor (figure adapted with permission from
Kanakasabapathy et al. 127).
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Parasites
Parasite detection is closely related to food safety and personal health,
which can also be realized by direct imaging detection on mHealth
platforms130,131. The risk of host infection can be prevented by parasite
detection. For example, Giardia eggs can be transmitted through
drinking water or food, and the infected host will have symptoms such
as diarrhea. Recently, Shrestha et al. reported a smartphone micro-
scope method that could detect and quantify Giardia cysts and Cryp-
tosporidium oocysts in food and water samples (Fig. 10a). The method
was easy to implement, providing performance comparable to com-
mercially available microscopic methods.

After the host is infected, parasites can be detected in its feces,
urine, or blood according to the transmission mode of the parasites.
Previously, Slusarewicz et al. demonstrated the use of a cellular smart-
phone as an inexpensive device to photograph parasite eggs that were
labeled with a fluorescent chitin-binding protein in feces (Fig. 10b). By
harnessing the computational power of the smartphone, parasite eggs
could be counted through image analysis. As a result, the Strongyle egg
counts generated by the smartphone system had a significant linear
correlation withmanualMcMaster counts but with a lower coefficient of
variation. Recently, Li et al. developed a cost-effective and automated
system for counting parasites in fecal samples without special sample
preparation or the need for a trained user. The system included an
inexpensive, portable, robotic microscope that could scan over the size
of an entire McMaster chamber and capture high-resolution bright field
images without user intervention. The captured images were then
automatically segmented and analyzed using a trained CNN to separate
parasite eggs from background debris. Simple postprocessing of the
CNN output yielded both egg species and counts.

Testing of blood samples is necessary for identifying blood
parasites. For example, malaria is a life-threatening disease caused by
parasites that usually infect subjects through mosquito bites. After
infection, the parasite begins invading the host’s red blood and liver
cells,modifying the biochemistry and structural properties of the cells.
Pirnstill et al. reported a cost-effective, optical cellphone-based
transmission polarized light microscope system for malaria diagnosis
by imaging the malaria pigment known as hemozoin in blood samples
(Fig. 10c). The developed system was comparable to larger benchtop
polarizedmicroscopy systems but atmuch lower cost and complexity.
The detection of malaria in fixed and stained blood smears was suc-
cessfully demonstrated.

Conclusions and prospects
In this review, recent advances in the development of hardware and
software of mHealth platforms and their applications were docu-
mented. As illustrated in Supplementary Fig. 1, in the early stages of
development (before 2014), research on mHealth platforms was
mainly focusedon the supporting component of the imagingparts and
modalities, which could be categorized into three types, that is, lens-
free imaging, bright field lens-based imaging, and fluorescence ima-
ging. Lens-free imaging often has a compact supporting component
and requires image reconstruction for analysis. The resolution and
FOVof lens-free imaging are directly related to theCMOSquality of the
mobile phone, and it involves the removal of the smartphone camera
lens, which may damage the integrity of the smartphone. Thus, cur-
rently, fewer and fewer mHealth platforms use lens-free imaging.
Fluorescence imaging has the advantages of high specificity, large
FOV, and wide-field imaging. However, the testing samples usually
need to be pretreated with fluorescence staining before imaging. It is
unfriendly to non-professional users to employ fluorescence imaging
directly. In addition, since low-cost filters and LEDs are the major
choices for fluorescence imaging on mHealth platforms for cost
reduction, the resulting images often have a low signal-to-noise ratio
(SNR). In contrast, bright field lens-based imaging is widely employed
because microscopic modules can be easily adapted to mobile phone
cameras for high-quality imaging, and the resulting images can be
effectively analyzed by artificial intelligence algorithms such as CNN.
However, when the resolution is very high, the FOV of bright field lens-
based imaging becomes smaller. Thus, a trade-off between resolution
and FOV is necessary according to application scenarios.

When imaging modalities became mature on mHealth platforms,
researchers started to explore mHealth platforms for different appli-
cation scenarios, such as blood cell and parasite detection, colorimetric
and fluorescence detection of nucleic acids and proteins. At the same
time, more hardware structures such as process control components
and software algorithms such as colorimetric and dynamic video
detection algorithms were developed. With rapid advances in smart-
phone performance and detection strategies, mHealth platforms have
become simpler and more convenient, suitable for detecting a wide
range of biological samples with improved sensitivity and accuracy.

Since 2018, research on mHealth platforms has further migrated
to the development of software algorithms, such as deep learning
algorithms for image enhancement and classification. The research
group of Shafiee has shown many good examples, including male
infertility tests (Fig. 9c), embryo assessments (Fig. 9d), and fern
pattern-based ovulation tests. The combination of deep learning
algorithms with mobile phone systems has opened a new avenue for
mHealth platforms to further expand their application fields. However,
machine learning algorithms, especially deep learning algorithms,
need a large amount of data for model training. Thus, when choosing
software algorithms for mHealth platforms, we should consider not
only the advantages of the algorithm but also the time and resources
that are required to generate the training set.

For future development, microfluidic-based detection methods
hold high potential for sensing and evolving into mHealth platforms
for mobile health monitoring. For example, localized surface plasmon
resonance132–147 (LSPR) doesn’t need a prism or other optical coupling
device to excite the sample and has a higher surface-to-volume ratio in
comparison to traditional surface plasmon resonance. The integration
of LSPR into mHealth platforms not only improves the portability of
the detecting device but also makes the detection results more accu-
rate and reliable by using deep learning algorithms. Liquid crystal (LC)-
based sensors show colorful signals that can be readily interpreted by
users without using expensive and bulky instrumentation under
ambient light148–152. Therefore, they have been considered as simple
and convenient methods that are suitable for routine analysis and on-
site applications.
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Fig. 10 | Detection of parasites on mHealth platforms. a Detection of Giardia
cyst and Cryptosporidium (oo)cyst in food and water. The figure shows a
representative image of (oo)cysts acquired by a smartphone microscope with
a one mm ball lens and white LED light illumination (figure adapted with
permission from Shrestha et al. 198). b Detection of parasite eggs in feces. The
figure shows an example of a whole-field image of a sample in a McMaster
chamber and image processing results during threshold segmentation (figure
adapted with permission from Slusarewicz et al. 199). c Detection of malaria in
blood. The figure shows an image of the mouse malaria strain blood smear
without polarized light using a Leica microscope with a ×40 magnification
objective (figure adapted with permission from Pirnstill et al. 200).
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Recently, increasing attention of researchers is drawn to the
integration of wearable devices with mHealth platforms153–161, where
biological information is collected by wearable devices and then han-
ded over to mHealth platforms for data analysis so as to realize real-
time health monitoring. More and more mobile phone hardware
resources such as near field communication and flashlight are applied
tomHealth platforms to improve their portability162. In addition, many
sensors embedded in smartphones such as gyroscopes and infrared
and temperature sensors, also have a high potential to be imple-
mented in mHealth platforms.

For machine intelligence, new models have emerged for image-
based artificial intelligence analysis. For example, the transformer and
pretrained models have been widely used in the computer vision area
in the past two years. These newly developed models optimize the
performance of deep neural networks from different aspects and
greatly improve the accuracy of recognition. They hold high potential
for applications in mHealth platforms.

When the high-performance model is relatively large, it usually
requires a high computing power, making it difficult to deploy directly
to mobile phones and thus a major barrier to mHealth development.
Although algorithms deployed on cloud servers can analyze images
uploaded from mobile phones, which is also known as cloud-based
computing, it often suffers from higher latency and weaker privacy.
Recently, fog- and edge-based computing (the way data is computed
on gateways, routers or embedded devices) have attracted the atten-
tion of researchers with lower latency and higher data security, which
can be integrated with cloud-based computing and have promising
applications on mHealth platforms. In addition, although a lot of
existing proven algorithms have been employed on mHealth plat-
forms, few researchers developed new lightweight models specifically
formHealth platforms.Most researchers only programfunctions using
canned algorithms in different applications. New lightweight models
specifically for mHealth platforms may be the breakthroughs for
existing challenges.

Above all, there is no doubt that mobile health monitoring is a
very promising field. With the rapid development of the internet of
things technology163,164, mHealth platforms based on smartphones
have a wide range of application scenarios. It can be used for home
nursing and health monitoring of family members, for use in the
community medical station as the frontier of CDC, and field food
safety detection. The collected data can be transmitted to the central
server for analysis, which can be used by doctors for remote diagnosis
of patients, scholars for pathological research, disease control officials
for epidemic control, and improved theranostics165–196. We believe that
soon, mHealth platforms will become more convenient and reliable
with widespread applications.
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