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Estimation and implications of the genetic
architecture of fasting and non-fasting
blood glucose

Zhen Qiao1,2, Julia Sidorenko 2, Joana A. Revez 2, Angli Xue1,2, Xueling Lu3,4,
Katri Pärna3,5, Harold Snieder 3, Lifelines Cohort Study*, Peter M. Visscher 2,
Naomi R. Wray 2,6 & Loic Yengo 2

The genetic regulation of post-prandial glucose levels is poorly understood.
Here, we characterise the genetic architecture of blood glucose variably mea-
sured within 0 and 24h of fasting in 368,000 European ancestry participants of
theUKBiobank.We foundanear-linear increase in theheritability of non-fasting
glucose levels over time, which plateaus to its fasting state value after 5 h post
meal (h2 = 11%; standard error: 1%). The genetic correlation between different
fasting times is > 0.77, suggesting that the genetic control of glucose is largely
constant across fasting durations. Accounting for heritability differences
between fasting times leads to a ~16% improvement in the discovery of genetic
variants associated with glucose. Newly detected variants improve the predic-
tion of fasting glucose and type 2 diabetes in independent samples. Finally, we
meta-analysed summary statistics from genome-wide association studies of
random and fasting glucose (N = 518,615) and identified 156 independent SNPs
explaining 3% of fasting glucose variance. Altogether, our study demonstrates
the utility of random glucose measures to improve the discovery of genetic
variants associated with glucose homeostasis, even in fasting conditions.

Type 2 diabetes (T2D) is a complex disease characterized by sustained
elevation of blood glucose levels, primarily caused by insulin resis-
tance and beta-cell dysfunctions1,2. Over the last decades, large-scale
association studies have shown that both genetic and environmental
factors contribute to glucose homeostasis and T2D pathogenesis3–7. In
particular, genome-wide association studies (GWAS) of glycemic traits
haveprovided insights into the genetic regulationof glucose levels and
that of T2D susceptibility8–10, while revealing a partial overlap
between them3,11. Overall, GWAS of glycemic traits have discovered a
range of genetic loci associated with fasting glucose (FG)
concentration9,10,12–15, post-challenge glucose concentration8 and fast-
ing insulin concentration10,13,15.

Previous theoretical and empirical studies have established that
sample size is the main factor driving GWAS discoveries16,17. However,
oral glucose tolerance tests or tests performed in a fasting state (i.e.,
fasting for at least 8 h) can be difficult to schedule in practice, which
may limit the sample size attainable. Therefore, it is critical to leverage
data that are more conveniently collected such as random glucose
measures (RG: i.e., blood glucose levels measured at any time of the
day, irrespective of the fasting duration), readily available in large
population-based cohorts like the UK Biobank (UKB)18.

In this study, we conduct genetic analyses on RG measured in
individuals without diabetes from the UKB to provide an overview of its
genetic architecture and evaluate its applicability to improve our
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understanding of T2D pathogenesis as well as our ability to predict T2D
risk. Our aims are threefold: (1) quantify the heterogeneity in genetic
effects on the regulation of blood glucose levels across different fasting
time; (2) test how to better model the effect of the duration of fasting
statuswhen estimating the genetic effects onRG levels, and (3) examine
the utility of RG in the prediction of fasting glucose levels and T2D risk.

Results
Overview of study design and phenotype definition
A flow chart illustrating the overview of the study design is provided in
the Supplementary material (Supplementary Fig. 1). We used untrans-
formed glucose levels measured in serum samples from UKB partici-
pants. Following previous genetic studies of glycemic traits from the
Meta-Analysis of Glucose and Insulin-related traits Consortium
(MAGIC), we restricted our analyses to nondiabetic samples of Eur-
opean descent (Methods, Supplementary Data 1). Each participant had
also reported the time since their last consumption of food or drink
intake, hereafter referred to as fasting time. Individuals who had a
fasting time greater than 24 h (less than 0.01% of the sample) were
defined as outliers and excluded from the analysis. In total, we retained
367,427 individuals for our main analyses, of whom 280,962 were
unrelated (i.e., SNP-based estimated relatedness < 0.05; Supplementary
Methods, Supplementary Data 2). The mean random glucose level was
4.96mmol/L with a standard deviation (SD) of 0.63mmol/L.

Time-dependent genetic architecture of RG and optimal GWAS
strategy
To facilitate the investigation of the genetic architecture of RG within
different fasting time intervals, we subset UKB participants into five
groups based-on their self-reported fasting time (0–2 h, 3 h, 4 h, 5 h
and 6–24 h). These five groups were defined to include at least 30,000
individuals each (Supplementary Data 2, Supplementary Fig. 2). We
estimated the SNP-based heritability of each measure using the
Haseman-Elston (HE) regression19 method (Methods). Heritability
estimateswere positively correlatedwith fasting time and ranged from
0.05 (standard error; s.e. 0.005) to 0.11 (s.e. 0.01) (Fig. 1a, Supple-
mentary Data 3). The smallest SNP-based heritability estimate was
observed in the 0–2 h group, which implies a higher relative con-
tribution of non-genetic effects, e.g., food content and intake.

Next, we estimated the pairwise genetic correlations (rg) between
subgroups using linkage disequilibrium (LD) score regression (LDSC)20

and HE regression and found that the genetic correlation between
subgroups is not significantly different from 1 (P >0.05, Fig. 1b, c) for
most comparisons except between 0-2 h and 5 h subgroups (Table 1
and Fig. 1c). In addition, we collected GWAS summary statistics of FG
from Lagou et al. (2021) (N = 151,188 European ancestry individuals
without diabetes)12, and estimated rg between FG and glucose levels in
each subgroup using LDSC. Similarly, we found that rg estimates
between RG and FG are either close to 1 or not significantly different
from 1 (Fig. 1d, Supplementary Data 4). Altogether, we conclude from
these analyses that the genetic regulation of glucose levels is largely
constant across durations of fasting status.

This conclusion suggests that more statistical power in GWAS
analyses can, in principle, be achieved from jointly analysing glucose
levels at all time points. Therefore, we assessed two simple analytical
approaches to achieve this goal. The first one is an inverse-variance
weighted meta-analysis of estimated SNP effects across time points
(hereafter referred to as the meta-GWAS approach), and the second
one is a direct estimation of SNP effects in the entire sample, while
correcting for fasting time as a categorical covariate (hereafter refer-
red to as the mega-GWAS approach).

We performed both mega- and meta-GWAS in the UKB and
compared the statistical power between these two approaches using
the mean chi-square association statistic as well as the number of
independent associations detected (P < 5 × 10−8) using conditional and

joint analysis (COJO) analysis21. The mean chi-square association sta-
tistic was 1.46 in the mega-GWAS vs. 1.53 in the meta-GWAS. We also
compared the LDSC intercept (a statistic reflecting the degree of
confounding in a GWAS; Methods) between these analyses and found
that both analyses yielded similar estimates of the LDSC intercept
(Table 2, Supplementary Data 5), suggesting that the increased chi-
square statistic observed in our meta-GWAS reflects enhanced statis-
tical power but no inflation of false positives. Consistently, we identi-
fied 109 and 127 independent associations (COJO SNPs, 72 in common)
with glucose levels using our mega-GWAS and meta-GWAS respec-
tively (Table 2, SupplementaryData6),which represents a 16% increase
in the number of signals detected.

We found genome-wide significant evidence of heterogeneous
SNP effects across fasting time groups for rs1881415 (PHET < 5 × 10−8;
Supplementary Data 7). This variant is in high LD (r2 > 0.8) with SNPs
previously associated with fasting glucose, fasting proinsulin, 2h-
glucose22 and T2D risk23. Importantly, the T2D risk allele at this locus
shows opposite effects on FG (positive effect) vs 2 h glucose levels
(negative effect). Our data recapitulates this heterogeneous pattern
(i.e., effect sizes are not sign-consistent across fasting times)
although the relatively small number of UKB participants fasting
for > 5 h reduces the statistical power to detect a genome-wide sig-
nificant effect.

In summary, we provide empirical evidence that a fasting-time
stratified meta-GWAS is optimal for discovery of glucose-associated
genetic variants, and therefore focus on this approach in following
sections.

Residual differences in genetic control of FG and RG
Weused LDSC to estimate the genetic correlation betweenglucose (FG
and RG) and 245 traits with GWAS summary statistics available in LD
hub24 (Supplementary Data 8). Overall, these 245 traits showed similar
genetic correlations with FG and RG (Fig. 2). After Bonferroni correc-
tion accounting for the number of traits tested (P <0.05/245), we
identified eight traits significantly correlated with FG or RG. We found
a stronger genetic correlation between FG andT2D (rg,FG-T2D = 0.56, s.e.
0.07; P = 7.3 × 10−17) than between RG and T2D (rg,RG-T2D =0.32, s.e.
0.04; P = 2.7 × 10−14, Fig. 2, Supplementary Data 8). This observation is
consistent with previous studies showing a partial, yet significant,
genetic overlap between glycemic traits and liability to T2D9. More-
over, waist circumference and birthweight (BW) adjusted formaternal
genotype were genetically correlated with FG but only marginally with
RG (rg,FG-Waist =0.29, s.e. 0.07; P = 1.5 × 10−5; rg,FG-BW = −0.31, s.e. 0.07;
P = 3.6 × 10−5), while the opposite pattern was observed for heart rate
(HR; rg,RG-HR = 0.29, s.e. 0.07; P = 1.5 × 10;−5 Fig. 2, Supplemen-
tary Data 8).

GWAS meta-analysis of RG and FG in 518,615 individuals
To further improve the statistical power for discoveringbloodglucose-
associated loci, we meta-analysed our UKB meta-GWAS of RG with a
large published GWAS of FG from the MAGIC consortium (N = 151,188,
with summary statistics for 6,094,831 SNPs)12, thereby reaching a total
sample size of 518,615. The LDSC rg estimates between these two
GWAS (FG vs. RG meta-GWAS) is rg = 0.82 (s.e = 0.05). Therefore, with
an increased accuracy to estimate rg , this analysis reveals a small but
significant differential genetic control between RG and FG. We also
detected significant heterogeneity of SNP effects (PHET< 5 × 10−8)
between these two GWAS at 11 FG-associated loci, seven of which did
not reach genome-wide significant association with RG (Supplemen-
tary Data 9). Among the other four loci significantly associated with
both FGandRG, rs13431652 (nearG6PC2) and rs1604038 (nearSLC2A2)
showed consistent but stronger effect on RG than on FG, while the
effect size at the ABCB11 intronic variant rs853777 was larger on FG
than RG (Supplementary Data 9). Interestingly, the MTNR1B intronic
variant rs10830963 showed a significant oppositive effect on FG
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(β~0.08mmol/L per G allele; P = 1.24 × 10−211) versus RG (β~−0.01mmol/
L per G allele; P = 2.32 × 10−9).

In total, we identified 156 COJO SNPs from themeta-analysis of FG
and RGGWAS. This represents 90more signals than the 66 COJO SNPs
identified from re-analysing FG GWAS summary statistics of Lagou
et al. (2021) alone (Table 2, Supplementary Fig. 3c). Next, we sought to
evaluate if these additional SNPs improve the prediction accuracy of
FG in an independent sample of 13,781 unrelated European ancestry
participants from the Lifelines cohort study25 without diabetes. We
measured prediction accuracy as the squared correlation between FG
and polygenic scores (PGSs) based either on COJO SNPs alone or on
1.1M HapMap 3 SNPs (Methods). Genome-wide PGS predictors using
HapMap 3 SNPs were obtained using the SBayesR method26. Overall,

we found that combining FG and RG GWAS data leads to identifying
SNPs with an increased predictive power for FG. More precisely, the
prediction accuracy for FG increased from 1.61% when using 66 COJO
SNPs from Lagou et al. up to 3.08% (i.e., between 1/5th and 1/3rd of the
SNP-based heritability, Supplementary Data 10) when using the 156
SNPs identified in this study. Consistently, the accuracy of the SBayesR
PGS also increased from 2.28% up to 4.32% (Fig. 3a, Table 2).

We also quantified the ability of our FG and RG PGSs to predict
T2D in an independent sample of 6,905 cases and 46,983 controls
from the Genetic Epidemiology Research on Adult Health and Aging
(GERA) study cohort27. For these analyses, we used the area under the
receiver operator characteristic curve (AUC) as a measure of predic-
tion accuracy. The glucose PGS based on 156 COJO SNPs identified

Fig. 1 | Estimation of time-dependent genetic architecture parameters for
random glucose in UKB. a SNP-based Heritability (h2) estimates for each sub-
group, obtained through Haseman-Elston regression analysis based on all samples,
are presented with 95% confidence intervals (95% CIs). b Genetic correlation esti-
mates (and their 95% CIs) between pairwise subgroups obtained through LDSC
analysis. c Genetic correlation estimates (and their 95% CIs) between pairwise
subgroups obtained through Haseman-Elston regression analysis. The only pair of
subgroups with a genetic correlation significantly lower than 1 after Bonferroni
correction is marked with an asterisk. d Genetic correlations between fasting

glucose (Lagou et al. 2021) and glucose levels in each subgroup, as estimated
through LDSC analysis. Error bars in this panel represent 95% confidence intervals
(95% CIs). Of note, LDSC rg estimates beyond the upper bound (> 1) are due to
sampling variations. The number of samples used to compute the SNP-based her-
itability (a) and genetic correlations (d) for each subgroup are as follows: 0-2 h
(95,199), 3 h (108,222), 4 h (80,645), 5 h (43,938) and 6-24h (39,423). All SNP-based
heritability estimates and genetic correlations in this figure can also be found in
tabular form in Table 1 and Supplementary Data 3-4.
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from our meta-analysis of FG and RG showed an AUC=0.5497 (s.e.
0.0038), that is significantly larger than AUC=0.5309 (s.e. 0.0038)
reachedwhenonly using66COJOSNPs fromLagouet al. (P = 4.7 × 10−4,
Fig. 3b, Table 2, Supplementary Data 10). Similarly, the accuracy of the
SBayesR PGS also increased from AUC=0.5500 (s.e. 0.0038) to
AUC=0.5664 (s.e. 0.0037) (P = 2.0 × 10−3, Fig. 3b, Table 2). Note that
the accuracy of all glucose PGSs remained smaller than that of T2D
PGSs derived from GWAS summary statistics of Xue et al.1 (Table 2),
which can be expected because of the relatively low genetic correla-
tion between glucose and T2D, and the fact that prediction accuracy
(on the liability scale) for correlated traits scales with the square of the
genetic correlation28. Finally, we found that PGSs combining informa-
tion from glucose and T2D (the benchmark measure, Methods)
improved T2D discrimination in our GERA sample (Best AUC=0.6325;
s.e. 0.0036; Table 2).

Prioritisation of glucose-related genes and pathways
Weperformed a summarydata-basedmendelian randomization (SMR)
analysis29 to prioritise genes for which mRNA expression could med-
iate associations between SNPs and glucose. For these analyses, we
used multi-tissue expression quantitative trait loci (eQTLs) identified
in the eQTLGen study30 (N = 31,684 whole blood samples), the GTEx
study31 (N = 838, across 49 different tissues) and the InsPIRE study32

(N = 420 pancreatic islets samples). Using GWAS data from our largest
meta-analysis of glucose (N = 519 K), we prioritised 185 genes passing
both the SMR and Heterogeneity In Dependent Instruments (HEIDI)
tests (PSMR < 3.20 × 10−6 = 0.05/15,645 and PHEIDI >0.01; Methods), sug-
gesting increased evidence of a pleiotropic or a causal effect of these
genes on glucose levels. A complete list of these 185 genes (hereafter
referred to as SMR genes) is provided in Supplementary Data 11. This
list includes GCK, NFX1, CGREF1, CCNE2, QPCTL, ABHD1, SLC39A13,

Table 2 | Summary of analyses performed on the four sets of GWAS summary data

FG mega-RG meta-RG meta-analysis of glucose

Sample size 151,188 367,427 367,427 518,615

Number of SNPs 6,094,831 8,546,067 8,546,067 6,094,831

Mean χ2 1.21 1.46 1.53 1.64

Univariate LDSC intercept (s.e.) 1.004 (0.008) 1.043 (0.011) 1.043 (0.012) 1.043 (0.012)

Number of COJO SNPs 66 109 127 156

Number of clumping SNPs 53 129 143 158

SNP-based Heritability (h2) 11.61% (1.74%) 6.15% (0.99%) 6.75% (1.09%) 6.73% (0.97%)

rg with FG - 0.809 (0.049) 0.820 (0.052) 0.986 (0.024)

Prediction accuracy in Lifelines (% of FG variance explained by PGS)

Predictor based on COJO (s.e.) 1.61% (0.22%) 2.54% (0.27%) 2.78% (0.28%) 3.08% (0.29%)

Predictor based on SBayesR (s.e.) 2.28% (0.24%) 3.91% (0.33%) 3.88% (0.33%) 4.32% (0.34%)

Prediction of T2D risk using glucose PGS in GERA (AUC)

Predictor based on COJO (s.e.) 0.5309 (0.0038) 0.5547 (0.0038) 0.5558 (0.0038) 0.5497 (0.0038)

Predictor based on SBayesR (s.e.) 0.5500 (0.0038) 0.5684 (0.0037) 0.5625 (0.0038) 0.5664 (0.0037)

Prediction of T2D risk using T2D PGS in GERA (AUC)

Predictor based on COJO (s.e.) 0.5876 (0.0037)

Predictor based on SBayesR (s.e.) 0.6269 (0.0036)

Prediction of T2D risk in GERA using a combined glucose and T2D PGS (AUC)

Predictor based on COJO (s.e.) 0.5893 (0.0037) 0.5938 (0.0037) 0.5948 (0.0037) 0.5937 (0.0037)

Predictor based on SBayesR (s.e.) 0.6295 (0.0036) 0.6324 (0.0036) 0.6315 (0.0036) 0.6325 (0.0036)

FG, summary statistics of fasting glucose from Lagou et al. (2021);
mega-RG, mega-GWAS of RG, summary statistics of random glucose modelled by mega-GWAS approach using UKB samples;
meta-RG, meta-GWAS of RG, summary statistics of random glucose modelled by meta-GWAS approach using UKB samples;
meta-analysis of glucose, summary statistics obtained through meta-analyzing FG and meta-RG.

Table 1 | Genetic correlation estimates (rg) between pairwise (fasting) subgroups, calculated using Haseman-Elston (HE)
regression analysis or LDSC analysis on unrelated samples only

HE regression LDSC

rg s.e. Low 95%CIa High 95% CI rg s.e. Low 95%CI High 95% CI

0-2h 3h 0.928 0.095 0.743 1.114 1.067 0.094 0.883 1.251

0-2h 4 h 0.927 0.099 0.733 1.122 0.965 0.115 0.740 1.190

0-2hb 5h 0.728 0.084 0.564 0.893 0.774 0.150 0.480 1.068

0-2h 6-24 h 0.846 0.107 0.637 1.055 1.027 0.151 0.732 1.322

3h 4h 0.916 0.077 0.765 1.068 1.031 0.088 0.858 1.203

3h 5h 0.909 0.080 0.753 1.066 1.020 0.104 0.816 1.223

3h 6-24 h 0.872 0.095 0.686 1.057 0.903 0.112 0.684 1.123

4h 5 h 0.894 0.090 0.717 1.071 1.073 0.123 0.833 1.314

4h 6-24 h 0.927 0.108 0.716 1.139 1.064 0.130 0.809 1.319

5h 6-24 h 0.734 0.136 0.467 1.002 0.878 0.157 0.571 1.185
a 95% CI: 95% confidence interval. s.e.: standard errors.
bThe only pair of subgroups with a genetic correlation significantly (two-sided P-value <0.05) different from 1 (and by HE regression method only).
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SLC12A4, YWHAB, ACVR1C, TRIM59, ITFG3, SMC4, INTS8, TP53INP1,
ZCWPW1, KLHL42 and SYNM previously associated with glucose mea-
surements, insulin measurements and T2D. Another number of SMR
genes had no prior evidence of any role in glucose metabolism, but
have been implicated in glucose regulation. Those include HBM,
CREB3L4,NPEPPS,HEXIM2, LCAT,UNC13D,CHMP4B,MTMR3,RCCD1, as
well as several long non-coding RNAs and pseudogenes (Supplemen-
tary Data 11). Among those genes, CREB3L4was reported to negatively
regulate adipogenesis when expressed in adipose tissues33. Impor-
tantly, adipose tissues are involved in insulin resistance and T2D
through adipokines secretion affect systemic glucose homeostasis34.
Therefore, differential expression of CREB3L4 may change adipokine
profile and, thereby, alter insulin sensitivity (Supplementary Fig. 4).

Next, we compared our SMR results across tissues and found that
108/185 (i.e., ~58%) SMR genes had a significant effect size in at least
two tissues. The remaining 77 SMR genes were more often associated
with expression in pancreatic islets (16 genes), blood (15 genes) and
testis (10 genes), although this enrichment was not statistically sig-
nificant (Fisher Exact Test P >0.7). We then focused on the 108 SMR
genes detected in at least two tissues and quantified the heterogeneity
of estimated effect size of gene expression on glucose levels. Overall,
we found consistent effect sizes of gene expression across tissues
(medianCochran’s heterogeneity I2 ~ 40%). However, we also observed
12/108 genes (KLHL42, STEAP1, MBTPS1, TAPBP, TP53INP1, SMC4,
TMEM45A, PLEKHM1,CCNE2, ZCWPW1, PABPC1L, YWHAB) for which the
estimated effects had inconsistent direction across tissues. For
instance, TMEM45A expression in pancreas, pancreatic islets, pituitary,
spleen and blood was positively associated with glucose, while

expression in omentum, artery (aorta and tibial), spinal cord and cul-
tured fibroblast was negatively associated with glucose. This pattern
can be explained by various mechanisms causing differential regula-
tionofgene expression across tissues including the fact that eQTLs can
have opposite effects across tissues as reported previously31. For
example, the G allele at rs4132537, an eQTL for TMEM45A expression,
has opposite effects on gene expression in arteries and pituitary.
Besides these 12 genes displaying heterogeneous effects on glucose,
GCK showed the largest coefficient of variation of effect sizes across 7
tissues although estimates were consistently positive (Supplementary
Data 11). Importantly, GCK also had the largest effect size on glucose
levels (bSMR =0.27mmol/L per SD of GCK expression in blood;
s.e. = 0.03; PSMR = 1.6 × 10−19, PHEIDI= 0.012), consistent with its glucose
sensing role35.

Finally, we used the GENE2FUNC module of the online FUMA
GWASplatform36 to annotate SMRgeneswith biological and functional
information. Overall, we found that SMR genes are down-regulated in
liver, muscle, pancreas, heart and kidney (Supplementary Fig. 5), and
significantly (False discovery rate < 5%) enriched among genes
involved in peptidase activity (Supplementary Fig. 6A), vacuole and
endoplasmic reticulum membrane organisation (Supplementary
Fig. 6B and 6C). Moreover, SMR genes were significantly enriched
among genes involved in myogenesis, MTORC1 signalling, as well as
within pathways related to myometrial relaxation/contraction and G-
protein-coupled receptors (in particular class B secretin-like family)
activity (Supplementary Fig. 7). We also compared biological and
functional enrichmentsof SMRgenes identified through analyses of FG
(N = 23 genes; SupplementaryData 11) andourmeta-RG (N = 148 genes;

Fig. 2 | Estimates of genetic correlation between random glucose/fasting glu-
cose and 245 traits in LD Hub. The genome-wide genetic correlations were esti-
mated using LDSC regression. The x-axis represents rg estimates obtained through
meta-GWAS of RG in UKB, and the y-axis represents rg estimates obtained through
GWAS summary statistics of FG from Lagou et al. (2021). Of the traits analyzed,
eight showed rg estimates with either RG or FG that passed the multiple testing
significance threshold (two-sided P-value < 0.05/245, or a Bonferroni corrected P-

value threshold of P <0.05adjusted for 245 tests) andwereannotatedon thefigure.
The dots are colored according to the level of significance with both glucose traits.
Error bars are standard errors (s.e.) of rg estimates. The triangle plot on the right
panel shows the rg between RG, FG, and T2D. RG is from the meta-GWAS in UKB
(current study), FG is Lagou et al. 2021, andT2D is fromMahajan et al. 2018.Of note,
the inflation in rg estimates (> 1) is due to large sample overlaps between the studies
(i.e., the same study cohort being used in multiple studies).
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Supplementary Data 11) GWAS, but did not find a significant differ-
ential enrichment between these two sets of genes.

In summary, we prioritise here 185 genes whose expression across
multiple tissues may explain how SNPs can induce physiological glu-
cose variation. Further functional experiments are required to fully
characterise a potential causal relationship between steady state gene
expression of these genes and glucose levels.

Missing heritability and mapping of future discoveries
Finally, we quantified the enrichment of SNP-based heritability of FG in
genomic regions near the 156 COJO SNPs, by partitioning the genome
into regions spanning the COJO SNPs vs the rest. Genome-wide sig-
nificant lociweredefined as genomic segments centred aroundeachof
these 156 COJO SNPs and including all SNPs within a certain window.
We varied the window size from 10 kb up to 1Mb.

We found that although these 156 SNPs only explain ~3% of FG
variance in our Lifelines sample, ~50% of the FG SNP-based heritability,
i.e., ~10% of FG variance, can be explained by SNPs in the close vicinity
of the 156 COJO SNPs identified in our largest meta-analysis (Fig. 4).
Note that the SNP-based heritability of FG in the Lifelines sample is
~20%, that is larger than previously reported37,38 and estimated in the
UK Biobank. Nevertheless, this analysis suggests that additional asso-
ciations, accounting for the difference between the ~10% of FG var-
iance expected and the ~3% already explained, remain to be discovered
within 1Mb of the 156 COJO SNPs identified in this study.

Discussion
In this study, wedemonstrate that the genetic control of bloodglucose
is only marginally affected by fasting status. This implies that genetic
studies aiming at detecting SNPs associated with fasting glucose may
conveniently utilise routinely-collected non-fasting measures in large
numbers of individuals to improve statistical power. However, such
a strategy is limited by the genetic correlation between FG and

RG (rg,FG-RG~0.8), which implies, in a worst-case scenario, that SNPs
detected by larger GWAS of RG would only explain up to 80% of the
SNP-based heritability of FG, i.e., 0:8×0:11~0.09. GWAS power to
detect associations with FG can be further improved using statistical
methods integrating GWAS data from genetically correlated traits like
T2D or HbA1c39. Besides, we highlight large differences (up to ~2-fold)
in SNP-based heritability estimates between fasting times. Such dif-
ferences imply that glucose levels measured after short fasting dura-
tions (e.g., within 2 h post-meal) are less informative for GWAS than
those collected after long fasting times. Therefore, because they do
not give the same weight to each sample, meta-GWAS strategies can
yield significant improvements in statistical power (here > 15%) relative
to mega-GWAS strategies implemented in previous GWAS of RG (Sin-
not-Armstrong et al.33 and Lagou et al.34). Interestingly, glucosewas the
only biomarker measured in the UKB showing such a pattern (Sup-
plementary Data 12), suggesting that meta- and mega-GWAS approa-
ches would be equivalent for these other biomarkers.

We report a fasting-time-dependent effect of rs1881415
(C2CD4A/C2CD4B locus) and rs10830963 (MTNR1B locus) on glucose
levels. The fasting-time-dependent effect of rs1881415 is consistent
with previous studies showing opposite effects of the T2D risk allele at
this locus on FG and 2 h glucose22. This observation suggests that the
association of rs1881415 with glucose and T2D could be mediated by
insulin secretion and not by insulin sensitivity24,40,41. Interestingly, the
interaction between fasting time and rs10830963 was not reported
before and therefore deserve further investigation and replication in
an independent sample.

Our GWAS meta-analysis of FG and RG in 518,615 individuals
identified 156 common SNPs (i.e., with a Minor Allele Frequency
(MAF) > 1%) associatedwith glucose, which cumulatively explain ~3%of
FG variance. Importantly, we also derived a genome-wide predictor of
glucose, with an accuracy of 4.32%, which is unprecedented for a trait
like FG. Finally, we showed that ~50% of FG SNP-based heritability is
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Fig. 3 | Polygenic prediction of Fasting Glucose. Polygenic scores were con-
structed using either GCTA-COJO genome-wide significant SNPs or SBayesR
methods, and the standard errors (s.e.) were calculated using the Jackknifemethod.
a Prediction R2 when predicting fasting glucose in unrelated, nondiabetic Lifelines
samples (N = 13,781).b Area under the receiver operator characteristic (ROC) curve
(AUC) when predicting T2D risks in unrelated GERA samples (6905 T2D cases and
46,983 controls). The x-axis indicates the discovery samples used to generate the

polygenic scores, while the y-axis represents the variance explained by the poly-
genic score (a) or the prediction accuracy (i.e., AUCmetric) of the polygenic score
(b). Error bars in both panels represent standard errors (s.e.). Fasting glucose is the
GWAS summary statistics of FG from Lagou et al. (2021), random glucose is from
the meta-GWAS of RG from the current study, and meta-analysis of glucose refers
to the summary statistics from meta-analysis of meta-GWAS of RG and FG.
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concentrated within < 1Mb of these 156 glucose-associated SNPs,
suggesting a significant allelic heterogeneity at these 156 loci and that
future GWAS of glucose are likely to detect new associations nearby
those identified here.

Our studyhas a few limitations. First, weused self-reported fasting
times, which may not provide a reliable assessment of actual fasting
duration. Secondly, by choosing to analyse groupswith at least 30,000
individuals, participants within 2h-post meal were aggregated in a
single group despite the substantial changes in glucose levels occur-
ring in that critical window (Supplementary Fig. 8). Although the vast
majority (~82%) of participants in that group reported their last meal
exactly 2 h prior to the assessment, we sought to quantify the genetic
correlation of glucose levels between the 0–1 h (N = 13,325) and the 2 h
group (N = 59,494). We used GCTA instead of LDSC to estimate this
genetic correlation because the former yields more precise estimates
with smaller sample sizes42. While standard errors remain large, we
found a genetic correlation rg =0.60 (s.e. 0.17; 95%CI: 0.26–0.93) sig-
nificantly lower than 1 (P =0.018), suggesting some heterogeneity of
SNP effects between these two sub-groups. However, there was no
significant heritability difference between these groups (0–1 h:
h2 = 0.072, s.e. 0.026; 2 h: h2 = 0.066, s.e. 0.007) implying that splitting
the 0–2 h group in two sub-groups may not further improve statistical
power of ourmeta-GWAS. Nevertheless, if sample size is large enough,
more loci showing heterogeneity of SNP effects on glucose levels can
be detected within that time interval. Thirdly, our GWAS of glucose
were restricted to individuals with European ancestries, and therefore
the transferability of our findings across ancestries is not warranted.
Lastly, we did not perform any post-GWAS in vitro or in vivo studies,
which can provide valuable evidence to support a role of newly dis-
covered GWAS variants and genes in glucose homeostasis.

Altogether and despite these limitations, our study provides a
strong proof-of-concept of the utility of non-fasting endpoints for
genetic studies of glucose, thereby offering new opportunities for
future discoveries across biobanks.

Methods
The UK Biobank cohort
The UK Biobank (UKB) is a large population-based prospective
study with deep genetic and phenotypic data collected from over

500,000 participants recruited when aged between 40 and 69 years
old. After the baseline assessment, approximately 20,000 partici-
pants attended a repeat assessment visit in 2012–2013. The North
West Multi-Centre Research Ethnics Committee granted ethics
approval, and written informed consent was provided by all UKB
participants18.

Genotype and quality control. Genome-wide genotyping was per-
formed on all UKB participants using two arrays: the UK BiLEVE Axiom
Array by Affymetrix and the UK Biobank Axiom Array. Over 800,000
variants were directly genotyped, quality checked, and then imputed
to the Haplotype Reference Consortium (HRC)43 and the UK10K44

referencepanel by theUKB team18.We converted imputeddosagedata
to hard-call genotypes using PLINK45 (v2.00aLM,––hard-call 0.1). We
excluded variants with imputation score < 0.3, minor allele count
(MAC) < 5, genotype missingness > 0.05 or Hardy-Weinberg equili-
brium test P-value < 1 × 10−5. We further restricted our analyses to
8,546,067 SNPs autosomal imputed variants with MAF ≥0.01.

The approach to determine ancestry of UKB samples was exten-
sively described in a previous study46. Briefly, the UKB samples were
projected onto the first two principal components (PCs) from the 1KG
reference panel using common SNPs withMAF >0.01 in both datasets.
Individuals with posterior probability > 0.9 of belonging to the Eur-
opean cluster were assigned to European ancestry47. We further iden-
tified a subset of unrelated European individuals by constructing
genomic relationship matrix (GRM) using ~1.1M HapMap3 SNPs with a
cut-off genomic relationship value of 0.05 (gcta––grm-single 0.05,
gcta v1.93.1.beta)48.

Random glucose and other biochemical markers. UKB performed
laboratory testing on a wide range of biomarkers in serum and urine
frequently measured in clinical settings to diagnose and monitor
chronic disease conditions. These biomarkers were collected from all
participants at the baseline assessment and those who attended the
repeat assessment. Glucose was measured at serum level in mmol/L
(byhexokinase analysis on aBeckmanCoulter AU5800) andHbA1cwas
measured using (packed) red blood cell samples in mmol/mol. Fol-
lowing previous MAGIC’s efforts, we used untransformed glucose
levels in our analyses.
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Fig. 4 | Partitioned SNP-based heritability of FG in the vicinity of 156 glucose-
associated SNPs. Estimates of SNP-based heritability (h2) were obtained in the
Lifelines sample (N = 13,781) by partitioning the genome into SNPs within genome-
wide significant loci vs. SNPs outside of genome-wide significant loci. Error bars are
standard errors (s.e.). Horizontal lines (dotted = estimate ± standard error)

represent the non-stratified genome-wide estimate of FG SNP-based heritability.
Genome-wide significant loci were defined as genomic segments centred around
each of these 156 COJO SNPs and including all SNPs within a window size varied
from 10kb up to 1Mb. M (%) denotes the number (percentage) of SNPs within
genome-wide significant loci.
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Similar to previous blood glucose studies6,9,10,12,13, individuals were
excluded if they were diagnosed within any subtypes of diabetes, on
diabetes medications, had abnormal glucose (≤3mmol/L or
≥11.1mmol/L) or glycated haemoglobin (HbA1c ≥ 48mmol/mol) levels
in any visits to the assessment centre. For participants who had more
than one glucose measurement, we generated the phenotype and
covariates based on the records from the baseline assessment. Fasting
time (i.e., how many hours since last consumption of meal or drink
except for plain water; UKB Data-Field 74) ranging between 0 and 72 h
across UKB samples was recorded when blood samples were taken,
and we excluded the samples who reported a fasting time greater than
24 h to remove outliers and avoid recall bias (N = 25). After quality
control, we retained 367,427 individuals of European ancestry with
non-missing genotype, phenotype and covariates data available
for our main analyses, of whom 280,962 were unrelated (Supple-
mentary Methods).

Genome-wide association studies (GWAS)
The genome-wide association analyses reported as our main GWAS
result were performed using the BOLT-LMM software (v2.3.4)49 with
age (during assessment), sex, genotyping batch, assessment centre
and the first 40 genetic principal components (PCs) fitted as default
covariates. We used a set of 711,933 LD pruned autosomal HapMap3
SNPs (LD r2 >0.9, MAF >0.01) as model SNPs in the analysis to correct
for confounding effects (e.g., population stratification), as required by
the BOLT-LMM software (v2.3.4).

We performed association analyses on glucose measurements in
each of the five subgroups with the default covariates, as well as in all
individuals with further adjustment of fasting time as a categorical
covariate (Supplementary Data 2). We refer to the latter analysis as the
mega-GWAS approach. We performed an inverse-variance weighted
(IVW) meta-analysis of the GWAS results from the five subgroups and
referred to it as meta-GWAS approach. We defined genome-wide sig-
nificant (GWS) SNPs with a significance threshold of 5 × 10−8 for
each GWAS.

GCTA-COJO analysis
To identify independent GWS signals, we conducted a conditional and
joint (COJO) analysis of GWAS summary statistics which utilises LD
information from an external reference panel to identify jointly asso-
ciated signalsbyfittingmultiple variants simultaneously in themodel21.
We used a random subset of 20,000 unrelated European ancestry
samples from the UKB as LD reference. Analyses were performed
assuming that SNPs 10Mb apart or on different chromosomes were
not in LD (default settings in GCTA-COJO, v1.93.1.beta).

Estimation of SNP-based heritability and genetic correlation
We used LD score regression (LDSC)20 and Haseman-Elston regression
(HE) implemented inGCTA toestimate the SNP-basedheritability of RG
(e.g., in each subgroup) and genetic correlations between glucose and
other traits. The LDSC intercept approximates themean χ2 association
statistic at SNPs not associated with the trait, and therefore provides a
quantification of confounding due to population stratification20. HE
regression was used whenever individual-level data were available.

We performed a range of genetic correlation analyses in this
study: (1) estimated the rg of glucose levels between pairs of sub-
groups; (2) estimated the rg between FG and RG, using summary sta-
tistics obtained from both mega-GWAS and meta-GWAS approaches.
The first set of analyses aimed to detect heterogeneity in genetic
effects between different subgroups, for example the glucose levels
measured at different fasting times might be under different genetic
control. The second set was applied to uncover the genetic relation-
ship between the two glucose phenotypes.

In addition, to compare the genetic correlation between FG/RG
and other complex traits and diseases, we applied bivariate LDSC

implemented in the LD Hub online tool24, which is a centralized data-
base of summary-level GWAS results developed for screening hun-
dreds of different complex traits and diseases for genetic correlations
with a trait of interest. We included 245 GWAS summary statistics of
different phenotypes available in LD Hub and compared their rg esti-
mates with FG against those with RG. Because the T2D summary sta-
tistics recorded in LDHub is out ofdate and the sample size is too small
(published in 2012, N = 69,033)6, we used instead the more recent and
larger GWAS of T2D (published in 2018, N = 898,130)5. Significant
genetic correlations were defined at the Bonferroni-corrected P-
value < 2.04 × 10−4 (0.05/245).

Meta-analysis
Fixed-effect inverse variance weighted meta-analyses were conducted
using METAL (version 2011-03-25) (https://genome.sph.umich.edu/
wiki/METAL)50 and reported as the main results in this study. Before
meta-analysis, we checked the genetic heterogeneity and sample
overlap between or among GWAS summary results and only retained
SNPs that were common to all data sets. We performed meta-analysis
of the GWAS results across five subgroups in UKB for 8,546,067
common SNPs. Heterogeneity of allelic effects among subgroups were
evaluated by the Cochran’s Q test51 implemented in the METAL
package.

We also conductedmeta-analysis of GWAS results from ourmeta-
GWAS of RG (within the UKB) and a GWAS of FG from the MAGIC
consortium12 (i.e., metaGlu). Summary statistics of the FG GWAS from
the MAGIC consortium12 were imputed to all-ancestries 1000 Genome
reference panel and available for 8,658,737 SNPs. We then filtered out
SNPswhich reportedpairs of alleles did notmatch thepairs of alleles in
the UKB. Since it was difficult to determine the minor allele for which
the minor allele frequency (MAF) reported, we imputed the allele fre-
quencies (AFs) for SNPs common to the two data sets (i.e., a total of
6,094,831 SNPs) based on the AFs of UKB SNPs to avoid ambiguous
determination of the minor allele.

Summary-data-based Mendelian Randomization (SMR) analysis
We performed an SMR analysis29 to prioritise putative causal genes
underlying glucose phenotypes. SMR integrates summary statistics
from GWAS and expression quantitative trait loci (eQTL) studies and
performs a Mendelian Randomization using the top associated cis-
eQTL of a gene (the most significant SNP associated with the expres-
sion of this genewithin ±1Mb) as an instrumental variable for the gene-
trait association. Genes that are SMR significant show evidence for a
causal relationshipwith the trait mediated through gene expression. A
subsequent test, the HEterogeneity In Dependent Instruments (HEIDI)
test is used to increase the likelihood that our findings reflect causality
or pleiotropy over the possibility that causal variants for glucose and
that for gene expression are in LD. We used eQTL summary data from
the eQTLGen study30 (N = 31,684 whole blood samples), the GTEx
study31 (N = 838, across 49 different tissues) and the InsPIRE study32

(N = 420 pancreatic islets samples), most of which were derived from
glucose relevant tissues.We focused our analyses on gene probes with
at least one genome-wide significant eQTL (PeQTL < 5 × 10−8). SMR sig-
nificant results were declared at PSMR < 0.05/m, where m~15,645 cor-
responds to 3.2 × 10−6. The significance level of HEIDI test was set at
PHEIDI > 0.01 as recommended by Wu et al. (2018)52.

The SMR prioritized genes were then taken forward to the GEN-
E2FUNC platform of FUMA GWAS (“Functional Mapping and Annota-
tion of Genome-Wide Association Studies”)36 to gain insights into
putative biological mechanisms. To be specific, tissue specificity of
these prioritized genes was provided by evaluating their over-
representation in sets of differentially expressed genes (DEGs) for each
of the 30 general tissue types based on GTEx v8 RNA-seq data31.
Besides, enrichment of these prioritized genes in biological pathways
and functional categorieswas accessedusing the hypergeometric tests
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by testing them against gene sets obtained from MsigDB53 and
WikiPathways54. Multiple testing correction (i.e., Benjamini-Hochberg
by default) was performedper data source of tested gene sets (e.g., GO
biological processes, hallmark genes). FUMA reported all gene sets
with adjusted P ≤ 0.05.

Out-of-sample polygenic prediction
We assessed the predictive ability of four polygenic scores (PGS) of
glucose in two datasets independent from our discovery GWAS. PGS
were derived from summary statistics of GWAS RG (mega-GWAS or
meta-GWAS), FG (data from Lagou et al. (2021)12) as well as the meta-
analysis of FG with our mega-GWAS (metaGlu).

Prediction of fasting glucose. We predicted fasting glucose in 13,781
unrelated participants of the Lifelines study25,55, a multi-generational
population-based cohort study initiated with a research focus of the
onset and development of chronic diseases and healthy ageing. We
focused our analyses on measurements recorded during the baseline
assessment, which include a quantification of fasting plasma glucose
using the hexokinase method. These 13,781 Lifelines participants were
genotyped using the Illumina global screening array (GSA) Beadchip-
24 v1.0, as part of the UMCG Genetics Lifelines Initiative (UGLI). After
initial quality control, approximately 570,000 SNPs that passed QC
filters were subsequently imputed using the HRC panel by the central
UGLI team. We restricted our analysis to adult individuals (age >18
years) whose FG levels were lower than 7.0mmol/L and without self-
reported diabetes.

Using this set of unrelated samples (N = 13,781) as the target
dataset, we conducted polygenic score analyses. PGS were con-
structed for the target samples using the SNP effects re-estimated by
GCTA-COJO and SBayesR26 methods (PLINK v1.90b6.11 ––score func-
tion), and the prediction accuracies were measured by the proportion
of phenotypic variance explainedby the polygenicprofiles in the linear
regression (R2). We ran SBayesR using a banded LD matrix with a
window size of 3 cM per SNP computed based on 1.1 million common
HapMap 3 SNPs in 10,000 randomly selected and unrelated UKB
samples.

Genetic risk prediction of T2D. We predicted T2D in 6,905 T2D
cases and 46,983 controls from the Genetic Epidemiology Research
on Adult Health and Aging (GERA) cohort27, a large, multiethnic,
and comprehensive population-based cohort with > 100,000 sub-
jects genotyped on the Affymetrix Axiom Genotyping System56.
Detailed QC and imputation procedures on GERA have been
described in our previous studies57. Our analysis focused on indi-
viduals of European ancestry and excluded related individuals at a
genetic relatedness threshold of 0.05. After QC, 6,905 T2D cases
and 46,983 controls were retained. As described above, we con-
structed PGS using SNP effects re-estimated by GCTA-COJO and
SBayesR26 methods, and quantified the prediction accuracy by
measuring the Area Under the receiver operator characteristic
(ROC) Curve (AUC) [R library pROC58]. As a benchmark, we also
meta-analysed T2D summary statistics from DIAbetes Genetics
Replication andMeta-analysis consortium (DIAGRAM, 34,840 cases
and 114,981 controls)6 and UKB (21,147 cases and 434,460 controls)1

and used it as the discovery set (55,987 cases and 549,441 controls)
to predict T2D disease risks in GERA. Description of the latter meta-
analysis has been described previously1.

Partitioned SNP-based heritability of FG
We sought to quantify the contribution to FG glucose variance of
sub-significant SNPs located within glucose-associated loci. For
that, we partitioned the SNP-based heritability (h2) of FG into two
genomic regions (i.e., within- and outside-GWS loci region), where
the GWS loci of glucose were defined as genomic segments

centred around each of the 156 COJO SNPs (identified using meta-
analysis of glucose) and including all SNPs within a specific window
size (10 kb, 20 kb, 30 kb, 40 kb, 50 kb, 100 kb, 200 kb, 500 kb,
and 1 Mb).

To do this, we first estimated the h2 of FG using the same set of
unrelated individuals from the Lifelines cohort (N = 13,781) by the
genomic restricted maximum likelihood (GREML) method imple-
mented in the GCTA software package48. The FG phenotype was cor-
rected for age and age2 and the first 20 PCs (calculated fromHapMap3
SNPs)within each sex. Then,westratified the variants into twobins and
computed the GRMs from the variants in each of these bins, and fitted
jointly in a multicomponent GREML analysis using GCTA. The pro-
portionof FG variance explained bywithin- and outside- GWS loci were
used to compare their relative contributions to the total FG variance
explained. We repeated this procedure for all the 9 window sizes
defined previously.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are available in the public domain. This
study uses genotype and phenotype data from UK Biobank Resource
under project 12505. UKB data can be accessed upon request once a
research project has been submitted and approved by the UKB com-
mittee. Data on glycaemic traits were downloaded from www.
magicinvestigators.org. Other datasets used in these analyses can be
sourced from: eQTLGenConsortiumData, http://www.eqtlgen.org/cis-
eqtls.html. GERA, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000674.v2.p2. GTEx, https://gtexportal.org/
home/datasets. HapMap3, https://www.sanger.ac.uk/resources/
downloads/human/hapmap3.html. Lifelines cohort study, https://
www.lifelines.nl/researcher. Banded LD matrix of ~1.1 million Hap-
Map3 SNPs computed from 10,000 unrelated UKB individuals of Eur-
opean ancestry: https://cnsgenomics.com/software/gctb/#Download.

Genome-wide association summary statistics generated from this
study (i.e., mega-GWAS of random glucose, meta-GWAS of random
glucose, meta-analysis of glucose) are available for download from
https://cnsgenomics.com/data/qiao_et_al_2023_nc/.

Code availability
Scripts used to perform various analyses reported in this study are
publicly available an Github at https://github.com/uqzqiao/random-
glucose and have been deposited at https://doi.org/10.5281/zenodo.
7456276
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