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Chiral excitonicorder fromtwofoldvanHove
singularities in kagome metals

Harley D. Scammell 1,2 , Julian Ingham 3 , Tommy Li4 & Oleg P. Sushkov1,2

Recent experiments on kagome metals AV3Sb5 (A=K,Rb,Cs) identify twofold
van Hove singularities (TvHS) with opposite concavity near the Fermi energy,
generating two approximately hexagonal Fermi surfaces – one electron-like
and the other hole-like. Here we propose that a TvHS generates a novel time-
reversal symmetry breaking excitonic order – arising due to bound pairs of
electrons and holes located at opposite concavity van Hove singularities. We
introduce a minimal model for the TvHS and investigate interaction induced
many-body instabilities via the perturbative renormalisation group technique
and a free energy analysis. Specialising to parameters appropriate for the
kagome metals AV3Sb5, we construct a phase diagram comprising chiral
excitons, charge density wave and a region of coexistence. We propose this as
an explanation of a diverse range of experimental observations in AV3Sb5.
Notably, the chiral excitonic state gives rise to a quantum anomalous Hall
conductance, providing an appealing interpretation of the observed anom-
alousHall effect in kagomemetals. Possible alternative realisations of theTvHS
mechanism in bilayermaterials are also discussed.We suggest that TvHS open
up interesting possibilities for correlated phases, enriching the set of com-
peting ground states to include excitonic order.

Kagome systems have been a major focus of theoretical and experi-
mental investigation; due to their ability to realise Dirac points, flat
bands and van Hove singularities, they have been predicted to host a
range of novel correlated phases of matter1–9. Recently, a new class of
materials AV3Sb5 (A=K,Rb,Cs) have attracted a great deal of attention
due to their demonstration of unconventional superconductivity
alongside competing density wave order, spatially modulated super-
conducting order and possible signatures of Majorana states in
superconducting vortices10–43. Unusually, the materials exhibit time-
reversal symmetry breaking with an anomalous Hall conductivity in
spite of the absence of magnetic ordering; the origins and relationship
between superconductivity, competing order, and the anomalous Hall
effect remain an open question.

The materials consist of a stack of two dimensional layers—a
kagome lattice of vanadiumand antimony alternatingwith a hexagonal

lattice of antimony and triangular lattice of the alkali metal K/Rb/Cs—
with electrical transport predominantly in-plane, as demonstrated by
the large ratio between the out-of- and in-plane resistivityRc/Rab ≈ 600.
The Fermi surface of these materials consists of several distinct con-
tours, including nearly circular contours centred at the Γ and K points
as well as two approximately hexagonal contours44. Systems with
hexagonal Fermi surfaces, corresponding to saddle-points in the
electronic dispersion, have been predicted to give rise to chiral
superconductivity and competing density wave order, due to the
effects of Fermi surface nesting45. However, ARPES and DFT results
reveal that the hexagonal Fermi surfaces in the vanadium metals
exhibit an unusual feature—twofold van Hove singularities (TvHS), for
which the saddle-points at each Fermi surface possess opposite con-
cavity, resulting in one electron-like Fermi surface and one hole-like
Fermi surface39.
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We argue that doping a system to a TvHS has an ineluctable
influence on the low-energy physics. A single vHS results in a tendency
towards density wave ordering and superconductivity. The appear-
ance of TvHS introduces an additional tendency towards excitonic
order—corresponding to a condensation of electron-hole pairs—owing
to the coupling between an electron-like and hole-like Fermi surface.
We introduce a low-energy model, which incorporates the TvHS—fea-
turing an electron-like and hole-like Fermi surface, each doped near
their respective vHS. To understand the interplay and competition
between the various many-body instabilities, we employ the pertur-
bative renormalisation group (RG)method to determine the dominant
ground state order45–49, complemented by a Landau-Ginzburg free
energy analysis of competing ground states. A chiral excitonic order
naturally emerges,whichbreaks time-reversal symmetry and exhibits a
quantum anomalous Hall effect. The chiral excitonic state appears as a
generic weak coupling instability, but explicit modelling for AV3Sb5
suggests these materials exist in an intermediate coupling regime;
guided by ab initio results we generate a phase diagram featuring
charge density wave order, chiral excitonic order and a region of
coexistence. We suggest that the phenomenology encompassed by
the TvHS model accounts for key features observed in the vanadium-
based kagomemetals, and could furthermotivate TvHS engineering in
van der Waals heterostructures and bilayer materials.

Results
Tight-binding Hamiltonians with TvHS
A TvHS consists of two Fermi surfaces with opposite concavity vHS so
that one surface is electron-like and the other hole-like—e.g., arising
from doping near the M-point of a 2D hexagonal Brillouin zone as
shown in Fig 1a. The opposing concavities of the respective saddle-
points can be seen from the colour plot in Figs. 1c; going from outside
to inside the hexagonal Fermi surface, the energy changes sign, but the
sign change is opposite for the two Fermi surfaces. The two Fermi
surfaces may arise due to two hexagonal (honeycomb or kagome)

bilayers, or a single layer with two sets of orbitals—the latter case is the
origin of the TvHS in vanadium metals AV3Sb5.

To be explicit, we will introduce a particular lattice model rea-
lisation of a TvHS. A tight-binding model of a kagome monolayer with
two sets of orbitals that has been used to describe AV3Sb5 is given by

Htb = �
X
hi,ji,ν

tνay
i,νaj,ν �

X
i,ν

ϵνay
i,νai,ν , ð1Þ

where ay
i,ν creates fermions on site i and in orbital ν = c, d. The differing

orbital potentials, ϵc − ϵd ≈ tc + td shift the energies of the two bands,
aligning their valence and conduction bands and resulting in a TvHS.

The bandstructure of a TvHS can be realised in both honeycomb
and kagome systems (we discuss alternative tight-binding models in
the Supplementary Material). However, the orbital content of the
wavefunction at the M-points is qualitatively different in these two
cases. For honeycomb,with twosublattices, thewavefunction at theM-
points has equal support on both sublattices. Meanwhile, in kagome
systems the wavefunction near the M-points exhibits the so-called
‘sublattice interference effect’8: at a given M-point, the conduction
band wavefunctions have support only on one sublattice and are
referred to as p-type (owing to their ‘pure’ sublattice composition)
while the valence band wavefunctions have support on the other two
sublattices and are referred to as m-type (due to their ‘mixed’ sub-
lattice composition). The sublattice structure has important con-
sequences when considering interaction effects, as we discuss below.

Patch model
The problem of interaction driven instabilities on a single hexagonal
Fermi surface (i.e., single vHS) has been previously studied using a
three patch model45, whereby the full Brillouin zone is restricted to
three momentum space patches near the vHS at the M-points, since
theydominate thedensity of states. Following this approach,wedefine
a three patchmodel and further introduce a flavour degree of freedom

Fig. 1 | Theoreticalmodel. aDispersion plots for a hexagonal tight-bindingmodel,
featuring saddle-points with opposite concavity. Dark (light) colours represent
negative (positive) energy states relative to the saddle point. b Bandstructure for
(1), with tc = td = t, ϵc/t = 2.1, ϵd/t = −0.1, demonstrating positive and negative con-
cavity van Hove singularities near the Fermi level. Bands arising from different
orbitals are coloured blue and red, respectively contributing anm- and p-type vHS
near the Fermi level. c Representative interaction processes from each of the

classes Vg,Vh,Vj,Vl (3), accounting for scattering processes on or between the
patches α = 1, 2, 3, and flavours (left and right hexagons), illustrated on a contour
plot of the energy in the first Brillouin zone. The opposite concavities of the saddle-
points can be seen by the opposite sign of the energies inside the Fermi surface.
d Feynman diagrams representing the full set of allowed scattering processes.
Double/single lines denote fermions from the two distinct Fermi surfaces, while
dashed/solid lines represent fermions at different patches.
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to account for the two opposite concavity Fermi surfaces—fermions of
oneflavour (createdby c†) are electron-like,while fermions of theother
flavour (created by d†) are hole-like,

H0 =
XΛ
k,α

ðεck,α � μÞcyk,αck,α � ðεdk,α +μÞdy
k,αdk,α : ð2Þ

The patch index α = 1, 2, 3 indicates a fermionic excitation within a
cutoff Λ of the momentum Mα. Setting μ =0 corresponds to doping
exactly to the TvHS. The opposite concavity is encoded by the relative
minus sign between the c and d dispersions. The TvHS should be
contrasted with the problem of fixed concavity vHS with multiple
flavours50—the opposite concavity of the two vHS plays a fundamental
role in the interaction physics. The patch dispersion take the saddle

point form ενk,1 =
1
2 t

νðk2
x +

ffiffiffi
3

p
kxkyÞ, ενk,2 =

1
4 t

νð�k2
x +3k

2
yÞ,

ενk,3 =
1
2 t

νðk2
x �

ffiffiffi
3

p
kxkyÞ, where tν is a characteristic energy scale, and

equals the nearest neighbour hopping of the ν-fermions (ν = c, d) in the
simple tight-binding model. Fermions at patches α ≠ β are connected
by the nesting vector Qαβ =Mα −Mβ, for which ενk +Qαβ ,β

≈� ενk,α .

Making contact with ab initio results for AV3Sb5, the c- (p-type)
and d- (m-type) fermions arise from the vanadium dyz and dxz orbitals
respectively, and have tc ≈0.5 eV, td ≈ 1 eV51. In the patch model, this
sets tc/td ≡ κ = 2. For completeness wewill analyse both κ = 1 and κ = 2. It
is known from ARPES that the c-band vHS is near-perfectly nested,
while the d-band vHS exhibits quartic corrections39. Close to the M-
point these corrections are subdominant to the quadratic part of the
dispersion, and hence only influence the ultraviolet behaviour of the
theory, near the cutoff Λ ≈0.5 eV. Since our analysis probes infrared
scales far below Λ, it is well-justified to ignore the quartic corrections.

Belowwewill analyse three distinct cases: (i) honeycomb systems,
for which the sublattice support on the two-flavour vHS is the same, in
the particle-hole symmetric limit κ = 1; (ii) kagome systems, in which
the two-flavour vHS have different sublattice support, i.e., m- and p-
type, with κ = 1; (iii) kagome systems with κ = 2, which we have argued
to describe kagome metals AV3Sb5.

Interactions
We now consider the possible couplings between the fermions. Owing
to the large density of states near the TvHS the Coulomb repulsion is
expected to be strongly screened and we therefore model the inter-
actions as short-ranged. The most general set of interactions between
patches/flavours allowed by momentum conservation are

V =
1
2

X
α,β

Vg,ν +Vh +Vj +Vl

h i
ð3Þ

where Vg,ν are intraflavour couplings, Vh are interflavour density-
density couplings, Vj are flavour pair hopping, and Vl are flavour
exchange couplings, resulting in 20 independent interactions. A
schematic illustration of the g, h, j, l couplings, as well as their
representation in terms of Feynman diagrams, is shown in Fig. 1c, d.
Additional details are found in the Supplementary Material.

In the kagome case, projecting the sublattice wavefunctions onto
the Coulomb interaction results in different intraflavour couplings
depending on whether the flavour has pure or mixed sublattice
structure, a manifestation of the sublattice interference effect in
kagome patch models. We have therefore allowed for different cou-
plings Vg,ν on each flavour. Performing this projection explicitly and
using the calculations of ref. 51 gives the estimates of the bare coupling
values shown in Table 1. The values taken from ref. 51 are defined at the
lattice scale; using these as input to our effective theory neglects the
renormalisation flow between the lattice scale and Λ. The sublattice
interference effect has crucial consequences for the bare couplings:
for instance, on a p-type vHS, the wavefunctions at different patches

are orthogonal, and so the interpatch Coulomb repulsion is sup-
pressed, resulting in g1,c = g3,c =0. Thus, any attractive interactions
present in the system, for e.g., due to phonons, immediately result in
attractive couplings.

In the honeycomb case, the orbital form factors are the same for
both flavours and so we expect Vg,c ≈ Vg,d. This reduces the number of
independent coupling constants from 20 to 16. We shall present
results for both models below.

Instabilities
Considering the interacting Hamiltonian,

H =H0 +V , ð4Þ

we determine which instabilities arise within the framework of RG. The
instability of themetallic phase andonset of anordered ground state is
signalled by the susceptibility of the associated order parameter: the
strongest ordering tendencies are those with most divergent sus-
ceptibility. In the case of a nested Fermi surface, a density wave
instability arises because the nesting condition εp ≈ − εp+Q, implies the
total energy of a particle with momentum p and hole with momentum
p +Q is approximately zero. Similarly, the energy of an electron and a
hole at the TvHS is εcp + ε

d
p ≈0. Without including interactions, it costs

zero energy to create either of theseparticle-hole states, andhence, for
an arbitrarily small attraction between particles and holes the system
becomes unstable to lowering its energy by spontaneously creating
many such pairs, analogous to the usual superconducting instability.
The RG method provides an unbiased approach to study competing
orders on an equal footing, by resumming the logarithmically
divergent corrections to the bare couplings and determining which
ordering tendency dominates45–49.

In Table 2, we enumerate the ordered states which naturally arise
in the TvHSmodel, i.e., those with nesting tendencies. The first three—
CDW, SDW and SC—occur in the case of a single vHS. The next three—
singlet and triplet excitonic order, as well as interflavour pair density
wave (PDW)—are new instabilities introduced by the TvHS.

RG analysis
We turn now to the RG treatment which identifies the leading
instabilities, i.e., the dominant ground states in Table 2. Firstly, we
compute the leading log2 corrections to the bare couplings defined in
(3). The equations define how the couplings evolve with the RG time t,
which is a proxy for the energy scale; here t→∞ corresponds to taking
T→0. The full RG equations for our model are lengthy, since they
involve twenty independent interaction constants (Fig. 1d), sowe state
their general form here and reserve explicit expressions for the Sup-
plementary Material. The RG equations describing the flow of the
couplings gi, hi, ji, li (where i = 1, 2, 3, 4) take the form

∂
∂t

gi,ν =βgi,ν
ðg, j,h, lÞ, ∂

∂t
hi =βhi

ðg, j,h, lÞ,
∂
∂t

ji =βji
ðg, j,h, lÞ, ∂

∂t
li =βli

ðg, j,h, lÞ,
ð5Þ

Table 1 | Estimates of the bare coupling values in AV3Sb5

gi,c gi,d hi ji li
i = 1 0 1

4 ðU +VÞ 0 0 1
2 J

i = 2 V 1
4U +V 1

2U
0 +V 0 0

i = 3 0 1
4 ðU +VÞ 0 1

2 J
0 0

i = 4 U +V 1
2U+V V 0 0

Projecting the pureandmixed sublattice form factors onto thecRPA results of ref. 51 results in the
below values, where the intra-orbital, inter-orbital, Hund’s, pair hopping, and nearest neighbour
repulsions are U = 1–2 eV, with U0=0:8U, J = J0=0:1U and V = 0.3U
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where βgi,ν
, βhi

, βji
, βli

are functions of all twenty couplings. Secondly,
we compute the leading log2 corrections to the order parameters,
which generates the linear set of gap equations,

∂
∂t

Oi =
X
j

V ijðg, j,h, lÞOj ð6Þ

where Oi = fSαβν , Cαβν ,Δαν ,Pαβ± ,Φ
C
α ± ,Φ

S
α ± g. Diagonalising the gap

equation matrix Vij and integrating over the RG time t, one identifies
the leading eigenvalue λi(t), which diverges fastest with t. The asso-
ciated eigenvector is the order parameter with the largest critical
temperature Tc =Λe

�1=ðν0λiÞ1=2 , and is therefore the dominant order at
T≲ Tc. Multiple orders of comparable Tc may arise, in which case one
must compute the Landau-Ginzburg free energy to ascertain whether
such phases compete or coexist.

Dominant instabilities
A subset of the couplings diverge with increasing RG time t→∞. In this
limit, the diverging couplings tend towards fixed constant ratios of
each other referred to as fixed rays. The relative magnitudes of the
couplings determine which ground state dominates. All possible
choices of bare initial coupling valuesflow to oneof these possible sets
of ratios in the deep infrared, which therefore represent universal
properties of the model. We now present the set of fixed rays possible
in our TvHS patch model (for a derivation see the Supplementary
Material). Despite the large number of interaction terms there turn out
to be only a small set of fixed rays, shown in Fig. 2, which exhaustively
characterise the possible ground states in the weak coupling regime.
We summarise for three different cases:
1. Honeycomb systems with κ = 1 have three fixed rays: comprising

chiral superconductivityΔd, chirald-wave excitonsΦ
C
d , and s-wave

excitons ΦC
s .

2. Kagome systems with κ = 1 have seven fixed rays: comprising
chiral superconductivity Δd, chiral d-wave excitons ΦC=S

d , and
s-wave excitons.

3. Kagomesystemswith κ = 2have eightfixed rays: comprising chiral
superconductivity Δd, chiral d-wave excitons ΦC=S

d , and s-wave
excitons ΦC=S

s .

Crucially, in all cases d-wave excitons emerge at a fixed trajectory,
demonstrating the naturalness of excitonic order. As in the case of
single vHS45, we find that d-wave superconductivity is also a natural
instability of the TvHS model.

For arbitrarily small initial couplings, the fixed rays are reached at
long RG times, which corresponds to the deep infrared. However, the
initial couplings could be sufficiently large that an instability occurs
before the fixed ray is reached. In such a case it is appropriate to
instead explicitly compute the flow from a specific set of initial con-
ditions, and examine when an instability is reached. Given the sig-
nificant magnitude of the bare values of the couplings in AV3Sb5

(Table 1), we believe that such an analysis is more appropriate when
comparing with experiment, and is presented below.

Properties of the chiral excitonic condensate
We focus attention on some key properties of the excitonic phases
which appear. The two d-wave excitonic order parameter structures
which appear are

ΦC
± ,a =Φae

± iϕa
1ffiffiffi
6

p 1,� 2,1ð Þ,

ΦC
± ,b =Φbe

± iϕb
1ffiffiffi
2

p 1,0,� 1ð Þ
ð7Þ

Here, Φa,Φb are real scalars, ϕa,ϕb are distinct U(1) phases, and the
row vectors enumerate patch indices, therefore encoding the spatial
structure of the two order parameters. Continuing to the full Fermi
surface, the spatial vectors schematically behave as ∼ cosð2θk Þ,
sinð2θk Þ, with θk the momentum angle. Similar d-wave eigenvectors
appear for the superconducting states Δ, which are the two-flavour
analogues of the superconducting states found in45.

Near the critical temperature, the Landau-Ginzburg free energy is
found to be

FΦ =F0 + ð
1

2λΦ
� aΦÞð∣Φa∣

2 + ∣Φb∣
2Þ

+ cΦ Φ4
a +Φ

4
b +

4
3
Φ2

aΦ
2
b +

2
3
Φ2

aΦ
2
b cosð2ðϕa � ϕbÞÞ

� � ð8Þ

where F0 is the free energy of the free fermions, with expansion
coefficients aΦ, cΦ >0. The free energy is minimised by coexisting
order parameters, with Φa =Φb =Φ0 and ϕa −ϕb =π/2 (mod π). The
coexisting states form a single order parameter of the form
Φ=Φ0e

± iθα , θα = {a, b, c}. Continuing around the Fermi surface, the
combined order parameter becomes Φ∼Φ0,k ðcosð2θk Þ± i sinð2θk ÞÞ,
which is a chiral d ± id order. The chirality ± is spontaneously selected
by the ground state, which therefore breaks time-reversal symmetry.

In addition to broken TRS, the chiral order parameter winds twice
along the Fermi surface and vanishes away from it, thereby exhibiting a
non-trivial topology with Chern number ∣C∣ = 2. In order to illustrate
this, we diagonalise a mean-field Hamiltonian (Methods III) defined on
a lattice—we consider a two-orbital kagome lattice model in an infinite
ribbon geometry with zigzag edges. The 1D dispersion of the ribbon is
plotted in Fig. 3 for the d + id phase, which exhibits two chiral edge
modes, with the left/right-movers propagating along the top/bottom
of the ribbon. Full details of the lattice model are provided in
the Supplementary Material. The non-trivial topological invariant
implies a quantised anomalous Hall conductivity σxy =Ce2/(2π), which
is carried by two chiral edgemodes.Wenote that this valueof σxy =Ce2/
(2π) accurately accounts for the intrinsic contribution to the anom-
alous Hall effect seen in AV3Sb5

17.

Table 2 | The leading ordered states

Structure vHS TvHS

CDW Cαβν = hψy
ασνψβi ✔ ✔

SDW Sαβν = hψy
ασν s!ψβi ✔ ✔

SC Δαν =〈ψασνψα〉 ✔ ✔

Singlet exciton ΦC
α ± = hψy

ασ ±ψαi ✗ ✔

Triplet exciton ΦS
α ± = hψy

ασ ± s!ψαi ✗ ✔

PDW Pαβ± = hψy
ασ ±ψ

y
βi ✗ ✔

Notation: α,β index patch, σν act on flavour, indexed by Latin characters ν = c,d with
σc =

1
2 ðσ0 + σzÞ, σd =

1
2 ðσ0 � σzÞ, σ ± = 1

2 ðσx ± iσy Þ, and s! is the vector of Pauli matrices acting on
spin. The final two columns indicate if the given ordered state arises in the presence of a single
nested vHS and/or TvHS

Fig. 2 | RG Fixed rays. RG fixed rays for the TvHS patch model in honeycomb and
kagome systems. The parameter κmeasures particle-hole symmetry, c.f. discussion
after Eq. (2); κ = 2 is appropriate to AV3Sb5

51.
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Coexistence of chiral excitons and charge order
The RG procedure determines which phases are dominant, but is not
sufficient to determine the actual ground state when two phases have
comparable Tc. Motivated by experiments on AV3Sb5, we examine the
ground statewhenCDWand chiral excitons areproximate instabilities.
To carryout the analysis, weconsider the Landau-Ginzburg free energy
for chiral excitons and CDW, written as F =FΦ +FC +FΦ,C , with FΦ

from Eq. (8) and

FC =
X

α≠β;ν = c,d

ðaνδνν0 +
1
2
V�1
νν0 ÞCαβνC

*
αβν0 +

1
2
c1ν ∣Cαβν ∣

4
� �

+
X
ν

bν C12νC23νC31ν + c.c.
� �

+
X

α≠β;ν≠ν0
c2ν ∣Cαβν ∣

2∣Cαβν0 ∣
2

FΦ,C =
X

α≠β;ν≠ν0
c3νfCαβνC

*
αβν0ΦαΦ

*
β + c.c. g

+
X
α≠β,ν

c4ν ∣Cαβν ∣
2ð∣Φα ∣

2 + ∣Φβ∣
2Þ:

ð9Þ

The expansion coefficients aν, bν, ciν depend on temperature and are
computed in the Supplementary Material. Here Vνν0 is the CDW gap
equation matrix (6). Henceforth, we denote the largest eigenvalue of
Vνν0 by λCDW.

In the free energy (9), there are six complex numbers, Cαβν,
describing CDW order. Physically the Cαβν correspond to the magni-
tude of the order for the three distinct vectors Qαβ∈ {Q12,Q23,Q31}, on
the two distinct Fermi surface flavours. From the gap equation (6) we
find that the leading CDW order has Cαβc = ρCαβd, where ρ is a real
number. In particular, ∣ρ∣ = 1 in the particle-hole symmetric limit of
κ = 1. Moreover, the gap equation distinguishes real charge density
order (rCDW) whereby C*

αβν =Cβαν and purely imaginary order (iCDW)
whereby C*

αβν = � Cβαν . We separately considered parameter regimes
in which rCDW and iCDW were the leading CDW phase.

We turn now to the phase diagram predicted by (9). To construct
the phase diagrams of Fig. 4(a)i and 4(b)i we allow the eigenvalues
λCDW and λΦ to be free variables. To illustrate the property of coex-
istence and our phenomenological proposal for these AV3Sb5, we take
a realistic range of coupling eigenvalues, consistent with DFT
calculations51, and fix T = 80 K (which enters via the coefficients
aν, bν, ciν). We find three distinct phases: (i) chiral excitons, (ii) CDW,
and (iii) coexistence of chiral excitons and CDW. In the rCDW/iCDW
phases, the 3Q state is favoured, i.e., CDWorder is nonzero for all three
nesting vectors Qαβ, and corresponds to C12ν =C23ν =C31ν ≠0. In the
excitonic phases, the chiral (TRS breaking) d + id state is favoured. In
the region of coexistence, chiral excitons and the 3Q CDW are
favoured. We point out that d-wave excitons coupled to a nematic
CDW (e.g., C12ν >C23ν =C31ν) was observed as a local minima, but did
not appear as the globalminimumover the parameter range searched.

Experiment indicates that TRS breaking and CDW coexist in
AV3Sb5, and set in at T* ≈ 100K.Wepropose that the coexistence phase
demonstrated by our Landau-Ginzburg analysis provides a phenom-
enological explanation of the physics of kagome metals at T≲ T*.

Truncated RG flow and phase diagram for AV3Sb5

To complement the analysis leading to Fig. 4(a)i and 4(b)i, we now
directly compute the eigenvalues λCDW and λΦ from the RG procedure.
Unlike for the fixed ray analysis, here we must provide initial condi-
tions for the RG flow. Once initialised, we perform the RG flow down
from a UV scale of Λ ≈0.5 eV to an infrared scale set by T. We use the
resulting renormalised couplings as input to the free energy, mini-
mising to obtain the resulting ground state. This procedure generates
the phase diagrams of Fig. 4(a)ii and (b)ii.

We discuss now the choiceof initial couplings that lead to Fig. 4(a)
ii and (b)ii. Given that several of the couplings in Table 1 vanish, we
allow for the situation where these couplings take negative values. By
inspection of the gap equation (6), we see that an initial value of g1,i < 0
promotes CDW (this was first noted in52 for the problem of a single
vHS), while h1 < 0 promotes chiral excitons. To this end, we first allow
for both g1,c, h1 < 0, and subsequently arrive at the phase diagram of
Fig. 4(a)ii. In addition, we allow for g3,d =0, and arrive at Fig. 4(b)ii. The
phase diagram is qualitatively the same for g3,d < 0. Next we mention
that the magnitudes and ratios have been estimated from ab initio
calculations (Table 1). A more accurate treatment would account for
the renormalisation of the couplings in going from lattice to the patch
UV cutoff Λ. We have not included these effects in our analysis. We
stress that our use of the values in Table 1 is to illustrate that there exist
physically reasonable bare couplings, which produce the desired
phenomenology.

Discussion
We introduced and analysed a minimal model to describe inter-
acting fermions near a twofold van Hove singularity (TvHS)—two
opposite concavity vHS near the Fermi level. We found the
opposite concavities of the two vHS crucially affect the possible
many-body instabilities, relative to the single vHS case. In parti-
cular, excitonic order contends as a possible instability and gen-
erically results in a chiral d-wave excitonic phase in hexagonal
systems such as honeycomb and kagome lattices. We contrast our
scenario with topological excitonic states, which have been pre-
viously explored theoretically53–56; in our case, the topology of the
d + id condensate is not inherited from the Berry curvature at the
K-points or from spin–orbit coupling, but appears at the M-point
intrinsically due to interaction driven, spontaneous time-reversal
symmetry breaking. These findings suggest a new class of candi-
date materials for topological excitonic ground states.

TvHS were recently seen experimentally in AV3Sb5
39. We now

discuss key features of experiment and the extent to which the TvHS
minimal model explains them: First, signatures of time-reversal sym-
metry breaking, including a significant anomalous Hall effect, are
observed at temperatures near to T* despite the lack of magnetic
ordering19,41. The presence of chiral excitonic order would offer an
appealing interpretation of the broken time-reversal symmetry and
anomalous Hall effect. Second, experiments also report the breaking
of threefold rotational symmetry and onset of nematic order around
Tc≲ 50K. Coupling between excitons and CDW naturally results in a
phase consisting of nodal d-wave excitons and a nematic CDW, how-
ever, our analysis of the free energy found this phase was only ever a
local minimum in our model. Coupling to phonons may promote this
phase to the dominant ground state, andwe leave further examination
of this scenario to future work. Third, superconductivity emerges
generically as an instability of the TvHS minimal model. However,
superconductivity is seen at a much lower temperature scale
(Tc ≈ 3.5 K)17,18,20–24 than CDW (T* ≈ 100K). At these temperatures the

Fig. 3 | Edgemodes.The 1Ddispersion of ad + id excitonic insulator in a two-orbital
kagome system, for an infinite ribbon of width 120 unit cells. The edge states
propagating along the top/bottom of the ribbon are plotted in red/blue.
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correct starting point for a description of superconductivity requires
incorporating the CDW into the ground state.

Time-reversal symmetry (TRS) breaking and the anomalous Hall
conductivity has also been proposed to arise due to a complex CDW
state42,43,52. Our analysis shows that it is possible for CDW and chiral
excitons to coexist, but a key difference between these two states is
that chiral excitons breakTRSbut not translational symmetry, allowing
experiment to disentangle the two. To this end, it has been shown that
the application of strain and pressure can selectively move the two
opposite concavity Fermi surfaces closer or further away from the
Fermi level57. Moving the Fermi level away from one of the vHS creates
a mismatch in the Fermi surface areas, which disfavours the excitonic
phase, whereasmoving the Fermi level away from the two vHS in a way
that keeps the Fermi surface areas roughly equal disfavours charge
order, while retaining the tendency to excitonic order. Experimental
probes of TRS breaking could be applied in the presence of strain and
pressure to disentangle the two phases. Additionally, we suggest that
the existence of an exciton condensate should lead to Andreev-like
interband tunnelling, an effect which has been used to probe excitonic
order in bilayer systems58.

Beyond the vanadium metals AV3Sb5, another possible scenario
for topological excitonic condensation is to engineer TvHS in van der
Waals heterostructures made from materials with hexagonal sym-
metry such as graphene or transition metal dichalcogenides
(TMDCs)59,60. In moiré systems, the reduced bandwidth of the bands
near charge neutrality brings the opposite concavity vHS of the
valence and conduction bands closer in energy, so that an bias field
could feasibly result in a TvHS. The valence and conduction bands can
be further aligned through spin splitting the bands via a TMDC
layer61,62, the effect of which can be tuned via twist angle63. Finally,
valley polarisation is observed in twisted layered systems64–66, which
could also be exploited to align the valence and conduction bands,
e.g., through methods discussed in refs. 67,68. In the context of layered
van der Waals materials, a possible experimental probe would be the
enhanced tunnelling between layers induced by excitons, e.g.,
refs. 69,70.

Methods
Leading instabilities
Our discussion of the leading ordered states follows from the
solution of the gap equations for the order parameter vertices

Oi = fSαi, Cαi,Δαi,Pα ± ,Φ
C
α ± ,Φ

S
α ± g. We find the mean-field gap equa-

tions to be

∂
∂t

ΦC
α + =d4

X
β≠α

ðh4 � 2l4ÞΦC
α + � j4Φ

C
α�

n
+ ðh1 � 2l2ÞΦC

β + + ðj1 � 2j2ÞΦC
β�

o

∂
∂t

ΦS
α + =d4

X
β≠α

h4Φ
S
α + + j4Φ

S
α� +h1Φ

S
β+ + j1Φ

S
β�

n o

∂
∂t

Pα, + = � d1 h2Pα, + +h1Pα,� + l1P�α, + + l2P�α,�
� �

∂
∂t

Cα,ν =d2νðg2,c � 2g1,cÞCα,c � d2νg3,cC�α,c +d2�νðl2 � 2h1ÞCα,d +d2�νðl3 � 2h3ÞC�α,d

∂
∂t

Sα,ν =d2νg2,cSα,c +d2νg3,cS�α,c +d2�ν l2Sα,d +d2�ν l3S�α,d

∂
∂t

Δα,ν = �
X
β≠α

d0�νg4,cΔα,c +d0�νg3,cΔβ,c

n
+d0ν j4Δα,d +d0ν j3Δβ,d

o

ð10Þ

with indices as defined previously: c, d, ± referring to flavour, α to
patch, and �α denoting the patch connected to αby a nesting vector. To
make the equations compact, we have introduced ν = {c, d} with
�ν = fd,cg. The d-factors are nesting coefficients that characterise the
relative strength of the particle-particle and particle-hole divergences,
and are defined in the SupplementaryMaterial—we have used notation
so that d0c = 1, d0d = d0, d2c = d2, d2d = d3. The couplings entering the
gap equations are understood to inherit scale-dependence from the
RG equations for the couplings (5). The eigenvectors for this linear
system of gap equations give the possible order parameter structures,
and those with the largest eigenvalue are the leading instabilities. The
set of Feynman diagrams which generate these flow equations are
given in the Supplementary Material.

Landau-Ginzburg analysis
The susceptibility gap equations (10) are insufficient to determine
whether order parameters compete or can form a ground state in
which multiple orders coexist. Given a set of degenerate or nearly
degenerate solutions to the gap equations, we determine which
combination of these solutions is the favoured ground state by cal-
culating the Landau-Ginzburg free energy. We employ the mean-field
decomposition of the fermions coupled to a combination of order
parameter matrices, and integrate out the fermionic degrees of

Fig. 4 | Phase diagrams. Everywherewe have taken κ = 2; i/rCDW+Φd+id represents
coexistence, and FL the Fermi liquid metallic state. a(i) The iCDW+Φd+id and b(i)
the rCDW+Φd+id phase diagrams, using the eigenvalues λΦ, λCDW as free para-
meters. In a(ii) and b(ii) the eigenvalues λΦ, λCDW are computed explicitly by

solution of the RG equations, resulting in a phase diagram as a function of T. The
two different phase diagrams result from taking a(i) g1,c <0,h1 < 0, and b(ii)
g1,c <0,h1 < 0 with g3,d =0; precise values of the initial couplings are given in
the Supplementary Material.
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freedom, arriving at the free energy

F =
1

2λΦ

X
i

∣Φi∣
2 +

1
2

X
α≠β;ν = c,d

V�1
νν0 CαβνC

*
αβν0 � Tr logG�1: ð11Þ

Here the full Green’s function

G�1ðiωn,qÞ=G�1
0 ðiωn,qÞ+M, ð12Þ

comprises the order parameter matrix M =MΦ +MC,

MΦ =
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0
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and the bare Green’s function

G�1
0 ðiωn,qÞ=

iωn � ε1ðqÞ 0 0

0 iωn � ε2ðqÞ 0
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0
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The dispersion at each patch is ε1ðqÞ= 1
2qxðqx +

ffiffiffi
3

p
qyÞ,

ε2ðqÞ= 1
4 ð�q2

x +3q
2
yÞ and ε3ðqÞ= 1

2qxðqx +
ffiffiffi
3

p
qyÞ. For the two degen-

erate d-wave excitons, parameterised byΦa and Φb, we have

Φ1 = � 1ffiffiffi
2

p Φa �
1ffiffiffi
6

p Φb,

Φ2 =

ffiffiffi
2
3

r
Φb,

Φ3 =
1ffiffiffi
2
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1ffiffiffi
6

p Φb:
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Rewriting

Tr logG�1 = � F0 + Tr log 1 +G0M
	 
 ð17Þ

where F0 is the free energy of a free Fermi gas, and using the expan-
sion

Tr log 1 +G0M
	 


=
X1
n=0

ð�1Þn
n

Tr ðG0MÞn ð18Þ

we evaluate the trace of the first four terms in the expansion, resulting
in the free energy stated in the main text. Determining whether the
minimum of the free energy can include coexisting Cαβν and Φa,Φb

requires knowledge of the coefficients in this expansion; their calcu-
lation is detailed in the Supplementary Material.

Edge states
To demonstrate the presence of edge states in the excitonic phase, we
employ a simplified model for numerical diagonalisation, describing a

kagome lattice with two-orbital states ν = ± ,

H = �
X

hr,r0 i,ν
tνc

y
r0 ,νcr,ν +

X
r

γ0c
y
r,1cr,1

+
X
hr 0 ,ri

Δðr 0, rÞcyr0 ,νcr,ν0 + h.c.
ð19Þ

in which only coupling between nearest neighbours is taken into
account. We choose the excitonic pairing function Δðr,r 0Þ so that the
lattice theory possesses an equivalent continuum limit to our field
theory description of the three patches surrounding theM points. The
gap function is

Δðr 0, r 2 σÞ= 1ffiffiffi
6

p Δ0 e
iðθr0�r�ð‘+ 1Þφσ Þ ,

ðφA,φB,φCÞ= 0,
2π
3

,
4π
3

� �
,

ð20Þ

with ℓ = ± 2 equal to the phase winding of the excitonic order around
the Fermi surface. The results for ℓ = − 2 are plotted in Fig. 3 in themain
text with γ0 = 2t, Δ0 = 0.5t, for a ribbon geometry with 60 unit cells.

Data availability
The data produced in this study are available upon reasonable request.
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