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Explainable deep learning for insights in El
Niño and river flows

Yumin Liu1,2, Kate Duffy3,4,5, Jennifer G. Dy1,2 & Auroop R. Ganguly 2,3,6

The El Niño Southern Oscillation (ENSO) is a semi-periodic fluctuation in sea
surface temperature (SST) over the tropical central and eastern Pacific Ocean
that influences interannual variability in regional hydrology across the world
through long-range dependence or teleconnections. Recent research has
demonstrated the value of Deep Learning (DL) methods for improving ENSO
prediction as well as Complex Networks (CN) for understanding teleconnec-
tions. However, gaps in predictive understanding of ENSO-driven river flows
include the black box nature of DL, the use of simple ENSO indices to describe
a complex phenomenon and translating DL-based ENSO predictions to river
flow predictions. Here we show that eXplainable DL (XDL) methods, based on
saliency maps, can extract interpretable predictive information contained in
global SST and discover SST information regions and dependence structures
relevant for river flows which, in tandem with climate network constructions,
enable improved predictive understanding. Our results reveal additional
information content in global SST beyond ENSO indices, develop under-
standing of how SSTs influence river flows, and generate improved river flow
prediction, including uncertainty estimation. Observations, reanalysis data,
and earth system model simulations are used to demonstrate the value of the
XDL-CN based methods for future interannual and decadal scale climate
projections.

The El Niño-Southern Oscillation (ENSO) is a primary mode of
interannual weather variability around the globe. ENSO modulates
flood timings in Africa1, interannual variability of flow in the
Ganges, the Amazon, and the Congo rivers2,3, and has significant
influences on regional climate and hydrologic patterns around the
globe. A predictive understanding of ENSO is thus of economic and
societal importance. However, and our ability to predict ENSOwith
physics-based numerical simulations or data-driven models at
interannual, decadal, and multidecadal time horizons have
remained relatively poor4, which has in turn hindered our ability to
assess and leverage the predictability of ENSO’s hydro-
meteorological effects.

Some challenges in ENSO forecasting may be traced back to data
limitations, such as the relatively arbitrary rectangular regions that
determine ENSO indices. Studies have suggested that ENSO is part of a
larger system of interrelated SST oscillations which may co-impact
regional hydrometeorology5. Further, our understanding of physical
mechanisms6 along with data-driven methods7 suggest that the rela-
tionships between ENSO and river flows may be highly nonlinear. The
resulting complexity of the earth system calls for methods that can
leverage complete information content from global SST data and
identify complex geographic dependence structures, which include
both proximity-based dependence and long-range teleconnections.
Figure 1 shows SST anomalies in year 2008 when there was a cool year
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(La Nina phenomenon), while Fig. S1a, S1b show SST anomalies in a
warm year (El Niño) and a neutral year, respectively. The relationships
between river flows and ENSO indices indicate the possibility of sig-
nificant nonlinear dependency (Table S3 and Figs. S2, S3).

Commonly used methods to identify dependencies among cli-
mate variables include visual comparison8, correlation9, mutual

information7, coefficient of determination10, and weights in (sparse)
linear regression11,12. These methods often require heuristic expertise
in selecting features and can be difficult to extend to more complex
features such as three-dimensional spatiotemporal features. In the
recent years, deep learning methods have seen preliminary success in
climate science, meteorology, and hydrology, resulting in improved

Fig. 1 | Global sea surface temperature fluctuations including the El Niño
Southern Oscillation impact interannual variability in the flow of large rivers
such as Amazon and Congo. a Regions for calculating El Niño–Southern Oscilla-
tion (ENSO) indices (Niño 1 + 2, Niño 3, Niño 3.4 and Niño 4) and Indian Ocean
Dipole Mode Index (DMI), and two hydrological regions (Amazon River basin and
Congo River basin). The colors shown on the ocean are the annual sea surface
temperature (SST) anomaly in 2008, a La Niña year. b Time series of standardized
annual river flow in m3/s for Amazon (green) and Congo (lime) and monthly

Oceanic Niño Index (ONI) in the Niño 3.4 region at the same time-period. The ONI
data are from United States Climate Prediction Center (NOAA 2021). Warm (red)
and cold (blue) periods show months that are higher than +0.5 °C or lower than
−0.5 °C threshold for aminimumof five consecutive months. A warm/cold year is a
year whenwarm/cold anomalymonths dominate, and a neutral year is a year that is
neither a warm nor a cold year. For Amazon, the river flow decreases during the
warm period and increases during the cold period. However, the relations between
Congo River flow and ONI are more complicated and not obvious.
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predictive skills and the development of methods to investigate the
spatiotemporal dependencies13,14. Furthermore, methods for inter-
pretation and explanation of deep neural networks, such as saliency
maps, can be adapted to climate problems to analyze relevant (SST)
regions resulting in understandable predictive information for regio-
nal climate and hydrology. Simonyan et al.15 initially proposed the
saliencymapmethod as a visualization technique to explain the neural
network function mapping, specifically, the extent to which inputs
contribute to network output. Due to their effectiveness, explainable
deep learning methods have been widely applied to the geosciences
and especially to understand climate science and translate to impacts,
for example, in spatial drought prediction16, satellite-based PM2.5 (air
pollution)measurements17, crop yields18, species distributionmodels19,
analysis of hailstorms20, hydro-climatological process modeling21,
precipitation quality control22 and climate drivers for global
temperature23, and to localize pest insects in agricultural application24.
Ham et al.13 used a saliency map to analyze which regions contributed
most in predicting the Niño 3.4 index using their neural network.
Similarly, Mahesh et al.25 applied saliency maps to find the important
geographic regions for predicting Niño 3.4 index.

Here we address the problem of developing explainable pre-
dictive insights relating to the ENSO phenomenon. Our approach is
based on an eXplainable Deep Learning (XDL) solution15 that con-
currently uses convolutional neural networks (CNN) for the pre-
diction of river flow time series and saliency maps to explain the
results by highlighting the relative importance of the spatio-
temporal SST data. Our implicit hypothesis is that the XDL approach
will lead to advances in predictive skills of river flows by considering
the information content in the entire SSTmap, which should exceed
the information content of ENSO indices. Furthermore, the XDL
approach may lead to discoveries of robust SST teleconnections
with each other and with river flows, which in turn would further
explain the gains in predictive skills. We develop correlation-based
metrics to quantify SST autocorrelations and teleconnections either
owing to known proximity-based spatial correlations or owing to
known long-range spatial dependence. The approaches are devel-
oped for proxy observations (reanalysis) datasets as well as earth
system model (ESM) simulated Coupled Modeling Intercomparison
Project phase 5 (CMIP5) data, both for assessments of historical
skills as well as for use in future projections of teleconnections and

Fig. 2 | Predictions of the interannual variability of the Amazon and Congo
rivers based on observed and model-simulated sea surface temperatures
compared with climatology. River flow ground truth observations (black) and
predictions using different predictors from January 2003 to December 2005 for
Amazon (a) and Congo (b) iver. The predictors are mean Niño 3.4 calculated from
32 Earth SystemModels (ESM) (ESMMeanNiño 3.4), Niño 3.4 calculated from each
of 32 ESMs (ESM Niño 3.4), Niño 3.4 index from NOAA (Niño 3.4), Niño 3.4 calcu-
lated from3 reanalysis (ReanalysisMeanNiño 3.4), Niño 3.4 calculated fromeach of
3 Reanalysis (Reanalysis Niño 3.4), Niño 3.4 anomaly (Niño 3.4 index calculated by

NOAA fromHadISST1), sea surface temperature (SST) from32 ESMs (ESMSST, light
purple) and SST from 3 reanalysis (Reanalysis SST, gray). Seasonality was subse-
quently added to the predictions of river flow anomaly based on Niño 3.4 anomaly
to generate absolute river flow. The brown line is the historical average prediction
result. For models using El Niño–Southern Oscillation (ENSO) index as predictor,
we applied six models [linear regression, ridge regression, elastic net regression,
random forest regression and deep neural network regression] and use their
ensemble as the final prediction. The shaded areas are 1 standard deviation for
ensemble methods and historical averaging.
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river flows which represent a major gap in current generation earth
system models26–28.

Results and discussion
We trained a CNN (Fig. S4) to predict monthly Amazon and Congo
River flow frommonthly SST derived from Earth SystemModels (ESM)
and reanalysis data. We compared the skill to that of an ensemble of
ML models, which predicted river flow using only indices calculated
from the Niño 3.4 region (5°S–5°N, 170°W–120°W). These indices
includemeanSSTover theNiño 3.4 region asobserved andmodeled in
reanalysis and ESMs, as well as the Niño 3.4 index, an anomaly value.
We found that models with access to the larger SST area
(41.5°S–37.5°N, 50.5°E–9.5°W), with its full spatial and temporal pro-
venance. outperformed models using the ENSO indices for prediction
of three-month rolling mean river flows on both the Amazon on the
Congo River (Fig. 2). The CNN ingesting more SST information also
outperformed the historical climatological mean as a predictor of the
Amazon and Congo River flows. This suggests the larger SST region
was useful for capturing the phase and amplitude of annual river flow
fluctuations as well as components of interannual variation. Predictive
information on the interannual variability of the Amazon River flow
was either not fully expressed in the ENSO region, or else was not
captured by the ensemble of ML models (linear regression, lasso
regression, ridge regression, elastic net regression, random forest
regression, and feed forward dense neural network, or DNN,
regression).

For SST as a predictor of river flow, seasonality was not removed
to avoid potential information losswhen delineating between anomaly
and climatological states, which may be imprecise due random-
frequency climate variability with periods exceeding typical climato-
logical time scales. Thus, the task of the SSTmodels was to predict the
temporal climatology of river flow values. With the Niño 3.4 index as a
predictor of river flow anomaly, and seasonality was subsequently
added back to the river flow value. For the Amazon River, we found
that all models using climatological SST in the Niño 3.4 outperformed
models using the Niño 3.4 anomaly.

The task of predicting Congo River flow was more challenging,
perhaps influenced by the more extensive management of the Congo
River basin compared to the Amazon River basin. However, predic-
tions based on reanalysis model SST still resulted in lower RMSE than
baseline predictions based on the historical climatological mean for

the Congo River. Inmost cases, Congo River flow predictions based on
Niño 3.4 anomaly value (index) outperformed predictions based on
the climatological value of SST in the Niño 3.4 region. A full compar-
ison of RMSE for river flowprediction using indices and larger area SST
is presented in Table S2.

Prediction of river flow using zero lag (concurrent) SST data is
relevant to predicting future river flow in climate projections. Map-
pings between observations of river flow can also give insight into the
predictability of the system; deeper analysis of CNN performance and
historical average (presented in Tables S4 and S5) suggests that the
methods compare differently when different aspects of performance
(linear/nonlinear correlation, seasonal/yearly, extremes, etc.) are
examined. For example, the ESM+CNNmodel achieved a lower mean
absolute error and stronger association with Amazon River flow by
metrics of linear correlation than the climatological mean, but has a
higher RMSE in spring, when Amazon River discharge generally peaks.

We used a cyclical saliency map method to identify important
spatial areas for the network tomake predictions of river flows (Fig. 3).
From the saliencymaps we discover that the predictive power of ESMs
comes mainly from the ENSO and the Indian Ocean Dipole (IOD)
regions, suggesting a strong link between these two phenomena and a
co-impact on regional hydrology. Figure 3a shows that the dominant
salient areas for Amazon River flow prediction are in tropical Pacific
and Indian Oceans. Figure 3c shows similar patterns but with less
strong and smaller salient areas for Congo River flow. When using
reanalysis data (Fig. 3b, d), the saliency maps aremuchmore diffused,
suggesting that the CNN model does not pick up any strong relation-
ships between the predictor and predictand. However, the presence of
linear and nonlinear information content about river flow in global SST
is confirmed by the maps in Fig. S6. The yearly cyclical saliency maps
and seasonal saliency maps are also presented in Fig. S5–S8. Whereas
saliency maps can be used to verify the physically reasonable rela-
tionships that are learned, our hypothesis can be confirmed by
examining the degree to which known oceanic regions that corre-
spond to the ENSO region, as well as oceanic regions that correlate
with the ENSO region, are triggered by the saliency maps as con-
tributors to the information content.

Complex network theory provides a complementary tool to
investigate the short and long-distance relationships in earth systems,
such as teleconnections associated with the ENSO phenomenon that
are indicated by our results. We analyzed the correlation structure of

Fig. 3 | Explainable deep learning showing saliency maps for predictive
understanding with the network model representations. a, b Saliency Map for
Amazon River flow prediction using Earth SystemModels (ESM) (a) and reanalysis
(b) sea surface temperature (SST), respectively. c, d Saliency Map for Congo River

flowprediction using ESMs (c) and reanalysis (d) SST, respectively.Whenusing ESM
SST aspredictor, the salient areasmainly lie in the tropical Pacific and IndianOcean,
but they are much more diffused when using reanalysis SST.
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global SST data by constructing degree maps for reanalysis and ESM
SST (Fig. 4). We quantified temporal correlation by calculating Pear-
son’s correlation coefficient between every pair of locations in the
ocean. The degree of each geographical location is the number of
edges connected to this location, where an edge exists if the correla-
tion is larger than a threshold c1. We also set a second correlation
threshold c2 and distance threshold d to define a teleconnection. We
define that there is a teleconnection between two locations if their
distance is larger than d km and the correlation is larger than c2.

We find that ESM SST has high degree values over a large area,
indicating that the SST are highly correlated through both proximity-
based correlations and teleconnections. There are many teleconnec-
tions between tropical Pacific Ocean, Indian Ocean, and even Atlantic
Ocean, and they are largely concentrated around the equator (Fig. 4a).
The teleconnections remain strong when the correlation threshold is
increased (Fig. 4c). This pattern is reflected in the histogram of edges,
which shows the degree distribution (Fig. 4e, g). There are many edge
counts for long distances, which demonstrate the multicollinearity
between SST regions. In contrast, the histograms of edges for reana-
lysis data (Fig. 4b, d) show fewer long-distance connections for a low
correlation threshold, and negligible long-distance connections with a
high correlation threshold. These results indicate a weaker correlation
structure in reanalysis SST compared to ESM SST, and are consist with
recent literature indicating that ESMs tend to exhibit a stronger cou-
pling than reanalysis or observations29–32. Extending these findings, a

hypothesis for future studies by climate science and earth system
modeling communities is that the coupling strength of ESM model
components are usually stronger than those in observations or rea-
nalysis, and that data-driven sciences may be able to quantify and
bridge this gap.

Histograms of connection distance in each of ESMs indicate
qualitative differences in the correlation structures of themodels (Figs.
S9, S10); some exhibit a single peak corresponding to proximity-based
correlations (e.g. Fig. S9a), while others also exhibit clusters of long-
range connections (e.g. Fig. S9f). Models also vary in the rapidity of
decay of proximity-based correlations with increasing distance. These
attributes of these plots indicate distinct spatiotemporal correlation
structures among the climate models.

ENSO is a complex spatiotemporal processwith global impacts on
SST and the flows of large rivers globally, especially around the tropics
and subtropics. In this work, we combined ML methods and inter-
pretive techniques to obtain gains in predictive power and make dis-
coveries about dependence structures and teleconnections in global
SST data. Although researchers often analyze the relationship between
ENSO indices and the other climate variables, our results indicate that
information outside of the canonical ENSO region can help to predict
regional hydrology better than some representations based on hand-
selected features. They suggest that additional data and data-driven
technologies could lead to a better understanding of mechanisms and
the flow of causality in earth systems, as well as to inform climate

Fig. 4 | Teleconnections in space and time based on reanalysis and model-
simulated link strengths and degree maps used to construct and interpret
complex networks in climate. a, c Degree map and teleconnections for mean
Earth SystemModel (ESM) sea surface temperature (SST). (a) correlation threshold
equal to 0.5 and0.9 for degree and teleconnection. c correlation threshold equal to
0.9 and 0.9 for degree and teleconnection. b, d Degree map and teleconnections

for mean Reanalysis SSTs. b correlation threshold equal to 0.5 and 0.5 for degree
and teleconnection. d Correlation threshold equal to 0.9 and 0.9 for degree and
teleconnection. We show teleconnections with distance larger than 19,000 km and
15,000 km for ESM and Reanalysis SST, respectively. e.g. the histogram of edges
using correlation threshold 0.5 and 0.9 for mean ESM SST. f, h The histogram of
edges using correlation threshold 0.5 and 0.9 for mean Reanalysis SST.
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adaptation through augmented projections of river flow for future
climate scenarios.

Methods
Flowcharts detailing the methodology are provided in Fig. S11. The
processing, modeling, and evaluation steps are outlined for reanalysis
data (Fig. S11a) and ESM data (Fig. S11b). The ensembling approach
used to generate probabilistic river flow predictions is shown in
Fig. S11c.

Datasets
We obtained monthly sea surface temperature datasets from ESM
simulations and reanalysis models. The ESM datasets are downloaded
from NASA Earth eXchange (NEX, https://registry.opendata.aws/
nasanex/, last access May 2021). From the full set of Coupled Model
Intercomparison Project Phase 5 (CMIP5) ESMs by various institutes,
we discard those which have some months missing, leaving 32 ESMs.
The CMIP5 historical forcing experiment spans from January 1950 to
December 2005, or 672 months in total. This ESM dataset covers the
whole globe with a spatial resolution of 1° longitude by 1° latitude
(approximately 100 km by 100 km) with longitudes range from 0.5°E
to 359.5°E, and latitudes from 87.5°N to 87.5°S. The ESM names are
shown in Table S1.

In addition to ESM simulation datasets, we also use reanalysis
datasets which are combinations of sparse on-site observation with
other sources (such as remote sensing and satellite imaging) to pro-
duce gridded data. It is common to use reanalysis data as the proxy of
true observational data because the site-based observational data are
very sparse and not gridded. We use three reanalysis datasets in the
experiment as predictors: Hadley-OI SST dataset33, COBE SST dataset34

and ERSSTV5 dataset35.
The merged Hadley-OI SST dataset (https://climatedataguide.

ucar.edu/climate-data/merged-hadley-noaaoi-sea-surface-
temperature-sea-ice-concentration-hurrell-et-al-2008) is a combina-
tion of two reanalysis datasets: HadISST136 and NOAA OI.v237. The
HadISST1 dataset is derived gridded, bias-adjusted in situ observa-
tions, and the NOAA OI.v2 dataset combines in situ and satellite-
derived SST data. The resulting Hadley-NOAA-OI dataset contains
monthly mean sea surface temperature from the year 1870 to 2020
with a spatial resolution of 1° longitude by 1° latitude.

The COBE SST dataset (https://climatedataguide.ucar.edu/
climate-data/sst-data-cobe-centennial-situ-observation-based-
estimates) are centennial in situ observation-based estimation that
combines SSTs from International ComprehensiveOcean-Atmosphere
Data Set (ICOADS)38 release 2.0, the Japanese Kobe collection and
reports from ships and buoys. ICOADS is the most comprehensive
archive of globalmarine surfaceclimate observations available, but the
data coverage is sparse and neither gridded nor corrected. These
datasets were gridded using optimal interpolation. The resulting COBE
dataset contains monthly mean sea surface temperature from 1891 to
2020 with a spatial resolution of 1° longitude by 1° latitude.

The NOAA extended reconstruction SSTs version 5 (ERSSTV5)
dataset (https://climatedataguide.ucar.edu/climate-data/sst-data-noaa-
extended-reconstruction-ssts-version-5-ersstv5) is based on statistical
interpolation of the ICOADS release 3.0 data and Argo (https://argo.
ucsd.edu/) float data. The resulting ERSSTV5 dataset contains monthly
mean sea surface temperature from the year 1854 to 2019 with a spatial
resolution of 2° longitude by 2° latitude.

These datasets have different time spans and spatial resolutions.
We performed preprocessing to align the coordinates, interpolate to
the same spatial resolution by bilinear interpolation, and select the
common time span. A minimal number of missing values were filled
with 0, in a similar approach to the zero padding approach in machine
learning, where a matrix is surrounded with zeroes to help preserve
features at the image edges. After preprocessing, the resulting

reanalysis input has 3 channels corresponding to the 3 reanalysis
datasets described above with a spatial resolution of 1° longitude by 1°
latitude. We extract the region with latitude from 37.5°N to 42.5°S and
longitude from 50.5°E to 0.5°W, roughly covering most of low latitude
Pacific Ocean and Indian Ocean. The resulting input image size is 80 ×
300 height by width.

The Niño 3.4 SST Index time series is anomaly monthly average
SST in the region with latitude from 5°S to 5°N and longitude from
170°W to 120°W with the 1981–2010 mean removed. The data is gen-
erated by the NOAA Physical Sciences Laboratory using the HadISST1
dataset36.

The river flow dataset was obtained from UCAR (A. Dai 2017) and
can be downloaded from UCAR Research Data Archive website
(https://rda.ucar.edu/datasets/ds551.0/index.html, last accessed Jan-
uary 2021). The dataset contains monthly runoff (m3/month) for many
rivers in the world. The record for Amazon River was observed in the
downstream Amazon River at a station in Obidos, Brazil from
December 1927 to October 2018, totally 1091 months available. The
record for Congo River was measured at a station in Kinshasa, Congo
from January 1903 to January 2011, totally 1296months. We calculated
themovingmean river flowusing amovingwindowof length 3months
andused it as the smoothed riverflow for the thirdmonth.We took the
smoothing approach the reduction in noise resulted in more robust
predictions across all models.

For both predictor (SST) and predictand (river flow) our monthly
data span from January 1950 to December 2005. Of this total
672 months, we use the first 600 months as our training data, the
following 36 months as our validation data to select the best para-
meters for the model, and the last 36 months (January 2003 to
December 2005) as the test data.While our dataset is limited in size by
the record length, in the future additional data, including discharge
data from additional rivers, can be used to bolster the results.

Neural network model
The CNN used in this paper consists of 4 convolutional layers and 3
fully connected layers. The number of output channels for each con-
volutional layer is 32, 32, 64 and 64, respectively. They all have stride 1.
The filter sizes in the first three layers are 3 × 3, and for the fourth layer,
it is 1 × 1. All convolutional layers are followed by a ReLU activation and
a 2D max pooling layer with size 2 × 2 and stride 2 × 2. For the fully
connected layers, the number of output feature for each layer is 128, 64
and 1, respectively. The input image size is 80 × 300 × C with different
number of channels C. For all ESMs as input, C = 32. For all reanalysis
input, C = 3. For mean ESMs or mean reanalysis as input, C = 1. The
network output is a scalar. We set the training batch size as 64 and use
Adam optimizer with initial learning rate 5 × 10−5 and weight decay 1 ×
10−4.We use squared loss function and the network tries to minimize
the loss function: 1

T

PT
t = 1ðf Xt ,w

� �� ytÞ
2, where T is the number of

training samples, Xt∊R
W ×H ×C is the tth input with width W, height H

and number of channels C, yt is the tth ground truth target,
w = {w1,…,wL} is the set of weights from all layers. The network output
f X t ,w
� �

= f Lðf L�1ð. . . f 1ðXt ,w1ÞÞÞ, where f lð:,wlÞ is the mapping function
for the lth layer in the neural network. Predictive uncertainty was
estimated as the standard deviation of five repeated CNN predictions
with different learning rates.

Saliency map and cyclical saliency map (Cyclic-SM)
The saliency map for a CNN is the derivative of the network output y
with respect to the input X : S= ∂y

∂X = ∂f ðX ,wÞ
∂X (1), where S is the same size

as the input15. The magnitude of elements Sijk in S reflects how
important the corresponding input pixel Xijk (where i,j,k is the index of
the width, height and channel of X) is to the output prediction. For
climate variables viewed as images in different time frames, they
usually exhibit some (irregular) periodicity in the time. We can utilize
this property to enhance the saliencymapby superimposing individual
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saliency maps to form a conglomerate saliency map. Specifically,
we define the Cyclic-SM with a cycle M as: Sc = 1

K + 1

PK
k =0

St + kM = 1
K + 1

PK
k =0

∂yt + kM
∂Xt + kM

(2), whereK = T�t
M

� �
is the number of individual

saliency maps in the cycle.
The averaging nature of the Cyclic-SM makes it more robust to

gradient fluctuation and noise compared to an ordinary saliency map.
In addition, Cyclic-SMs are meaningful in a climate context. For
example, for monthly data, M= 12 corresponds to a natural month
cycle (January, February, …, December). And we further define seaso-
nal and yearly Cyclic-SM as the sum of saliency maps of the corre-
spondingmonths.We can calculate different Cyclic-SMswith different
cycles depending on the specific purpose and climate data used. For
example, we can get daily, monthly, seasonal, annual or other Cyclic-
SMs to analyze the dependencies between climate variables in differ-
ent time scales.

Data availability
All data used are publicly available. The ESMdata used in this study are
available from the NASA Earth Exchange (https://registry.opendata.
aws/nasanex/). The SST data [Hadley-OI (https://climatedataguide.
ucar.edu/climate-data/merged-hadley-noaaoi-sea-surface-
temperature-sea-ice-concentration-hurrell-et-al-2008), COBE (https://
climatedataguide.ucar.edu/climate-data/sst-data-cobe-centennial-
situ-observation-based-estimates), and NOAA ERSSTV5 (https://
climatedataguide.ucar.edu/climate-data/sst-data-noaa-extended-
reconstruction-ssts-version-5-ersstv5)] used in this study are available
from UCAR Climate Data Guide. The river flow dataset was obtained
fromUCAR and canbe downloaded fromUCARResearchData Archive
(https://rda.ucar.edu/datasets/ds551.0/index.html).

Code availability
Codesareavailableonline athttps://github.com/yuminliu/SaliencyMap39.
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