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Goal-oriented representations in the
human hippocampus during planning
and navigation

Jordan Crivelli-Decker 1,2 , Alex Clarke 3, Seongmin A. Park 1,4,
Derek J. Huffman 1,5, Erie D. Boorman1,3 & Charan Ranganath 1,2

Recent work in cognitive and systems neuroscience has suggested that the
hippocampus might support planning, imagination, and navigation by form-
ing cognitive maps that capture the abstract structure of physical spaces,
tasks, and situations. Navigation involves disambiguating similar contexts, and
theplanning and executionof a sequenceof decisions to reach a goal. Here,we
examine hippocampal activity patterns in humans during a goal-directed
navigation task to investigate how contextual and goal information are
incorporated in the construction and execution of navigational plans. During
planning, hippocampal pattern similarity is enhanced across routes that share
a context and a goal. During navigation, we observe prospective activation in
the hippocampus that reflects the retrieval of pattern information related to a
key-decision point. These results suggest that, rather than simply representing
overlapping associations or state transitions, hippocampal activity patterns
are shaped by context and goals.

Everyday, people need toplanandexecute actions in order to getwhat
they want. Spatial navigation, for instance, requires one to pull up a
mental representation of the relationships between different places—
i.e., a cognitive map1—and generate a plan for how to reach a goal.
Tolman1 proposed that cognitive maps enable behavioral flexibility so
that the same underlying representation can be used to reachdifferent
goals. For example, if we wanted to navigate to the Tiger exhibit at the
San Diego Zoo we might use the samemap-like representation to find
the Zebra exhibit.

Several lines of evidence suggest that the hippocampus plays a
key role in navigation, though its role in navigation is fundamentally
unclear. For example, based on findings showing that hippocampal
place cells encode specific locations within a spatial context, many
have argued that the hippocampus forms a cognitive map of physical
space2,3. It is now clear that the hippocampus also tracks distances in
abstract state spaces4–6, potentially supporting the broader idea that
the hippocampus encodes a memory space7 that maps the systematic

relationships between anybehaviorally relevant variables8–10 (see11,12 for
alternative views).

Building on this idea, some have proposed that the hippocampus
encodes a predictive map that specifies not only one’s current loca-
tion, but also states or locations that could be encountered in the
future9,13. For example, the successor representation9,14, a popular
computational implementation of the predictivemapmodel, has been
used to argue that the hippocampus represents each state in terms of
its possible transitions to future states. This model demonstrates that
via an incremental learning process about state-to-state transitions,
analogous tomodel-free learning about rewards, enables organisms to
rapidly learn how a sequence of actions can lead to a desired outcome.

Although numerous studies have investigated representations of
abstract state spaces in the human hippocampus, two fundamental
questions remain unanswered. One key issue concerns the role of
context. Single-unit recording studies have reported that the spatial
selectivity of place cells is context-specific—that is, the spatial selec-
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tivity of a given cell in one environment varies when an animal is
moved to a different, but topographically similar environment2,15–19;
see20 for review). Just as onemight pull up different cognitivemaps for
different physical contexts, it is reasonable to think that we might
utilize context-specific maps of abstract state spaces. Computational
models have been proposed to explain how the hippocampus might
recognize contexts21–23, but there is little empirical evidence showing
whether or how the context in abstract spaces is encoded by the
hippocampus.

A second key issue that has not been addressed is the importance
of goals in hippocampal representations of abstract task states. The-
ories of state space representation by the hippocampus rely heavily on
results from studies that examined activity in hippocampal place cells
during random movements through an environment18. Accordingly,
studies of abstract spaces in humans typically investigate incidental
learning of stimulus dimensions or arbitrary state dynamics24–26. These
kinds of passive, incidental learning tasks differ from those used by
Tolman1 to demonstrate that animals actively use a spatial repre-
sentation to guide navigation to particular goal locations in an envir-
onment. If the human hippocampus forms an abstract cognitive or
predictivemap, one would expect to see such a representation during
planning and navigation towards different goals in the same context.

Basedonwhat is known from studies of spatial navigation, there is
reason to think that hippocampal representations in the context of
goal-directed navigationmight fundamentally differ fromwhat is seen
during random or incidental behavior. For example, hippocampal
place cells have differential firing fields during planning depending on
the future goal of the animal27–30, and goal locations tend to be
overrepresented31,32. Consistent with these findings, fMRI studies of
spatial navigation have found that hippocampal activity is modulated
by a participant’s distance from a goal location33,34, and that hippo-
campal activity patterns during route planning carry information
about prospective goal locations in a virtual space35. These findings
suggest that hippocampal representations during planning or naviga-
tion in abstract state spaces might be influenced by goals. If this is
indeed the case, it would potentially challenge models proposing that
the hippocampus encodes a relatively static map of current2 or pos-
sible future states9.

In the present study, we use functional magnetic resonance ima-
ging (fMRI) to investigate how contexts and goals shape hippocampal
representations during planning and navigation (Fig. 1). We devise a
task in which participants are required to generate a plan and navigate

through two abstract state-space contexts in order to reach a goal
state. Critically, the contexts include the same stimuli, with different
action relationships in each context. This allows us to examine the
impact of context and goals during planning and navigation across
perceptually similar sequences. We compare activity patterns elicited
during planning of sequences that share a goal to those that had dif-
ferent goals, in order to disentangle the unique contribution of goal
information on hippocampal activity patterns. Finally, we analyze the
time course of hippocampal patterns while participants actively navi-
gate during the task to examine if current and future states are reac-
tivated in a way that is consistent with computational models of
hippocampal function. We show that, during planning, hippocampal
representations carry context-specific information about individual
sequences towards a goal. Similarly, during navigation, we find pro-
spective activation in the hippocampus that reflects the retrieval of
pattern information related to a key decision point. Taken together,
our results suggest that hippocampal activity patterns reflect inte-
grated representations of sequences that lead to the same goal. Fur-
thermore, our data support the notion that the hippocampus plays a
phasic role in the activation of patterns that contain information about
future states by prioritizing sub-goal information during active
navigation.

Results
Navigating an abstract spatiotemporal map
Prior to scanning, participants were trained to criterion (85% accuracy)
to navigate to four goal animals in two distinct contexts that consisted
of animals that were systematically linked in a deterministic sequence
structure (see Methods). Each zoo context consisted of the same nine
animals arranged in a plus maze topology, but the relationships
between animals across the two zoos were mirror-reversed and then
rotated counterclockwise by 90 degrees (Fig. 1a). At each animal,
participants were able tomake one of four button presses that allowed
them to transition between animals. In the scanner, participants were
asked to use their knowledge of the zoo contexts to actively navigate
from a start animal to a goal animal (Fig. 1b), where start and goal
animals were always at the ends of the maze arms. Each trial consisted
of a planningphase and a navigation phase. During the planning phase,
a cue indicated the start and goal animals. Next, during the navigation
phase, participants saw the start animal alone beforemoving through a
sequence of animals to reach the goal animal. For each animal, parti-
cipants had to decide which direction in the plus maze to move to
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Fig. 1 | Task design and behavioral results. A Overhead view of virtual environ-
ments. Each context had the same visual information but the specific spatial
orientation was mirror reversed and then rotated counter clockwise 90 degrees.
This manipulation meant that the action sequence to reach a goal was different
across contexts but participants viewed the same visual stimuli. B Example navi-
gation trial in the scanner. Participants were first cuedwith a start and goal location
and navigated through the maze one animal at a time. Inter-stimulus interval (ISI)
was 3 s. Arrows in red and blue indicate that participants had to make different
actions to the same stimuli across contexts to reach their goal during navigation.
C Group level behavioral results (N = 23) from scanner showing elevated reaction

times at decision points (Position 1 and Position 3). p1 > p2: z = 13.97, p <0.0001,
d =0.43, 95% CI [0.29, 0.56]; p1 > p3: z = 9.13, p <0.0001, d =0.28, 95% CI [0.18,
0.38]; p1 > p4, z = 11.67 p <0.0001, d =0.36, 95% CI [0.24, 0.47]; p3 > p2, z = 4.84,
p <0.0001, d =0.15, 95% CI [0.074, 0.22]; p3 > p4, z = 2.536, p =0.0112, d =0.077,
95% CI [0.014, 0.14]; two-tailed, uncorrected. Pairwise comparisons were con-
ducted using linear contrasts between estimated marginal means (z-test). Error
bars represent ± SEM. *p <0.05, **p <0.001. ITI = Interstimulus interval; SF = San
Francisco; SD= San Diego. Images used in panels A and B are Copyright 2022,
Jordan Crivelli–Decker, and licensors. All rights reserved.
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ultimately reach the goal animal. On any given trial, participants were
only allowed four moves to navigate to the goal animal and the inter-
stimulus interval was fixed to ensure that an equal amount of timewas
spent at each state. In each zoo context, participants planned and
navigated 12 distinct sequences (each repeated4 times across6 runs of
scanning). In addition, one trial from each sequence was randomly
chosen to end early at the rabbit (Catch Trials). This resulted in
72 sequences that could be analyzed (see Methods).

Participants were highly accurate at navigating to the goal animal
in each context (Context 1: Mean = 93.7%, SD = 12.9%, Context 2:
Mean= 94.7%, SD = 12.2%), with no significant differences in accuracy
between contexts (t22 = 1.16, p =0.26, d =0.24, 95% CI [−0.027,
0.0076]). This suggests that participants had successfully formed
distinct representations of each zoo context. We next tested whether
participants’ reaction times would be modulated by differences in the
decision-making demands at different locations in the virtual maze.
Specifically, our task was structured such that participants were
required to initiate their navigation plan at the onset of the start animal
(i.e., position one), and at position three – the center of the plus maze,
they needed to choose the correct move in order to reach the goal.
Accordingly, we expected reaction times (RTs) to be higher at these
positions in the navigational sequence than at other positions. Con-
sistent with this prediction, analyses with a linear mixed effects model
revealed a significant effect of position (χ2(3, N = 23) = 220.99,
p < 0.0001,η2

p =0.03, 95%CI [0.03, 0.04]), such that RTswere elevated
at position one and position three, relative to other positions (p1 > p2:
z = 13.97, p < 0.0001, d =0.43, 95% CI [0.29, 0.56]; p1 > p3: z = 9.13,
p < 0.0001, d = 0.28, 95% CI [0.18, 0.38]; p1 > p4, z = 11.67 p <0.0001,
d =0.36, 95% CI [0.24, 0.47]; p3 > p2, z = 4.84, p < 0.0001, d =0.15, 95%
CI [0.074, 0.22]; p3 > p4, z = 2.536, p = 0.0112, d = 0.077, 95% CI [0.014,
0.14]) (Fig. 1). This shows that decision-making demands at key loca-
tions, such as choice points, influenced participants’ response time.

Hippocampus is sensitive to context-specific sequences in
abstract spaces
During the planning phase (i.e., when participants were viewing the
cues),weexpected thatparticipants should retrieve information about
the sequence of state-action pairs that led from the start animal to the
goal animal. Our first analyses targeted the extent to which hippo-
campal activity patterns carried information about the context and the
planned sequence. To address this question, we extracted hippo-
campal multi-voxel activity patterns on each cue trial and calculated
pattern similarity (Pearson’s r) between trial pairs that came from
repetitions of the same sequence cue in the same context, and com-
pared those to both trial pairs for sequence cues with different start or
end points, and trial pairs for sequence cues that came from the same
or different context (Fig. 2a). Importantly, visual information was
shared across contexts as the cue only indicated the start and goal
animal, not the context, and the samecuewasassociatedwithdifferent
moves between contexts. In addition, only trials which resulted in
participants subsequently making the correct moves towards the goal
were included in neural analyses.

To testwhether hippocampal activity patterns carried information
about the context and the planned sequence, we used a linear mixed
effects model36 with fixed effects of context (same/different) and
sequence (same/different), and a random intercept for participants
(see Methods for model selection details and Eq. 2) to predict pattern
similarity in the hippocampus. We reasoned that, during planning,
participants retrieved information about the sequence of states and
actions needed to reach the goal. Therefore, we predicted that pattern
similarity should be higher for sequences that shared the same state-
action pairs.Moreover, we predicted that this effect should be context-
specific, as the same sequence across contexts have different state-
action pairs. Consistent with this prediction, we found a significant
sequence by context interaction (Fig. 2b: χ2(1, N = 23) = 4.26, p =0.04,

η2
p =0.06, 95% CI [0.00, 0.20]). Follow up tests showed that patterns

evoked by the same sequence cue in the same context were sig-
nificantly different than all other trial pairs (same seq. + same cx. > diff.
seq. + same cx.: z = 2.77, p =0.006, d =0.28, 95% CI [0.065, 0.49]; same
seq. + same cx. > same seq. + diff. cx.: z = 2.73, p =0.006, d =0.27, 95%
CI [0.062, 0.48]; same seq. + same cx. > diff. seq. + diff. cx.: z = 2.61,
p =0.009, d =0.26, 95% CI [0.050, 0.47]; see Fig. 2b). These results
show that hippocampal activity patterns carried information about
planned state-action sequences within specific contexts.

Hippocampal activity patterns reflect future goals during
planning
The above analysis demonstrates that hippocampal activity patterns
carry context-specific information about planned sequences, but there
are reasons to think that hippocampal sequence representationsmight
becomemore similar under certain circumstances. For instance, if the
hippocampus uses predictive maps that carry information about
possible future states9, one might expect similar representations of
diverging sequences that share the same starting point but lead to
different goals by more heavily weighting the immediate state-action
pairs that follow planning (see Methods for successor representation
simulation details and Supplemental Fig. 1). On the other hand, it is
possible that goals are more heavily weighted during planning37, in
which case we might expect similar representations of converging
sequences that lead to the same goal but start at different states. We
sought to test these ideas by comparing pattern similarity during cues
associatedwith repetitions of the same sequence, cues associatedwith
converging sequences that shared the same goal state, cues associated
with diverging sequences that shared the same start state, and cues
associated with sequences that had different start and different goal
states (Diff. Start Diff. Goal)(Fig. 2a).

A linear mixed effects model with fixed effects for overlap (same
sequence/converging/diverging/diff start + diff goal) and context
(same/different) and a random intercept for participant (see Methods
for model selection details and Eq. 3) showed a significant context by
overlap interaction (χ2(3, N = 23) = 14.75, p =0.002, η2

p =0.09, 95% CI
[0.01, 0.17]). (Fig. 2c, d). Follow up tests investigating this significant
interaction revealed that, within a context, cues with converging goals
had significantly higher pattern similarity than cues with diverging
goals (z = 2.19, p = 0.03, d = 0.23, 95% CI [0.014, 0.45]), and same
sequence cues had higher pattern similarity than cues with diverging
goals (z = 3.49, p =0.0005, d = 0.37, 95% CI [0.13, 0.60]) and cues with
different starts and goals (z = 2.77, p = 0.0056, d =0.29, 95% CI [0.069,
0.51]). However, converging sequences were not significantly different
from the same sequence (z = 1.30, p =0.194, d =0.14, 95% CI [−0.35,
0.073]). Between contexts, cues of the same sequence and converging
sequences showed significantly higher pattern similarity when in the
same context (Same Sequence: z = 2.60, p =0.0094, d =0.27, 95% CI
[0.052, 0.49]; Converging: z = 2.51, p = 0.012, d = 0.26, 95% CI [0.044,
0.48]). In contrast, diverging sequences showed a different pattern of
results such that sequences from different contexts had higher simi-
larity (z = 1.89, p =0.060, d =0.20, 95% CI [−0.016, 0.41]). Lastly,
sequences with different starting states and goals were not sig-
nificantly modulated by context (z = 0.430, p = 0.67, d = 0.045, 95% CI
[−0.16, 0.25]). In sum, these results show that during planning, repre-
sentations in the hippocampus are differentiated based on future
context-specific goals. This suggests that goals may fundamentally
shape representations in hippocampus via shared patterns between
sequences that lead to the same goal.

Differences in pattern information during the cue period cannot
be explained by shared motor plans or sensory details
The present results are consistent with the idea that the hippocampus
supports the planning of state-action sequences toward a goal.
Importantly, our cues were carefully controlled, such that participants
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viewed visually identical stimuli across contexts and participants did
notmake responses during the planning phase. However, it is possible
that low-level visual representations could be modulated by context38.
To verify that visual regions did not show any effect of context, we ran
a control analysis on an anatomically defined visual cortex ROI (V1/V2).
To do this, we compared pattern similarity between cues of the same
sequence, cues that had different starting items but the same goal,
cues that had the same starting item but diverged to a different goal,
and cues that shared neither the start nor the goal. This analysis is
identical to the overlap analysis run on hippocampus above (see
Methods and Eq. 3 for model details). We found that this visual cortex
ROI was only sensitive to visual information (Fig. S2 - Main effect of
overlap – χ2(3,N = 23) = 90.24, p < 0.001, η2

p =0.43, 95%CI [0.31, 0.52]),
and not context (χ2(1N = 23) = 0.05, p = 0.82, η2

p < 0.01, 95% CI [0.00,
0.03], Interaction: χ2(3,N = 23) = 0.76, p =0.86, η2

p <0.01, 95%CI [0.00,
0.02]). This demonstrates that sensory representations of the cuewere
not modulated by context and likely do not drive any downstream
contextual effects observed in the hippocampus.

Having verified that low-level visual information was not modu-
lated by context, we next turned to representations of motor actions
during panning. It is conceivable that, during planning, the pattern of
results in hippocampus could be driven by overlap in planned move-
ments between converging vs. diverging sequences. To ensure context

effects observed in hippocampus were not due to shared motor
information during planning, we examined trial pairs that had the
exact samemoves, trial pairs that had twomoves in common, andpairs
that had no moves in common, to ensure that movement information
alone was not modulated by context in the hippocampus. Results
showed no effect of planned moves or context on pattern similarity
(Fig. S2 - main effect of context: χ2(1, N = 23) = 0.46, p =0.5, η2

p <0.01,
95% CI [0.00, 0.06]; main effect of move: χ2(2, N = 23) = 1.56, p =0.46,
η2
p = 0.01, 95% CI [0.00, 0.07]; interaction: χ2(2,N = 23) = 2.68, p =0.26,

η2
p = 0.02, 95% CI [0.00, 0.09]).

As a positive control analysis, we also examined an anatomically
defined motor cortex ROI (BA4a/4p) to investigate whether we could
detect sensorimotor representations and if they were modulated by
context information during planning. Results revealed a significant
main effect of plannedmove (χ2(2,N = 23) = 13.95, p < 0.001, η2

p = 0.11,
95% CI [0.02, 0.23]), and importantly showed that plannedmovement
was not modulated by context (main effect: χ2(1, N = 23), = 0.06,
p = 0.81, η2

p < 0.01, 95% CI [0.00 0.04]; Interaction: χ2(2,
N = 23), = 0.68, p = 0.71, η2

p < 0.01, 95% CI [0.00, 0.05]; Supplemental
Fig. 2) (See Methods and Eq. 4 for model selection details). These
results show that our cue period findings in the hippocampus cannot
be solely explained by shared motor information of a plan and high-
lights the role of the hippocampus in retrieving the specific state-

Fig. 2 | Differential representation of future states in the hippocampus.
A Examples of trial pairs used in pattern similarity analyses during the planning
phase. Dashed and solid lines of the same color represent two separate repetitions
of the same trial type. B Results from bilateral hippocampus. Pairs of trials sharing
sequence and context have significantly higher pattern similarity than all other
conditions (same seq. + same cx. > diff. seq. + same cx.: z = 2.77, p = 0.006, d = 0.28,
95%CI [0.065, 0.49]; same seq. + same cx. > same seq. + diff. cx.: z = 2.73,p = 0.006,
d = 0.27, 95% CI [0.062, 0.48]; same seq. + same cx. > diff. seq. + diff. cx.: z = 2.61,
p = 0.009, d = 0.26, 95% CI [0.050, 0.47]; two-tailed, uncorrected). C Pattern
similarity results comparing converging and diverging sequences within the same
context. Same and converging sequences show higher similarity than diverging
sequences (z = 3.49, p = 0.0005, d = 0.37, 95% CI [0.13, 0.60]; same seq. > diff. start
diff. goal, z= 2.77,p =0.0056,d =0.29, 95%CI [0.069, 0.51]; converging >diverging,
p=0.03,d=0.23, 95%CI [0.014,0.45]; two-tailed, uncorrected).DPattern similarity

results displaying the between context goal effect (interaction). Converging and
same sequences show higher pattern similarity in the same context. Diverging
sequences show higher pattern similarity in different contexts (same seq., z = 2.60,
p = 0.0094, d = 0.27, 95% CI [0.052, 0.49]; converging, z = 2.51, p = 0.012, d = 0.26,
95% CI [0.044, 0.48]; diverging, z = 1.89, p = 0.060, d = 0.20, 95% CI [−0.016, 0.41]
diff. start diff. goal, z = 0.430, p = 0.67, d = 0.045, 95% CI [−0.16, 0.25]; two-tailed,
uncorrected). Pattern similarity was calculated using estimated marginal means
obtained from linear mixed effects models. Pairwise comparisons were conducted
using linear contrasts between estimated marginal means (z-test). Error bars
represent 95% confidence intervals of the calculated estimated marginal means.
Individual dots represent individual participants mean pattern similarity for each
condition. N = 23. *p < 0.05, ∼p < 0.10. cx context, seq. sequence. Images used in
panel A are Copyright 2022, Jordan Crivelli-Decker and licensors. All rights
reserved.
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action sequence required to execute a plan. Altogether, these ana-
lyses provide an important control and bolster our interpretation of
the findings from our analyses of the hippocampus, by showing that
primary sensory areas are activating behaviorally-relevant repre-
sentations during planning, but that the effects of context and goal
are only present in hippocampus.

Representation of behaviorally relevant sequence positions
during navigation
Having established that the hippocampus represents information
about context-specific goals during planning, our next analyses turned
to how state-action information is dynamically represented during
navigation. Available evidence suggests at least three ways that
navigationally-relevant information might be represented by the hip-
pocampus. Based on classic studies of place cells, wemight expect the
hippocampus to represent the current state as participants navigated
toward the goal. Alternatively, based on predictive map models9, we
could expect that the hippocampus would represent not only the
current state but also future states.

A third possibility is that the hippocampus might preferentially
represent goal-relevant information during navigation. In our study,
the most behaviorally significant points in a navigated sequence were
the starting point (position 1), when a goal-directed plan must be
initiated, and the center of the maze (position 3), a critical sub-goal
where one’s decision will determine the ultimate trial outcome. This
was confirmed by our behavioral analyses that revealed that partici-
pants were slower to respond at positions 1 and 3 (Fig. 1). We therefore
reasoned that participants might be likely to prospectively retrieve
hippocampal representations of these states during navigation.

To test this prediction, we examined pattern similarity differences
during navigation across converging and diverging sequences in the
same zoo context. Converging and diverging sequences were chosen
because these sequences have an equal number of overlapping states,
but the timing of the overlap is systematically different. Both the
current state and standard predictive mapmodels would suggest that
pattern similarity during navigation should reflect this pure
overlap–early in a sequence there should be higher pattern similarity
across pairs of diverging sequence trials, and late in a sequence there
should be higher pattern similarity across pairs of converging
sequence trials. In contrast, a goal-based account would predict that
pattern similarity could reflect prospective coding of goal-relevant
information35,39, which should be higher across converging sequences
(which share the sameupcoming goal), relative to diverging sequences
(which overlap in early states but lead to different goals).

We used a time-point by time-point pattern similarity analysis
approach that enabled us to examine information in multivoxel
activity patterns about current, past, and future states to test our key
hypotheses. This technique is conceptually similar to cross-temporal
generalization techniques used in pattern classification analyses40.
First, we extracted the time-series for eachnavigation sequence using a
variant of single trial modeling that utilizes finite impulse response
(FIR) functions41, allowing us to examine activity patterns for each time
point (TR) as participants navigated through the sequence of items.
Importantly, incorrect trials were excluded from this analysis. As
depicted in Fig. 3, we quantified pattern similarity between pairs of
navigation sequences (e.g. zebra to tiger sequence compared to the
camel to tiger sequence) at different timepoints (e.g., TR 1 to TR 10),
which yielded a timepoint-by-timepoint similarity matrix for each
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Fig. 3 | Schematic depiction of procedure to obtain time point by time point
similarity matrices. A (Left) Dashed and solid lines on the maze indicate an
example pair of trials correlated. TR by TR spatio-temporal patterns was obtained
for a pair of sequences (converging in this example). Pattern similarity was com-
puted between every possible pair of spatial patterns (voxels) over all timepoints
(TRs) from a region of interest. (Middle) This procedure yielded a TR by TR simi-
larity matrix for a given sequence pair. Note, that because the sequences are from
different repetitions across fMRI scanning runs, the diagonal is not perfectly

correlated. (Right) This was repeated for every possible converging sequence pair
in the data set. The resultant TR by TR matrices were than averaged to create a
participant-level converging TR by TR matrix. Participant-specific averaged TR by
TR matrices was then statistically compared to diverging sequences using cluster-
based permutation tests (see Methods). B Same as A but using an example diver-
ging sequence pair. Images used in panels A and B are Copyright 2022, Jordan
Crivelli–Decker and licensors. All rights reserved.
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condition (converging or diverging sequences). The diagonal elements
for thismatrix reflect the similarity between pairs of animal items from
the same timepoint in the sequence. Off-diagonal elements reflect the
similarity between an animal at one timepoint in the sequence and
animal items at other timepoints in the sequence. Importantly, incor-
rect trials were excluded from this analysis.

Separate timepoint-by-timepoint correlationmatrices (Pearson’s r)
were created for pairs of converging sequence trials and pairs of
diverging sequence trials. We next computed a difference matrix and
tested for statistically significant differences between converging and
diverging sequences, correcting formultiple comparisonsusing cluster-
based permutation tests (10,000 permutations, see Methods for more
details, for individual subject contrast maps see Supplemental Fig. 3).

As noted above, diverging sequences have overlapping states
early in the sequence, and converging sequences have overlapping
states late in the sequence. If the hippocampus represents only current
states, we would expect to see pattern similarity differences between
converging and diverging close to the diagonal of the timepoint-by-
timepointmatrices— that is, wewould expect higher pattern similarity
for diverging pairs during timepoints early in the sequence and higher
pattern similarity for converging pairs during timepoints late in the
sequence. If the hippocampus represents current and temporally-
contiguous states, as suggested by predictive map models, we would
expect that at early positions, we would expect higher pattern

similarity for diverging sequences, both on- and off-diagonal, and at
late positions, we would expect higher pattern similarity for conver-
ging sequences both on- and off-diagonal. Finally, if the hippocampus
preferentially represents goal-relevant information during
navigation37,39, we would expect to see higher off-diagonal pattern
similarity only for converging sequences, because only converging
sequences share the same goal. Specifically, we expected higher off-
diagonal pattern similarity between goal states and earlier positions in
the sequences.

Consistent with the prospective representation of goal-relevant
states in the hippocampus, we found several clusters showing higher
similarity for converging compared to diverging sequences (Fig. 4,
Supplemental Figs. 5–7). Interestingly, there was a significant off-
diagonal cluster (outlined in red: T22 = 3.34, p =0.038, d =0.27, 95% CI
[0.0031, 0.013], maximum cluster corrected) that roughly corre-
sponds to the activation of the decision point (position 3) when par-
ticipants were at position 1 (approx. TRs 10-15). Other clusters tended
to overlap with key locations in the experiment, which roughly cor-
respond to position one activating position five (TRs 18 to 21) and
position three activating position five (TRs 18 to 20) (Fig. 4D), although
these clusters did not survive multiple comparison correction. These
data are consistent with the idea that information about position 3was
preferentially activated in converging sequences, in which the same
key decision was required to navigate to the same goal.
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Fig. 4 | Results from TR by TR pattern similarity analysis during active navi-
gation in bilateral hippocampus. A Group level pattern similarity results from
converging sequences during active navigation.B Same as A but showing diverging
sequences. C TR by TR pattern similarity results depicting a statistical map of
converging – diverging. Z values were calculated using a bootstrap shuffling pro-
cedurewith 10,000 permutations.D Thresholded statistical map at p <0.025 (two-
tailed). Cluster based permutation tests with 10,000 permutations88 were per-
formed with a cluster defining threshold of p <0.05 (two-tailed) and a cluster alpha
of 0.05 (two-tailed). Outlined in red is a significant cluster of timepoints that

survives multiple comparisons correction (T22 = 3.34, p =0.038, d =0.27, 95% CI
[0.0031, 0.013], maximum cluster corrected). Note that this cluster corresponds to
approximately position 1 activating position 3 which was shared by both conver-
ging anddiverging sequences. Trial labelsweremanually laggedby 4TRs (TR= 1.22,
Inter-Item-Interval = 5 s) to account for hemodynamic response lag. In panels C and
D, each pixel of a statistical comparison (T-value, N = 23) was converted into a Z
value by normalizing it to the mean and standard error generated from our per-
mutation distributions (see Methods).
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Discussion
The aim of the present study was to identify how the hippocampus
represents task information during planning and navigation towards a
behavioral goal. During planning, we show that hippocampal repre-
sentations carried context-specific information about individual
sequences to a goal. Surprisingly, not all sequences were equally dif-
ferentiated, such that sequences that converged on a common goal
showed higher pattern similarity compared to diverging sequences,
despite an equal amount of overlap between the conditions. Similarly,
during navigation, we found that the hippocampus prospectively
activated goal-specific representations of the key decision point.
Taken together, our results suggest that the hippocampus forms
integrated representations of sequences that lead to the same goal.
Furthermore, they support the notion that the hippocampus plays a
phasic role in the activation of patterns that contain information about
future states and prioritizes sub-goal information during active navi-
gation. In summary, our data are consistent with the idea that rather
than simply representing overlapping associations, hippocampal
representations are shaped by context and goals.

The hippocampus represents context-specific goal information
during planning
A key finding from the present study is that, during planning, hippo-
campal activity patterns are organized such that they either generalize
or differentiate between sequences depending on the goal, and do so
in a context-specific manner. These findings are relevant to theories
which propose that prospective thought (prediction/planning) relies
on the same circuitry used for episodicmemory42–44. In support of this
idea, place cells fire in a sequence that represents the path that an
animal will take in a phenomenon described as forward replay45,46. This
work supports the hypothesis that planning may be supported by
physiological mechanisms at a single neuron level (but see ref. 47).
Building on this work, Brown et al.35 used high-resolution fMRI in
humans to examine hippocampal activity during goal-directed navi-
gation in a virtual reality (VR) paradigm. Brown et al. demonstrated
that, during planning, hippocampal activity patterns could be used to
accurately decode future navigation goals, even across different start
positions and routes. Thus, their findings demonstrated that fMRI
activity patterns in the hippocampus carried information about future
navigational goals. Brown et al. interpreted their findings as evidence
that the hippocampus supports imagination or mental simulation of a
route towards a goal.

Our findings suggest an important constraint on the role of the
hippocampus in imagination and simulation. In our study, if partici-
pants simulated the sequence of sensory events that led to the goal
(i.e., imagining the sequence of animals), we would expect hippo-
campal representations to generalize across repetitions of the same
sequence of animals across the two different zoo contexts. Instead, we
found thathippocampal representations duringplanningwere context
specific, such that pairs of trials involving the same sequence of ani-
mals across different contexts were indistinguishable from entirely
different sequences. Moreover, similarity across different sequences
that led to the samegoal in the same zoo contextwas indistinguishable
from similarity across repetitions of the same sequence in the same
context. Thus, in our study, hippocampal activity most likely did not
reflect the imagination of a sequence of stimuli per se, or even a spe-
cific sequence of states, but rather a context-specific representation of
behaviorally relevant points to achieve a goal.

Together with prior research, our results are relevant to an
emerging body of work suggesting that goals and other salient loca-
tions have a measurable impact on spatial and non-spatial maps in the
brain19,48–51. For example, McKenzie et al.19 found that rewarded events
had higher pattern similarity within a context compared to unre-
warded events. Moreover, there is evidence that, after learning in a
reward-based foraging task, place cells tend to be clustered around

goal locations31,32. This could go some way towards explaining our
results of increased pattern similarity for sequences that converge on
the same goal. Considering the current work and past findings, we
propose that hippocampal representations are flexibly modulated
depending on current behavioral demands, incorporating trial-specific
information that allows organisms to realize a specific goal52.

Our findings are also relevant to past work showing that the hip-
pocampus represents information about specific sequences of
objects25,53–57. Studies examining how the brain represents routes with
multiple paths or that are hierarchical in nature show that activity in
the hippocampus is higher when planning and navigating an over-
lapping route and that, during navigation, the univariate bold signal is
modulated by distance to a goal58–60. In one study, Chanales et al.60

show that representations of overlapping spatial routes become dis-
similar over learning. This is potentially at odds with the current
findings, where we find that routes that overlap in their goal show
higher pattern similarity compared to routes that do not share a goal.
However, participants in Chanales et al. passively viewed pictures
along routes, whereas participants in our task actively navigated. As
mentioned earlier, rodent studies suggest that hippocampal spatial
coding can shift dramatically between goal-directed behavior and
random foraging in the same context. Moreover, in Chanales et al. it
would make sense for participants to differentiate overlapping routes
because they did not include sequences that converged on the same
goal. Thus, it would be optimal to learn a unique representation for
each spatial route in order to predict the outcome. In contrast, in our
experiment, all trials that converged on the same goal required the
same key decision at position 3, regardless of the starting point. In this
situation, it is optimal to learn a representation that captures the
information that is common to any sequence that converges on the
samegoal. For example, as depicted in Fig. 1, any trialwith a tiger as the
goal animal will require participants to choose the down button at
position 3. In the next section, we explain why results from the navi-
gation period are also consistent with this interpretation.

Reinstatement of remote timepoints in the hippocampus during
navigation
If the hippocampus supports prospective planning for goal-directed
navigation, then it is important to understand how it functions when
suchactions are takenwhennavigating abstract spaces. For example, if
the hippocampus is involved in retrieving the specific state-action
plan, what is its function once this plan is executed? To address this
question, we contrasted pattern similarity during the navigation phase
across pairs of converging sequences against pairs of diverging
sequences.

As noted above, the animals in thefirst three positions overlapped
across diverging sequences, whereas the animals in the last three
positions overlapped across converging sequences. Thus, if the hip-
pocampus only represented the current state during navigation, we
would have expected pattern similarity on the diagonal in Fig. 4 to be
higher for diverging trials for early time points, and then higher for
converging trials in the later time points (see also Supplemental Fig. 4).
If participants solely retrieved past states during navigation, we would
expect off-diagonal pattern similarity to be higher for diverging
sequences than converging sequences (because the first three posi-
tions were common for the diverging sequences). Our data were
inconsistent with both of these accounts. Instead, we found that off-
diagonal pattern similarity was higher for converging than for diver-
ging trial pairs, suggesting that hippocampal activity patterns carried
information about future timepoints during navigation.

The significant cluster of increased pattern similarity for conver-
ging, relative to diverging, sequences was consistent with the inter-
pretation that, at the outset of the navigation phase, participants
prospectively activated a representation of position 3. This result is
notable for two reasons. First, participantswere engaged in active, self-
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initiated navigation, and as such, we would expect considerable
variability in the timing of prospective coding across trials and across
participants. The fact that prospective coding of position 3 (as indi-
cated by off-diagonal pattern similarity) was nonetheless reliable
across participants attests to the significance of this position to suc-
cessful task performance. Second, the finding is notable because the
stimulus at position 3 is exactly the same for all trials in all contexts.
Thus, the disproportionate representation of position 3 across con-
vergent sequences could not solely reflect the identity of the stimulus
itself.

As noted above, the correct decision to be made at position 3
depends on one’s current goal and context. All converging sequences
share the samedecision atposition 3because they share the samegoal,
whereas diverging sequences are associatedwith different decisions at
position 3 because they involve different goal states. These results are
consistent with the idea that participants prospectively activated the
most goal-relevant information in the upcoming sequence, namely the
context- and goal-appropriate decision at position 3.

Consistent with our study, research in rodents shows that hip-
pocampal ensemble activity differs between routes that share a com-
mon path but lead to a different goal28–30,61,62. There are also findings
that demonstrate predictive hippocampal representations that are
related to future behavior in both spatial and non-spatial tasks24,63. Our
data, however, suggest that, during goal-directed behavior, the human
hippocampus does not solely reflect the current state during naviga-
tion, or only the immediate future, but rather that it emphasizes
strategically important states for reinstatement during ongoing
behavior. Our results align with computational models that show that
place cells associated with behaviorally relevant locations in an envir-
onment are preferentially incorporated into replay events37.

Relevance tomodels of hippocampal state space representation
Severalmodels of hippocampal contributions to spatial navigation and
memory propose that the hippocampus generates predictions of
upcoming states64. For instance, a specific computational imple-
mentation of a predictive map model, the successor representation,
states that the hippocampus is involved in learning relationships
between states and actions, and that its representations reflect
expectations about future locations9,65. We used a standard version of
this computational model to generate simulated pattern similarity
results, and surprisingly, these simulated matrices were qualitatively
different from what we observed in the hippocampus.

In our simulations (see Supplemental Materials), a classical ver-
sion of the successor representation reflected the transition prob-
abilities between states, such that adjacent states were more similar
than non-adjacent states. Because participants transitioned between
all start and end positions equally in both directions, the model could
not reproduce the difference between converging and diverging
sequences either during the planning or navigation phases. It is pos-
sible that, in the relatively small and deterministic state space used in
our task, it is not advantageous to represent an elaborate transition
structure. An alternative approach to account for the present results
would be to use a model that places heavier emphasis on context
instead of only the next item or next decision. One model, the clone-
structured cognitive graph model23, is able to learn clones of similar
observations that are distinguished by the current context. We predict
that those models take into account context and goals, like the model
presented in George et al., will be better able to capture the nuances of
our task.

Alternatively, it might be advantageous to focus on models that
incorporate an inductive bias to specifically focus on the most goal-
relevant aspects of state space (e.g., the goal, context, and decision at
P3). Inmany situations, an agent with an appropriate understanding of
task structure could benefit by deploying the hippocampus more
strategically, by preferentially encoding and prospectively retrieving

memories for key decision points towards a goal12. One example of a
computational model that relies on strategic deployment of past
experience comes from Lu, Hasson, and Norman66. Their simulations
showed that it was computationally advantageous to prioritize hip-
pocampal encoding and retrieval of temporally extended events at
event boundaries, which are moments of high uncertainty or predic-
tion error. In our task, inductive biases carried out through such a
computational framework could emphasize the goal and key decision
point, rather than passively representing all possible state transitions.

We hypothesize that hippocampal representations of physical
space and abstract state spaces are flexible, reflecting the computa-
tional demands of the planning problem, and the participant’s
understanding of, and experiencewith, the problem52,67. In the present
study, the task might have encouraged a model-based planning strat-
egy in which future goals and key states are strategically retrieved and
represented in hippocampus. In cases where learning is passive and
incidental to the task, or when transitions between states change
unpredictably, hippocampal state spaces might instead resemble
successor-based maps. Finally, in more complex tasks, participants
might adopt different strategies with varying degrees of emphasis on
goal-relevant information68.

Human behavior is characterized by the ability to plan and flexibly
navigate decision spaces in order to realize future goals. The present
findings suggest that the hippocampus represents context-specific,
goal-oriented representations during navigation. These findings may
contribute to the development of unified models accounting for hip-
pocampal contributions to memory, navigation, and goal-directed
sequential decision-making69–71. Additionally, this work highlights the
importance of studying goal-directed behavior, attentional modula-
tion of memory representations, and their impact on planning.

Methods
Participants
Thirty healthy English-speaking individuals participated in the fMRI
study. All participants had normal or corrected-to-normal vision.
Written informed consent was obtained fromeach participant before
the experiment, and the Institutional Review Board at the University
of California, Davis approved the study. Participants were compen-
sated with an Amazon gift card for their time. Data from one parti-
cipant was excluded due to technical complications with the fMRI
scanner, one participant was excluded due to a stimulus computer
malfunction, two participants were excluded due to poor behavioral
performance in the scanner (defined as falling below-trained criter-
ion, 85% correct, in the scanner), and one participant was removed
from the scanner before the experiment concluded because they did
not wish to continue in the study. Prior to data analysis, to ensure
data quality, we conducted a univariate analysis to examine motor
and visual activation during the task compared to an implicit baseline
(unmodeled timepoints when the participant was viewing a fixation
cross). Two participants showed little to no activation in these
regions and were excluded from further analysis. The remaining 23
participants (11 male, 12 female, all right handed) are reported here.

Stimuli and procedure
Data was collected from participants using Matlab 2016a and Psy-
chophysics toolbox. Task stimuli consisted of nine common animals,
shown in color on a grey background. Participants were tasked with
learning two zoo contexts, consisting of animals organized in a specific
spatial orientation (Fig. 1a). Importantly, animals in both contexts were
visually identical, but each context had a distinct spatial organization.
Training consisted of three stages per context: 1) map study, 2)
exploration, 3) sequence navigation. This was followed by an addi-
tional sequence navigation phase that alternated between contexts.

During map study, participants were initially shown an overhead
view of one of the zoo contexts (counterbalanced order across
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participants). After studying this picture, participants were asked to
reconstruct the location of all the animals by arranging icons on the
screen. If participantswere not able toperfectly recreate themaze they
were shown the picture oncemore and asked to try again. Next, during
the zoo exploration, participants used arrow keys to move between
items in the zoo, starting from the central animal. At the bottom of the
screen, participants were shown arrows indicating all possible moves
from their current location (e.g. Left, Up, Down, Right at the center
position of a maze). If participants made an incorrect move (moving
outside of the animal maze) they were informed they made a wrong
move. Participantswere required to visit eachof the animals four times
before moving on to the next phase. During the sequence navigation
phase, participants were shown a cue with a start and goal animal, and
had fourmoves to reach the goal on a given trial. Start and goal animals
were always the endpoints of an arm. Participants were trained to 85%
criterion before learning the other context. The same training proce-
dure outlined above was repeated for the second zoo context. After
learning each of the zoos to criterion, participants completed an
additional sequence navigation phase with the same timing as theMRI
scanning session.

In the MRI scanner, participants completed six runs of the
sequence navigation task (Fig. 1b). In each run, participants completed
16 sequence navigation trials. Trials from a given context were pre-
sented in a blocked fashion so that therewere 8 consecutive trials from
each context. Across runs, context blocks were alternated and their
order was counterbalanced across participants. In addition, the order
of sequences within each context was counter-balanced across blocks
to ensure no systematic ordering effects influenced our results. Each
navigation trial began with a cue signaling a start and a goal animal
displayed for 3 s, followed by a 3 s ITI. Participants then saw the start
animal and navigated by pressing buttons to move through the space
one animal at a time. Animal items were displayed on the screen for 2 s
with a 3 s ITI, regardless of a participant button press. For items where
participants made a navigational error, text was displayed for 2 s
informing them theymade a wrongmove or incorrectly navigated to a
goal animal. In each zoo context, participants planned and navigated
12 distinct sequences (each repeated 4 times across 6 runs of scanning)

MRI data acquisition
MRI data were acquired on a 3 T Siemens SkyraMRI using a 32-channel
head coil. Anatomical images were collected using a T1-weighted
magnetization prepared rapid acquisition gradient echo (MP-RAGE)
pulse sequence image (FOV = 256mm; TR = 1800 ms; TE= 2.96ms;
image matrix = 256 × 256; 208 axial slices; voxel size = 1mm isotropic).
Functional images were collected with a multi-band gradient echo
planar imaging sequence (TR = 1222ms; TE = 24ms; flip angle = 67
degrees; matrix = 64 × 64, FOV = 192mm; multi-band factor = 2; 3mm3

isotropic spatial resolution).

MRI data processing
Data were preprocessed using SPM12 (https://www.fil.ion.ucl.ac.uk/
spm/) and ART Repair. Slice timing correction was performed as
implemented in SPM12. We used the iterative SPM12 functional-image
realignment to estimatemovement parameters (3 for translation and 3
for rotation). Motion correction was conducted by aligning the first
image of each run to the first run of the first session. Then all images
within a session were aligned to the first image in a run. No participant
exceeded 3mm frame-wise displacement. A spike detection algorithm
was implemented to identify volumes with fast motion using ART
repair (0.5mm threshold)72. These spike events were later used as
nuisance variables within generalized linear models (GLMs). Partici-
pants native structural images were coregistered to the EPIs after
motion correction. The structural images were bias corrected and
segmented into graymatter, white matter, and CSF as implemented in
SPM12. Native brainmasks were created by combining gray, white

matter masks. Data were smoothed with a 4 mm3 FWHM 3D gaussian
kernel.

Regions of interest
ROI definitions were generated using a combination of Freesurfer, and
a multistudy group template of the medial temporal lobe. The multi-
study group template was used to generate probabilistic maps of
hippocampal head, body, and tail as defined by Yushkevich et al.73 and
warped to MNI space using Diffeomorphic Anatomical Registration
Using Exponentiated Lie Algebra (DARTEL) in SPM8. Maps were cre-
ated by taking the average of 55 manually-segmented ROIs and
therefore reflect the likelihood that a given voxel was labeled in a
participant. Masks were created by thresholding the maps at 0.5, (i.e.,
that voxel was labeled in 50% of participants). These maps were then
reverse normalized to native space using Advanced Normalization
Tools (ANTS). Participant-specific cortical ROIs were generated using
Freesurfer version 6.0. from the Destrieux and Desikan atlas74–76.
Individual cortical ROIs were binarized and aligned to participants’
native space by applying the affine transformation parameters
obtained during coregistration. These masks were combined into
merged masks that encompassed the entire hippocampus bilaterally
(see cue period pattern similarity for more information). Anatomical
ROIs for V1/V2 and BA4a/p were obtained by running all participants
structural scans through the freesurfer recon-all pipeline. Our V1/V2
ROI was obtained bymerging the anatomical masks for BA17 and BA18
(Supplemental Fig. 2).

Cue period pattern similarity analysis
Our primary interest was to investigate how prospective sequence
representations were modulated based on context membership. To
achieve this, we used representational similarity analysis to analyze
multi-voxel activity patterns within regions of interest77. Generalized
Linear Models (GLMs) were used to obtain single trial parameter
estimates of the cue period using a modified least-squares all (LSA)
model35,78. Data were high-pass filtered using a 128 s cutoff and pre-
whitened using AR(1) in SPM. All events were convolved with a
canonical HRF to be consistent with prior work78. Cue periods were
modeled using separate single trial regressors for each cue (2 s
boxcar). The remaining portions of the task were modelled as fol-
lows: Navigation periods were modelled with separate 25 s boxcar
functions for each trial, separate single trial regressors for catch
sequences modelled as a 15 s boxcar, separate single trial catch blank
trials (stick function), outcome correct at condition level (stick),
outcome incorrect at condition level (stick), and the four button
presses at the condition level (stick). Nuisance regressors for motion
spikes, 12 motion regressors (6 for realignment and 6 for the deri-
vatives of each of the realignment parameters) and a drift term were
included in the GLM. Pattern similarity between the resulting beta
images were calculated using Pearson’s correlation coefficient
between all pairs of trials in the experiment. Only between run trial
pairs were included in the analysis to avoid spurious correlations
driven by auto-correlated noise79.

Based on evidence of functional differentiation along the long-
axis of thehippocampus,we tested for any longitudinal or hemispheric
differences in hippocampal patterns63,80,81. Analyses revealed no sig-
nificant differences in the pattern of results between left and right or
between anterior or posterior segments of the hippocampus. As a
result, subsequent analyses were performed with pattern similarity
data from a bilateral hippocampus mask.

Linear mixed models
Behavioral responses and pattern similarity were analyzed using linear
mixed effects models to account for the nested structure of the
dataset, allowing us to statisticallymodel errors in ourmodel clustered
around individuals and trial types that violate the assumptions of
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standard multiple regression models. Statistical comparisons were
conducted in R (3.6.0) (https://www.r-project.org/) using lme4 and
AFEX82,83. Reaction times were analyzed using the following formula:

ðFigure1Þ : RT∼Position + ð1∣participantÞ ð1Þ

Where (1|participant) indicates the random intercept for participant
and RT is the reaction time for each position during the navigation
phase, excluding position 5 (as no response is required). Furthermore,
outlier RTs were excluded that exceeded 2.5 standard deviations from
a participant’s average reaction time.

For the pattern similarity analyses, pairwise PS values were input
for each participant into three separate models with the following
formulas:

ðFigure 2bÞ : PS∼ same sequence*same context + ð1∣participantÞ ð2Þ

ðFigure2c=dÞ : PS∼overlap*same context + ð1∣participantÞ ð3Þ

ðSupplemental Figure 2Þ : PS∼move*same context + ð1∣participantÞ
ð4Þ

Where (1|participant) indicates the random intercept for participant
and PS is the Pearson correlation coefficient for a given trial pair.
Fixed effects for Eq. 2: (1) same sequence - a categorical variable with
two levels indicating if the trial pair was from the same or different
sequence. (2) Same context - categorical variable with two levels:
same or different. Fixed effects for Eq. 3: overlap - a categorical
variable with four levels: full, converging, diverging, and diff. start
diff. goal. Same context - same as Eq. 2. Fixed effects for Eq. 4: Move -
a categorical variable with three levels: same moves, shared moves,
no moves. Same context - same as Eq. 2. Statistical significance for
fixed effects was calculated by using likelihood ratio tests, a non-
parametric statistical test where a full model is compared to a null
model with the effect of interest removed. For example, to test the
significance of an interaction term twomodels would be fit. One with
two main effects and no interaction and the other with the
interaction term. Effects sizes were calculated with the partial eta
squared statistic. Follow up tests and estimated marginal means84

from LMMs were calculated using the R package emmeans (https://
cran.rproject.org/web/packages/emmeans/index.html). Effects sizes
were calculated with Cohen’s d.

In all the above models, a model with a maximal random effects
structure, as recommended by Barr et al.85, was first fit. In all cases the
maximal model failed to converge or was singular, indicating over-
fitting of the data. When examining the random effects structure for
these models, random slopes for our fixed effects accounted for very
little variancewhen compared to our random intercept for participant.
To improve our sensitivity and avoid over-fitting these terms were
removed as suggested by Matuschek et al86. Lastly, it is important to
note that our results are not dependent on using linearmixedmodels.
Using standard repeated measures ANOVA produces qualitatively and
quantitatively similar results in all ROIs (See also Supplemental
Tables 1–4).

Successor representation simulation
To better understand specific predictions of the successor repre-
sentation in our taskwe performed a simple simulation with respect to
our task9. First, we created a topological structure (connected graph)
that was similar to our task. As seen in Supplemental Fig. 1, this
structure closely resembled the plus maze participants navigated in.
We simulated the successor representation based on a random walk

policy using the equation.

M = ðI � γTÞ�1 ð5Þ

Where γ is a freeparameter that controls thedecayof theSRandT is the
full transitionmatrix of the task depicted in Supplemental Fig. 1A/B. For
the current simulations, gamma of 0.3 was used, but results are quali-
tatively similar for different values. Random walk or policy indepen-
dence can be assumed in this case because maps were well learned
before the scanner and each sequence was traversed in both directions
an equal number of times65.

We then tested the hypothesis that, during planning, the hippo-
campus encodes the SR of the first position in the sequence (columns
of SR). We extracted columns of the SR for three planned sequences
((state 1 -> state 5) (state 6 -> state 5) (state 1 -> 9)) and calculated the
similarity (Pearson’s) between pairs of trials. The same sequence was
calculated by correlating the same sequence with itself. The conver-
ging condition was obtained by correlating trials that started at dif-
ferent states but converged on the same end state. The diverging
condition was obtained by correlating trials that started at the same
state but diverged to different end state. Lastly, the diff. start diff. goal
condition was calculated by correlating trial pairs that started and
ended at different states. As shown in Supplemental Fig. 1, the SR
heavily weights the immediate locations around the starting location
and thus would predict that diverging sequences should have higher
similarity than converging sequences.

Timepoint-by-timepoint representational similarity analysis
To examine whether participants activated remote timepoints as they
navigated through our virtual environments (e.g., activating decision
points early in the navigation trial), we used a variant of single trial
modeling using finite impulse response (FIR) functions41. This method
allowedus to isolate the unique spatiotemporal patternof activity for a
given navigation trial while simultaneously controlling for surrounding
time points during the run. We modeled 47 seconds of neural activity
with a set of 38 FIR basis functions. Specifically, we obtained a spatial
pattern of activity for each of these 38TRs in ourmodel, which allowed
us to compare the similarity of the spatial patterns of activity between
timepoints in the navigation phase. Additional regressors were inclu-
ded for motion, however spike regressors were not included in this
analysis because they perfectly colinear with an FIR basis sets for each
TR. A separate GLM was used for every trial resulting in 72 voxel time
series. Collinearity in our model was measured using the variance
inflation factor (VIF) and was verified to be within acceptable levels
according to standards in the literature87 (see also Supplemental
Fig. 8). To examine within trial type similarity (same trial type across
repetitions) timepoint-by-timepoint similarity matrices were gener-
ated by correlating activity patterns from repetitions of specific
sequence pairs (e.g. zebra-tiger repetition 1 with camel-tiger repetition
1), at every TR. The resultant matrices were symmetrized by averaging
across the diagonal of the matrix using the following equation: (XT +
X)/2. The resultant timepoint-by-timepoint similarity matrix was
averaged within a specific trial type to get a single average timepoint-
by-timepoint similarity matrix for each participant and condition
(Fig. 3, Supplemental Fig. 7). This was done separately for converging
anddiverging sequences.Only between-run trial pairswere included in
the analysis to avoid spurious correlations driven by auto-correlated
noise79. Thismethod allowedus to isolate individual sequence patterns
while controlling for temporally adjacent navigation trials. To identify
which points in time corresponded to relevant parts of the task, we
manually lagged trial labels by 4 TRs to account for the slow speed of
the HRF.

Time point-by-timepoint similarity matrices were constructed
only for converging and diverging sequences. This subset of trials was
chosen for severalmethodological reasons listed below. One is that, to
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maximally control for differences in trial numbers between conditions
and temporally auto-correlated evoked patterns, while still maintain-
ing enough power to examine future state activation; we restricted our
analyses to converging and diverging sequences within the same
context. Importantly, this selection of trials allows us to simulta-
neously control for several factors while testing specific predictions.
Another is that, converging and diverging sequences are matched in
terms of the number of shared items and therefore overall visual
similarity. Specifically, the same animal items are seen during the first
half of diverging sequences, while the same animal items are seen in
the second half of converging sequences (all sequences share the
center item).

To assess statistical significance, and to correct for multiple
comparisons, we used cluster-based permutation tests88 with 10,000
permutations, with a cluster-defining threshold of 0.05 (two-tailed).
Each pixel of a statistical comparison (T-value) was converted into a Z
value by normalizing it to themean and standard error generated from
our permutation distributions. Cluster significancewas determined by
comparing the empirical cluster size to the distribution of the max-
imum cluster size (sum of T-values) across permutations with a cluster
mass threshold of 0.05 (two-tailed).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Processed data to reproduce figures in the manuscript and supple-
ment are available at https://github.com/jecd/Hippocampgoal and in a
Zenodo repository https://doi.org/10.5281/zenodo.726424389. Source
data are provided with this paper. Raw data available at https://osf.io/
txauh/.

Code availability
Code to reproduce all figures and statistical analyses in the manu-
script and supplement are available at https://github.com/jecd/
Hippocampgoal and in a Zenodo repository at https://doi.org/10.
5281/zenodo.726424389.
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