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Epithelial disruption drives mesendoderm
differentiation in human pluripotent stem
cells by enabling TGF-β protein sensing

Thomas Legier 1,3, Diane Rattier1,3, Jack Llewellyn 1, Thomas Vannier 1,
Benoit Sorre 2, Flavio Maina 1 & Rosanna Dono 1

The processes of primitive streak formation and fate specification in the
mammalian epiblast rely on complex interactions between morphogens and
tissue organization. Little is known about how these instructive cues func-
tionally interact to regulate gastrulation. We interrogated the interplay
between tissue organization and morphogens by using human induced plur-
ipotent stem cells (hiPSCs) downregulated for the morphogen regulator
GLYPICAN-4, in which defects in tight junctions result in areas of disrupted
epithelial integrity. Remarkably, this phenotype does not affect hiPSC stem-
ness, but impacts on cell fate acquisition. Strikingly, cells within disrupted
areas become competent to perceive the gastrulation signals BMP4 and
ACTIVIN A, an in vitro surrogate for NODAL, and thus differentiate into
mesendoderm. Yet, disruption of epithelial integrity sustains activation of
BMP4 and ACTIVIN A downstream effectors and correlates with enhanced
hiPSC endoderm/mesoderm differentiation. Altogether, our results disclose
epithelial integrity as a key determinant of TGF-β activity and highlight an
additionalmechanism guidingmorphogen sensing and spatial cell fate change
within an epithelium.

Gastrulation is amajormorphogenetic process in animal development
during which the embryonic germ layers are generated and the basic
body plan is laid down. Inmammals, gastrulation is first marked by the
appearance of the primitive streak (PS), a transient structure arising
by thickening of the epiblast. Epiblast cells recruited and ingressing
into the PS will acquire a mesendoderm (MES) fate, marked by
co-expression of the transcription factors T/Brachyury (BRACH) and
Eomesodermin (EOMES). Subsequently cells undergo epithelial-
mesenchymal transition (EMT) to initiate differentiation into the
mesoderm (ME) and definitive endoderm (DE) germ layers1,2. Instead,
epiblast cells that do not ingress through the streak will become the
future ectodermal layer.

A mechanistic understanding of how mammalian gastrulation is
initiated and how pluripotent cells of the epiblast acquire different

fates has attracted considerable scientific interest given the impact
that findings can have for developmental biology and for clinical
application. Great insights have come from genetic and embryological
studies carried out in themouse embryo. These studies have led to the
proposal that gastrulation is initiated by means of biochemical signals
likeWNT, the TGF-β superfamilymembers, BMP andNODAL, and their
inhibitors, which establish a signaling crosstalk between embryonic
and extra-embryonic cells2. In this scenario, gastrulation is initiated
when epiblast cells are instructed by BMP4, secreted by the extra
embryonic ectoderm, to produce the secreted signaling protein
WNT32,3. WNT3 in turn stimulates epiblast cells to express and release
NODAL that will feed back to the extraembryonic ectoderm to main-
tainBMPsignaling in this tissue aswell as theoverall signaling crosstalk
between the two cellular compatments2–5. As a result of this signaling
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crosstalk between BMP, WNT and NODAL, the PS is formed and the
epiblast becomes patterned.

Recently, this configuration has been challenged by studies
showing that these signaling interactionsmaybe furthermodulatedby
topological cues and by the epithelial organization of the epiblast. In
particular, the use of sophisticated live imaging tools in mouse
embryos has highlighted that BMP receptors localize at the basolateral
membrane of mouse epiblast facing a narrow interstitial space located
between the epiblast cells and the underlying visceral endoderm.
Interestingly, the lack of tight junctions (TJs) between the extra-
embryonic ectoderm and the edge of the epiblast at the posterior
embryo site enables the diffusion of BMP4 through this interstitial
space, allowing ligands to reach basolateral localized receptors and
initiate gastrulation6.

As these mechanical studies are arduous in embryos given the
small size and inaccessibility of early post-implantation embryos,
humanpluripotent stemcells (hPSCs) have becomea reference system
to dissect physical processes and feedback interactions with bio-
chemical signals. Pioneering studies with hPSCs grown on a disk-
shaped plate, to mimic the mechanical constrains of the human epi-
blast (called ‘2D gastruloids’ or ‘micropattern’ in the following), have
highlighted that physical cues, such as colony size, shape and cell
density, can impact on the rate and trajectory of hPSC differentiation
by acting on the balance between differentiation-inducing and -inhi-
biting factors7,8. Subsequent experiments in which the 2D gastruloid
technologywas applied to the study of tissue patterning have revealed
a remarkable capability of hPSCs to recapitulate aspects of germ layer
patterning, such as simultaneous formation of the radially organized
embryonic germ layers when exposed to the gastrulation-initiating
signal, BMP49,10. Of note, additional mechanistic studies have revealed
that this in vitro patterning process relies on the epithelial architecture
of the hPSC layer, which determines accessibility of BMP4 receptors in
cells and formation of morphogen gradients11,12. By using this con-
finement strategy, it has also been proposed that regions of high
cell–cell tension in the hPSC layer foster the appearance of
gastrulation-like nodes (PS-like) and mesoderm differentiation in
response to BMP4 stimulation13. This is due to the release of β-catenin
fromcell–cell adhesion sites and its nuclear translocation. Collectively,
these results raise the possibility that intrinsic changes in the epiblast
cell layer could trigger the onset of gastrulation and MES differentia-
tion by sensitizing cells to morphogens.

The heparan sulphate proteoglycanGLYPICAN-4 (GPC4)14, is a key
regulator of signals controlling the balance between PSC self-renewal
and differentiation (e.g. BMP,WNT, FGF)15–20. By performing functional
analysis of human induced PSCs (hiPSCs) with reduced GPC4 protein
levels (GPC4sh hiPSCs), we discovered that these cells provide a rele-
vant biological system to obtain additional insights into the interplay
between the physical properties of epiblast cells and biochemical
signals during gastrulation.

Here we show that in contrast to control cells, GPC4sh hiPSCs
display altered epithelial integrity with areas of abnormal TJ distribu-
tion. Of note, GPC4sh hiPSCs display enhanced differentiation poten-
tial into MES, ME and DE lineages, under classical differentiation
protocols compared to control cells. Strikingly, areas of disrupted
epithelial integrity correlate precisely with expression of the MES
markers BRACH and EOMES, indicating that the morphological phe-
notype of the GPC4sh hiPSC layer sensitizes cells to respond to mor-
phogens. By performing stimulation assays with BMP4, ACTIVIN A and
WNT3A ligands, we show that epithelial integrity regulates the ability
of hiPSCs to respond to BMP4 and ACTIVIN A but not WNT3A. In
addition, we demonstrate that disruption of epithelial integrity sus-
tains activation of the BMP4 and ACTIVIN A signaling pathway
over time. Thus, our findings highlight alteration of epithelial integrity
as an additional mechanism for controlling BMP4 and ACTIVIN A sig-
naling and differentiation processes.

Results
Loss-of-GPC4 affects hiPSC epithelial integrity by altering TJs
To investigate the consequences of disrupting epithelial organization
following GPC4 downregulation in hiPSCs, we used two previously
publishedhiPSC lines inwhichGPC4wasdownregulated in theparental
hiPSC 029 by means of shRNA-mediated GPC4 targeting. Briefly, we
transduced the hiPSC line 029 with lentiviruses encoding two selected
shRNAs named GPC4sh5 and GPC4sh2 to generate stable clones from
each targeting sequence14. Among them, we selected GPC4sh5-c10 and
the GPC4sh2-c3 clones as representative cells carrying the GPC4sh5
and the GPC4sh2 sequences, respectively (Fig. 1). The 029 hiPSC line
transduced with the non-mammalian sequence GFP was used as a
control (CTRLsh)14. RT-qPCR analysis of GPC4 expression showed no
significant differences inGPC4 transcript levels betweenwild type (WT)
and CTRLsh hiPSCs (Fig. 1a) as previously reported14. In contrast, GPC4
transcript levels were reduced by 60%±14% in GPC4sh5-c10 and by 70%
±4% inGPC4sh2-c3 hiPSCs (Fig. 1a). Consistently, immunocytochemical
analysis revealed that GPC4sh5 and GPC4sh2 cultures display reduced
GPC4 levels compared to WT and CTRLsh (Fig. 1b).

Next, we evaluated the morphology and organization of controls
and GPC4sh hiPSC cultures by analyzing epithelial features. In parti-
cular, cells grown at high density (e.g. 1.5 × 105 cells/cm2) were immu-
nostained for the TJ proteins, Zona occludens 1 (ZO1) and Occludin
(OCLN), by immunocytochemistry. Intriguingly, we found that GPC4sh
cultures display areas with disrupted TJ organization, whereas control
cultures form the classical epithelial sheet with organized and defined
TJs (Fig. 1c and Supplementary Fig. 1a). Quantification revealed that
this phenotype covers 39.1% ± 4% and 58.2% ± 11% of the cell layer in
GPC4sh5-c10 and GPC4sh2-c3 hiPSCs, respectively, whereas TJ dis-
rupted areas account only for 8.4% ± 3% and 7.4% ± 2% of the epithelial
sheet in control hiPSCs (Fig. 1c, d). Rescue experiments demonstrated
that epithelial integrity is restored in GPC4sh cultures following
upregulation of GPC4 levels, thus showing that disruption of the epi-
thelial integrity isdue toGPC4downregulation (Supplementary Fig. 1b,
c). HiPSC cultures with downregulated GPC4 exhibit abnormal TJ
organization even when cultured at low density (0.2x105 cells/cm2 and
1x105 cells/cm2 instead of 1.5x105 cells/cm2; Supplementary Fig. 1d).
Finally, disruption of TJ organization in GPC4sh hiPSCs occurs in cells
plated on different extracellular matrices (ECM) such as Matrigel (a
mixture of Collagen, Laminin and growth factors), Laminin or Vitro-
nectin (Supplementary Fig. 1e). Thisfinding suggests that disruption of
TJ organization in GPC4sh hiPSCs occurs also in the presence of more
stringent and defined cultured conditions.

To assess the effect of GPC4 downregulation in a different hiPSC
line, we examined TJ organization in the previously published AICS-
0023 hiPSCs targeted with CTRLsh and GPC4sh (Supplementary
Fig. 1f)14. Analysis of ZO1 distribution revealed extensive areas of dis-
rupted TJ organization in the epithelial sheet of the AICS-0023 GPC4sh
compared with the CTRLsh line (Supplementary Fig. 1g). This result
highlights that disrupted TJ organization is triggered by GPC4 down-
regulation and is not limited to one hiPSC line.

It is well known that loss of TJs occurs when epithelial cells switch
to a mesenchymal state21,22. Therefore, we next examined the expres-
sion of genes regulating epithelial andmesenchymal states in controls
and GPC4sh hiPSCs using RNA-sequencing (RNA-seq) data. By com-
paring transcript levels of 62 epithelial and 71 mesenchymal markers
we did not find major differences between WT, CTRLsh and GPC4sh5
hiPSCs (Fig. 1e and Supplementary Table 1). These results were cor-
roborated by western-blot analyses of some epithelial (ZO1, OCLN,
E-Cadherin (E-CAD) and β-Catenin (β-CAT)) and mesenchymal (N-
Cadherin (N-CAD)) markers (Fig. 1f). Consistently with our RNA-seq
data, we found similar levels of ZO1, OCLN, E-CAD, β-CAT and N-CAD
proteins in controls and GPC4sh hiPSCs (Fig. 1f). Overall, this analysis
indicates that downregulation of GPC4 in hiPSCs does not pro-
mote an EMT.
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Fig. 1 | GPC4 downregulation in hiPSC affects epithelial integrity by altering TJ
distribution. a RT-qPCR analyses of GPC4 transcript levels in WT, CTRLsh,
GPC4sh5-c10 and GPC4sh2-c3 029 hiPSCs. Box plots represent the median with
interquartile range, the whiskers indicate min and max values, n = 9.
b Immunofluorescence analysis of GPC4 (red) and DAPI positive nuclei (blue) in
WT, CTRLsh, GPC4sh5-c10 and GPC4sh2-c3 hiPSCs, n = 3. Scale bar: 50μm.
c Immunofluorescence analysis of ZO1 (green) in WT, CTRLsh, GPC4sh5-c10 and
GPC4sh2-c3 hiPSCs. Numbers indicate the percentage of disrupted areas. White
outlines highlight zones of disturbed TJs, n = 9. Scale bar: 50μm. d The extent of TJ
disruptionwas quantified from staining shown in c. Box plots represent themedian
with interquartile range, thewhiskers indicatemin andmax values,n = 9. eRNA-seq
analyses of transcript levels of epithelial and mesenchymal genes in WT, CTRLsh,
GPC4sh5-c10 hiPSCs. Data are represented as a heatmapof Log2FC,n = 3. fWestern-
blot analysis of ZO1, OCLN, E-CAD, β-CAT and N-CAD inWT, CTRLsh, GPC4sh5-c10
and GPC4sh2-c3 hiPSC total protein extracts. ACTIN protein levels were used as

loading control, n = 3. Blots were processed in parallel. g Immunofluorescence
analysis of ZO1 (green) and Na+/K+ ATPase (magenta), in CTRLsh and GPC4sh5-c10
hiPSCs. Pictures are presented as top and lateral view of stained cells. Arrowheads
point to areas of abnormal apical-basal polarity, n = 3. Scale bar: 20μm.
h Immunofluorescence analysis of ZO1 (green), F-ACTIN (magenta) inWT, CTRLsh,
GPC4sh5-c10 and GPC4sh2-c3 hiPSCs, n = 10. Scale bar: 25 μm. i The surface
delimited by the ZO1 protein in each individual cell was quantified from staining
shown in h. Data are represented as violin plots (distribution around the median),
n = 4000 cells per hiPSC line. j Schematic representation of epithelial cell mor-
phology of control hiPSCs, and of disrupted TJs in GPC4sh hiPSCs. Statistical ana-
lysis for the overall figure: (a, d, i) one-way ANOVA followed by Dunnett’s multiple
comparison test. P-values: (***) <0.001, (**) <0.01, (*) <0.05, ns not significant. For all
panels “n” corresponds to the number of biological replicates. Source data are
provided as a Source Data file.
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We then asked whether downregulation of GPC4 disrupts other
aspects of the apical-basal polarity of epithelial cells. We examined the
distribution in the Z-axis of baso-lateral (Na+/K+ ATPase and E-CAD)
and apical (ZO1) marker proteins23–25. Immunocytochemical analyses
of control hiPSC cultures showed that Na+/K+ ATPase and E-CAD
maintained their basolateral localization below TJs (ZO1 immunos-
taining; Fig. 1g and Supplementary Fig. 1h, i). Instead, Na+/K+ ATPase
or E-CAD staining were found intermingled with ZO1 in GPC4sh hiPSC
cultures in areas with disrupted TJ organization (Fig. 1g and Supple-
mentaryFig. 1h, i). These results highlight disruptionof the apical-basal
cell polarity in GPC4sh hiPSCs, which can lead to an apical exposure of
the basolateral localized proteins.

To further characterize the changes in epithelial morphology of
GPC4sh hiPSCs, we analyzed the state of TJs in conjunctionwith that of
F-ACTIN cortex. In control hiPSC cultures, we observed that the
F-ACTIN cortex is clearly defined and organized in a regular pattern
matching the TJ localization (Fig. 1h), reflecting an equilibrated tissue
tension26. Instead, in GPC4sh cultures we noticed that, within the areas
of altered TJs, the F-ACTIN cortex is poorly defined and exhibits mul-
tiple foci of accumulation (Fig. 1h), indicative of high tissue tension26.
Quantification of the apical cell surface size revealed that this surface
is strongly reduced in GPC4sh cultures compared to control hiPSCs
(Fig. 1i, j).

Taken together, these results show that downregulation of GPC4
in hiPSCs alters TJ distribution and apical-basal cell polarity. Although
this phenotype does not affect epithelial cell identity, it disrupts the
morphology and integrity of the hiPSC epithelial layer and enables
apical exposure of basolateral localized proteins.

Epithelial disruption does not affect hiPSC stemness
We next asked whether disruption of the epithelial integrity in hiPSC
impacts on their stemness and differentiation properties. We found
that GPC4sh hiPSCs stained as intensely for the stemness marker
alkaline phosphatase as controls (Supplementary Fig. 2a), and that
the expression levels of the epiblast marker OTX2 and of the core
pluripotency genes OCT4, NANOG and SOX2 were not affected
(Supplementary Fig. 2b–d). Similarly, no differences were found in
the mitotic (phospho-Histone H3 positive cells) and apoptotic rates
(cleaved-Caspase3 positive cells; Supplementary Fig. 2f–h) as well as
in the cell cycle progression (Supplementary Fig. 2i). These results
are consistent with data we reported previously14. To extend this
analysis further, we used our RNA-seq data to follow the expression
levels of 48 markers of PSCs in WT, CTRLsh and GPC4sh5 cultures
maintained in self-renewal conditions. As above, the transcript levels
of all PSC markers analyzed were not significantly changed between
WT, CTRLsh and GPC4sh5 hiPSCs (Fig. 2a; Supplementary Table 2).
Collectively, these findings show that disruption of epithelial integ-
rity in hiPSCs does not affect stemness identity when cells are cul-
tured in self-renewal conditions.

Previous studies have shown that the balance between self-
renewal and differentiation of PSCs is coordinated by the crosstalk
between the PI3K/AKT, RAF/MEK/ERK, and WNT/GSK3b signaling
pathways that together impact on the ability of ACTIVIN A/SMAD2,3
to promote either self-renewal or differentiation into MES cells27–31.
Therefore, we determined whether disruption of hiPSC epithelial
integrity impacts on this regulatory signaling network. Western-blot
analysis showed similar activation levels of AKT, ERK, GSK3a/b and
SMAD2 pathways in control and GPC4sh hiPSCs maintained in self-
renewal conditions (Fig. 2b). The antibody specificity was tested by
using specific inhibitors of phosphorylation (Supplementary Fig. 2e).
Consistently, RNA-seq analysis revealed that genes regulating
fate acquisition such as GSC, BRACH, EOMES, FOXC1, FOXA1
and SOX1 were not expressed neither in WT and CTRLsh hiPSCs nor
in GPC4sh5 cells (see Data availability). Together these results
show that disruption of hiPSC epithelial integrity does not impact on

self-renewal and pluripotency of hiPSCs, nor primes them to
express cell lineage markers when cells are cultured under stemness
conditions.

Enhanced mesendoderm fate acquisition in GPC4sh cultures
Recent studies have shown that differentiation of hiPSCs towards the
MES lineage and into its DE and ME derivatives relies on hiPSC
mechanics and epithelial organization properties9,11,13,32. Given the
peculiar morphological phenotype of GPC4sh hiPSCs, we reasoned
that GPC4sh cultures could be a powerful system to study the impact
of epithelial integrity on hiPSC differentiation along MES, DE and
ME embryonic lineages. To trigger hiPSC differentiation along these
lineages we exposed cells to BMP4 and ACTIVIN A (Fig. 2c), a com-
monly used surrogate to activate aspects of the NODAL signaling
pathway in vitro33–37. We then evaluated the differentiation profile of
control and GPC4sh hiPSCs by using RT-qPCR analysis following
lineage-specific markers.

In agreement with published studies, the MES markers EOMES,
GSC, NODAL and MIXL1 were already expressed at day 1 (d1) of differ-
entiation in control cells exposed to ACTIVIN A, and transcript levels
were gradually downregulated from d1 to d5 (Fig. 2d and Supple-
mentary Fig. 3a, b).When cells were kept in the presence of ACTIVINA,
expression of theDEmarkers SOX17, FOXA2,CER1 andCXCR4 started at
d1, peaked between d2 to d3 and gradually reduced from d3 to d5
(Fig. 2e and Supplementary Fig. 3a, b)33,38,39. Instead, when ACTIVIN A
was replaced by BMP4 at d2, the early ME markers MESP1 and TBX6
were gradually expressed from d2 to d4 then downregulated fromd4/
d5 (Fig. 2e and Supplementary Fig. 3a, b). At these late time points of
differentiation, we observed concomitant expression of late ME mar-
kers, such as VEGFR2 and PDGFRa34,40 (Fig. 2e and Supplementary
Fig. 3a, b). Remarkably, by comparing the differentiation profile of
GPC4sh hiPSCs versus control, we observed a 5- to 9-fold increase in
transcript levels of all MES markers in GPC4sh hiPSCs (Fig. 2d and
Supplementary Fig. 3a, b). Consistently, the expression of DE and ME
markers also increased 5- to 12-fold and 5- to 19-fold, respectively, in
differentiating GPC4sh cells compared to controls (Fig. 2e and Sup-
plementary Fig. 3a, b). Thus, these results indicate that GPC4sh hiPSCs
acquire enhanced differentiation potential towards MES and its deri-
vatives lineages, DE and ME, than control hiPSCs. Consistent with RT-
qPCR results, immunocytochemistry revealed a ∼2.5 times higher
percentage of cells expressing the early MES markers BRACH and
EOMES at day 1 of differentiation in GPC4sh compared to control
cultures (Fig. 2f, g and Supplementary Fig. 4a, b, e). Along the same
line, the percentage of cells expressing the DE marker SOX17 and the
ME marker PDGFRa at day 3 of differentiation was, respectively, ∼17
times and >3 times higher in GPC4sh than control cultures (Fig. 2f, g
and Supplementary Fig. 4c–e). Differentiation studies performed on
the second hiPSC line, AICS-0023, showed a similar increase into
BRACH and SOX17 positive cells in GPC4sh AICS-0023 cells compared
to controls (Supplementary Fig. 5a, b), thus showing that this pheno-
type is not restricted to one hiPSC line.

As DE and ME fates acquisitions are accompanied by an EMT21,22,
we next evaluated the capabilities of GPC4sh cells to undergo an EMT
fate switch during differentiation. Marker analysis revealed that
GPC4sh hiPSCs undergo a more efficient EMT transition compared to
control hiPSCs, as highlighted by the increased expression of N-CAD,
SNAI1, SNAI2, TWIST1 and VIMENTIN mesenchymal markers, and by a
more efficient switch in E-CAD to N-CAD expression (Fig. 3a). This
E-CAD to N-CAD transition was also marked by the concomitant
appearance of SOX17 and PDGFRa proteins in N-CAD positive cells
(Fig. 3b, c). Altogether these results show that downregulation of GPC4
enhances hiPSC differentiation efficiency into MES cells as well as into
their DE and ME derivatives with a concomitant EMT.

No significant changes in the percentage of mitotic and apoptotic
cells were observed in control and GPC4sh hiPSCs (Supplementary
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Fig. 2 | Disruption of epithelial integrity does not affect stemness properties of
hiPSCs but enhances differentiation potential. a Transcript levels of genes reg-
ulating pluripotency were analyzed by RNA-seq in WT, CTRLsh and GPC4sh5-c10
029 hiPSCs at the undifferentiated stage. Data are represented as a heatmap of
Log2FC, n = 3.bTotal protein extract ofWT,CTRLsh, GPC4sh5-c10 andGPC4sh2-c3
029 hiPSCs at the undifferentiated stage were analyzed byWestern-blot with pAKT
S473, pAKT T308, AKT, pERK T202/Y204, ERK, pGSK3a, b S9/S21, GSK3a, b,
pSMAD2 S465/S467 and SMAD2 antibodies. Note similar expression and phos-
phorylation levels of AKT, ERK, GSK3a, b and SMAD2 proteins in all hiPSC lines.
ACTIN protein levels were used as loading control, n = 3. Blots were processed in
parallel. c Scheme depicting the strategy of differentiation into MES and subse-
quently into DE and ME used. d, e CTRLsh and GPC4sh5-c10 029 hiPSCs were
differentiated for 5 days into DE or ME and transcript levels of MES, DE or ME
specific markers were analyzed by RT-qPCR. d MES markers (EOMES and GSC),

(e) DEmarkers (SOX17 and FOXA2), (e) MEmarkers (MESP1 and PDGFRa). Data were
normalized to the d0 of CTRLsh and represented as mean ± SEM, n = 3.
f Immunofluorescence analysis of BRACH (red, MES), SOX17 (red, DE) or PDGFRa
(red, ME) onWT, CTRLsh, GPC4sh5-c10 and GPC4sh2-c3 029 hiPSCs differentiated
for 1 day into MES, 3 days into DE or 3 days into ME, n = 3. Scale bar: 100μm.
g Percentages of BRACH, SOX17 and PGFDRa positive cells in WT, CTRLsh,
GPC4sh5-c10 and GPC4sh2-c3 029 hiPSCs were quantified from staining shown in
f. Box plots represent themedianwithmin andmax values, n = 3. Statistical analysis
for the overall figure: (d, e) two-way ANOVA followed by Sidak’s multiple com-
parison test, (g) two-way ANOVA, followed by Dunnett’s multiple comparison test.
P-values: (***) <0.001, (**) <0.01, (*) <0.05, ns not significant. For all panels “n”
corresponds to the number of biological replicates unless stated otherwise. Source
data are provided as a Source Data file.
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Fig. 5c–e), thus excluding that proliferation and survival contribute to
the increased differentiation efficiency in GPC4sh cultures.

Loss-of-GPC4 impacts on self-organization of 2D gastruloids
To elucidate the differentiation properties of GPC4sh hiPSCs further,
we took advantage of the 2D gastruloid system also known as micro-
pattern that has emerged as a suitable in vitro system to study aspects
of cell linage entry in hPSCs7,8. CTRLsh and GPC4sh hiPSCs were cul-
tured as a monolayer on embryo-size circular adhesive micropatterns
and exposed to BMP4. Both, CTRLsh and GPC4sh hiPSCs self-
organized and gave rise to embryonic germ layers, arranged in con-
centric rings, in an ordered and reproducible manner. Interestingly,
immunocytochemistry revealed differences in their differentiation
profile. In particular, in comparison to CTRL hiPSCs, GPC4sh hiPSCs
displayed an enlarged expression domain of BRACH cells expanding
from the outer layer toward the center of the colony (Fig. 4a, b). This
correlated with a narrower domain of SOX2 positive cells at the center
of the micropattern in GPC4sh versus CTRL hiPSCs (Fig. 4a–d) as well
as a reduced SOX2 intensity in these cells. Similarly, the SOX17
expression domain was spatially different, being more enlarged

towards the colony center at the expense of SOX2 (Fig. 4c, d). Thus,
these observations on micropatterns are consistent with increased
differentiation capability of GPC4sh hiPSCs towards distinct cell
lineages such as MES (BRACH positive cells) and SOX17 derivatives.
This would correlate with a cell fate switch of the presumptive SOX2
positive cells.

Mesendoderm fate relies on epithelial integrity disruption
We next assessed whether disruption of the epithelial integrity in
GPC4sh hiPSCs could underlie their increased differentiation potential
into MES. This was addressed by restoring the epithelial integrity and
polarity in GPC4sh hiPSCs, and by triggering disruption of the epi-
thelial cell layer in CTRLsh cultures using specific chemical agents.
Drug treated cells were then exposed to ACTIVIN A to instigate dif-
ferentiation into the MES lineage. To restore the epithelial integrity of
the GPC4sh cultures, we used lyso-phosphatidic acid (LPA), a small
molecule that has been shown to cause an expansion of the apical
domain of human neural progenitor cells41. Strikingly, a 24 h treatment
of GPC4sh hiPSCs with LPA was sufficient to restore a TJ organization
and an epithelial integrity similar to controls (Fig. 5a). Concomitant
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with the rescue of the TJ organization, LPA treatment also rescued the
altered apical-basal polarity of GPC4sh hiPSCs characterizing the TJ
disrupted areas (Fig. 5b), thus highlighting a crosstalk between TJ
organization and apical-basal cell polarity. Conversely, when control
hiPSCswere cultured for 24 h in the presence of Blebbistatin (Blebbi), a
drug targeting Non-Muscle Myosin II42,43, the epithelial integrity,
assessed by analyzing TJs, was disrupted in a fashion similar to GPC4sh
cultures (Fig. 5a, b). Furthermore, GPC4sh cultures in which the epi-
thelial integrity was restored by LPA lose their enhanced MES differ-
entiation properties and behave similar to control hiPSCs, as shownby
the comparable expression levels ofMIXL1, GSC andEOMES in both cell
types (Fig. 5c, d). Instead, disruption of the epithelial integrity in
control hiPSCs by Blebbi treatment enhanced their capability to
undergoMES differentiation as in untreated GPC4sh hiPSCs, shown by
the significant increase in MIXL1, GSC and EOMES expression (Fig. 5c,
d). Collectively, these findings show that disruption of epithelial
integrity enhances efficiency of differentiation into MES lineage.

Interestingly, by comparing the spatial distribution of cell patches
with altered TJ organization with that of BRACH expressing cells in
differentiating GPC4sh cultures at MES stage, we found a striking
correlation into their spatial distributions. The correlation coefficient,
calculated by quantifying the percentage of BRACH positive cells as a
function of distance from epithelial disrupted areas, revealed a nega-
tive relationship between the two variables with slopes of -0.4082 and

-0.4325 for GPC4sh5 and GPC4sh2 lines, respectively (Fig. 5e, f). Taken
together these results show that local disruption of epithelial integrity
in the hiPSC layer regulates the onset of MES fate acquisition and its
spatial pattern.

Epithelial disruption enables onset of BMP/ACTIVIN signaling
Decades of research on mammalian gastrulation have revealed that
MES formation and spatial patterning is under the control of a sig-
naling cascade initiated by BMP and involving activation of WNT and
NODAL pathways44–46. Our results show that disruption of epithelial
integrity in GPC4sh hiPSCs does not prime hiPSCs for MES fate
acquisition. Yet, GPC4sh hiPSCs undergo efficient differentiation
towards the MES lineage following ACTIVIN A stimulation. This raised
the question of whether these structural changes in hiPSC epithelial
layer may enhance their ability to activate BMP, ACTIVIN and/or WNT-
β-CAT signaling cascade. In agreement with this possibility, prior stu-
dies using human embryonic SCs (hESCs) have shown that the epi-
thelial organization and polarity of ESCs prevents accessibility of TGF-
β superfamily ligands to their receptors located at the basolateral cell
membrane as well as induction of the WNT-β-CAT signaling
pathway44–46. As reported above, disruption of epithelial integrity in
GPC4sh hiPSCs alters the apical-basal polarity of epithelial cells, thus
enabling accessibility to proteins otherwise localized at the basolateral
cell side (Fig. 1g and Supplementary Fig. 1h, i).

Fig. 4 | GPC4 downregulation impacts lineage repartition in 2D gastruloids.
a Representative 2D gastruloids immunostained for DAPI positive nuclei (blue),
SOX2 (green) and BRACH (magenta) proteins 48h after the start of BMP4 stimulation
(colony diameter 700μm; scale bar 100μm). b Quantification of SOX2 and BRACH
radial profiles of expression in human 2D gastruloids of panel a. For each stain, radial
profiles are normalized by the maximum of the control profile. Shaded areas
represent the 1st and 3rd quartiles of the individual colony profiles with a line at the
mean. CTRLsh: n=64, GPC4sh n= 67 colonies from three biological replicates.

c Representative 2D gastruloids immunostained for DAPI positive nuclei (blue),
SOX2 (green) and SOX17 (magenta) 48h after the start of BMP4 stimulation (colony
diameter 700 µm, scale bar 100μm). d Quantification of SOX2 and SOX17 radial
profiles of expression in human 2D gastruloids of panel c. For each stain, radial
profiles are normalized by the maximum of the control profile. Shaded areas
represent the 1st and 3rd quartiles of the individual colony profiles with a line at the
mean. CTRLsh: n=60, GPC4sh n= 62 colonies from 3 biological replicates. Source
data are provided as a Source Data file.
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Toanswer to this question,weanalyzed the capacity of control and
GPC4sh hiPSCs grown in self-renewal conditions to activate the BMP
and ACTIVIN pathways upon a 1 h stimulation (immediate response).
Cells responding to BMP4 and ACTIVIN A stimulations were visualized

by immunocytochemistry of nuclear phospho-SMAD1/5 (pSMAD1,5
S463/S465) and phospho-SMAD2 (pSMAD2 S465/S467), respectively47.
After 1 h of stimulation, we found that the percentages of cells acti-
vating BMP and ACTIVIN signaling were ∼3 and ∼2-fold higher in
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GPC4sh compared to control hiPSCs, respectively (Fig. 6a, b and Sup-
plementary Fig. 6a, b). Additionally, image analysis revealed that most
cells responding to BMP4 and ACTIVIN A stimulations localized in the
areas with disrupted TJs (Fig. 6a and Supplementary Fig. 6a). This was
confirmed by quantifying the percentage of pSMAD1,5 or pSMAD2
positive cells and their distance from epithelial disrupted areas. Strik-
ingly, this quantification analysis revealed a strong negative correlation
between these two variables, showing that they are interconnected
(Fig. 6c and Supplementary Fig. 6c). Analysis of the second hiPSC line,
AICS-0023, confirmed that most cells responding to BMP stimulation
were localized in the areas with disrupted TJs in GPC4sh cultures
compared to control cells (Supplementary Fig. 6d).

In linewith these results,we found thatwhenepithelial integrity of
GPC4sh cultures was restored by LPA, the percentage of nuclear
pSMAD1,5 positive cells was reduced to that of control hiPSCs (Fig. 6a,
b). Conversely, when the epithelial integrity of control cells was dis-
rupted byBlebbi treatment, the percentage of cellswith activated BMP
signaling was similar to that of GPC4sh5 hiPSCs and they mainly
localized to areas with disrupted TJs (Fig. 6a, b). Finally, we observed a
global activation of the BMP signaling in control and GPC4sh hiPSCs,
when BMP4 was delivered from the basal side (Fig. 6d). These findings
suggest that epithelial integrity in control hiPSCs prevents
BMP4 signaling activation when ligands are provided from the apical
side, likely due to inaccessible receptors. To examine this further, we
analysed the localization of the BMPR1A and ACTR2B in CTRLsh and
GPC4sh hiPSCs as these receptors are known to bind BMP4 and
ACTIVIN A, respectively, and are the most expressed receptor types in
our cells (from RNA seq analysis, see Data Availability). Immunocy-
tochemistry revealed exposure of BMPR1A and ACTR2B receptors at
the apical cell surface in areas with disrupted epithelial organization
(Fig. 6e, f and Supplementary Fig. 6e, respectively). This was caused by
changes in the ZO1 protein distribution (Fig. 6e, f and Supplementary
Fig. 6e, respectively) and in the apical-basal cell polarity (Fig. 1g, Sup-
plementary Fig. 1h, i). By performing molecular analysis of BMPR1A,
ACTR2B expression, we did not find significant differences in tran-
scripts andprotein levels betweenCTRLshandGPC4shhiPSCs (Fig. 6g,
h and Supplementary Fig. 6f, g). Similarly, the expression of BMP4,
NODAL and CRIPTO (a NODAL co-receptor35,48) was unchanged in
GPC4sh (Supplementary Fig. 6f, g). Taken together, these results show
that local disruptionof epithelial integrity does not impactonBMPand
ACTIVIN receptor or ligand expression levels but enables perception
of BMP4 and ACTIVIN A signaling proteins by cells located in these
areas and activation of TGF-β signaling in a spatially regulatedmanner.
This eventwill in turn trigger expression ofMESmarkers in cells aswell
as their spatial pattern (Fig. 4 and Fig. 5e, f).

Considering that WNT-β-CAT signaling is an additional crucial
regulator of MES differentiation, we assessed whether epithelial integ-
rity influences the hiPSC ability to activate the WNT-β-CAT pathway
upon stimulation. For these studies, we used immunocytochemistry to
analyze the percentage of cells expressing LEF1, a co-factor of β-CAT
that is a direct target of WNT signaling49,50. Control and GPC4sh hiPSCs
were stimulated for 6 h with 50ng/ml of WNT3A. By following LEF1
distribution, weobserved between 50% and60%of cells in both control
andGPC4sh hiPSCs, respectively expressing LEF1, detected in a salt and
pepper manner (Fig. 7a, b; WT 56.3% ±6.4%; CTRLsh 57%± 12.3%;
GPC4sh5-c10 = 69%± 9.5%; GPC4sh2-c3 = 73% ±6.3%). Finally, there was
nocorrelationbetween localizationof LEF1 positive cells andpatches of
disrupted epithelial integrity in GPC4sh cultures (m GPC4sh5 = −0.08776
and m GPC4sh2 = −0.05973) (Fig. 7c). To analyze the WNT signaling
response in more detail, we performed a dose-dependent experiment
and stimulated cells with a WNT3A dosage ranging from 5ng/ml
(low activation) to 50 ng/ml (full activation). We did not observe
significant differences in LEF1 expression and distribution at any
concentration between control and GPC4sh hiPSCs (Fig. 7d–f). More-
over, the global nuclear intensity of LEF1 in cells did not change

between areas with intact or disrupted epithelial integrity (Fig. 7d–f).
Thus, these results show that epithelial integrity does not impact on
activation ofWNT-β-CAT signaling nor its spatial localization, therefore
highlighting its specific effect on BMP4 and ACTIVIN A pathways.

Epithelial disruption prolongs BMP/ACTIVIN signaling
Recent studies using micropattern devices showed that the cellular
response of PSC colonies to BMP stimulation varies over time. Indeed,
in micropattern devices BMP4 responding cells become gradually
restricted to the edge due to an increase in cell density and the
acquisition of an epithelial cell morphology, marked by the presence
of cell–cell contacts such as TJs. As a result, cells at the edge of the
colony will express the BMP4 downstream effector pSMAD1,5 for a
longer time than those in the colony center11. We therefore asked
whether disruption of epithelial integrity influences maintenance of
TGF-β signaling in hiPSC GPC4sh versus control cultures.

To address this issue, we performed a time course analysis to
examine the ability of cells to perceive BMP4 and activated pSMAD1,5
in combination with the formation of TJs in control and shGPC4 hiPSCs
after cell dissociation and seeding.Cellsweredissociated and seeded at
the density used for differentiation experiments (1.1 × 105 cells/cm²)
with ROCK inhibitor for 24 h. Then, ROCK inhibitor was removed and
cells left to recover for 24 h prior to BMP and ACTIVIN stimulation.
Following stimulation, cells were fixed at 0, 2, 6, 9, 12 and 18 h and
immunostained with pSMAD1,5 antibodies. TJ organization was ana-
lyzed by ZO1 staining. After 6 h of stimulation, when hiPSC cultures
have not yet recovered the TJ organization lost during the cell dis-
sociation process, we observed a similar BMP4 response in both
CTRLsh and GPC4sh5 hiPSCs with >85% of pSMAD1,5 positive cells
(88.3%±3.6% in CTRLsh and 96%±2% in GPC4sh5 hiPSCs, Fig. 8a, b).
However, as time progresses and cultures become denser, GPC4sh5
hiPSCs displayed qualitative and quantitative differences in compar-
ison toCTRLsh cultures.Whereas the percentage of cells with activated
BMP signaling pathway decreased rapidly in CTRLsh cultures, this
reduction occurred to a lesser degree in GPC4sh hiPSCs leading to
greater number of pSMAD1,5 positive cells in GPC4sh versus control
cultures between 9–18 h (9 h: 66.7% ± 4.9% in CTRLsh and 95% ± 2.3% in
GPC4shhiPSCs; 12 h: 22.3% ± 1.2% inCTRLsh and 51.7% ± 7.5% inGPC4sh
hiPSCs; 18 h: 7.7% ± 1.2% in CTRLsh and 15.7% ± 4.3% in GPC4sh hiPSCs
Fig. 8a, b). Similar effects were observed when CTRLsh and GPC4sh5
hiPSCs were stimulated with ACTIVIN A (Supplementary Fig. 7a–c).
Interestingly, analysis of ZO1 staining overtime revealed striking
changes in the kinetics of TJ formation between CTRLsh and GPC4sh
hiPSCs. In particular, GPC4shhiPSCs displayed adelay in generatingTJs
as revealed by the lower percentage of ZO1 organized areas in GPC4sh
versus CTRLsh at 9 and 12 h post seeding (9 h: 83.5% ± 4.6% in CTRLsh
and 34.2%±6% in GPC4sh cultures; 12 h: 91.2%±2.7% in CTRLsh and
68%± 8,4% in GPC4sh cultures; Fig. 8a, b). Results also highlighted that
most GPC4sh cells with sustained activation of BMP4 signaling localize
to the areas presenting disrupted ZO1 pattern. Therefore, we con-
cluded that a delay in TJ formation in GPC4sh cultures accounts for the
cellular/tissue mechanism that promotes a prolonged/sustained acti-
vation of BMP4 and ACTIVIN A signaling pathways in these cells.

To deepen our analysis, we performed stimulation experiments in
the presence of Blebbi to perturb TJ organization and LPA to promote
TJ formation. Blebbi or LPA were added to the cultures at a time point
in which CTRLsh and GPC4sh5 hiPSCs activate the BMP4 signaling
pathway to the same extent (6 h; Fig. 8a). Analysis of pSMAD1,5
positive cells at 12 and 18 h revealed that Blebbi treatment triggered TJ
disorganization and activation of the BMP4 signaling pathway within
disrupted areas (Fig. 9a, b and Supplementary Fig. 7d). In contrast, LPA
significantly reduced the presence of TJ disrupted areas and blocked
activation of the BMP4 signaling pathways in bothCTRLsh andGPC4sh
hiPSCs (Fig. 9a, b and Supplementary Fig. 7d). As addition of LPA
rescues the shutdown of the BMP4 signaling pathways in GPC4sh
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staining was used as loading control, n = 2. Statistical analysis for the overall figure:
(b) two-wayANOVA, followedbyDunnett’smultiple comparison test, (f) unpaired t-
test. P-values: (***) <0.001, (**) <0.01, (*) <0.05, ns not significant. For all panels “n”
corresponds to the number of biological replicates. Source data are provided as a
Source Data file.
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cultures, we can conclude that the underlying mechanism of intracel-
lular signaling prolongation/extension in GPC4sh hiPSCs ismainly due
to their TJ organization properties upstream of any intracellular sig-
naling event. Of note, similar results were observed when CTRLsh and

GPC4sh5 hiPSCs were stimulated with ACTIVIN A in the presence of
LPA and Blebbi (Supplementary Fig. 7a–c).

Taken together, these results highlight a key role for GPC4 in
modulating the morphological organization of the hiPSC epithelial
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layer by impacting on the kinetics of TJ formation. Moreover, they
show that a protracted disruption of the hiPSC epithelia layer main-
tains activation of BMP4 and ACTIVINA signaling in the cells located in
disrupted areas for a longer time frame, which might impact on spe-
cificity and robustness of cell fate acquisition. These outcomes also
provide additional mechanistic insights on howMES triggering signals
could be temporally controlled.

Discussion
Unravelling the processes of primitive streak formation and epiblast
patterning in mammals remains a great challenge, especially for

humanembryos. In vitromodels of thehumanepiblastbasedonhPSCs
are offering the unique opportunity to decompose these complex
processes and allow independent manipulation of the underlying
mechanisms. Current consensus focuses on the concept that these
early embryonic processes are controlled by feedback interactions
between biochemical signals (morphogens and their inhibitors/acti-
vators) and tissue organization (epithelial cell polarity, adhesion and
cytoskeleton tension). In the present study we explored how these
instructive cues functionally interact and whether they operate in a
hierarchical manner. Here we report that hiPSCs with reduced protein
levels of the morphogen regulator GPC4 represent a relevant cellular
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system to investigate the physical effects of disrupted epithelial cell
polarity and architecture on the cellular response to TGF-β proteins at
the humanMES onset. We demonstrated that GPC4 downregulation in
hiPSCs results in a distinct morphological organization of hiPSC
monolayerswherein alteration of TJs leads to amosaic hiPSC structural
pattern with areas of disrupted epithelial integrity. This phenotype
alters the apical-basal cell polarity causing exposure of proteins in the
basolateral cell compartment. Moreover, it influences the spatial reg-
ulation of cell fate acquisition, as cells within areas of disrupted epi-
thelial integrity become sensitive to BMP4 and ACTIVIN A protein
stimulation and acquire a MES fate (e.g. BRACH and EOMES expres-
sion). This is accompanied by changes in the temporal dynamics of cell
signaling responses to BMP4 and ACTIVIN A given the protracted
kinetics of TJ formation in GPC4sh hiPSCs. Thus, our results demon-
strate how distinct changes in epiblast cell polarity and tissue integrity
can foster the spatial and temporal response of epiblast cells to the
MES-initiating signal and the subsequent differentiation onset in a
precisely controlled manner.

Our experiments involving apical and basal stimulation of CTRLsh
and GPC4sh hiPSCs with BMP4 and ACTIVIN A proteins provide
insights into the mechanisms underlying spatial control of these sig-
nals. Under culture conditions designed for pluripotency main-
tenance, BMP4 andACTIVINA reception in CTRLsh hiPSCs is restricted
to the basolateral cell domain, as cells activate BMP4 and ACTIVIN A
signaling only following basal ligand stimulation. This is consistent
with recent reports in which the use of a 2D micropatterned hESC-
based epiblastmodel revealed that hESCs localize their BMP receptors
to the basolateral domain just below the tight junctions, making them
non-responsive to apically applied BMP411. In contrast, the disrupted
epithelial integrity of GPC4sh hiPSCs leads to an impaired apical-basal
cell polarity in TJ disrupted areas with concomitant apical exposure of
BMPR1A and ACTR2B. This enables local perception of BMP4/ACTIVIN
A and signaling pathway activation independently of whether the
ligand is supplied from the basal or apical cell side. Thus, the mor-
phological organization of the GPC4sh hiPSC layer with disrupted TJs
enables increased accessibility of ligands to receptors. This enhanced

capability of GPC4sh hiPSCs to perceive BMP4 signal is consistent with
the increased differentiation observed on micropatterned substrates.
Interestingly, the expansion of the BRACH and SOX17 spatial domains
in differentiating GPC4sh cells might indicate a potential in vivo bias in
embryos lacking GPC4 towards themesendoderm lineage. Thus, GPC4
and epithelial organization might participate to regulate the ecto-
derm/mesendoderm ratio. 3D gastruloids generated from hPSCs have
emerged as an in vitro model system of the anteroposterior organi-
zation of the early human body plan. It will be interesting to examine
whether disruption of the epithelial organization in GPC4sh hiPSCs
affects elongation of gastruloids along an anteroposterior axis in
addition to impacting cell lineage fate.

A similar pattern of basolateral BMP4 receptor localization
below TJs has also been reported in vivo in the developing mouse
epiblast6. Similar to the finding we describe here, lack of TJs at the
border between the extraembryonic ectodermandposterior epiblast
enables BMP ligands secreted into the proamniotic cavity to access
receptors at the posterior epiblast edge, and to trigger PS formation
at this level6. Our results together with these embryological studies
point to a feedback loopbetween epiblastmorphology and signaling,
in which epiblast epithelial integrity controls spatial activation of
TGF-β family members’ signaling and patterning. In this context,
GPC4sh hiPSCs may represent an optimal human cellular system
to analyze further this feedback interaction and to experimentally
dissect mechanisms controlling epiblast cell polarity and tissue
morphology.

Whereas GPC4 is not required for TJ organization, our results
highlight a role for GPC4 in regulating the kinetics of TJ formation as
revealed by time course experiments showing a delay of TJ assembly in
GPC4sh versus control hiPSCs after cell dissociation and seeding. As TJ
restricts BMP andACTIVIN signaling pathways over time, it is tempting
to speculate that fluctuation of GPC4 protein levels might change the
kinetics of TJ formation in mammalian epiblast, which could in turn
impact on the temporal dynamics of instructive signaling pathways.
Thus, these overall findings provide additionalmechanistic insights on
howMES triggering signals could be temporally controlled andonhow
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tissue organization might impact on specificity and robustness of cell
fate acquisition.

In contrast to TGF-β proteins, disruption of epithelial integrity
does not regulate spatial activation of WNT-β-CAT signaling in our
experimental conditions, as shown by a rather homogeneous activa-
tion of LEF1 within the GPC4sh hiPSC layer following WNT3A stimu-
lation. These results are consistent with previous works showing that
WNT receptors are accessible toWNT ligands fromboth the apical and
the basolateral cell side46. Nevertheless, activation of WNT-βcat sig-
naling is sensitive to changes in tissue-level forces, which are depen-
dent on tissue organization. As modification of TJ distribution affects
global tissue tension, we cannot exclude that our experimental con-
ditions prevented detection of altered hiPSC response to WNT3A sti-
mulation associated with epithelial integrity. Our studies were
conducted on cells cultured on stiff substrates (glass/plastic) on which
possible changes in tissue tension induced by loss of TJs might be
buffered. Studies by others have shown that in hESCs cultured on soft
substrates, activation of WNT-βCAT signaling correlates with high
tissue-level forces13,51. Thus, it could be relevant to perform future
studies culturing GPC4sh hiPSCs on soft substrates, such as hydrogels,
to assess whether disruption of epithelial integrity modulates WNT
response by modifying global tissue tension.

In contrast to hiPSCs, lack of GPC4 in mouse ESCs impairs acti-
vation of the WNT signaling pathway15. This apparent discrepancy
might arise from the different requirements of WNT signaling in
mouse ESCs versus hiPSCs. In support of this possibility, mouse ESCs
and hPSCs show fundamental differences in colony shape, growth
rate, surface markers, and developmental potential in addition to
global molecular signatures and signaling pathways governing self-
renewal and differentiation52. Thus, our study might highlight dis-
tinct molecular requirements for mouse ESC and hPSC biological
processes.

Interestingly, disruption of epithelial integrity in the GPC4sh
hiPSC layer does not perturb self-renewal and pluripotency neither
promotes premature expression of EMT markers or lineage specific
genes (present studies and in14). Thus, alterations in TJs, although
priming cells towards morphogen perception, are not sufficient to
primedifferentiation or lineage fate choices. It is tempting to speculate
that this epithelial disruption is not sufficient to achieve a threshold
level required for differentiation. Alternatively, unknown factors could
buffer such drastic alteration in epithelial organization. The observed
maintenance of stemness/pluripotency in GPC4sh hiPSCs is consistent
with recent studies onhESCs carrying a genetic knockout of the human
cell–cell adhesion protein, E-CAD. Nevertheless, these cells show a
transient activation of lineage-specific genes and preferential differ-
entiation towards MES, thus suggesting that loss of E-CAD impacts on
lineage fate decisions32,53 .

Our results also disclose an additional role of GPC4 inmaintaining
epithelial cell tissue integrity. Previous studies performed on Zebrafish
and Xenopus embryos have highlighted GPC4 function during ME
convergence extension movements at gastrulation in which GPC4
controls polarity and directed migration of mesodermal cells18,20,54,55.
Moreover, in Zebrafish embryos GPC4 promotes DE cell polarity by
influencing localization of N-CAD on the cell surface through regula-
tion of Rab5c-mediated endocytosis56. Future experimental settings
will clarifywhethermechanisms involvingGPC4-mediated endocytosis
of membrane proteins participating to cell–cell and cell-matrix con-
tacts underlie the epithelial integrity defects found in GPC4sh hiPSCs.

In conclusion, our results highlight an additional mechanism by
which tissue architecture can restrictmorphogen sensing and position
cell fate changes within space. Our differentiation analysis of GPC4sh
hiPSCs reveals their increased differentiation propensity inME and DE
compared to conventional hiPSCs. These finding support the possibi-
lity that targeting GPC4 in different hiPSCs may provide an additional
strategy to overcome the technical difficulties involved in their

differentiation, thus providing a tool to promote hiPSC application for
disease modelling, drug screening and regenerative medicine. Fur-
thermore, GPC4sh hiPSCs may provide a platform where differentia-
tion relevant processes can be followed and deconstructed. GPC4sh
hiPSCs are thus a means to obtain new insights into developmental
processes and for advancing into regenerative medicine. We expect
that this mechanism of modulating epithelial integrity by altering TJs
will be of more general relevance in other physiological and patholo-
gical events in which there is a high degree of epithelial cell plasticity,
such as remodelling of the epithelial barriers, tissue inflammation and
tumorigenesis.

Methods
Human induced pluripotent stem cell lines and culture
WT 029 hiPSCs were a courtesy of Michael Kyba (University of
Minnesota)57. The AICS-0023 previously used were from Coriell Insti-
tute for Medical Research. The generation of GFPsh hiPSCs and
GPC4sh hiPSCswas previously described14. hiPSCsweremaintained on
Matrigel-coated plates (Corning, BV 354277) within mTeSR1 medium
(mTeSR™1 (Stemcell Technologies 85850)), 1% Penicillin/Streptomycin
(Invitrogen, ref. 15140122). In order to maintain hiPSC cultures not
exceeding 80% of confluency, cells were passaged at 1/8 ratio every 3
or 4 days with Accumax (Millipore, ref. SCR006).

Alkaline phosphatase assay
Alkaline Phosphatase (AP) detection has been performed with the
Alkaline Phosphatase Staining Kit II (Stemgent, ref. 00–0055). Briefly,
hiPSCs were seeded on Matrigel-coated coverslips until reaching a
maximumof 80%of confluency. Cells were incubatedwith Fix Solution
at room temperature for 5min and then washed with PBS. Afterwards,
cellswere incubatedwith theAP substrate solution in thedark, at room
temperature for 10min. The reactionwas stopped by aspirating the AP
Substrate solution and washing the wells twice with PBS. Images were
captured on a Zeiss Stereo microscope.

Cell cycle analysis
hiPSCswere seeded onMatrigel-coated plates and analyzed at 30–50%
of cells confluency. Nuclei were extracted with lysis buffer (Chemo-
metec) and incubated with 10 µg/ml of DAPI for 5min at 37 °C. Nuclear
DAPI intensity wasmeasured with the Cytometer NucleoCounter® NC-
3000™ (Chemometec) and cell cycle was analyzed with the Nucleo-
View NC-3000™ program (Chemometec).

Differentiation assays into MES, DE and ME lineages
Differentiation experiments of hiPSCs into DE and ME lineages were
performedby following the protocols publishedby33,34 respectively. To
generate MES, DE and ME lineages, hiPSCs were seeded on Matrigel-
coated plates or coverslips at a density of 1.1 × 105 cells/cm² inmTeSR1
medium supplemented with 10μM of ROCK inhibitor Y-27632 (Ri;
Tocris, ref. 1254). To induce MES differentiation, hiPSCs were washed
twice with RPMI (Invitrogen, ref. 21875034) to remove self-renewal
growth factors and treated for 1 day with ACTIVIN A (R&D, ref. 338-AC,
100ng/mL) in DE medium (RPMI 1640, 1% Penicillin/Streptomycin, 1%
L-Glutamine (Gibco, ref. 25–030)). DE differentiation was induced by
treating MES differentiated cultures for 2 days with ACTIVIN A (R&D,
ref. 338-AC, 100ng/mL) in DEmedium supplemented with 0.2% of FBS
(Hyclone, ref. SH30071.02E). ME differentiation was induced by
treating PS differentiated cultures for 2 days with BMP4 (R&D, ref. 314-
BP, 10 ng/mL) in ME differentiation medium (RPMI 1640, 2% B27
without Insulin (Gibco, ref. A1895601)), 1% Penicillin/Streptomycin, 1%
L-Glutamine (Invitrogen, ref. 25030149). Medium was replaced every
day. The protocol reporting medium replacement is summarized in
Supplementary Table 3.

For experiments involving drug treatments, hiPSCs were
seeded on Matrigel-coated plates or coverslips at a density of
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0.25 × 105 cells/cm² within mTeSR1 medium supplemented with
Ri. The next day, medium was replaced by fresh mTeSR1 medium.
The day after rescue of epithelial integrity was induced by
treating hiPSCs for 1 day with LPA (Stemcell Technologies, ref.
72694, 5 µM). Chemical disruption of epithelial integrity was
induced by treating hiPSCs for 1 day with Blebbistatin (Sigma, ref.
B0560, 10 µM). MES differentiation was subsequently induced by
washing cultures twice with RPMI and treating hiPSCs for 1 day
with ACTIVIN A (100 ng/mL) in DE medium supplemented with
LPA (5 µM) or Blebbistatin (10 µM). Medium was replaced every
day. The protocol reporting medium replacement is summarized
in Supplementary Table 4.

2D micropatterns
Cells were seeded at a density of 600 cell/mm² on substrates micro-
patterned with laminin 521 using the microcontact printing
techniques58,59 (see source files for full methods). BMP4 stimulation
was started 15–24 h after seeding. Medium was refreshed every day.
Colonies were fixed after 48h and analysed by immunocytochemistry.

Stimulation assays
Stimulation assays were performed on confluent hiPSC cultures
maintained in mTeSR1 medium. HiPSCs were seeded at 1.5 × 105

cells/cm² on Matrigel-coated coverslips in mTeSR1 medium sup-
plemented with Ri. The next day, medium was replaced by fresh
mTeSR1 medium. The day after hiPSCs cultures were stimulated
for 1 h with BMP4 (R&D, ref. 314-BP, 50 ng/mL) or ACTIVIN A
(100 ng/mL), and 6 h with WNT3A (R&D, ref. 5036-WNT, ranging
from 5 ng/mL to 50 ng/mL) in mTeSR1 medium. Cells were then
fixed and signaling pathways activation was assessed through
immunocytochemical analyses. Medium replacement protocols
are summarized in Supplementary Table 5.

For experiments of rescue and chemical induction of epithelial
integrity, hiPSCs were seeded on Matrigel-coated coverslips at a
density of 0.75 × 105 cells/cm² in mTeSR1 medium supplemented
with Ri. The next day, medium was replaced by fresh mTeSR1
medium. The day after, medium was replaced for 1 day by mTeSR1
medium supplemented with 5 µM of LPA or 10 µM of
Blebbistatin. Finally, confluent cultures were stimulated for 1 h with
BMP4 (50 ng/mL) inmTeSR1medium, and then fixed and analyzed by
immunocytochemistry.

For long-term stimulation experiments of BMP and ACTIVIN
pathways, hiPSCs were seeded on Matrigel-coated coverslips at a
density of 1.1 × 105 cells/cm² in mTeSR1 medium supplemented with
Ri. The next day, medium was replaced by freshmTeSR1 medium. The
day after, hiPSCs cultures were stimulated with BMP4 (50 ng/mL) or
ACTIVIN A (100 ng/mL) inmTeSR1medium. hiPSCs cultures were then
fixed and analyzed by immunocytochemistry at 0, 2, 6, 9, 12, and 18 h
following stimulation.

RNA isolation, cDNA synthesis and quantitative PCR
Total RNAwas isolatedwith RNeasyMin Elute clean-up kit (Qiagen, ref.
74204), according to the manufacturer’s protocol. Concentration and
RNA quality were evaluated by NanoDrop (ND-1000 Spectro-
photometer; Thermofisher Scientific). 600ng of RNA was reverse-
transcribed (RT) to generate cDNA using iScript reverse transcription
kit (Biorad, ref. 170–8841), following manufacturer’s instruction. 2,
7 ng of cDNA were amplified by quantitative PCR (qPCR) using SYBR
Green qPCR SuperMix-UDG with Rox (Thermofisher, ref. 11733046)
and 0.1 µM of forward and reverse primers. Levels of transcripts (Ct)
were normalized to those of the housekeeping gene GAPDH (ΔCt) and
subsequently to the mean ΔCt of the reference sample (ΔΔCt). Results
were reported as relative quantities (RQ = 2−ΔΔCt). The sequences of
forward and reverse primers used for qPCR analyses are listed in
Supplementary Table 6.

RNA sequencing analyses
For RNA-seq, 4 × 104 cell/cm2 cells of WT, shCTRL and shGPC4-1 029
hiPSCs were seeded in triplicate in 12-well plates. After 3 days they
were dissociated for RNA extraction as described above. RNA quality
was then testedwith the instrument 2100 Bioanalyzer Agilent (Purity:
OD 260/280: 1.8–2.0; OD 260/230: 2.0–2.2; RIN or RQI value ≥8). 1 μg
of RNA per sample at a concentration above 20 ng/μl dissolved in
RNase-, DNase- and protease-free molecular grade water was sent
to GATC Biotech. The RNA-sequencing was performed by using
Illumina HiSeq 2500 technology. The quality of the raw reads was
assessed using FastQC v0.11.9 toolkit (Andrews, 2010). Adapters and
low-quality reads were trimmed using Trimmomatic v0.39 (Bolger
et al., 2014). Paired-end reads were aligned with HiSat2 v2.2.1 (Kim
et al., 2015) using default options. Gene counts were quantified using
feature Counts v2.0.1 from the Subread v2.0.1 package (Liao et al.,
2019). Alignment and gene counts were generated against the
GRCh38.p13 (Ensembl release 101). The low expressed genes which
did not have more than one count per million reads (1CPM) in at
least three samples within each dataset were removed from
further analysis. Gene counts were then normalized and used for
differential expression testing using DESeq2 v1.28.060 (Supplemen-
tary Tables 1, 2).

Western-blots
For western-blots, cells were lysed in 1X EBM lysis buffer in the pre-
sence of a protease and phosphatase inhibitors mixture15. 20–50μg of
whole cell lysates were resolved on 10% Anderson gels and transferred
to PVDF membranes. After blocking with 5% milk in PBS, 0.1% Tween
100, the membranes were incubated overnight at 4 °C with primary
antibodies. Primary antibodies used are listed in Supplementary
Table 7. Themembranes were then washed, incubated with anti-rabbit
or anti-mouse IgG-peroxidase (1:4000, Jackson, ref. 211-035-109) at
room temperature for 1 hr, and peroxidase activity was visualized with
the ECL Plus Kit (Amersham). Full scanblots are provided in the Source
Data file.

Immuno-cytochemical analyses
Cells werefixed in 4%paraformaldehyde (PFA) for 10min andwashed
three times with PBS. Permeabilization was done by incubating the
cells with 0.3% or 0.1% Triton X100 in PBS for 20min. Non-specific
interactions were blocked for 1 h with blocking solution (3% BSA,
Sigma ref. A9647, 2% donkey serum, Abcam ref. ab7475, 0.3% or 0.1%
Triton X-100, PBS). Primary antibodies were diluted in the blocking
solution and incubated overnight at 4 °C. Primary antibodies used
for immunocytochemical analyses are listed in Supplementary
Table 8. Secondary antibodies were diluted 1/500 in blocking solu-
tion and incubated for 1 h at room temperature. Nuclei were stained
with DAPI (1/1000 in PBS) for 5min. Finally, coverslips weremounted
on slides using Fluoromount-G mounting medium. Pictures
were acquired with a confocal Zeiss LSM 880 microscope and ana-
lyzed through Image J (version 2.3.051) and Zen Blue (version
3.4.9100000) softwares.

Flow cytometry
Undifferentiated or differentiated hiPSCs were isolated from mono-
layer cultures by enzymatic digestion using Accutase. Number of cells
for each sample was determined by using Attune NxT Cytometer
(ThermoScientific). 500,000 cellswere used for each immunostaining
reactions. Fc-Receptors were blocked using anti-CD32 (BD Bioscience,
3D3; 0.5μg per reaction). Cell surface of undifferentiated hiPSCs and
MES differentiated cells were stained for 30min at 4 °C with anti-
human anti-PDGFRa or isotype control following manufacturer
recommendation for dilutions. Intracellular staining for EOMES and
respective isotype control were performed following manufacturer
recommendation (Thermo Scientific, #00-5523-00). Antibodies used
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for flow cytometry analyses are listed in Supplementary Table 9. Live/
Dead cell discrimination was assayed either using DAPI (MERCK,
#D9542) or L/D fixable Blue (Thermo Scientific, #L23105). Samples
were analyzed directly upon completion of immunostaining protocol.
Data was acquired on BD LSRFortessa 5Laser SORP cytometer (BD
Bioscience) using HTS plate reader and analyzed on a standardized
analysis matrix using BD FACS DIVA 9.0.1 software. Illustrations were
generated on Cytobank 9.4 (Beckman Coulter).

Quantifications of immunostaining
Signal quantification and count. For differentiation and stimulation
assays, the number of positive cells showing nuclear localization of
transcription factors (LEF1, BRACH and SOX17), downstream effectors
(pSMAD2 or pSMAD1), were automatically counted by Image J (version
2.3.051). Median filtering, automatic Huang thresholding and water-
shed treatment were used to generate a MASK of Nuclei (DAPI) and to
count their numbers. For the nuclear marker of interest, background
signal was reduced by a Rolling Ball method. Then, Top hat filtering
and automatic Otsu thresholding were used to generate aMASK of the
nuclear marker and to count positive cells. For cytoplasmic signal
(PDGFRa), the number of positive cells were manually counted on
Image J (version 2.3.051). Micropatterns experiments were analysed
using matlab R21b software.

Morphological analysis. To quantify disrupted epithelial areas, ZO1
immunostaining wasmanually analyzed with Image J (version 2.3.051),
and aMASK corresponding to the disrupted area was generated. From
this MASK, 4 others concentric MASKs corresponding to four locali-
zations, corresponding to 0 to 30 µm, 30 to 60 µm, 60 to 90 µm or
>90 µm away from disrupted areas, were generated and used to ana-
lyze the correlation between cells positive for pSMAD1,5, pSMAD2,
LEF1 or BRACH (as described in signal quantification and count) and
their position relative to the disrupted areas.

BMPR1A-ZO1 distance analysis. To quantify BMPR1A-ZO1 distance in
the z-axis, BMPR1A and ZO1 z intensity distribution have been manu-
ally extracted using ZenBlue (version 3.4.9100000)and the distance in
nm between their respective peaks of intensity have been reported.

Statistical analyses
All statistical analyses were performed with GraphPad Prism version
8 software. All statistical tests used are indicated in the respective
figure legends and data were presented as mean± SEM, unless stated
otherwise. Statistics were reported as: ns = not significant, *p-value <
0.05, **p-value < 0.01, ***p-value < 0.001. Precise p-value are provided
in the source files.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available in the source data pro-
vided with this paper. For the RNA-seq alignment and gene counts
were generated against the GRCh38.p13 (Ensembl release 101; IDs:
2334371 [UID] 8687898 [GenBank] 8765528 [RefSeq]). The RNA-seq
data and the read count matrix are available on Zenodo (https://
zenodo.org/) with the https://doi.org/10.5281/zenodo.5569383. The
RNA-seq data have also been deposited in NCBI’s Gene Expression
Omnibus and are accessible through GEO Series accession number
GSE222186. Source data are provided with this paper.

Code availability
The workflow allowing to achieve the differential expression analysis
of RNA-seq data is available on Zenodo (https://zenodo.org/) with the

https://doi.org/10.5281/zenodo.6908427 and is under the BSD-3
license. For the differential RNA-seq analyses, the genes with a log2fc
between −0.58 to 0.58 and an adjusted p-value (padj) > 0.01 were not
considered as significantly differentially expressed.
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