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Consistent annotation transfer from reference dataset to query dataset is
fundamental to the development and reproducibility of single-cell research.
Compared with traditional annotation methods, deep learning based methods
are faster and more automated. A series of useful single cell analysis tools
based on autoencoder architecture have been developed but these struggle to
strike a balance between depth and interpretability. Here, we present TOSICA,
a multi-head self-attention deep learning model based on Transformer that
enables interpretable cell type annotation using biologically understandable
entities, such as pathways or regulons. We show that TOSICA achieves fast and
accurate one-stop annotation and batch-insensitive integration while provid-

ing biologically interpretable insights for understanding cellular behavior
during development and disease progressions. We demonstrate TOSICA’s
advantages by applying it to scRNA-seq data of tumor-infiltrating immune
cells, and CD14+ monocytes in COVID-19 to reveal rare cell types, hetero-
geneity and dynamic trajectories associated with disease progression and

severity.

Single-cell technologies have enabled studying biological processes
and human diseases at unprecedented resolution and transformed the
tool boxes in biology. An important step in scRNA-seq analysis is to
identify cell populations or types by clustering’. Cell type annotation
can resolve cellular heterogeneity across tissues, developmental
stages and organisms, and improve our understanding of cellular and
gene functions in health and disease. Many unsupervised scRNA-seq
clustering methods have been proposed”**, which are followed by
time-consuming and labor-costly annotations’. These traditional
methods often consist of preprocessing, dimensionality reduction,
clustering, differential analysis, and manual annotation based on prior
knowledge. When subtypes are annotated manually based on a small
set of marker genes, the same subtype can sometimes be given a new
name in another research due to a slight difference. Also, when all
samples cannot be obtained at the same time, it would be desirable to
classify the cell types on the first batch of data and use them to
annotate the data obtained later or to be obtained in the future with
the same standard, without the need to processing and mapping them

together again. Thus, transferring cell type annotation from a refer-
ence dataset to newly generated query datasets with consistency and
reproducibility is increasingly important and necessary. We noted
most of the existing Al-based tools although can handle large dataset,
they involve information combination and non-linear activation
between layers making the final learned features abstract and unable
to trace back the input features (including both biological information
like genes, and technical information like batch effect, and so on)
(as reviewed by refs. *® and collected in website https://github.com/
OmicsML/awesome-deep-learning-single-cell-papers). For example,
the change of dimensions and non-linear aggregation of features
throughout the autoencoder’s deep processing stages leads to
untraceable and uninterpretable latent space and loss of information
and feature resolution®". In addition, with the increase of non-linear
aggregation layers to achieve more powerful learning capability,
the model gets deeper meanwhile the contribution from input
gets harder to trace, which leads to the loss of interpretability.
However, the Transformer framework does not involve dimensionality
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reduction'®?, thus keeping all attention layer traceable to the original
input features®, thus making the models interpretable. Therefore, we
choose Transformer as the framework to develop a new Al-based cell
type label transfer tool between a reference dataset and a query
dataset, which we named Transformer for One-Stop Interpretably Cell-
type Annotation (TOSICA).

TOSICA is a multi-head self-attention network for interpretable cell
type annotation in single-cell data and datasets integration simulta-
neously. By connecting attention to prior biological knowledge and
without any batch information, TOSICA interpretably integrates and
annotates single-cell data in a batch-insensitive manner while retaining
biological variation. Benchmarks and case studies confirm the strength
of TOSICA in accuracy and robustness for heterogeneous single-cell
data, even in the difficult task of uneven abundance of cell types between
reference and query. When tested on many datasets, TOSICA provides
the advantage to interpret the attention feature genes and pathways, and
surprisingly also automatically filtering out batch effect, potentially as a
consequence of direct mapping of cell types to genes (or pathways when
using a pathway mask). TOSICA not only met the needs for accurate cell
type annotation across different datasets, exceeding existing methods in
accuracy, but also often do so with reduced time cost.

Results

The structure of TOSICA

TOSICA is an automatic cell-type annotator based on Multi-Head Self-
attention'”. Through supervised training, our model learns the pro-
jection function from gene expression to cell type, meanwhile trans-
fers high-dimensional and sparse expression space to low-dimensional
and dense feature space.

TOSICA is composed of three parts: Cell Embedding layer, Multi-
head Self-attention layer, and Cell-Type Classifier (Fig. 1a). The first
step of TOSICA is Cell Embedding, which transforms genes into tokens,
its transformation matrix is originally a fully connected weight matrix.
But transformation matrix is then masked (marked) by a matrix based
on expert knowledge (e.g., a gene’s membership to a pathway), only
sparse connections among genes and pathways remain in the masked
transformation matrix for training and learning (Illustrated in Fig. 1a).
Thereby one token only receives information from specific genes and
stands for a pathway. This operation is repeated m times in parallel,
and all m tokens vectors are merged together. This tokens matrix then
is appended with a class token (CLS)™, a trainable parameter which
then abstracts the information during the following network layers and
is used to predict the cell type. Next, this new merged matrix becomes
the input of Multi-head Self-attention layer, where the query (Q), key
(K), and value (V) matrix are linearly projected from input mentioned
before, and each of them can be regarded as a slightly different copy of
original input. As biological processes are complex and interactive,
there are subtle relationships between pathways, which are calculated
by Q and K and referred as attention score (A). It is noteworthy that the
attention scores between CLS and pathway tokens mean the impor-
tance of the latter to the classification and identification the cell type.
Output matrix (O) is the result of operation of A and V, representing a
comprehensive score of each pathway and their interacting partners.
At this time, CLS in O has collected the information of various path-
ways, and then transformed to a vector of cell type probabilities.
Transformer is successful in interpretability benefited by self-attention
mechanism, which calculates the relationship (referred to as “atten-
tion”) between tokens of object representation™. Just as Vision Trans-
former calculates attention between an added class token and
signatures of pictures to explain which pixels are important for
classification™", TOSICA calculates the attention (relationship map-
ping) between cell-type classifier token (CLS) and signatures (for
example pathway tokens) of cell. In addition, attention scores between
CLS and pathway tokens, used as the attention embedding of cells,
enable a variety of downstream analyses.

TOSICA is a universal, accurate and efficient cell type annotator
We test TOSICA on six different datasets with “ground truth” cell type
labels obtained from their original publications: human artery
(hArtery)®, human bone (hBone)®, human pancreas (hPancreas)” ™,
mouse brain (mBrain)* >, mouse pancreas (mPancreas)*, and mouse
atlas sequenced by Smart-seq2 and 10X platform (mAtlas)” (Fig. 1b,
Supplementary Dataset 1, 2, Supplementary Figs. 1-7), and compare its
accuracy with other 18 cell type annotators>>***3, The accuracy here is
defined as the fraction of cells correctly predicted. The accuracy of
TOSICA on every dataset ranks at top 6 (Supplementary Dataset 3), and
its mean accuracy of 86.69% is the highest among all 19 methods
(Fig. 2a). Although TOSICA ranks fifth and sixth on two easy-to-classify
datasets (hArtery and hPancreas), where all top six methods have above
90% accuracy, its accuracy of 93.75% and 95.76% is close to the top-
ranked methods (Seurat 96.37% for hArtery and SingleCellNet 97.53%
for hPancreas). In contrast, on the datasets that vary significantly on
accuracy across methods (hBone, mPancreas, and mAtlas), TOSICA
ranks top 2 (Supplementary Dataset 3). Notably, on the biggest dataset
mAtlas, which also has the most cell types, TOSICA annotated the cells
in query with a high accuracy of 81.06%, while the second best tool
ACTINN has an accuracy of 79.57%. And the same types of cells from
reference and query are in the same cluster in the TOSICA attention
score based UMAP (Fig. 2b). Meanwhile, with the increase of the dataset
size, time cost of TOSICA on mAtlas is the fourth shortest and does not
explode exponentially like most of the other methods (Fig. 2c).

We then tested the impact of different masks on accuracy (Sup-
plementary Fig. 8a). In order to stimulate the situation of having no
expert knowledge, we build two random masks with 1% and 5%
reserved connections according to the real-world masks (Supple-
mentary Fig. 8b) to avoid increasing the number of parameters. Ran-
dom masks usually can result in the similar accuracy as knowledge-
based masks, but in the case of mPancreas dataset, the accuracy
converges lower with the random mask (Supplementary Fig. 8c). Most
importantly, models with random masks need more epochs to con-
verge (Supplementary Fig. 8c). So TOSICA is not limited by expert
knowledge and robust to mask choice, and one can choose mask
depending on biological context or research interests, but expert
knowledge helps to converge to the best model faster.

Since all methods perform relatively badly on hBone dataset, we
wonder what characteristics of dataset have the most impact on cell
type prediction. We quantify the number of cells (Log size), number of
cell types (Types), uneven distribution of cell types (Entropy) in
training set, as well as asymmetry of cell types distribution in training
and test set (Kullback-Leibler Divergence, Dg;) (see “Methods”), and
calculate their correlation with accuracy. The result shows that, when
cell types distribute unevenly between reference set and query set,
which is common in real-world, it is difficult for an annotator to predict
cell type correctly (PCC between ACC and Dy =-0.9, Fig. 2d). Not
surprisingly, the cell type distribution of hBone dataset is the most
unbalanced between training and test set (Fig. 2a). On the five cell
types, prefibrochondrocytes (preFC), prehypertrophic chondrocytes
(preHTC), homeostatic chondrocytes (HomC), regulatory chon-
drocytes (RegC) and hypertrophic chondrocytes (HTC) that are more
unevenly distributed in test or reference set, TOSICA (76.47%) beats
the second (SingleR, 63.23%) or third (SciBet, 68.18%) highest mean
accuracy methods (Fig. 2e). Altogether, TOSICA has an acceptable time
cost on large datasets, while performs better than any other methods
on tough tasks, making it a universal cell type annotator.

TOSICA enables discovery of new cell types

Some cell types are at low abundance in the reference of mAtlas, may be
insufficient for training a good predictor, but TOSICA still identifies
them well and clusters them together, also separates them from other
cell types as much as possible in the query set (Fig. 2b). In a more
extreme but common scenario, some cell types have never been seen
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Fig. 1| Algorithmic framework of TOSICA. a The model is trained on single-cell
RNA sequencing data and cell type label for each cell. Based on databases or expert
knowledge, masked learnable embeddings are used to convert the reference input
data (n genes) to k input tokens representing each gene set (GS), to which class
token (CLS) is added. In the attention function, query (Q), key (K), and value (V)
matrix are linearly projected from these GSs and CLS combined tokens and the
weights (attention, A) is computed by a compatibility function of the Q with the
corresponding K, then assigned to each V for computing output (O). In each Multi-

head Self-attention layer, the attention function is performed H times in parallel.
The CLS of O, considered as latent space of each cell, is used as input of the whole
conjunction neural network cell type classifier. Meanwhile, the attention of class
(CLS) token to gene set (GS) tokens is referred as attention score and used for cell
embedding. b hArtery and hBone datasets use healthy samples as training data and
predict disease samples. hPancreas and mBrain datasets are split by data source.
Training and test data in mPancreas and mAtlas come from different timepoints.

during training. Thus, we delete the ‘alpha cells’ in reference set of
hPancreas to simulate the loss of one high-percentage cell type. As
mentioned earlier, the output of TOSICA is the probabilities that a cell is
acertain cell type, so when predicting, if the highest probability is below
a preset cutoff (0.95), this cell is annotated as ‘Unknown’. As expected,
‘alpha cells’ in the query set of hPancreas are clustered together (Fig. 3a)
and 76% of them are labeled as ‘Unknown’ by TOSICA (Fig. 3b), while the
rest are labeled as ‘pancreatic polypeptide cell’ (PP), which is also an
endocrine cell (Fig. 3b). Three other annotators with high average
accuracy, SingleR, SciBet, and ACTINN (Fig. 2a), do not automatically
identify ‘alpha’ cells as a new cell type, instead incorrectly label them as
‘PP’, ‘delta’ or ‘beta’ (Supplementary Fig. 9a—c). On contrary, CELLBLAST

and chetah, two annotators that actively identify new cell types, label
‘alpha’ cells with 99% and 62% as ‘PP’, with 0 and 37% as a new cell type,
respectively (Supplementary Fig. 9d, e). CaSTLe even simply recognizes
most of the cells of all cell types as ‘Unknown’, including the cell types
that are well-represented in the training sets (Supplementary Fig. 9f).
There is also another rare cell type only appeared in query, ‘MHC class II
cell, and is annotated as ‘macrophage’ or ‘Unknown’ and clustered
separately by TOSICA (Fig. 3a, b). Other methods also predict MHC Il as
‘macrophage’ or ‘Unknown’ like TOSICA (Supplementary Fig. 9). Since
macrophage is one type of MHC Il cell, such an annotation is acceptable.
Thus, compared to all other methods, TOSICA has a unique ability to
accurately discover and annotate new cell types.
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TOSICA provides high resolution and interpretable cell type marker gene sets, thus annotated differently. Here, the annotation
annotation standard is variable. A well-trained automatic annotator using uniform
Manual annotation of cell types, especially cell subtypes, relies on biologically relevant standards can avoid the problem of giving the
marker genes selection. However, specificity of marker genes is same cell different annotations. In the mPancreas dataset, a class of
determined by comparing with the other cell types in the same dataset.  mature acinar cells (Mat. Acinar) with distribution bias is predicted as
Thus, across different datasets, the same cell may have different proliferative acinar cells (Prif. Acinar) by TOSICA (Fig. 3c). We examine
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Fig. 2 | Universality of TOSICA on different datasets. a TOSICA ranks first on
mean accuracy compared to 18 other cell type annotators on different datasets.
Columns are sorted by the mean accuracy of each method on all datasets (top). The
number of cell types (Types), number of cells (Log size), Shannon-entropy
(Entropy) in reference, and Kullback-Leibler divergence (Dy;) between reference
and query are labeled on the right. Gray means this dataset is too large for this
method to deal with. b TOSICA succeeds in matching cells in query (mouse age #
18 months) to reference (mouse age = 18 months) on mAtlas as shown by TOSICA
attention embedded UMAP. The UMAP is done on the whole mAtlas dataset,
including both reference and query. Cells in the reference (left panel) or query
(right panel) are colored by cell types while cells in the query (left panel) or
reference (right panel) are colored gray. The same types of cells from reference and
query are located in the same cluster. Circled cells are rare in reference but

clustered correctly in the query by TOSICA. ¢ Runtime of TOSICA (marked by *) is
relatively stable with increasing data size, and the fourth shortest on mAtlas. hPanc
and mPanc stand for hPancreas and mPancreas. d Dy, has the most negative impact
on accuracy. Heatmap shows the correlation between accuracy (ACC) and number
of cells (Size), number of cell types (Types), Shannon-entropy (Entropy), and
Kullback-Leibler divergence (Dy,). e TOSICA performs better than two other top-
ranked methods on five cell types unbalanced between reference and query (red
labels). Heatmap shows the proportion of cells in each row with cell type O (original
label, shown on the right) is predicted as cell type P (prediction, shown on the top).
Cell types are ordered by ratios of their proportions in reference to query. Data are
normalized within each row (origin label). Only values >0.5 are labeled. Source data
are provided as a Source data file.

the reference labeled Mat. Acinar cells that are predicted by TOSICA as
Mat. Acinar and Prlf. Acinar, to which we refer as MM (reference Mat.
Acinar, TOSICA Mat. Acinar) and MP (reference Mat. Acinar, TOSICA
Prif. Acinar), respectively. Because mPancreas is related to develop-
ment, we use gene sets representing potential targets of regulation by
transcription factors or microRNAs as mask (regulon mask) for
TOSICA. We find that MM and MP are distinguished by MIR-6382 and
MIR-29B-3P regulons (Fig. 3d), with attention score of MIR-29B-3P
higher in MP. Among the genes that are important for MIR-29B-3P
regulon based on internal information from TOSICA (Supplementary
Fig. 10a), the human homolog of Sparc has been reported to increase
levels of acinar markers and pro-acinar transcription factors*, indi-
cating it s critical role for newborn acinar cells. This also highlights the
advantage of hierarchical annotation in not only recovering biological
insight at the pathway/regulon level but also at gene level. Principal
component analysis of the original expression matrix also shows that
MP shares similar PCs with PP (reference Prlf. Acinar, TOSICA Prlf.
Acinar) compared with other MM, where the transition ordering is
visible on PC1 (Supplementary Fig. 11a). Hierarchical clustering of gene
expression matrix further confirms our finding that MP and PP show
similar patterns (Fig. 3e). Thus, TOSICA’s gene set attentions auto-
matically distinguish cells originally labeled as Mat. Acinar and Prlf.
Acinar, and further identified an intermediate state between the two,
which is closer to Prif. Acinar and incorrectly labeled as Mat. Acinar in
the annotation database. This is a manifestation of the high resolution
and high accuracy annotation by TOSICA.

TOSICA enables interpretable dynamic trajectory analysis

Due to the good interpretability of attention score, it can well recon-
struct the trajectory and reveal the key pathways in the biological
process. Using the top 50 TF regulons attentions to perform the
unsupervised pseudotime trajectory analysis, we show the changes of
chondrocytes types upon the onset of osteoarthritis (OA) (Fig. 3f). The
trajectory (Fig. 3f) is consistent with that obtained by expression
matrix'°. However, different from the routine gene expression-based
analysis, TOSICA’s regulon attention-based trajectories directly show
that the failure of the transition from NF1 dominance to CEBP regulon
dominance characterizes the onset of OA (Fig. 3g), highlighting the
biological interpretability and insights generated by TOSICA on the
dynamic trajectory. Indeed, the homolog of CEBP has been reported to
inhibit proliferation of mouse chondrocytes in vitro*, and NfI ablation
in Fgfr1°?° mice reverses their hypertrophic zone phenotype®®.

TOSICA is immune to batch effect

Generally, query and reference datasets are generated in different
laboratories with different experimental protocols and thus contain
batch effects. Batch information is necessary for conventional data-
integration method to try to overcome these batch effects, which are
difficult to completely remove and mixed up with biological differ-
ences. In contrast, despite no batch information is included in either
the training set or test set when they both comes from different

batches, different studies or subjects (Supplementary Dataset 1),
TOSICA can consistently predict cell types with great accuracy (Fig. 2a)
and generate batch insensitive embedding, perhaps due to direct
mapping of cell types to genes (or pathways when using a pathway
mask). We take advantage of an efficient benchmarking tool scIB* to
assess TOSICA and other integration methods on 5 datasets via batch
average silhouette width (batch ASW), which measures the relation-
ship between the within-cluster distances of a cell and the between-
cluster distances of a cell to the closest cluster to evaluate batch effect
removal, and global cluster matching (normalized mutual information,
NMI), which compares the overlap of two clusters to evaluate biolo-
gical conservation. Larger values of batch ASW and NMI represent
stronger ability of batch effect removal and biological conservation,
respectively’’. On 2 of the 5 test datasets, which have more cells, the
batch ASW of TOSICA ranks in the top 2 and is only slightly lower
(0.02-0.06 or 2.1-5.6%) than the top 1 method’s batch ASW (Supple-
mentary Fig. 11b). Meanwhile, biological NMI of TOSICA ranks within
top 5 among 14 methods on each dataset. Conspicuously, while scGen
and Seurat show excellent ability on datasets with fewer batches and
cells, neither of them works on mouse atlas dataset, on which TOSICA
ranks at the top in both batch effect removal and biological con-
servation (Supplementary Fig. 11b). Also, TOSICA is robust against the
choice of masks in its of batch effect removal ability, except batch
effects removal ability is unexpectedly slightly stronger when using
random masks, and it is expected that some knowledge-based masks
are better than others for a specific dataset, for example for hBone
(Supplementary Fig. 11b). These results indicate that TOSICA is insen-
sitive to batch effect and good at biological conservation, and excels
on large datasets with many batches, especially considering that we
never provide batch information to it.

Interpretability of TOSICA is hierarchical

All previous cell type annotators are gene-based, thus reveal little on
the biological insight behind the cell type marker genes, many more
subsequent analyses are needed to infer the potential enriched path-
ways and regulators behind the marker genes. Instead, by embedding
genes to higher level of biological processes tokens, TOSICA directly
learns the biological processes and signaling pathways giving rise to
the cell types, thus separating cell types, including new cell types
(Fig. 2d) with accurate high-resolution annotation (Fig. 3d) and
allowing direct trajectory regulation discovery (Fig. 3g), while immune
to batch effect (Supplementary Fig. 11b). This high-level attention
framework not only allows interpretability but is essential for the high
accuracy of TOSICA (Fig. 2a). Furthermore, as shown by the discovery
of MIR-29B-3P regulon (Fig. 3d) and its important target gene Sparc in
the development of acinar cell (Supplementary Fig. 10a), the inter-
pretability does not stop at the high-level structures, the important
low-level entities, genes, that significantly contribute to these high-
level annotations are also available from the networks within TOSICA
(Supplementary Fig. 10), and can be revealed simultaneously thus
generating a comprehensive hierarchical annotation structure.
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TOSICA on such a task, we prepare two sets of pan-cancer tumor
infiltrating immune cells data, myeloid*® and T*’ cells, respectively. In
the myeloid dataset, a total of 71,159 myeloid cells come from tumors,
adjacent non-cancer tissues, peripheral blood of 43 patients across 9
common cancer types. Among them, kidney cancer (KIDNEY, 28,930
cells), uterine corpus endometrial carcinoma (UCEC, 9816 cells) and
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Fig. 3 | One stop interpretable de novo, high resolution, dynamic, and hier-
archical annotation for biological insights by TOSICA. a TOSICA successfully
isolates and labels the masked alpha cells as ‘Unknown’ cell type. UMAP is based on
attention of hPancreas test set. Red circled and marked by red arrows are manually
deleted alpha cells and blue circled and marked by blue arrows are MHC class Il
cells, originally not present in training set. These two kinds of cells are learned as
isolated ‘Unknown’ cell types, and are separated by TOSICA attention scores’
UMAP. b TOSICA labels most of alpha cell and little other cell types as unknown.
Heatmap shows proportion of cells in each row with original label O (original label,
shown on the right) predicted as cell type P (prediction, shown on the top). See
Supplementary Fig. 9 for comparison to other methods. ¢ Some originally labeled
mature Acinar (Mat., top) are predicted by TOSICA as proliferative Acinar (Prlf.,
bottom), red circled. UMAP is based on attention of mPancreas test set. The inset

illustrates naming of MM, MP, PM, and PP, originally (O) labeled versus TOSICA (T)
labeled. d Two pathways’ attention score separate the MM and MP. e Hierarchical
clustering of DEGs between the originally labeled Mat. Acinar and Prlf. Acinar also
groups MM and PM together, and MP and PP together. f The proportion changes of
3 cell types in the human bone (red circled) during the transition from healthy to
osteoarthritis (OA), shown by diffusion map of hBone, colored by originally labeled
cell type (left), pseudotime (middle) and sample status (healthy versus OA (right).
Embedding is based on TOSICA attention. g High level of NF1 tracks the trajectory
from HomC to HTC and preHTC (red circled) shown by diffusion map of hBone,
colored by attention score of NF1 pathways (left), and by scatter plot (right), where
lower CEBP attention score in preHTC versus HTC associates with OA (middle and
right). Source data are provided as a Source data file.

esophageal carcinoma (ESCA, 8154 cells) are used as reference dataset
(Fig. 4a) and myeloma (MYE, 7861 cells), thyroid carcinoma (THCA,
5939), ovarian or fallopian tube carcinoma (OV-FTC, 4002 cells), pan-
creatic adenocarcinoma (PAAD, 3093 cells), colon cancer (CRC, 2725
cells), and lymphoma (LYM, 639 cells) are used as query dataset
(Fig. 4a, b). REACTOME pathway* knowledgebase is used to build the
model. Then, 8 evaluation metrics (ASW, graph connectivity and
k-nearest-neighbor batch effect test (kBET) for batch effect removal
and NMI, Adjusted Rand Index (ARI), ASW and isolated label F1 score
for biological variation retention) are computed to verify the integra-
tion ability by scIB. scIB ranks TOSICA the second out of all 11
applicable data integration methods evaluated on all metrics combined
(overall score=0.6xbiology conservation+ 0.4 xbatch removal)
(Supplementary Fig. 12a). Note that Seurat-based methods, including
Seurat v3 CCA and Seurat v3 RPCA, are unable to integrate datasets
from more than 85 batches, these methods are thus not applicable for
comparison.

On the c¢DCs populations, TOSICA reveals that the same c¢cDC
subsets from different tumor types are clustered together (Supple-
mentary Fig. 12b), which is consistent with previous observations*®. In
particular, TOSICA detects a pair of population-specific pathways
(NOD1/2 SIGNALING PATHWAY and TOLL RECEPTOR CASCADES)
that separate inflammation-related cDCs (cDC2_FCN1 and ¢cDC2_IL1B)
and a mature cDC subset (cDC3_LAMP3), which broadly present in
tumor microenvironment (TME) from the rest of ¢cDCs (Fig. 4c). This
is in agreement with previous observations showing low expression
of Toll-like receptor (TLR) signaling genes and low innate immune
activity of cDC3_LAMP3*® and the “pro-inflammatory” properties of
¢DC2_FCNI1 and ¢DC2_L1B in blood®. As interpretable trajectories,
the diffusion map®? based on TOSICA attention embedding confirms
two potential origins of the cDC3_LAMP3 from cDCls and cDC2-
CXCL9, as previously suggested*® (Fig. 4d). Furthermore, the map
reveals another state transition path from ¢cDC2 to pro-inflammatory
¢DC2 subtypes (Fig. 4d), which has not been observed in the previous
analysis*®. Such an observation is further supported by partition-
based graph abstraction (PAGA) analysis and diffusion pseudotime
reconstruction, when cDC3_LAMP3 is regarded as the root of the
lineages (Fig. 4d).

On the LYVEI+ resident tissue macrophages (RTMs), which func-
tions to restrain inflammation and fibrosis in multiple human tissues®’,
TOSICA shows significant heterogeneity of attention scores in Mac-
ro_LYVEI] across different caner types. TOSICA attention scores reveal
that ESCA separates from other cancers in cytokine signaling and
insulin signaling pathway (Fig. 4e), hinting at higher inflammatory state
of LYVE1+ RTMs in ESCA, which was not observed in the original study.

Next, we examine whether TOSICA is able to detect the state shift
during disease progression and aging within the same cell type.
TOSICA attention scores show a significant upregulated of FGFR sig-
naling pathway (Fig. 4f, RCC =0.29 p=2.28e-24) and downregulated
of interferon signaling with advanced stage of ESCA in LYVE1+ RTMs
(Supplementary Fig. 12¢, RCC =-0.30, p =1.38e-27). Besides, the loss-

function of innate immune system with aging> is detected in CD14+
Mono (RCC =-0.26, p = 2.68e-177), which is accompanied by slight up-
regulation (RCC=0.14, p=2.0e-47) of IFN signaling (Fig. 4g). Such
pathway level association with disease progression or aging have not
been observed in the previous analysis with other methods. The 5
important genes for these two regulon tokens in TOSICA include the
well-known inflammatory genes NLRP3 and IFITM3 (Supplementary
Fig. 12d).

Furthermore, benefiting from its high resolution, TOSICA identi-
fies several subtypes of monocytes that have not been discovered in
the original publication*® (Fig. 4h), all having their own biological sig-
natures and potentially different functions (Supplementary Fig. 12e).
Subtype C1 apoptotic CD14 is generally enriched in tumor tissues
(paired t-test p-value = 0.021), especially in ESCA (paired t-test p-value
= 0.0012) when compared to the matching normal tissues, while CO
CD16 mainly resides in non-tumor tissues of the same type (paired
t-test p-value = 0.0015) (Fig. 4i).

Overall, TOSICA accurately annotates query tumor infiltrating
myeloid cell types. With high biological resolution and batch insensi-
tivity of attention (Supplementary Fig. 12a), TOSICA reveals many
novel dynamic and functional status of single cells, with their key
contributors hierarchically annotated at both pathway and gene levels
to guide further experimental explorations.

TOSICA reveals tumor infiltrating T cells dynamics

Discovering the origin of tumor infiltrating T cells is important to
cancer immune therapy. Here on a tumor infiltrating T cells dataset, a
total 0f109,389 CD8+ T cells and 79,303 CD4+ T cells derived from the
tumors, adjacent non-cancer tissues, peripheral blood of 48 patients
across 11 common cancer types, in which THCA (56,958 cells), UCEC
(32,655 cells) and breast cancer (BC, 7354 cells) are used as reference
dataset (Supplementary Fig. 13a, b) and renal cancer (RC, 26,649 cells),
ESCA (24,884 cells), multiple myeloma (MM, 12,274 cells), B-cell lym-
phoma (BCL, 11,956 cells), pancreatic cancer (PACA, 9860 cells),
ovarian cancer (OV, 4523 cells), fallopian tube carcinoma (FTC, 1037
cells) and cholangiocarcinorma (CHOL, 542 cells) are used as query
dataset (Supplementary Fig. 13a, b). REACTOME pathway knowledge-
base is used as mask in TOSICA. On this dataset, TOSICA ranks second
out of all 10 applicable methods on the combined effectiveness in
batch effect removal and biological variation retention (Supplemen-
tary Fig. 13¢). In addition, the runtime of TOSICA is the shortest
(minutes), while it takes scGen nearly five days to finish (Supplemen-
tary Fig. 13¢).

Diffusion map based on TOSICA attention embedding recapitu-
lates the previous observation*® that CD4+ T cells develop from naive
T cells to Temra cells, TFH/THI cells, or TNFRSF9+ Treg cells, sepa-
rately (Supplementary Fig. 14a-c). Along this transition process, many
interleukin signaling pathway and cytotoxic effector molecules (Sup-
plementary Fig. 14c)—including IL2, IL1, IL6, TLR, NETRINI, CTLA4, and
CBL related pathway—significantly increase (FDR < 0.001, generalized
additive model) and MHCI/Il, IL7 and TGFb pathways decrease
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(FDR < 0.001, generalized additive model). In CHOL, UCEC, PACA, and
ESCA, the tumor infiltrating CD4+ T cells are more likely to develop
along Treg path rather than Temra path (Supplementary Fig. 14d).
Likewise, attention score based UMAP shows that GXMK+ Tex cells,
not terminal Tex cells as previously assumed*’, are the common end
point of the two state transition path from naive CD8+ T cells: the first

path going through GZMK+ Tem cells, and the second going through
ZNF683+ Trm and terminal Tex cells, which are previously considered
to be the end of the transition process of the two dynamic path*
(Supplementary Fig. 14e, f). Besides, TOSICA also reveals specific
inflammatory and metabolic pathways enriched for each cell type in
the transition process (Supplementary Fig. 14g).
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Fig. 4 | TOSICA resolves pan-cancer tumor infiltrating myeloid cell hetero-
geneity. a, b TOSICA predicts cell types reliably across different cell types even
when the reference and query contain no overlapping cancer types as shown by
TOSICA attention embedded UMAP. UMAP is colored by the cancer types in the
reference (3, left panel in a), in query (6, right panel in a), and by cell types in the
query as originally labeled (left panel in b) and predicted by TOSICA (right panel in
b). ¢ cDC2_FCN1, cDC2_L1B, and cDC3_LAMP3 distinguish from other cell types in
attention scores of 2 REACTOME pathways. Each dot represents one cell and is
colored by cell types. d Three developmental trajectories from cDC2_CXCL9 and
¢DC1_CLEC9A to cDC3_LAMP3 and cDC2 to cDC2_FCNI, cDC2_IL1B delineated by
TOSICA attention embedded diffusion map (left) and partition-based graph

abstraction (PAGA) (right). Edge weights in PAGA represent confidence for the
connections between cell types, colored by pseudotime. e Macro_LYVEIL of ESCA
distinguish from that of other cancers in attention scores of 2 REACTOME path-
ways. f Attention score of SIGNALING_BY_FGFR increases with advanced stage of
ESCA. Statistical test is two-sided. g INNATE_IMMUNE_SYSTEM is downregulated
and INTERFERON_SIGNALING is upregulated during aging in Mono_CD14. Dots are
colored by age. h Attention score based UMAP identifies 4 subtypes of monocytes.
i The distribution of the 4 monocyte subtypes changes with tumor (T) versus
matching normal (N) tissues or peripheral blood (P) in different cancer types.
Source data are provided as a Source data file.

In this case, TOSICA demonstrates its advantage compared to
other cell type annotators in uncovering previously unknown dynamic
trajectories of cells.

TOSICA hierarchically interprets the immune response of
patients with COVID-19 and SLE

To demonstrate large-scale interpretable biomedical application of
TOSICA, we use it to determine the transcriptional programs of the
cellular response to COVID-19 infection. We reanalyze a large-scale
COVID-19 single cell transcriptome atlas of PBMC®, in which parts of
healthy control from Wuhan, Beijing, Harbin and Suihua cohorts
(52,836 cells) are used to train the TF regulon masked TOSICA and the
rest of healthy control and COVID-19 positive patients from 10 city
cohorts (1,409,866 cells) are used as query dataset (Fig. 5a). Among all
cell types, DC_LAMP3, Epi and Mast are unknown cell types for refer-
ence but TOSICA can still identify them de novo as an isolated cluster
on UMAP (Fig. 5a and Supplementary Fig. 15a) with little batch effect
(Supplementary Fig. 15b). Furthermore, 8 evaluation metrics (3 for
batch effect removal and 5 for biological variation retention) are
computed to verify the integration ability by scIB*, which ranks
TOSICA the first out of all 13 applicable methods evaluated on com-
bined effectiveness in batch effect removal and biological variation
retention (Fig. 5b). We then evaluate the significantly enriched TFs
within NK cells (Supplementary Fig. 15c), CD8+ T cells, CD4+ T cells, B
cells and myeloid cells (Supplementary Fig. 15d). Compared with the
expression of marker genes, TFs attention score of MYOD 01 can
separately label NK cells (Supplementary Fig. 15¢), while the expression
of the known NK cell marker gene NKG7, mixes NK cells with CD8+
T cells (Supplementary Fig. 15e).

On monocytes (Fig. 5c), the major inflammatory cell types,
TOSICA identifies 7 subtypes of monocytes, one for CD16+ monocytes
and 6 for CD14+ monocytes (Fig. 5d). Among them, C3 population
(high activity of OCT1 and CREB) decreases and C4 population (high
activity of CEBP and TEF) increases during COVID-19 progression from
healthy to moderate to severe (Fig. Se, f). TOSICA’s TF regulon atten-
tions in C3 and C4 show that AP2_Q6 and FOX04_01 have low activities
and AP4 01, MIR3617 5P, NFKB_Q6, and ATF3_Q6 have upregulated
activities during COVID-19 disease progression (Fig. 5g). Their typical
target genes indeed show a similar expression pattern (Fig. 5h).

As a final case, we use TOSICA to assist with interpretable cell type
annotation from established independent reference model and ana-
lyze cell response heterogeneity. As example, we use reference model
trained in the above COVID-19 analysis to map a query PBMC dataset of
eight patients with systemic lupus erythematosus (SLE) whose cells
were either untreated (control) or treated with interferon (IFN-B)*
(Supplementary Fig. 16a). Not surprisingly, our model is able to iden-
tify the cell state transition under IFN-} treatment on monocytes
(Supplementary Fig. 16b). Differential TF attention can distinguish
different cell types (Supplementary Fig. 16c). Between IFN-B and con-
trol conditions in all cells, the top 25 differentially active TFs, including
the top-ranked SREBP (Supplementary Fig. 16d), are consistent with
previously reported interferon induction of lipogenesis®”’, which
has not been described in the previous scRNA-seq analysis®.

Consistent with this finding, in each cell types, the activity of SREBP
and SREBP1 are also upregulated and FOX01/3 are downregulated by
IFN-B, especially in myeloid cells (Supplementary Fig. 16e). Further-
more, several pairs of population-specific TF activities can separate
IFN-B-related CD14+ Mono and B cells from untreated cells (Supple-
mentary Fig. 16f, g).

In this example, TOSICA preserves cell type response to disease
and drug interference after reference mapping. The intelligible and
interpretable high-resolution annotation transfer between completely
independent studies on different biological processes is demon-
strated, thus allowing interdisciplinary data integration of single-cell
studies.

Discussion

In this study, we develop and establish TOSICA, a Transformer-based
cell type annotation and integration tool that offers accurate, trans-
ferrable, high-resolution, batch insensitive, biologically interpretable
cell type annotations under many scenarios, including but not limited
to new cell type discovery, dynamic trajectory analysis, cross platform,
and population dataset integration. The high accuracy and batch-
insensitivity of TOSICA can be mainly attributed to the attention layers
and tokens masked by high-level biologically relevant pathways or
regulons in the Transformer architecture, which allow TOSICA to focus
on biologically relevant interacting genes, pathways or regulons,
instead of individual genes that are susceptible to random noise and/or
batch effects. By doing so, new cell types, high-resolution subtypes,
and their dynamic behaviors are also recognized by their biologically
relevant and interacting signatures rather than random noise and/or
batch effects, meanwhile the annotations are, intrinsically by default,
biologically relevant and interacting signatures generated by the
attention layer. The various systems level comparisons with existing
methods and case-by-case close examination of different datasets and
tasks demonstrate the accuracy, robustness, flexibility, and general-
izability of TOSICA as an indispensable new tool for advancing the
single-cell studies. As an innovative application of Transformer archi-
tecture in single-cell omics data analysis, TOSICA creates an unprece-
dented opportunity toward effectively and interpretably annotating
cell types across large-scale datasets in one step. The whole package of
TOSICA, along with tutorials and demo cases, is available online at
https://github.com/JackieHanLab/TOSICA®® for the community. We
also provide a simple workflow schematic of how to use the TOSICA
toolkit (Supplementary Fig. 17).

Methods

TOSICA model

For each cell, expression levels of n genes (e € R") are first embedded
into k tokens (t € R¥) using linear transformation weight (W), which
will be learned during training.

To achieve that every token represents a different pathway, the
weight matrix of linear transformation is masked, only if these genes
belong to the pathway, the connection can be saved. Thus, we generate
a mask matrix (M) using expert knowledge, M is composed of O or 1
and has the same dimension as W. The masked linear transformation
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Fig. 5| TOSICA reveals change in transcription factor activity during moderate
and severe COVID-19. a TOSICA predicts cell types reliably across different cell
types even when using healthy individuals as reference (left) and COVID19 patients
as query (right). Colors denote 29 origin labels. Red circled cell types are unique in
query. b Comparison of integration accuracy on query data places TOSICA first
among 13 methods. Each score is minimum-maximum scaled between O and 1.
Overall scores are computed using a 40:60-weighted mean of batch correction and
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(c) and 6 novel (d) monocyte types. e, f Subtype 3 monocytes increases (e) and
subtype 4 decreases (f) in abundance from healthy (N =25), to moderate (N=79),
and to severe (N =91) COVID-19. Statistical test is two-sided. * RCC p < 0.05;

***p < 0.001. g TOSICA attention score of 6 transcription factors distinguishes
subtype 3 and 4 monocytes across different states of COVID19. h The expression
levels of major targets of the 6 TFs (g) generally show consistent trends with TFs
attention score. Source data are provided as a Source data file.
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weight (W’) is the product of the corresponding positions of W and M.

W =W*M M
t=W'.e ?)

Then the embedding operation is repeated m times in parallel to
increase the dimensions of embedding space, where m is a hyper-
parameter that can be manually set, with a default of 48. Then all ts are
concatenated by column.

T=columnbind(t,, t,,...,t,), Te R¥*™ 3)

Here, T (T € R¥*™) represents the pathway token matrix. Each

row in T, the so-called token, stands for a pathway.

Following, a learnable parameter class token (CLS) is con-
catenated to T at the top by row, and generates the input matrix (I).

I=rowbind(CLS, T), CLS € R™, 1 RI*k*m 4)

An attention function can be described as mapping a query and a
set of key-value pairs to an output'. In Multi-head self-attention layer,
the query (Q), key (K), and value (V) matrix are separately linearly
projected from input matrix (I) mentioned above, and the linear pro-
jection weights are referred as Wt ,..

QK V=W,

5
Q,K,VERHkxm ( )

Then attention (A) matrix is computed by Q with the corre-
sponding K, scaled by the inverse of the square of dimension of K (d)
and activated by softmax function.

T
A =softmax (Q\/dE ) (6)
k

where, dy = m, and

exp(z;)

softmax(z;) = 7

(z) sz )

Then A is assigned to each V for calculate output (0).
0=Attention(Q,K,V)=A.V 8)

It is reported that instead of performing a single attention func-
tion, it beneficial to linearly project the queries, keys and values H
times, which is the so called muti-head and each repeat is a head, with
different, learnable linear projections to dy, dy, and d, dimensions by
W2V respectively™.

0 =MultiHead(Q, K, V)=W? . columnbind (head,, ..., head,;), 0 ¢ R**¥*™
%)

where, head, = Attention (W,Q QWK KW . V) (10)

The CLS of O is used as input of a fully connected network and
followed by a softmax function to obtain the probability of cell types
(p € R"™, nc=number of cell types).

p =softmax (Wp : CLS) an

In addition, attention weights (or named as attention score) of
CLS to pathways are abstract as low-dimensional feature of cell”.

In order to prevent overfitting, we refer to a previous research',
and introduce residual connection. In order to increase the model’s
ability to learn complex information, we add two more full-connected
layers after the attention sub layer (Supplementary Fig. 18).

Knowledge-based mask matrix

The mask matrix used in this work is based on knowledge datasets
from GSEA (http://www.gsea-msigdb.org/gsea/downloads.jsp). In par-
ticular, we map the input genes to selected gene sets (gmt files), such
as c2.cp.reactome.v7.5.1.symbols.gmt and c3.all.v7.5.1.symbols.gmt.
Two parameters are optional: a maximum number of genes in each
gene set (default as 300) and a maximum number of gene sets (default
as 300). The mask matrix is in the form of a binary matrix M with
columns corresponding to numbers of gene sets and rows corre-
sponding to genes, with M;;=1if the gene i belongs to the gene set
otherwise M;;=0. Then, the matrix is sacked m times (dimension of
embeddings) to generate gene set tokens from gene input, where m
where can be customized with a default of 48.

Model training

We choose different studies or biological states to split the training
and test set (Supplementary Dataset 1), and 30% of training set is
divided as validation set.

The accuracy is determined as the ratio of samples predicted
correctly over all samples. The loss is calculated by cross entropy loss
function. Stochastic gradient descent (SGD) is chosen as optimizer,
and we use cosine learning rate decay to avoid too large steps in late
stage of training. Typically, TOSCIA converges within 20 epochs.

Other annotation methods

For all methods used for comparison, we provided them the same
training (reference) dataset and test (query) dataset. And they are run
using their recommended default parameters. The majority of the
methods have built-in normalization. So, we provided each method
with the raw count data or log;o(le4*count +1) according to their
description.

Quantify the characteristics of datasets
‘Log size’ is computed as below:

Log size=log,o(number of samples in dataset) 12)
‘Types’ equals the number of cell types.
Types = number of cell types 13)
‘Entropy’ is defined as bellow:
nc
Entropy = Zj log, (p;) - p; (14)

i=1

number of samples labelled as cell type i in training set

where, p; = - o
Pi number of all samples in training set

as)

We use Kullback-Leibler Divergence (Dg;) to evaluate the unba-
lance between reference and query sets:

nc nc
Dy, = Z log, (q;) - pi — Z log, (p;) - p; (16)
= i-1

i=1
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where, p; is same as (15) and

_ number of samples labelled as cell type i in test set

17
number of all samples in test set 17

i

Data analysis

Python version 3.8.11 and R version 4.0.5 were used for downstream
analysis with the following packages: torch (version 1.7.1), scanpy
(version 1.7.1), Seurat (version 4.1.0), ggplot2 (3.3.5), ComplexHeatmap
(2.10.0), gam (1.22), and their dependent packages.

Attention embedding preprocessing

The preprocessing of attention matrix is similar to that of the scanpy®
pipeline for scRNA-seq data. First, the matrix is normalized by library-
size correction using default size factor 10,000. Then, all attentions are
identified as input to perform PCA analysis. And then PCA matrix is
used to build nearest neighbor graph, which is further embedded in
two-dimensional UMAP for visualization.

Benchmarking data integration

scIB* is used to benchmark data integration ability (version 1.0.0). For
existing methods, default parameters are used and only ‘full features’
and ‘unscaled’” model are used for comparing. For TOSICA, the raw
attention embedding is used as input to sclB.

The study information in human pancreas and mouse brain
dataset, donor information in human artery, human bone, mouse atlas,
cancer and COVID-19 dataset are used for batch effect removal
assessment. The cell type information in all datasets is used for bio-
logical conservation evaluation.

Identification of signature attentions of cell types and sub-
clusters

The signature attentions of cell types are identified based on Wilcoxon
rank-sum (Mann-Whitney-U) test. Same as scanpy, attention scores are
normalized to le4 and logarithmized. Then, sc.tl.rank genes -
groups(method="wilcoxon’) is used for finding marker attentions. P-
values are adjusted by the Benjamini-Hochberg (BH) method.

As for sub-cluster identification, the cells of interest are
selected, normalized, and logarithmized alone. All attentions are
identified as input to perform PCA analysis. And then PCA matrix
is used to build nearest neighbor graph, which is then used to find
clusters by Louvain algorithm with parameter “resolution” = 0.3
to identify sub-clusters.

Genes’ importance to a pathway token

The importance of genes to pathway tokes are computed from the
linear transformation layer. Each gene’s weight for a token is calculated
as the mean of the absolute value of weights in all embedding
dimensions.

Cell differentiation trajectory inference
To model the cell state transition, the diffusion map algorithm, which
preserves the global relations and pseudotemporal ordering of cells, is
applied to infer the differentiation trajectory. We feed the attention
matrix and the previously calculated principal components matrix into
the scanpy pipeline. A neighborhood graph based on principal com-
ponents is constructed using the scanpy.pp.neighbors function. The
diffusion map is built using scanpy.tl.diffmap function. The first two
diffusion components (DCs) are used for visualization. Partition-based
graph abstraction (PAGA) analysis is also used for visualization. With
the specifying of root cell, the diffusion pseudotime is calculated using
scanpy.tl.dpt function.

To find the potential attentions driving the differentiation pro-
cess, we fit a generalized additive model (gam function in the gam

package of R) for the pseudotime and the attention matrix. Attentions
with absolute coefficient >0.5 and FDR <0.01 are considered as the
dynamic attention terms.

Statistics and reproducibility

No statistical method was used to predetermine sample size. Only data
with poor labels were excluded from the analyses. The experiments
were not randomized. The investigators were not blinded to allocation
during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datasets used are obtained from public data repositories. See Sup-
plementary Dataset 1 for detailed information, including access codes.
Tumor-infiltrating myeloid and T cells datasets are available from GEO
“GSE154763” and “GSE156728”. COVID-19 and SLE datasets are available
from GEO “GSE158055” and “GSE96583”. The mask matrix used in this
work is based on knowledge datasets from “GSEA [http://www.gsea-
msigdb.org/gsea/downloads.jsp]”. All other relevant data supporting the
key findings of this study are available within the article or the Supple-
mentary Information files. Source data are provided with this paper.

Code availability
Software is available at “TOSICA [https://github.com/JackieHanLab/
TOSICA]™S.
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