Abstract
The fractional Schrödinger equation (FSE)—a natural extension of the standard Schrödinger equation—is the basis of fractional quantum mechanics. It can be obtained by replacing the kineticenergy operator with a fractional derivative. Here, we report the experimental realisation of an optical FSE for femtosecond laser pulses in the temporal domain. Programmable holograms and the singleshot measurement technique are respectively used to emulate a Lévy waveguide and to reconstruct the amplitude and phase of the pulses. Varying the Lévy index of the FSE and the initial pulse, the temporal dynamics is observed in diverse forms, including solitary, splitting and merging pulses, double Airy modes, and “rainlike” multipulse patterns. Furthermore, the transmission of input pulses carrying a fractional phase exhibits a “fractionalphase protection” effect through a regular (nonfractional) material. The experimentally generated fractional timedomain pulses offer the potential for designing optical signalprocessing schemes.
Similar content being viewed by others
Introduction
Fractional Schrödinger Equation (FSE) was originally introduced, as a quantummechanical model, by means of the Feynmanintegral formalism for particles moving by Lévy flights^{1,2}. This means that the average distance L of the randomly walking classical particle from its initial position grows with time t as
where α is the Lévy index (LI)^{3}. In the case of α = 2, it is the usual randomwalk law for a Brownian particle. The Lévyflight regime, corresponding to α < 2, implies that the diffusive walk is faster than Brownian. At the classical level, it is performed by random leaps. In the corresponding FSE, which is the basis of the fractional quantum mechanics^{1}, the kineticenergy operator has the form of \({\left({\nabla }^{2}\right)}^{\alpha /2}\) which implies the same relation between the length and time scales in solutions of the FSE as indicated by Eq. (1)—here ∇^{2} is the Laplacian. In the context of fractional quantum mechanics, several setups have been elaborated, based on various potentials included in the FSE. These are, in particular, the fractional generalizations of the Bohr atom and harmonic oscillator^{4,5}.
Experimentally, the main challenge in implementing the fractional quantum phenomenology is to find a physical setting featuring Lévy flights with arbitrary LI, which would impart a fractionalphase shift to the particle’s wave function, and thus realize the FSE. An alternative is to use a condensedmatter setting to realize the spatialdomain FSE^{6}. In this case, the key ingredient is a 1D Lévy crystal with LI taking values 1 < α ≤ 2, which is introduced in the form of a 1D infiniterange tightbinding chain^{7,8}. However, building a Lévy crystal with an arbitrary LI in the solidstate system remains challenging.
An alternative, proposed by Longhi in 2015^{9}, is to use the similarity of the quantummechanical Schrödinger equation to the paraxial wavepropagation equation in optics. The proposed protocol employed transverse light dynamics in aspherical optical cavities designed in the 4f configuration. Under the paraxial approximation and ignoring losses originating from optical elements and diffraction, the output transverse modes correspond to eigenfunctions of the FSE with a chosen value of LI. However, in such complex optical setups, loss is a critical problem, which requires one to introduce compensating gain^{10}, thus making the analysis more cumbersome. Due to these problems, experimental implementation of the FSE has not yet been achieved.
Most of the current studies dealing with FSE were focused on simulations. In particular, the lightbeam propagation in these models gives rise to a breatherlike behavior^{11,12}. Another topic of great interest is the nonlinear FSE, which includes the Kerr nonlinearity of the optical material. It produces diverse families of optical fractional solitons, such as gap solitons^{13}, multipoles^{14}, trapped modes^{15}, Airy waves^{16}, as well as solitary vortices^{17}, see recent review^{12}. Setups supporting fractional solitons offer various applications for the design of photonic dataprocessing schemes^{18,19,20}. Further, by combining the FSE and a complex potential, the paritytime symmetry and its breaking may be featured^{21,22,23,24,25}.
Here, we report one experimental realization of an optical system representing the FSE in the temporal domain. The main principle is to transform the temporal FSE into the frequency domain and apply a spectral phase shift representing a Lévy waveguide with an arbitrary value of LI, 0 ≤ α ≤ 2. Employing a recently developed singleshot measurement technique—in particular, in the form of spatialspectrum interferometry (SSI)^{26}—we perform the pulse reconstruction based on a single measurement. In the experiment, we used two holograms in the pulseshaper system. The first one morphs an appropriate phase pattern in input pulses, while the second hologram acts as the optical Lévy waveguide, with particular values of coefficient D of the fractional groupvelocitydispersion (GVD) and LI α. Passing the second hologram, the pulse receives the propagationphase shift emulating the passage through a fractional dispersive waveguide. Thus, the temporal FSE is realized in this work in an indirect form. The creation of a fractional dispersive material and direct realization of the FSE is still an open challenge^{12}.
Thus, based on the initial conditions and propagation parameters, three main scenarios of the temporal dynamics are explored in this work. First, we launch an initial femtosecond pulse with a secondorder spectral phase, representing the frequency chirp^{27}. Several outcomes are evidenced by observing solitary pulses, double Airy modes, “rainlike” multipulse trains, and collisions between pulses. To characterize the outcomes, we reconstruct their Wigner function in the time–frequency chronocyclic space^{28}, with the interference fringes exhibiting a subFourier structure. In terms of quantum mechanics, it represents subPlanck features, which correspond to values of action < ℏ/2 (i.e., smaller than the minimum action fixed by the Heisenberg’s uncertainty principle^{29}). Thus, the subPlanck phenomena may be emulated using the wave propagation in optics^{30,31,32}. Such small action shifts are essential in quantum mechanics, as they are sufficient to make initially identical coherent states distinguishable. In optics per se, the corresponding subFourier features can be used for highprecision measurements, somewhat similar to the technique based on superoscillations^{33,34,35}.
Next, we launch the input pulse carrying the thirdorder spectral phase, which naturally leads to an Airy wave evolution in the temporal domain. Our results show that the trajectory of the leading lobe of Airy pulses can be effectively controlled by LI. Finally, a “fractionalphase protection” effect is observed when the input pulse with the fractionalphase structure propagates in a regular dispersive waveguide. These results demonstrate remarkable behaviors governed by the FSE, which are relevant as optically realization of the fractional wave dynamics, and may also offer applications to ultrafast signal processing.
Results
Realizing the FSE in the temporal domain
When an optical pulse travels in a complex dispersive material, a generalized model for the slowly varying amplitude Ψ(τ, z) of the electric field may be derived, in the temporal domain, in the known form^{1,9,36}:
On the righthand side of Eq. (2), the first term is the fractional time derivative with the LI α, where D is the fractional dispersion coefficient. The second term represents the integer derivative that corresponds to the kth regular GVD with the coefficient β_{k}, and the last term is potential V(τ). In optics, such a complex dispersion material involving both these ingredients may be realized by means of an artificial photonic structure^{37}. In that case, the model defined in Eq. (2) may also include dissipation, i.e., dispersive losses, which are not considered in this work. In the case of D = 0 and V(τ) = 0, Eq. (2) reduces to the commonly known propagation equation for linear dispersive media^{27}. The fractional Riesz derivative in Eq. (2) is represented by the integral operator^{38},
We set the external potential to be zero, i.e., V(τ) = 0. Applying the Fourier transform to Eq. (2), it yields a straightforward solution, \(\hat{{{\Psi }}}\left(\omega,z\right)\), in the frequency domain:
where \({\hat{{{\Psi }}}}_{{{{{{{{\rm{input}}}}}}}}}(\omega )\) is the respective input profile in the frequency domain. The input \({\hat{{{\Psi }}}}_{{{{{{{{\rm{input}}}}}}}}}(\omega )\), which appears in Eq. (4), may be prepared with the help of a linear pulse shaper^{39,40}. Equation (4) suggests an experimentally feasible way to engineer the relevant fractional phase in the frequency domain and thus create a temporal profile corresponding to the solution of the FSE equation.
Figure 1a shows the architecture used to experimentally realize the FSE in the temporal domain. The setup includes three main ingredients: (1) the input ultrafast pulse is morphed by the hologram, as it is done by the traditional pulse shaper; (2) the second hologram adds to the pulse the spectral phase shift emulating the passage through the optical Lévy waveguide; (3) the singleshot SSI technique is used to reconstruct the pulse’s amplitude and phase. This regime offers an effective platform to realize and study the pulse dynamics governed by FSE. Further details of the experimental setup are given in Methods and Supplementary Notes 1–3.
The pulse evolution depends not only on the LI, but also on input Ψ_{input}(τ, z = 0), see Eq. (4). In particular, the secondorder GVD, acting in the shaping segment of length L_{GVD}, produces a phase shift ϕ_{GVD} = β_{2} × L_{GVD} × ω^{2}/2, which corresponds to the input
Here, \({{{{{{{{\mathcal{F}}}}}}}}}^{1}\) stands for the inverse Fourier transform, and \({\tilde{{{\Psi }}}}_{z=0}(\omega )\) is the spectral form of the input from the laser source with the nearly flat phase (low chirp), which has the Gaussian profile (see “The treatment of the FSE” in “Methods”). For the spectral phase ϕ_{GVD}, it can be positive or negative depending on the sign of β_{2}. For the definiteness’s sake, we set β_{k} to be a constant, i.e., β_{2} = − 21 × 10^{−3} ps^{2}/m, and only discuss effects of L_{GVD}. Thus, we define four quadrants Q1–Q4 in the parameter plane of (L_{GVD}, α), as shown in Fig. 1b. Areas Q1 and Q2 correspond to the cases with L_{GVD} > 0 and 1 ≤ α ≤ 2 or 0 ≤ α ≤ 1, respectively, while Q3 and Q4 are defined similarly, but with L_{GVD} < 0. When α is close to 2 (in the B2 area in Fig. 1b), the pulse propagation is close to that in the regular dispersive material^{27,41,42,43}. The effect of the fractional GVD on the pulse propagation is expected to be weak in area B1 in Fig. 1b, which corresponds to small values of LI.
The case of the secondorder spectral phase in the input: the temporal dynamics of femtosecond pulses in the optical Lévy waveguide
First, the results of simulations of the model for parameters belonging to areas Q1 to Q4, which are defined in Fig. 1b, are presented in Fig. 2a (details of the numerical simulations are given in “Methods”). We fix the value of the secondorder GVD coefficient β_{2} = − 21 × 10^{−3} ps^{2}/m, a typical value for the singlemode fiber, and set the fractionalGVD coefficient as D = 21 × 10^{−3} ps^{α}/m, for adequate comparison between the regular and fractional GVD. Values of the parameters of the control set are chosen as,
for Q1 to Q4, respectively. It is seen in Fig. 2a that the model of the optical Lévy waveguide gives rise to diverse dynamical regimes for the temporal pulses. In particular, the case of Q1 shows the splitting of the input pulse into two secondary ones; Q2 demonstrates the generation of multiple pulses, similar to the “soliton rain” structure^{44}; in Q3 and Q4, the double profiles may be construed as Airy waves, with pulse broadening observed in the latter case. As concerns, the Airyshaped beams, the appearance of similar solutions of the spatialdomain FSE was reported by Longhi^{9}. Region B2 in Fig. 1b, designated as a reference, corresponds to the regular case with α = 2 and L_{GVD} = 0.
The respective experimental results, which are the most essential finding reported in the present work, are displayed in Fig. 2b. In all the cases, they closely resemble the predictions of the numerical simulations, cf. Fig. 2a. Note that, looking at the case of Q1 in the backward direction (this is relevant, as the evolution in z, governed by Eq. (2), is reversible), one observes the merger of colliding pulses. In Q2, a “soliton rain”like pulse appears for z = 0–1000 m. In this case, the individual pulses cannot be fully resolved because of the limited temporal resolution of the Dshaper (see Supplementary Note 2). Dual pulses are observed in areas Q3 and Q4, where Q3 produces an Airylike pulse, while Q4 shows two broadened pulses. Area B2 in Fig. 2b shows the experimental results for the regular case of the broadened pulse with α = 2. Here, the minimum of the pulse duration is shifted slightly from the expected zero point, which implies a minor difference in the frequency chirp between the reference and signal pulse. This additional chirp mainly comes from the various fused silica optical elements, which could be compensated by adding a small opposite spectral phase on the hologram (as highlighted in Supplementary Fig. 1). In particular, when the input has no frequency chirp (i.e., L_{GVD} = 0), the input pulse will split in two, the splitting angle increasing as LI increases from 0 to 2. This special case is considered in the Supporting Material (see Supplementary Movie 1) and Methods.
To fully characterize the pulses in both the temporal and spectral domains, we define the Wigner function^{30,31,45},
for electric field E(t), at values of z corresponding to the mid positions in panels Q1–Q4 and B2 of Fig. 2b, which are marked by white horizontal lines. It can be concluded from the comparison of panels corresponding to cases Q1 and Q4, and, separately, Q2 and Q3 in Fig. 2c (these pairs of panels are plotted for equal values of LI but opposite values of L_{GVD}) that the variation of the GVD leads to rotation of the Wignerfunction distribution in the time–frequency plane. Further, comparing the panels corresponding to Q1 and Q2, and, separately, to Q3 and Q4, demonstrates that LI strongly affects the Wignerfunction structure. Namely, smaller LI stretches the interference pattern in the temporal direction. The Wigner function for the reference case of B2 features a smooth rotating distribution without any interference fringes.
The case of the thirdorder spectral phase in the input: control of the curvature of Airy pulses by the Lévy index
In this section, we address the evolution of the input pulse carrying the thirdorder spectral phase. To realize it, an initial temporal profile is taken as
with β_{3} = 0.1 × 10^{3}ps^{3}/m and L_{GVD} = 500 m. This input, which is produced by the pulse shaper, cf. Eq. (5), generates a propagating pulse in the form of the Airy function^{46,47,48,49}. The experimentally observed evolution is displayed in Fig. 3. We first set α = 0.05 and observe the pulse shaped as the Airy function, which keeps its profile during the propagation governed by the FSEemulating setup. Note that the trajectory of the Airy pulse does not accelerate (the inset in the right panel of Fig. 3a displays the propagation pattern up to z = 1000 m). With the increase of α, a new accelerating branch of the Airy structure originates from the input. The acceleration increases with the growth of α, and the propagating pulse recovers the usual Airy shape at α = 2, the same as produced by the regular Schrödinger equation^{47,48,49}.
In the framework of the latter equation, the accelerating trajectory of the Airy beam (a bending one, in the other rendition), can be predicted by the model of the classical ballistic motion of a particle with mass M^{50}. Here, the trajectory can be modeled in terms of motion in a virtual gravity field g, which is directed along the time axis t (see the arrows depicted in Fig. 3). Then, the wave packet moves like a particle in the plane of (t, z), starting from the origin, (0, 0):
(here, we set M = 1). For the sake of clarity, we here focus on the main lobe of an Airy beam in the plane of (t, z).
Comparing Eq. (9) to the experimental results presented in Fig. 3a, we conclude that values of the effective gravity corresponding to
are, respectively,
The corresponding values of g extracted from simulations (see Supplementary Movie 2) are
The comparison of Eqs. (11) and (12) demonstrates that the crude mechanical model, based on Eq. (9), provides a reasonable approximation. Further, Fig. 3b provides a fit of the experimental data for the main lobe of the propagating Airyshaped pulse to Eq. (9), at α = 1.80. According to experimental data, values of the adequate acceleration, in the entire interval of 0 ≤ α ≤ 2, obey an empirical relation,
where p_{1,2} > 0 are fitting parameters. The exponential dependence on the LI in Eq. (13) is explained by the transition from the integral operator Eq. (3) to the regular local derivative, as the LI is approaching the usual limit value, α = 2. Figure 3c shows fitting of the relation between g_{exper} and α to the exponential dependence defined in Eq. (13). The fitting corresponds to p_{1} = 2.748 × 10^{−5} and p_{2} = 2.947, respectively.
The case of the fractionalorder spectral phase in the input: the “fractionalphase protection” effect
While building an actual optical Lévy waveguide that can support the pulse propagation is a challenge, the use of the fractional phase may provide an advantage in some other cases. In particular, the input pulse, \(\hat{{{\Psi }}}(z=0)\), containing a sum of fractionalphase terms with different LI values α_{j} and different weights, will acquire a nonfractional spectral phase shift in a regular dispersion material, according to the general relations,
where \(\hat{{{\Psi }}}(z=0)\) and \(\hat{{{\Psi }}}(z=L)\) are the input and output, respectively. W_{j} = DL_{frac,j}/2 represents the weight of fractional phase on each α, and W_{k} = β_{k}/k! gives the corresponding contribution on the regular kth dispersion. Thus, the fractional part in the input phase is kept unaltered in the transmission, according to Eq. (14), which demonstrates an effect of the “fractionalphase protection”. It may be useful for the design of optical datatransmission schemes.
Figure 4 presents the results of testing this effect. To this end, the initial pulse, carrying the fractional phase, is injected into the regular (nonfractional) dispersive segment, which is represented by the second hologram in the present setup. As a result, regular and fractionalphase shifts are mixed in the output pulse. Even if the regular phase change may be very complex, as shown by Eq. (14), the fractional parts are still kept. To demonstrate this, we select four initial pulses with parameters \(\left({\alpha }_{j},\,{W}_{j}\right)=(0.4,0.73)\), (0.6, 0.07), (0.8, 0.51), and (1.0, 0.22), respectively, and the propagation distance z varying from 0 to 10 m. We present the scheme and reconstruct the soproduced spectral phase in Fig. 4. The results confirm the stability of the fractional phase. Four panels show, using purple balls, weights of four terms in the reconstructed phase, corresponding to four particular values of α < 2, after passing distances z = 1 m, 3 m, 6 m, and 9 m. For comparison, the yellow balls represent the regular (nonfractional) part of the phase, corresponding to α = 2. The height of the yellow mark increases during the propagation, while the fractional terms remain mostly constant, with the corresponding marks forming a closed contour, shown by blue lines. These results directly confirm the validity of the “fractionalphase protection" effect. Full results of the experiments and simulations represented in Fig. 4 are shown in Supplementary Movie 3. It should be noted the “fractionalphase protection” effect may not hold for all values of α. With α becoming closer to 2, the profile of the fractional spectral phase will become more similar to the nonfractional case of k = 2. When α = 2, the two types of phases cannot be distinguished, and the “fractionalphase protection” effect will disappear. Based on the results shown in Fig. 4, this overlap is negligible when α is set between 0 and 1. As mentioned above, this effect may find applications in designing robust optical datatransmission protocols.
Discussion
In this work, we have produced the first experimental realization of the fractionalGVD optical medium, which is modeled by the FSE (fractional Schrödinger equation) in the temporal domain. The experiment makes use of two pulseshaping holograms, one producing appropriate initial conditions and the other emulating an optical Lévy waveguide. The temporal and spectral fields were reconstructed employing the singleshot SSI (spatialspectrum interferometry). Several noteworthy dynamical effects have been observed through adjusting parameters of the equivalent Lévy waveguide and applying appropriate phases to the initial pulse. These include the observation of solitary pulses, collision between them, “rainlike” multiple pulses, and double Airy pulse structures. SubFourier patterns, which may simulate subPlanck structures in quantum mechanics, are produced too using the Wignerfunction distribution for the pulses in the time–frequency chronocyclic space. When the thirdorder spectral phase is applied to the input, the trajectory of the resulting Airy pulses can be efficiently controlled using the LI (Lévy index). Furthermore, the propagation of the pulses carrying the fractional phase reveals the “fractionalphase protection” effect when it passes through the regular medium.
Thus, these findings provide the experimental realization of fractional optical media. The results offer applications to engineering optical pulses and their use in datatransmission schemes. Compared to the previous proposal of implementing FSE in the spatial domain via using an optical resonator^{9}, our implementation of FSE in the temporal domain has several advantages. Firstly, the current linear setup is feasible as only onedimensional Fourier optics (compared to twodimensional required for the spatial domain) needs to be considered, for which the optical cavity is not required. Secondly, we have seen that the pulse dynamics under the FSE not only depend on the LI (α), but are also strongly influenced by the initial condition^{37,51}, which is easier to change by shaping the input pulse in the temporal domain. However, manipulating the initial spatial profile in the cavity’s regime may destroy the stability of the cavity. Thirdly, regarding possible extensions of the work for FSE in the future, such as introducing a potential function, in the current regime based on the temporal mode, this can be engineered directly by employing an electronic optical modulator^{22,40,52}. This may be more complex for the cavity’s regime, as a spatially varying potential function will also affect the stability of the cavity. Lastly, since no changes to the spatial profile are made and fractional phases are preserved in regular dispersive media, temporal modes can be readily introduced into the current fiberbased communication or waveguide infrastructures. Further, implementing the FSE in the temporal domain makes it natural to include nonlinear materials, which is a promising direction too^{12}.
It should be noted that the temporal FSE is emulated here by means of two programmable holograms, which is still an indirect implementation of the fractional dispersion. How to create a fractional dispersive material and realize the FSE directly is still an open question^{12}. In principle, such a realization may be facilitated in artificial optical materials^{37,53}. It is also relevant to mention that the processing time for each pulse measurement is ~1 s, including hologram loading, interferencepattern recording, and pulse reconstruction. It is limited mainly by the refresh rate of the pulse shaper, CCD camera, and the computer’s processing power. Also, the temporal window ≃ 8 ps of the currently used shaper system does not allow us to observe the dynamics on longer distances. These limitations may be relaxed by using an optical grating with a larger number of grooves and the input of the larger beam size.
Methods
Experimental setup for the realization of the FSE
Figure 5 shows the experimental setup built for the realization of the FSE. It is divided into four sections: the Source, DShaper, SSI and FROG. The Source is based on an OPO system which produces ultrafast pulses (with duration ≃100 fs at the carrier wavelength 810 nm). They are split into two paths by a polarizing beam splitter (PBS), with a polarization controller used to balance the power between the PBS output ports. One pulse is coupled into the SSI system as a reference. The second, signal pulse, is sent into the pulse shaper (Dshaper) that includes two optical gratings and one SLM (pixels: 1280 × 1024). We split the SLM surface into two sections, so that the pulse is first shone on the top hologram, which is used to set the initial pulse. The pulse is then reimaged onto the bottom section, where the phase profile is produced by the propagation through a Lévy waveguide or a regular dispersion material (no fractional component). The two pulse beams finally interfere in the SSI system, allowing the singleshot measurement of the amplitude and phase. The collinear FROG system is used to determine the initial amplitude and phase of the two pulses and to calibrate the SSI. The collinear FROG system deals with pulse duration 317 and 348 fs for the reference and signal pulses, respectively. The bandwidth of these pulses is 6.59 and 4.84 nm, respectively. These measurements are necessary for the calibration of SSI. For the pulseshaper system, the measured frequency resolution in the Fourier plane of the 4f setup (on the SLM surface) is ≃ 1.88 nm/mm, and the temporal window is ≃ 8 ps. More details concerning each section of the setup can be found in Supplementary Notes 1–3.
The treatment of the FSE
To solve the FSE (Eq. (4)), we consider an input pulse with the secondorder spectral phase:
Here, β_{2}L_{GVD} represents the secondorder GVD, and ω_{0} is the bandwidth of the input pulse with the Gaussian distribution in the frequency domain. The FSE produces the corresponding output at propagation length L,
Then, the application of the Fourier transform yields
Equation (17) admits an analytical solution for α = 1, cf. refs. ^{9,51}:
In the case of β_{2}L_{GVD} = 0, a is a real number, and solution (18) contains two temporal packets without frequency chirp. The corresponding solutions seem as a superposition of two Gaussians with separation DL; hence the separation grows linearly with the increase of transmission length L. This feature is observed in Fig. 6a, which is plotted in terms of the analytical expression (18), and agrees with the results of the numerical calculations based on the Fourier transform, which is shown in Fig. 6b. In Fig. 6a, the temporal separation is DL ≈ 1 ps for L = 50 m.
Figure 6c, d display the pulse dynamics based on Eq. (18). It is seen that the initial dispersion, determined by the parameter L_{GVD}, strongly affects the emerging pattern, producing the “rainlike” pattern built of many pulses. This happens as the variation of L_{GVD} changes the value of a in Eq. (18), thus affecting the pulse pattern. For fractional LI values, analytical solutions are unavailable, and the numerically implemented Fourier transform should be used.
Data availability
The experiment data that support the findings of this study are available from the corresponding authors, S.L. (dr.shilongliu@gmail.com) or E.K. (ekarimi@uottawa.ca), upon reasonable request.
Code availability
The custom code for numerical simulation of the fractional Schrödinger equation and reconstruction of the pulse are available from the corresponding authors, S.L. (dr.shilongliu@gmail.com) or E.K. (ekarimi@uottawa.ca), upon reasonable request.
References
Laskin, N. Fractional quantum mechanics. Phys. Rev. E 62, 3135 (2000).
Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000).
Dubkov, A. A., Spagnolo, B. & Uchaikin, V. V. Lévy flight superdiffusion: an introduction. Int. J. Bifurcation Chaos 18, 2649–2672 (2008).
Laskin, N. Fractals and quantum mechanics. Chaos: Int. J. Nonlinear Sci. 10, 780–790 (2000).
Guo, X. & Xu, M. Some physical applications of fractional schrödinger equation. J. Math. Phys 47, 082104 (2006).
Stickler, B. Potential condensedmatter realization of spacefractional quantum mechanics: the onedimensional lévy crystal. Phys. Rev. E 88, 012120 (2013).
Gorenflo, R. & Mainardi, F. Random walk models approximating symmetric spacefractional diffusion processes. in Problems and Methods in Mathematical Physics. (eds Elschner, J., Gohberg, I. & Silbermann, B.) 120–145 (Springer, 2001).
Economou, E. N. Green’s Functions in Quantum Physics, Vol. 7 (Springer Science & Business Media, 2006).
Longhi, S. Fractional schrödinger equation in optics. Opt. Lett. 40, 1117–1120 (2015).
Saleh, B. E. & Teich, M. C. Fundamentals of Photonics (John Wiley & Sons, 2019).
Zhang, Y. et al. Propagation dynamics of a light beam in a fractional schrödinger equation. Phys. Rev. Lett. 115, 180403 (2015).
Malomed, B. A. Optical solitons and vortices fractional media: a minireview of recent results. in Photonics, 8, 353 (2021).
Huang, C. & Dong, L. Gap solitons in the nonlinear fractional schrödinger equation with an optical lattice. Opt. Lett. 41, 5636–5639 (2016).
Zeng, L. et al. Families of fundamental and multipole solitons in a cubicquintic nonlinear lattice in fractional dimension. Chaos Solitons Fractals 144, 110589 (2021).
Zeng, L. & Zeng, J. Preventing critical collapse of higherorder solitons by tailoring unconventional optical diffraction and nonlinearities. Commun. Phys. 3, 1–9 (2020).
He, S. et al. Propagation dynamics of abruptly autofocusing circular airy Gaussian vortex beams in the fractional schrödinger equation. Chaos Solitons Fractals 142, 110470 (2021).
Li, P., Malomed, B. A. & Mihalache, D. Vortex solitons in fractional nonlinear schrödinger equation with the cubicquintic nonlinearity. Chaos Solitons Fractals 137, 109783 (2020).
Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. Realtime spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017).
Kurtz, F., Ropers, C. & Herink, G. Resonant excitation and alloptical switching of femtosecond soliton molecules. Nat. Photonics 14, 9–13 (2020).
Helgason, Ó. B. et al. Dissipative solitons in photonic molecules. Nat. Photonics 15, 305–310 (2021).
Makris, K. G., ElGanainy, R., Christodoulides, D. & Musslimani, Z. H. Beam dynamics in p t symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).
Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).
Zhang, Y. et al. Diffractionfree beams in fractional schrödinger equation. Sci. Rep. 6, 1–8 (2016).
Zhang, Y. et al. Pt symmetry in a fractional schrödinger equation. Laser Photonics Rev. 10, 526–531 (2016).
Yao, X. & Liu, X. Solitons in the fractional schrödinger equation with paritytimesymmetric lattice potential. Photonics Res. 6, 875–879 (2018).
Akturk, S., Gu, X., Bowlan, P. & Trebino, R. Spatiotemporal couplings in ultrashort laser pulses. J. Opt. 12, 093001 (2010).
Agrawal, G. P. Nonlinear fiber optics. in Nonlinear Science at the Dawn of the 21st Century. (ed. Agrawal, G. P.) 195–211 (Elsevier, Amsterdam, 2012).
Alonso, M. A. Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles. Adv. Opt. Photonics 3, 272–365 (2011).
Zurek, W. H. Subplanck structure in phase space and its relevance for quantum decoherence. Nature 412, 712–717 (2001).
Praxmeyer, L., Wasylczyk, P., Radzewicz, C. & Wódkiewicz, K. Timefrequency domain analogues of phase space subPlanck structures. Phys. Rev. Lett. 98, 063901 (2007).
Weinbub, J. & Ferry, D. Recent advances in Wigner function approaches. Appl. Phys. Rev. 5, 041104 (2018).
Liu, S.L. et al. Classical analogy of a cat state using vortex light. Commun. Phys. 2, 1–9 (2019).
Berry, M. & Popescu, S. Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A: Math. Gen. 39, 6965 (2006).
Rogers, E. T. & Zheludev, N. I. Optical superoscillations: subwavelength light focusing and superresolution imaging. J. Opt. 15, 094008 (2013).
Eliezer, Y. & Bahabad, A. Superoscillating airy pattern. ACS Photonics 3, 1053–1059 (2016).
Naber, M. Time fractional schrödinger equation. J. Math. Phys 45, 3339–3352 (2004).
Malomed, B. A. Multidimensional Solitons (AIP Publishing LLC, 2022).
Cai, M. & Li, C. On Riesz derivative. Fract. Calc. Appl. Anal. 22, 287–301 (2019).
Monmayrant, A., Weber, S. J. & Chatel, B. A newcomer’s guide to ultrashort pulse shaping and characterization. J. Phys. B 43, 103001 (2010).
Weiner, A. M. Ultrafast optical pulse shaping: a tutorial review. Opt. Commun. 284, 3669–3692 (2011).
Kivshar, Y. S. & Malomed, B. A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763 (1989).
Kivshar, Y. S. & Agrawal, G. P. Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003).
Malomed, B. A. Soliton Management in Periodic Systems (Springer Science & Business Media, 2006).
Chouli, S. & Grelu, P. Rains of solitons in a fiber laser. Opt. Express 17, 11776–11781 (2009).
Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photonics 1, 308–437 (2009).
Siviloglou, G., Broky, J., Dogariu, A. & Christodoulides, D. Observation of accelerating airy beams. Phys. Rev. Lett. 99, 213901 (2007).
Chong, A., Renninger, W. H., Christodoulides, D. N. & Wise, F. W. Airy–Bessel wave packets as versatile linear light bullets. Nat. Photonics 4, 103–106 (2010).
Zhang, Y., Zhong, H., Belić, M. R. & Zhang, Y. Guided selfaccelerating airy beams—a minireview. Appl. Sci. 7, 341 (2017).
Efremidis, N. K., Chen, Z., Segev, M. & Christodoulides, D. N. Airy beams and accelerating waves: an overview of recent advances. Optica 6, 686–701 (2019).
Hu, Y. et al. Optimal control of the ballistic motion of airy beams. Opt. Lett. 35, 2260–2262 (2010).
Liemert, A. & Kienle, A. Fractional schrödinger equation in the presence of the linear potential. Mathematics 4, 31 (2016).
Karpiński, M., Jachura, M., Wright, L. J. & Smith, B. J. Bandwidth manipulation of quantum light by an electrooptic time lens. Nat. Photonics 11, 53–57 (2017).
Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).
Acknowledgements
The authors would like to thank Prof. R.W. Boyd for providing the spectrometer used in the FROG system. We appreciate Prof. Alejandro Aceves (University of Arizona) for discussions in the theoretical section; Prof. Denis V. Seletskiy (Polytechnique Montréal) for discussions in the main results. Also, we thank Ende Zuo (University of Ottawa) and Christine Tao (A.U.G. Signals Ltd.) for improvements in figure aesthetics. S.L. acknowledges the support of the International Postdoctoral Exchange Fellowship Program of China Postdoctoral Council (2020020). This work was supported by Canada Research Chairs (CRC), Canada First Research Excellence Fund (CFREF) Program, NRCuOttawa Joint Centre for Extreme Quantum Photonics (JCEP) via High Throughput and Secure Networks Challenge Program at the National Research Council of Canada, and the Israel Science Foundation via grant No. 1695/22.
Author information
Authors and Affiliations
Contributions
S.L., B.A.M., and E.K. proposed the original idea. E.K. provided full support in the experiments. B.A.M. elaborated on the theoretical part. S.L. conducted experiments and wrote the initial draft with Y.Z. All authors took part in producing the final manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Communications thanks the anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Liu, S., Zhang, Y., Malomed, B.A. et al. Experimental realisations of the fractional Schrödinger equation in the temporal domain. Nat Commun 14, 222 (2023). https://doi.org/10.1038/s41467023358928
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41467023358928
This article is cited by

Twodimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices
Frontiers of Physics (2024)

Spontaneous symmetry breaking and ghost states in twodimensional fractional nonlinear media with nonHermitian potential
Communications Physics (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.