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Universality of light thermalization in
multimoded nonlinear optical systems

Qi Zhong1,5, Fan O. Wu 1,5, Absar U. Hassan1, Ramy El-Ganainy 2,3 &
Demetrios N. Christodoulides 1,4

Recent experimental studies in heavily multimoded nonlinear optical systems
have demonstrated that the optical power evolves towards a Rayleigh–Jeans
(RJ) equilibrium state. To interpret these results, the notionofwave turbulence
founded on four-wave mixing models has been invoked. Quite recently, a
different paradigm for dealing with this class of problems has emerged based
on thermodynamic principles. In this formalism, the RJ distribution arises
solely because of ergodicity. This suggests that the RJ distribution has a more
general origin than was earlier thought. Here, we verify this universality
hypothesis by investigating various nonlinear light-matter coupling effects in
physically accessiblemultimode platforms. In all cases, we find that the system
evolves towards a RJ equilibrium—even when the wave-mixing paradigm
completely fails. These observations, not only support a thermodynamic/
probabilistic interpretation of these results, but also provide the foundations
to expand this thermodynamic formalism along other major disciplines
in physics.

Nonlinear optics plays a crucial role in a wide range of modern sci-
ence and technologies. These include optical cavity microcombs1,2,
high-power light sources3, cavity optomechanics4,5, nonlinear topo-
logical and non-Hermitian photonics6–10, bioimaging11,12, as well as
classic/quantum networks and signal processing13–16. While nonlinear
interactions widely vary in strength and differ from one material
system to another, their vast majority can still be described using an
underlying theoretical framework that relies on perturbative
analysis17. Particularly, by expressing the electric polarization vector
as a Taylor series expansion in terms of the driving electric field, one
can classify nonlinear optical effects into several, largely indepen-
dent processes such as those associated with second harmonic and
sum/difference frequency generation and multi-wave mixing
interactions17. A few decades ago, this same paradigm was adopted
by Zakharov and colleagues to study optical nonlinear propagation
effects when an infinite number of Fourier components is involved—a
field of research that is nowadays known as wave turbulence18. In this

seminal work, it was shown that such a system can be described by a
Boltzmann-like kinetic model that admits a steady-state solution in
the form of a Rayleigh–Jeans (RJ) distribution. In this regard, it was
conjectured that the RJ law results as a mere byproduct of the non-
linear attractor dynamics taking place during multi-wave mixing19. In
developing thismodel, several assumptionsweremade. Firstly, it was
implicitly assumed that four-wave mixing dominates the interaction
process. Secondly, the so-called random phase approximation20 was
employed to omit off-resonant interaction terms. Meanwhile, recent
progress in the general area of multimode fiber optics21–29 has
enabled a new generation of nonlinear experimental setups where
the RJ distribution (power allocation amongmodes) was successfully
observed for the first time30–33. The clear demonstration of RJ ther-
malization in such settings has been touted as evidence in support of
the wave turbulence theory. While reaching such a conclusion does
not seem to pose a problem from a practical point of view, it is
unsettling at amore fundamental level. In essence, adopting thewave
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turbulence hypothesis is to a great extent analogous to attempting to
infer, for example, the nature of the interactions between gas
molecules solely from the Maxwell–Boltzmann distribution. Even
more importantly, while the laws of simple thermodynamic systems
like gases can be developed from either classical (Newtonian) kinetic
theories or quantum mechanical perspectives, this is by no means
necessary, given that the corresponding equations of state can be
derived from purely entropic principles—in total disregard to the
underlying collisional mechanisms. So, the question naturally arises:
is the RJ distribution an actual byproduct of multi-wave mixing pro-
cesses or does it represent a much more general result that has little
to do with the specifics of the inherent nonlinearity involved?

Quite recently, a different approach for studying light thermali-
zation was put forward on the basis of statistical mechanics and
thermodynamics34–38. While this latter theoretical framework reaches
similar conclusions to those derived from the aforementioned kinetic
theories18,19 as far as the RJ distribution is concerned, its perspective of
optical thermalization is fundamentally different. Being founded on
notions from statistical mechanics, this paradigm34,35 allows one to
predict and interpret the RJ law emerging in a microcanonical system
from purely entropic considerations. In this regard, the RJ equilibrium
state macroscopically manifests itself because it is ergodically asso-
ciatedwith a largest number ofmicrostates (inphase space) and thus it
can be considered a byproduct of probability theory—an aspect that
has little to do with the nature of the underlying nonlinearity involved.
If this is indeed the case, then in analogy with statistical mechanics of
gases, theRJ thermalization should occur in systemswithmoregeneric
nonlinearities beyond thewavemixing paradigm as illustrated in Fig. 1.
The situation is however more complex. Nonlinear optical systems
often exhibit two constants of motion, i.e., the power and the Hamil-
tonian. The first, which describes the conservation of optical power, is
analogous to the number of particles in a gas system. The second,
however, when expressed in the linear eigenbasis, involves both a
linear and a nonlinear component. Thus, strictly speaking, such a
system is not necessarily expected to relax to a RJ distribution. Only
under the condition that the linear part is constant, the RJ distribution
can be anticipated. In reality, however, even under weak nonlinear
conditions, the linear part of the Hamiltonian is only quasi-conserved.
In other words, the analogy between multimoded nonlinear optical
arrangements and idealized thermodynamic systems involving two
constants of motion is not formal, which further complicates the
question about thermalization in nonlinear optical systems and the
physical mechanism responsible for observing the RJ distribution.

In this work, we critically examine the manner in which optical
thermalization processes unfold in nonlinear environments with dif-
ferent types of nonlinearities such as those arising from optomecha-
nical interactions (where wave mixing interpretations are rather
cumbersome) and those associated with photorefractive crystals
(where above certain power thresholds, standard perturbative wave
mixing expansions are not possible). In addition, we consider also
artificial nonlinear systems with nonanalytic and discontinuous non-
linear functions that cannot be described by any convergent poly-
nomial and demonstrate that such set-ups can also reach the RJ
equilibrium distribution. Our work thus establishes the universality of
the thermalization towards the RJ state in nonlinear optical systems,
and, in doing so, presents compelling evidences in favor of the more
general entropic viewof optical thermalization asopposed to themore
restrictive four-wave mixing paradigm.

Results
Beforeweproceed, perhaps itwouldbe useful to highlight someof the
basic notions upon which the optical thermodynamic approach relies
on. As in the caseof standard statisticalmechanics39, the entropyof the
optical multimode arrangement can be built within a microcanonical
ensemble formalism by accounting all possible microstates, each
containing information as to the energy/power and phase distribution
among all modes in the system. In defining the macrostates, the
energy/power distribution is retained while the phase information is
omitted40 (being superfluous given that it is uniformly distributed
within the range 0 to 2π). In this respect, the nonlinear interaction acts
merely as an agent that enables a chaotic reshuffling of optical energy
among modes and therefore facilitates thermalization. On the other
hand, the specifics of nonlinearity are inconsequential. Optical ther-
modynamic equilibrium is then reached when entropy is maximized
over all possiblemicrostates under the constraints dictated by the two
constants of motion35.

Kerr nonlinearity
We begin our analysis by first considering a Kerr nonlinear multimode
tight-binding model—a one-dimensional photonic array comprised of
M evanescently coupled single-mode waveguides with nearest neigh-
bor coupling41,42 (a situation most relevant to experimental imple-
mentations), as shown in Fig. 2a. Under these conditions, light
propagation along z in such a lattice can be described by the following
normalized discrete nonlinear Schrödinger equation43:

i
dam

dz
+am�1 +am+ 1 + ∣am∣

2am =0, ð1Þ

where am is the field amplitude at site m, and the last term denotes
Kerr nonlinear effects. Equation (1) exhibits two constants of motion.
The first invariant (denoting power conservation) is given by
P =

PM
m= 1 ∣am∣

2 =
PM

j = 1 ∣cj ∣
2, where cj is the field amplitude component

associated with supermode ∣ψji of the linear array (i.e., the normal
modesobtainedbydiagonalizing Eq. (1) in the absenceof thenonlinear
term). The complex amplitudes cj at any distance z are obtained by
projecting the state ∣ψ

�
of the system on the linear supermodes as

expressed in the local representation (i.e., in terms of am). The second
invariant is associated with the optical Hamiltonian comprised of a
linear HL and a nonlinear HNL component, i.e., H =HL +HNL where
HL =

PM
m= 1ðama

*
m+ 1 +a

*
mam+ 1Þ and HNL =

PM
m= 1

1
2 ∣am∣

4, where aM+1 = 0
because of the truncated boundary condition. Under weak nonlinear
conditions, the contribution from the linear termHL dominates, and as
a result one can define a quasi-invariant internal energy by
U � �HL = �PM

j = 1 εj ∣cj ∣
2, where εj = 2 cosð jπ

M + 1Þ are the eigenvalues
associated with the linear supermodes ∣ψji. As indicated above, by
using purely entropic principles, one can show that light propagating
in such a system evolves towards a thermal state obeying the RJ
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Fig. 1 | Conceptual illustration of thermalization in a nonlinear multimode
optical system. Similar to thermalization in matter, the nature of the interaction
forces (like forces between gas molecules) is irrelevant. Here, we show that light
thermalization into a Rayleigh–Jeans (RJ) distribution can take place under a wide
range of nonlinear conditions beyond the traditional four-wave mixing (FWM)
paradigm. These include second harmonic generation (SHG), multi-wave mixing
(MWM), optomechanical (OM) cascaded interactions between optical and
mechanical modes, and even scenarios where the system cannot be described by
any wave mixing expansion (w/o WM).
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distribution34,35:

∣cj ∣
2 = � T

μ+ εj
, ð2Þ

where T and μ represents the optical temperature and chemical
potential, respectively. In general, the equilibrium values of T, μ can be
predicted from the initial conditions, i.e., from the invariants P and
U34,36,38. For instance, for a lattice with M = 100 elements, an input
excitation ∣cj∣2 = 0.05(εj + 2) (dashed line in Fig. 2b) leads to P = 10 and
U = − 9.9, which in turn predicts T =0.15 and μ= − 2.5 (see Supplemen-
tary Note 1). The size of the systems considered in this study is large
enough so as to guarantee the extensivity of the entropy and the self-
consistency of the thermodynamic formulation used44. By numerically
integrating Eq. (1), we find that the equilibrium modal occupancies ∣cj∣2

are consistent with the theoretically predicted RJ distribution (Fig. 2b).
The inset panel in Fig. 2b shows that during propagation, the optical
entropy S=

PM
j = 1 lnð∣cj ∣2Þ monotonically increases until it reaches a

maximum (as expected by the second law of thermodynamics) while
the optical energy U remains quasi-invariant.

Cascade second order χ(2) nonlinearity
In order to demonstrate the universality of RJ thermalization, we
now investigate a variety of scenarios. In this respect, we consider
cascade second order χ(2) nonlinear processes unfolding in
waveguide arrays, governed by the following normalized coupled
evolution equations45–47:

i
dam

dz
+am�1 +am+ 1 +a

*
mbm =0,

i
dbm

dz
� Δbm +a2

m =0,
ð3Þ

where am and bm are the local site field amplitudes associated with the
fundamental and the second-harmonic frequency, and Δ is the phase
mismatch. Here the linear coupling among bm is neglected46, as
illustrated in Fig. 2c. This system exhibits two constants of motion: the
total optical power P =

PM
m= 1ð∣am∣

2 + ∣bm∣
2Þ and the Hamiltonian

H =
PM

m= 1½ama
*
m+ 1 +a

*
mam+ 1 � 1

2Δ∣bm∣
2 + 1

2 ða2
mb

*
m +a*2

mbmÞ� (see Sup-
plementary Note 2). Under weak nonlinear conditions, the field in
the fundamental frequency am dominates, and therefore its power and
energy can be regarded as quasi-invariants, i.e., Pa =

PM
j = 1 ∣cj ∣

2, and
Ua = �PM

j = 1 εj ∣cj ∣
2, where cj is thefield amplitudeof the corresponding

supermode . If indeed this system can thermalize through the χ(2)

process under these two invariants, one should then anticipate a RJ
distribution once equilibrium is reached. To confirm this hypothesis,
we numerically simulated Eq. (3) with Δ = 1, M = 100 when the first 30
modes in the fundamental frequency were evenly excited (dashed line
in Fig. 2d). As shown in Fig. 2d, after a non-equilibrium prethermaliza-
tion stage, the quantities Pa and Ua eventually settle to Pa =8:3 and
Ua = −15.1, i.e., they remain invariants. For this set of values, once
thermal equilibrium is attained, our theory predicts T = 0.016 and
μ = −2.007, in excellent agreement with our numerical simula-
tions (Fig. 2d).

Optomechanical nonlinearity
Next, we consider a lossless nonlinear optomechanical cavity array
where the intracavity optical fields and the vibrational motions are
described by the following evolution equations48:

i
dam

dt
� ðam�1 +am+ 1Þ+amðbm + b*

mÞ=0,

i
dbm

dt
�Ωbm + ∣am∣

2 =0:
ð4Þ

Fig. 2 | Thermalization of light in nonlinear waveguide arrays with different
nonlinearities. Linear and nonlinear couplings in three optical lattices when
acted upon by three different nonlinearities: a a Kerr nonlinearity, c cascade χ(2)

process, and e optomechanical nonlinearities, as described by Eqs. (1), (3), and (4),
respectively. Numerical simulations provide the modal occupancies after therma-
lization in all these three scenarios, in good agreement with the predicted
Rayleigh–Jeans (RJ) distributions (black lines), as shown in b, d, and f. The insets

display a monotonic increase in entropy S as well as the invariants of the motion U
and P. Note that in all cases, numerical simulations are performed over ensemble
averages. The thermal fluctuations of quasi-invariants (when applicable) are indi-
cated by gray lines, depicting the instantaneous values of U and P around their
mean values. In all cases, the nonlinear array hasM = 100 sites and the dashed lines
represent the initial occupancies for the linear optical supermodes.
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Here am and bm stands for the optical field and the mechanical oscil-
lation amplitude in cavitym, respectively (Fig. 2e), while the parameter
Ω represents a normalized angular frequency of the mechanical
resonance. Synchronization between driven optomechanical oscilla-
tors have been investigated in earlier studies and it was shown that
the synchronization dynamics follow the generic features of the Kur-
amoto model49. Here, instead, we are interested in the nonlinear
dynamics of coupled optomechanical oscillators in the absence of the
driving force. We proceed by first noting that the above system
exhibits two invariants: the number of “photons” in the cavities

Pa =
PM

m= 1 ∣am∣
2 =

PM
j = 1 ∣cj ∣

2, and the overall Hamiltonian of the sys-

tem H =
PM

m= 1½�ðama
*
m+ 1 +a

*
mam+ 1Þ+ ∣am∣

2ðbm +b*
mÞ �Ω∣bm∣

2� (see
Supplementary Note 3), where cj denotes the field amplitude of the jth
optical supermode. As before, under weakly nonlinear conditions
and when the normalized Ω is large, such as Ω = 8 in our
numerical simulations, one finds that the linear part of the
Hamiltonian associated with the optical field is a quasi-invariant,

Ua =
PM

m= 1½�ðama
*
m+ 1 +a

*
mam+ 1Þ�=

PM
j = 1 εj ∣cj ∣

2. Even in this more

complex scenario, the RJ distribution emerges at thermal equilibrium
as a result of ergodicity as can be seen in Fig. 2f. In all cases, a good
agreement was found to exist between numerical simulations and the
theoretically anticipated RJ distribution once Pa, Ua were specified by
initial conditions. Note that in this case, it is impossible to associate a
multi-wave mixing process to the optical nonlinearity—an aspect that
dispels the wave turbulence paradigm. Interestingly, unlike their
photon counterparts, the mechanical vibrations themselves do not
display apair of (quasi-)invariantsP andU (see SupplementaryNote 3),
and therefore cannot thermalize to a RJ equilibrium state in the same
manner.

Nonlinearity described by a smooth but nowhere analytic
function
So far, we have analyzed thermalization effects in multimode systems
where the nonlinearities conform to standard Taylor series expan-
sions. Naturally, one may ask whether the RJ thermalization process

can indeed manifest itself in more general nonlinear settings.
To address this question, we now consider optical lattices involving
generalized intensity-dependent nonlinearities F(x) as described by50:

i
dam

dz
+am�1 +am+ 1 + Fð∣am∣

2Þam =0: ð5Þ

Here the optical power P =
PM

j = 1 ∣cj ∣
2 as well as the Hamiltonian

H =
PM

m= 1½ama
*
m+ 1 +a

*
mam+ 1 +Gð∣am∣

2Þ� of the system are still con-
served, whereG(x) is the antiderivative of F(x) (i.e.,dG(x)/dx = F(x), and
G(0) = 0). As before, in the weak nonlinear regime, i.e., F(x)≪ 1, the

linear part of the Hamiltonian U = �PM
j = 1 εj ∣cj ∣

2 is a quasi-invariant.

First, we consider the case where F(x) is chosen to be a smooth
(infinitely differentiable) function everywhere, yet nowhere analytic
(i.e., it does not have a convergent Taylor series representation). This
function, which we will henceforth denote as F1(x). For example, here
we construct such a nonanalytic function via Fourier series
F1ðxÞ=

PN
n=�N hn expði2πnxÞ, where the Fourier coefficients hn are

random variables chosen such that their amplitudes drop with n faster
than the reciprocal of any polynomial but slower than exponential51–53

(see SupplementaryNote 4). This condition guarantees that in the limit
N→∞, the function F1(x) is infinitely differentiable but nowhere ana-
lytic. In other words, this function has a Taylor series but its radius of
convergence tends to 0 as N→∞. From a practical point of view, one
can chooseN to be large enough so as the function F1(x) does not have
a proper Taylor series within the range of interest of the intensities
involved in our simulations. Figure 3a shows one such possible func-
tion F1(x) used in our computations. In this case, numerical simulations
carried out on Eq. (5) clearly indicate that the RJ distribution still
emerges upon thermalization, as shown in Fig. 3b. While these results
clearly support the universality hypothesis for RJ thermalization, they
still do not provide compelling evidence, mainly because the function
F1(x) is continuous. In this case, the Stone–Weierstrass theorem54

guarantees that it can be still represented by a polynomial expansion,
even though it does not correspond to its Taylor series. Thus, in this

Fig. 3 | Thermalization of light in nonlinear lattices involving generalized
intensity-dependent nonlinearities F(x). a An example of non-analytic function
used in our simulations.bCorresponding Rayleigh–Jeans (RJ) distribution (T =0.15,
μ = −2.5) occurring after thermalization. cAdiscontinuousmulti-step function used
in our simulations. d Again this nonlinearity leads to a RJ distribution. e A saturable
nonlinearity described by F3ðxÞ= x

1 + x, and (f) its corresponding RJ distribution. In

(b) and (d), the initial excitation conditions are exactly the same and as a result
they attain the same RJ allocation, an aspect indicating universality in thermaliza-
tion.The insets have been plotted in a manner similar to Fig. 2. As before, here
we used M = 100 and the initial mode occupancies are represented by the
dashed lines.
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scenario one could still argue that the underlying nonlinear interac-
tions do arise from a series of higher-order wave mixing terms.

A discontinuous nonlinearity function
In order to assert the universality of RJ thermalization, i.e., being of a
purely entropic (ergodic) origin that goes beyond the wave mixing
picture, we next consider a nonlinearity that is described by a dis-
continuous multi-step function55–57 such as that depicted in Fig. 3c,
denoted as F2(x). Due its discontinuous nature, the function F2(x)
cannot be analytically represented by a polynomial expansion across
its entire domain. In other words, the wave mixing paradigm com-
pletely fails in this case. Interestingly, even in this case, the system
thermalizes and reaches a RJ equilibrium state as shown in Fig. 3d, in
full accord with theoretically anticipated results. This latter example
demonstrates once and for all that optical thermalization in multi-
mode systems has a more fundamental origin—rooted in the system’s
ergodicity rather than in the intricate nature of the nonlinear interac-
tions involved. In other words, the onset of a RJ distribution does not
necessarily require the presence of any multi-wave mixing mechan-
isms. Instead, it is simply the outcome of the maximizing the entropy
itself. Note that the simulations depicted in Fig. 3b, d were carried out
for the same parameters and initial conditions (M = 100, P = 10,
U = −9.9). Interestingly, despite the profound differences in their
nonlinearity, they all settle exactly at the same RJ distribution with
T = 0.15 and μ = −2.5. This further supports our hypothesis. In other
words, as indicated before, one cannot infer the nature of the inter-
molecular collision processes from the Maxwell–Boltzmann distribu-
tion as manifested in actual gases.

Saturable nonlinearity
Wefinally extend this discussion tomore realisticmaterial systems. For
instance, consider photorefractive crystals where the nonlinearity is
saturable57,58 F3ðxÞ= x

1 + x, as shown in Fig. 3e. In the domain where x > 1,
F3(x) does not have a Taylor representation but instead has a Laurent
series expansion59: F3(x) = 1 − x−1 + x−2 − x−3 + . . . . Obviously, in this
regime, the nonlinear interaction cannot be described by a simple
wave mixing approach. Yet, assuming that ergodicity holds, and given
that two invariants P and U still exist, as per our previous arguments,
this should lead to RJ thermalization. This is verified using numerical
simulations as shown in Fig. 3f. To ensure the validity of our conclu-
sions, the values of the local intensities ∣am∣2 have been monitored
during our simulations so as the F3(x) function was predominantly
within the Laurent series expansion (see Supplementary Note 5).

Discussion
In conclusion, we have critically examined the manner in which
optical thermalization processes unfold in nonlinear multimode
environments and showed that the RJ distribution law is universal: it
can manifest itself even in systems where the multi-wave mixing
picture fails. These results extend the notion of wave thermalization
beyond the original wave turbulence hypothesis that is founded on
the premise of wavemixing interactions. In other words, through the
use of counterexamples we demonstrated that nonlinear wave mix-
ing may be sufficient but by no means necessary. Importantly, it
would seem that, in some cases, these processes may not be in fact
responsible for thermalization. Instead, our results suggest that RJ
equilibrium is obtained because of ergodicity and entropy max-
imization as expected by the second law of thermodynamics. These
observations, not only support a thermodynamic/probabilistic
interpretation of these results, but also provide appropriate foun-
dations to expand the thermodynamic formalism in other physical
settings governed by classical bosonic interactions. Finally, of inter-
est would be to investigate the prospects of devising a formal proof
that would dictate the universality of thermalization processes under
general nonlinear conditions.

Methods
Numerical simulation
All the simulation results in this work are obtained by numerically
integrating the nonlinear equations of motion described by Eqs. (1),
and (3)–(5). Due to the finite size of the system, themodal occupancies
∣cj∣2 fluctuate around their equilibrium values. Thus, the final equili-
brium state can be evaluated either by calculating the time (distance)
average or ensembles average. In this work, we adopted the latter
strategy. In particular, for each simulation in Figs. 2 and 3, we have
employed 400 ensembles, each of which corresponds to a random
initial condition that have the same intensity profile (i.e., same values
for ∣cj∣2) but a different phase distribution.

Data availability
The data that support the findings of this study are available from the
corresponding authors upon request.
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