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Single-cell analysis reveals prognostic fibro-
blast subpopulations linked to molecular
and immunological subtypes of lung cancer

Christopher J. Hanley 1,2 , Sara Waise 1,7, Matthew J. Ellis1,7, Maria A. Lopez3,
Wai Y. Pun3, Julian Taylor3, Rachel Parker1, LucyM. Kimbley 1, Serena J. Chee1,4,
Emily C. Shaw3, Jonathan West 1,5, Aiman Alzetani 6, Edwin Woo6,
Christian H. Ottensmeier 1,2,4, Matthew J. J. Rose-Zerilli1,5 &
Gareth J. Thomas 1,2,3

Fibroblasts are poorly characterised cells that variably impact tumour pro-
gression. Here, we use single cell RNA-sequencing, multiplexed immunohis-
tochemistry and digital cytometry (CIBERSORTx) to identify and characterise
three major fibroblast subpopulations in human non-small cell lung cancer:
adventitial, alveolar and myofibroblasts. Alveolar and adventitial fibroblasts
(enriched in control tissue samples) localise to discrete spatial niches in his-
tologically normal lung tissue and indicate improved overall survival rates
when present in lung adenocarcinomas (LUAD). Trajectory inference identifies
three phases of control tissue fibroblast activation, leading to myofibroblast
enrichment in tumour samples: initial upregulation of inflammatory cytokines,
followed by stress-response signalling and ultimately increased expression of
fibrillar collagens. Myofibroblasts correlate with poor overall survival rates in
LUAD, associated with loss of epithelial differentiation, TP53 mutations,
proximal molecular subtypes and myeloid cell recruitment. In squamous car-
cinomas myofibroblasts were not prognostic despite being transcriptomically
equivalent. These findings have important implications for developing
fibroblast-targeting strategies for cancer therapy.

Cancer-associated fibroblasts (CAFs) are a prominent component of
solid tumours, associatedwith poor prognosis in awide range of cancer
types1. Multiple studies have shown their positive influence on tumour
progression: promoting metastasis, immune evasion and therapy
resistance, making them an attractive therapeutic target. However,
multiple CAF targeting strategies have failed in the clinic2,3, and it is
increasingly clear that CAFs play an important but context-dependent

role in cancer, with subpopulations capable of both promoting and
suppressing tumour progression4–6. This suggests that a more nuanced
understanding of fibroblast heterogeneity and biology is required if
CAF targeting is to become an effective part of cancer therapy.

Two major CAF subpopulations have been described in several
cancer types: myofibroblastic-CAFs (myoCAFs) and inflammatory-
CAFs (iCAFs)7,8. The role of these CAF subpopulations remains poorly
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understood and may depend on further sub-categorisations, as
described in breast cancer7. A key area of contention is myoCAF’s role
in tumour progression, with conflicting reports produced in different
tumours. Multiple human tissue analyses have shown that α-smooth
muscle actin (SMA)-positive myoCAFs are linked to poor prognosis in
many cancer types1 and to immunotherapy resistance in non-small cell
lung cancer (NSCLC)7. However, in pancreatic ductal adenocarcinoma
(PDAC) models, these cells can suppress tumour progression4–6,9.
Murine studies have also shown that stromal cells expressing iCAF
markers increase chemoresistance, metastases and immune
suppression10,11. However, iCAF’s influence on human tumour pro-
gression is yet to be robustly investigated. Importantly, myoCAF and
iCAF arenow recognised to be plastic cell populations interconvertible
in vitro depending on the biochemical and mechanical features of the
culture environment9.

A significant barrier to understanding CAF biology is the paucity
of well-characterised markers and lack of uniform terminology to
describe different phenotypes. Technological advances, such as
single-cell RNA-sequencing (scRNA-seq), are expanding the under-
standing of fibroblast heterogeneity. These techniques have been
used to identifymultiple fibroblast subpopulations in different tissue
and cancer types8,12–15. However, this remains an evolving area of
research with multiple discrepancies. For example, the degree of
fibroblast heterogeneity (number of subpopulations identified) is
commonly confounded across studies due to varying resolution of
sub-clustering andwhethermural cells (vascular smoothmuscle cells
and pericytes) are excluded prior to analysis12,16. Additionally, sub-
populationmarker genes are typically calculated based on single-cell
expression profiles without confirming statistical significance at a
sample-level, leading to limited consistency across studies12,16. Fur-
thermore, there has been minimal examination of how CAF pheno-
types differ from healthy tissue counterparts; how comparable
fibroblast phenotypes are across disease states; and how specific
subpopulations impact disease progression.

Considerable research has been performed using scRNA-seq to
characterise fibroblast heterogeneity in control lung tissues and inter-
stitial lung diseases13–15,17,18. These studies have progressed from initial
characterisations solely at a transcriptomic level13,17, to the establish-
ment of orthogonally validated subpopulations associatedwith specific
niches in lung tissue14,15. This has culminated in the consistent identifi-
cation of alveolar, adventitial and myofibroblast subpopulations in
human and murine lung tissue14,18. A recent study by Buechler et al.
provided further context to fibroblast heterogeneity across multiple
human andmurine tissues: identifying the adventitial subpopulation as
a 'universal' fibroblast phenotype present across all tissues analysed;
and a variety of tissue or pathology-specific subpopulations19.

The robust characterisation of fibroblast phenotypes in non-
cancerous lung tissues provides an excellent baseline for investigating
how lung cancer impacts fibroblast phenotypes. Non-small cell lung
cancer (NSCLC), the most common form of lung cancer, consists of
multiple histological subtypes (adenocarcinomas [LUAD], squamous
cell carcinomas [LUSC] and large cell carcinomas20,21), which are fur-
ther subcategorised intomolecular22,23 andmorphological24,25 subtypes
that link to patient survival. NSCLCs also have a high level of stromal
and immune cell infiltration as well as high tumour mutational
burden26. Therefore, we hypothesise that NSCLCs would exhibit a high
degree of fibroblast heterogeneity and represent a suitable model to
broadly characterise CAF phenotypes.

Herewe use transcriptomics,multiplexed immunohistochemistry
(MxIHC) and digital cytometry (implemented using CIBERSORTx27) to
examine fibroblast heterogeneity in human NSCLC and control lung
tissue: investigating phenotypic diversity between and within the
major fibroblast subpopulations; comparing these phenotypes across
multiple tissue types; examining their spatial distribution; and asses-
sing their clinical significance across multiple NSCLC cohorts.

Results
In silico fibroblast identification from scRNA-seq data
We performed scRNA-seq on human lung tissue samples (n = 18; six
control, seven squamous cell carcinomas [LUSC], and five adenocarci-
nomas [LUAD]; Fig. 1a and Supplementary Data 1), using a previously-
described protocol to enrich for fibroblasts during tissue
disaggregation28. Given that samples were obtained from surgical
resections and not processed simultaneously, we assessed whether this
generated batch effects in the scRNA-seq data using k-nearest neigh-
bour overlap across cells collected from individual patients. This iden-
tified significantly increased overlap, which would therefore impact
clustering results (Supplementary Fig. 1a). Tomitigate this, we applied a
reciprocal PCA (rPCA) based data integration (Supplementary Fig. 1a).
Clustering and differential gene expression analyses were then per-
formed. This identified multiple distinct mesenchymal, immune and
epithelial cell populations (Fig.1c and Supplementary Fig. 1b–d). The
mesenchymal cells included two separate clusters: endothelial cells
(marked by VWF among other canonical markers) and stromal cells
(marked by DCN and DPT) (Fig.1c and Supplementary Fig. 1e).

To investigate fibroblasts, we examined the stromal cell cluster.
Given that mural cells are a prominent stromal cell type in lung tissue18

and were not identified in our original clustering, we sought to
determine whether the stromal cell cluster contained both fibroblasts
and mural cells. This is important since myofibroblasts are commonly
identified by the expression of genes encoding proteins involved in
cellular contraction (e.g. ACTA2 [gene encoding αSMA])29, which are
highly expressed in mural cells. To differentiate between these cells,
we identified genes differentially expressed between fibroblasts and
mural cells in human lung tissues using scRNA-seq data from a human
lung cell atlas18 (HLCA; Fig. 1e). We restricted these markers to human
homologues of genes previously described to demarcate fibroblasts
and mural cells in multiple murine organs30, generating consensus
gene signatures for fibroblasts and mural cells (Fig. 1e). To determine
whether these signatures could effectively differentiate mural cells
from fibroblasts, we calculated their average per-cell expression in the
HLCA dataset, showing 99% accuracy for identifying the two cell-types
(Fig. 1f, g).We then examined the expression of these signatures in our
dataset (Fig. 1h–j), demonstrating that both mural cells (n = 69) and
fibroblasts (n = 885) were detected within the stromal cell cluster. To
further test whether fibroblasts and mural cells commonly cluster
togetherwhen analysingwhole-tissue homogenate tumour samples by
scRNA-seq, we repeated this analysis on multiple publicly available
datasets12,16,31,32 consistently observing similar results (representative
example shown in Supplementary Fig. 1f, g).

In summary, we have identified a broadly applicable method for
distinguishing fibroblasts from mural cells in scRNA-seq datasets,
demonstrating that this is a critical step in the characterisation of
fibroblast (or mural cell) heterogeneity within the tumour
microenvironment.

Three fibroblast subpopulations are present in NSCLC
It is challenging to generate a scRNA-seq dataset that contains suffi-
cient samples to enable population level (across multiple patients)
characterisation of fibroblast subpopulations, due to costs, sample
availability and difficulties in isolating these cells from tissues leading
to variable proportions across tissues12,28. To overcome this challenge
and comprehensively examine fibroblast heterogeneity in NSCLC, we
repeated the process of in silico fibroblast sorting (excluding mural
cells) with six further scRNA-seq datasets from human NSCLC and
control tissue samples16,18,31–34. This generated a dataset with 9673
fibroblasts (Fig. 2a; including 5183 from 39 control tissues; 3440 from
46 LUAD samples and 654 from 16 LUSC samples). To integrate and
correct batch effects between datasets, we used canonical correlation
analysis (Supplementary Fig. 2a)35. We then performed unsupervised
clustering, using a shared nearest neighbour modularity optimisation
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algorithm36. To determine themost biologically informative clustering
solution, we ran this analysis varying the resolution parameter to
iteratively increase the number of clusters identified and examined the
number of marker genes identified for each cluster (sample-level
average log fold change >1, adj.P <0.01 and expressed by a minimum
of 50% of samples). This showed that three major clusters were

consistently identified, whereas higher resolution clustering led to the
identification of clusters with no or very few marker genes meeting
these criteria (Fig. 2b and Supplementary Fig. 2b).

The three clusters identified were consistent with fibroblast
subpopulations previously described in control lung tissue14,18

(adventitial, alveolar and myofibroblasts; Supplementary Fig. 2c–e). To
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Fig. 1 | Fibroblast identification through single-cell RNA-sequencing analysis of
whole-tissue homogenates derived from human NSCLC tumour samples.
a Schematic illustrating sample processing and analysis methodology used to
generate the target lung drop-seq (TLDS) dataset, comprised of human control
(n = 6) and NSCLC (n = 12) samples. The Figure was partly generated using Servier
Medical Art, provided by Servier, licensed under a Creative Commons Attribution
3.0 unported license. b Barplots showing key demographics of the TLDS dataset,
further details provided in Supplementary Data 1. c. 2D visualisation (UMAP
dimensionality reduction) of pooled data from all samples’whole-tissue scRNA-seq
data, highlighting different cell types. Further analysis is shown in Supplementary
Fig. 1a–d. AT1 alveolar type 1 cells, Mono/Mac monocytes and macrophages.
d Featureplots showing the expression of canonicalmarkers formural cells (MCAM
and RGS5), mural cells and myofibroblasts (ACTA2) and fibroblasts (DPT), in the

stromal cell cluster (subset from panel c). e Volcano plot showing genes differen-
tially expressed (Bonferroni adj.P <0.01 and absolute logFC >0.5, shown in red)
between mural cells and fibroblasts from a recently published human lung cell
atlas18 (HLCA). Genes included in the consensus gene signatures identified for
mural cells or fibroblasts are labelled. f Scatter plot showing the classification of
fibroblasts and mural cells based on consensus gene signatures (defined in e),
applied to stromal cells from the HLCA dataset18. g Barplots showing the results of
the gene signature classification results compared to the original HLCA publica-
tion’s cell type annotation. h Feature plot showing the expression of consensus
fibroblast marker gene signature in the TLDS dataset. i Feature plot showing the
expression of consensus mural marker gene signature in the TLDS dataset. j UMAP
plot showing the result offibroblast andmural cell demarcation in the TLDSdataset
using the consensus gene signature approach.
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Fig. 2 | Investigating fibroblast heterogeneity in NSCLC through the integra-
tion of seven scRNA-seq datasets. a Schematic overview of the data processing
pipeline implemented to generate an integrated dataset for analysing fibroblast’s
transcriptomic heterogeneity in NSCLC. b 2D visualisation (UMAP dimensionality
reduction) of fibroblast transcriptomes, highlighting the three major subpopula-
tions identified through unsupervised clustering. Further analysis is shown in
Supplementary Fig. 1a–e. c Heatmap showing the sample-level expression (aver-
aged over single cells) for the ten most significant markers of each subpopulation.
Complete differential expression results are provided in Supplementary Data 2.
d Bar plot showing the log2 fold change for the most significantly upregulated
REACTOME pathways in each subpopulation, calculated through GSVA and
Empirical Bayes Statistics for differential expression (exact Bonferroni adjusted
p values are also shown). Complete results from this analysis are provided in
Supplementary Data 3. e Bar plot showing the proportion of different matrisome
components differentially expressed by each subpopulation. f Boxplot showing
sample-level expression (averaged over single cells) of genes encoding basement
membrane components for each subpopulation. Nominalp values for theWilcoxon
signed-ranks test are also shown(n = 78 [adventitial], 87 [alveolar] and 92 [myo]).

g Boxplot showing sample-level expression (averaged over single cells) of genes
encoding interstitial collagens for each subpopulation. Nominal p values for the
Wilcoxon signed-ranks test are also shown (n = 78 [adventitial], 87 [alveolar] and
92 [myo] independent samples). h Boxplot showing sample-level expression
(averaged over single cells) of genes encoding interstitial collagens for each sub-
population split by tissue type. Nominal p values for theWilcoxon signed-ranks test
are also shown (n = 36/42 [adventitial, control/tumour], 38/49 [alveolar], 28/64
[myo]). i Boxplot showing sample-level expression (averaged over single cells) of
genes encoding myoCAF markers for each subpopulation split by tissue type.
Nominal p values for the Wilcoxon signed-ranks test are also shown (n as per panel
h). j Boxplot showing sample-level expression (averaged over single cells) of genes
encoding iCAF markers for each subpopulation split by tissue type. Nominal
p values for theWilcoxon signed-ranks test are also (n as per panel h). All statistical
tests carried out were two-sided and boxplots are displayed using the Tukey
method (centre line, median; box limits, upper and lower quartiles; whiskers, last
point within a 1.5x interquartile range). Source data for panels f–j are provided in
the Source Data file.

Article https://doi.org/10.1038/s41467-023-35832-6

Nature Communications |          (2023) 14:387 4



comprehensively characterise these fibroblast subpopulations at a
population level, we first calculated sample-level gene expression profiles
for each subpopulation (averaged over single cells) and then performed
differential gene expression analysis (Fig. 2c and Supplementary Data 2);
gene set variation analysis (GSVA) using theREACTOMEpathways (Fig. 2d
and Supplementary Data 3) and GSVA using gene signatures for pre-
viously described fibroblast subpopulations (Supplementary Fig. 2f and
Supplementary Data 4).

Differential expression analysis using single-cell data identified 622
genes upregulatedbymyofibroblasts, 188ofwhich remained significant
(adj.P <0.01) in sample-level analysis (Supplementary Data 2). This
attrition in marker identification from single-cell analysis to sample-
level analysis demonstrates the importance of ensuring that scRNA-seq
datasets are adequately powered in terms of sample numbers to detect
population-level variance. Key markers for the myofibroblast sub-
population included MMP11, POSTN, CTHRC1, COL1A1, ACTA2 and
COL3A1. GSVA showed that these cells significantly upregulate multiple
pathways involved in generating collagenous ECM (Fig. 2d), consistent
with the well-described role played by myofibroblasts in fibrosis and
myoCAF in cancer37,38. In addition to these pathways involving ECM
biosynthesis, multiple pathways involving cell-ECM interactions were
also upregulated, including integrin cell surface interactions and syn-
decan interactions (Fig. 2d and Supplementary Data 3). These cells also
upregulated multiple previously described myofibroblast and myoCAF
gene signatures (Supplementary Fig. 2f and Supplementary Data 4).

Differential expression analysis using single-cell data identified
481 genes upregulated in adventitialfibroblasts compared to the other
subpopulations, 73 of these genes remained significantwhen analysing
differential expression across samples—including PI16, IGFBP6, MFAP5,
APOD, PLA2G2A and GSN (Supplementary Data 2). GSVA identified
increased expression of multiple pathways involving PTGIS (Pros-
taglandin I2 synthase), including synthesis of prostaglandins and bile
acids/salts (Fig. 2d), critical to the mobilisation of cholesterol from
lung phagocytes39. The alternative complement activation pathway
was also significantly upregulated, involving C3 and CFD (Fig. 2d).
Adventitial fibroblasts also upregulated gene signatures associated
with the COL14A1 +matrix fibroblasts described by ref. 16; the PI16+ '
universal' fibroblast population described by ref. 19; and iCAF sub-
populations described in pancreatic and breast cancer7,8 (Supple-
mentary Fig. 2f and Supplementary Data 4).

For alveolar fibroblasts, single-cell differential expression analysis
identified 672 upregulated genes, 78 of which remained significant in
sample-level analysis -includingMACF1, RGCC, INMT, LIMCH1, A2M and
GPC3 (Supplementary Data 2). GSVA identified upregulation of TRP
channels (Fig. 2d), which detect and transduce sensory signals (e.g.
oxidative stress, pH and heat) into chemical or electrical signals to
regulate cellular responses40. Pathways involving SLIT and ROBO gene
family members were also upregulated (Fig. 2d), which have well-
described roles in regulating commissural axon pathfinding but have
also been shown to regulate fibroblast migration in arthritis41. Alveolar
fibroblasts also upregulated gene signatures associated with the
COL13A1 +matrix fibroblast population described by ref. 16 and the
lung-specific NPNT + fibroblast population described by ref. 19 (Sup-
plementary Fig. 2f and Supplementary Data 5).

Production and remodelling of the ECM is a key function of fibro-
blasts across all tissues42. Consistent with this, the genes differentially
expressed between fibroblast subpopulations were significantly enri-
ched in components of the ECM (Fisher’s exact p= 1.34e-62), with 31% of
all differentially expressed genes associated with the matrisome43.
Therefore, we examined whether each fibroblast subpopulation upre-
gulated genes associated with particular matrisome categories (base-
ment membrane, interstitial collagens, ECM glycoproteins and
proteoglycans; Fig. 2e). This showed that myofibroblasts upregulated
multiple genes in each matrisome category, including the majority of
upregulated interstitial collagens (Fig. 2e); alveolar fibroblasts

upregulated expression of multiple genes associated with basement
membranes and ECM glycoproteins; and adventitial fibroblasts upre-
gulated multiple ECM glycoproteins and proteoglycans (Fig. 2e). To
examine these differences further we calculatedmodule scores for each
matrisome category and compared their overall expression between
fibroblast subpopulations (Fig. 2f and Supplementary Fig. 2g). This
showed that myofibroblasts significantly upregulated interstitial col-
lagens compared to both adventitial and alveolar fibroblasts (Fig. 2f);
whereas alveolar and myofibroblasts both exhibited significantly
increased expression of basement membrane genes compared to
adventitial fibroblasts (Fig. 2g). It is well described that excessive col-
lagen deposition is a key role played bymyofibroblasts. To determine if
this was a pathology-specific function of these cells, we examined
whether the expressionof specificmatrisomecomponents variedwithin
fibroblast subpopulations isolated from control or tumour tissues. This
showed that interstitial collagen expression was significantly increased
in tumour samples across the three subpopulations (Fig. 2h).

This result suggested there may be variation within fibroblast
subpopulations driven by pathology, possibly reflecting the level of
activation. To examine this further we performed differential expres-
sion analysis between control and tumour samples within each sub-
population. This identified multiple genes downregulated in tumour-
associated adventitial fibroblasts compared to control counterparts,
including IGFBP6, FABP4 and DCN (Supplementary Fig. 2g and Sup-
plementary Data 5). In contrast, multiple genes were upregulated in
tumour-associated myofibroblasts compared to their control coun-
terparts, including SULF1, COL11A1 and LRRC15 (Supplementary Fig. 2h
and Supplementary Data 5). We also examined whether gene sig-
natures for previously described CAF subpopulations were differen-
tially expressed between fibroblasts from control or tumour samples.
As expected, this showed that irrespective of tumour subtype, the
myoCAF gene signature was significantly upregulated in tumour
samples (Fig. 2i). In contrast, however, the iCAF gene signature was
significantly downregulated in fibroblasts isolated from tumour sam-
ples compared to control tissue (Fig. 2j).

In summary, these data show that the fibroblasts present in
NSCLC are consistent with the three major subpopulations identified
as tissue-resident in non-cancerous lung tissue18 and are likely to dif-
ferentially regulate ECM maintenance/remodelling. These data also
suggest that interaction with NSCLC tumours results in significant
changes in gene expression within each of these subpopulations,
consistently involving the upregulation of interstitial collagens in
addition to subpopulation-specific changes in phenotype. Addition-
ally, we have shown that myoCAF signatures were increased in NSCLC
compared to control lung fibroblasts, whereas iCAF gene signatures
were increased in control lung tissues.

Investigating spatial distribution and abundance across
subtypes
Toorthogonally validate the three fibroblast subpopulations identified
by scRNA-seq, we designed a multiplexed immunohistochemistry
(mxIHC) panel. For this analysis, the human protein atlas44,45 database
was used to identify marker genes for each subpopulation that had
both 'enhanced' antibody validation, indicating concordant expression
levels when measured by IHC or RNA-seq; and documented intracel-
lular detection of the protein (Fig. 3a). Genes passing these criteria
were screened, using the human protein atlas images, by a consultant
pathologist for expression in fibroblasts and CD34, AOC3 and POSTN
or ACTA2 (α-SMA) were selected as optimal IHC markers for adventi-
tial, alveolar and myofibroblasts respectively (Fig. 3a and Supplemen-
tary Fig. 3a). Additionally, exclusionmarkers Pan-CK, CD31 andMCAM
(epithelial, endothelial and mural cell markers respectively) were
incorporated into the mxIHC panel.

Consistent with previously defined nomenclature for the lung
fibroblast phenotypes, our mxIHC showed the alveolar and adventitial
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Fig. 3 | Multiplexed IHC (mxIHC) and digital cytometry show that fibroblast
subpopulations occupy spatially discrete niches and varied NSCLC tissue
subtype enrichment. a Scatter plot showing differential expression statistics
(Bonferroni adj.P and log2 fold change) for putative subpopulation markers,
highlighting those compatible for use inmxIHCanalysis. Full details are provided in
Supplementary Data 2. b Representative micrographs from H&E staining and
multiplexed IHC (mxIHC) performed on serial sections (n = 19 samples analysed).
The micrographs (from left to right) represent H&E staining (notable regions are
highlighted as described in the key), a pseudocoloured image depicting different
markers identifiedbymxIHC (coloured as indicated in the key) and the results from
histo-cytometry-based cell classification (with simulated cells coloured as indicated
in the key). The region presented represents histologically normal lung tissue,
including adventitial, alveolar, peri-bronchial and interstitial regions. Scale bars
represent 100 µm. For further images showing region of interest selection and
individual marker staining profiles please see Supplementary Data 6. c Repre-
sentative examples from whole slide mxIHC analysis of NSCLC tissue sections
(n = 15 [LUAD], 10 [LUSC] samples analysed). Panels showing serial section H&E
staining and a point pattern plot showing the spatial distribution of different
fibroblast populations (measured by histo-cytometry analysis of mxIHC). The scale

bar represents 4mm and the black dotted line demarcates the tumour region in
each tissue section. For details of the full cohort analysed, please see Supplemen-
taryData 7, 8.dAsperb, presenting regions of the respective LUADand LUSCcases
shown in panel c. For further images showing region of interest selection and
individual marker staining profiles please see Supplementary Data 9, 10 for the
LUAD and LUSC case respectively. e Boxplot showing the relative abundance of
each fibroblast subpopulation in different NSCLC subtypes, as measured in the
integrated scRNA-seq dataset. Nominal p values for theWilcoxon signed-ranks test
are also shown (n = 39 [Control], 46 [LUAD], 16 [LUSC]). f As per d, measured by
mxIHC, analysing pathologist annotated tumour regions for LUAD or LUSC and
non-neoplastic regionswithin the tissueblocks as controls. Nominalp values for the
Wilcoxon signed-ranks test are also shown (n = 19 [Control], 15 [LUAD], 10 [LUSC]).
g As per c, as measured by CIBERSORTx-mediated digital cytometry. nsp >0.05,
****p < 2.22e-16, Wilcoxon signed-ranks test (n = 110 [Control], 515 [LUAD], 501
[LUSC])24,25. All statistical tests carried out were two-sided and boxplots are dis-
played using the Tukey method (centre line, median; box limits, upper and lower
quartiles; whiskers, last point within a 1.5x interquartile range). Source data for
panels e–g are provided in the Source Data file.
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subpopulations were found within these regions of control (histolo-
gically normal) lung tissue (Fig. 3b and Supplementary Data 6). Nota-
bly, however, AOC3 + (alveolar) fibroblasts were also observed within
interstitial lung tissue (Fig. 3b and Supplementary Data 6) and
CD34+ (adventitial) fibroblasts were also observed in peri-bronchial
regions (Fig. 3b and Supplementary Data 6).

This mxIHC panel was then applied to whole-tissue sections of
NSCLC tissue (15 LUAD and 10 LUSC, including ten samples from our
scRNA-seq cohort, Supplementary Data 7, 8). As expected, our three
fibroblast subpopulations identified discrete subpopulations of fibro-
blasts (Supplementary Fig. 3b, c) and each subpopulation was found in
the three tissue types analysed (control, LUAD and LUSC; Fig. 3c, d and
Supplementary Data 9, 10).

To examine these fibroblast phenotypes across larger cohorts,
CIBERSORTx-mediated digital cytometry was performed27, using
scRNA-seq data to generate a signature matrix: consisting of each
fibroblast subpopulation, endothelial cells, mural cells, epithelial cells
and immune cells (Supplementary Fig. 3d and Supplementary Data 11).
The accuracy of this method was tested using a pseudobulk dataset
generated by combining single-cell transcriptomes, providing ground
truth for each pseudobulk sample (Supplementary Fig. 3e). This con-
firmed accuracy in enumerating all cell types, including the three
fibroblast subpopulations (R2 = 0.81 [adventitial], 0.91 [alveolar] and
0.92 [myo]; p < 3.53e-76; Supplementary Fig. 3e).

We examined the relative abundance of each subpopulation in
control, LUAD and LUSC tissue samples. In the scRNA-seq dataset,
adventitial fibroblasts were significantly more abundant in control
tissue samples compared to both LUAD and LUSC (Fig. 3e). Alveolar
fibroblasts were similarly most abundant in control tissues but were
also detected at high levels in some LUAD samples and rarely present
in LUSC (Fig. 3e). In contrast, myofibroblast abundance was increased
in LUAD and LUSC compared to control tissues, but also significantly
more abundant in LUSC compared to LUAD (Fig. 3e). These associa-
tions between fibroblast subpopulations and tissue type were con-
firmed using CIBERSORTx to analyse TCGA RNA-seq datasets24,25

(Fig. 3g). Then further validated by mxIHC (Fig. 3f), where entrapped
non-neoplastic tissue within the tissue block was excluded from the
analysis (as shown in Fig. 3c).

Given that LUSC tumours were found to have higher levels of
myofibroblasts than LUAD tumours, we hypothesised that tumour
subtypes may also differentially impact adjacent tissues. To examine
this, we used our mxIHC dataset to compare tumour-adjacent tissue
regions in LUSC and LUAD cases. This showed that, similar to the
intratumour regions, LUSC-adjacent areas of the lung had increased
myofibroblasts and decreased alveolar fibroblasts compared to LUAD-
adjacent lung tissue (Supplementary Fig. 3f). These tumour-adjacent
regions were then assessed by a pathologist to determine whether
therewasevidence of inflammation and/orfibrosis, whichwas found in
55%of LUSC cases but not in LUAD (Supplementary Fig. 3g). Significant
differences in the abundance of alveolar and myofibroblasts were also
found when grouping these control tissue regions by the presence of
inflammation and/or fibrosis (Supplementary Fig. 3h). However, no
significant difference in the abundance of adventitial fibroblasts was
found in either comparison.

In summary, adventitial and alveolar fibroblast subpopulations
were enriched in control lung tissues and replaced by myofibroblasts
in NSCLC. Furthermore, fibroblast subpopulation abundance also dif-
fers between NSCLC subtypes, with LUAD tumours exhibiting greater
heterogeneity between the three subpopulations, whereas LUSC
tumours have consistently high levels of myofibroblasts.

Investigating MyoCAF activation with trajectory inference
To examine the process of transdifferentiation from alveolar and
adventitial fibroblast subpopulations (enriched in control tissue) to
myofibroblasts (enriched in tumour tissue) we performed trajectory

inference on our scRNA-seq dataset, using a diffusion map dimen-
sionality reduction46. This showed adventitial and alveolar fibroblasts
may act as independent progenitors from which myofibroblasts can
transdifferentiate (Fig. 4a, b). We then ordered cells in 'pseudotime',
representing their relative progression towards a myofibroblast phe-
notype (Fig. 4c). Genes differentially expressed in pseudotime were
identified by examining each dataset individually and then calculating
meta p values using Stouffer’s method (Supplementary Data 12). Sig-
nificant genes (adjusted meta-p < 1 × 10−10 and nominal p < 0.05 in at
least three datasets) were then clustered into modules based on cor-
related expression in 'pseudotime'. This identified four modules on
both the trajectories representing different phases of transdiffer-
entiation: progenitor, early-activation, proto-differentiation and dif-
ferentiation (Fig. 4d, e). Comparing the genes assigned to eachof these
modules highlighted significant overlap across the two trajectories,
suggesting that the process of myofibroblast transdifferentiation is
similar irrespective of the pre-cursor subpopulation (Fisher’s exact
p < 1.03e-10; Supplementary Fig. 4c).

To functionally annotate these phases of transdifferentiation, we
performed enrichment analysis, using the REACTOME pathway data-
base (Fig. 4h and Supplementary Data 13). The Early-activationmodule
was significantly enrichedwith genes known to be involved in cytokine
signalling (Fig. 4h) and also contained multiple previously described
iCAF marker genes8 (e.g. IL6 and CCL2). Notably, similar expression
profiles were foundwhen analysing datasets consisting of only control
samples or both control and NSCLC samples (Fig. 4f and Supplemen-
tary Fig. 4b), suggesting that this phase of the transdifferentiation
process may be independent of stimuli associated with NSCLC
tumours. To confirm this, we grouped all fibroblasts in the scRNA-seq
dataset into five bins based on their position in pseudotime and then
calculated sample averages for the expression of each module. This
showed that the Early-activation module was significantly increased in
fibroblasts from control samples compared to tumour samples at all
stages of the transdifferentiation process (Fig. 4g).

In contrast, expression trends over pseudotime for the proto-
differentiation anddifferentiationmoduleswerequalitativelydifferent
between datasets consisting of only control samples or control and
NSCLC samples (Fig. 4f and Supplementary Fig. 4b). Therefore, we
applied the same approach to determine whether sample type
impacted the expression of the Proto-differentiation module. This
identified a significant increase in tumour samples at the intermediate
stage of transdifferentiation (Fig. 4g). This module was enriched with
many genes that encode ribosomal proteins (Fig. 4h), which is a well-
described ultrastructural feature of myofibroblasts and may indicate
that these cells have increased capacity to perform protein
translation47. Heat-shock family genes involved in HSF1 transactivation
(e.g. HSPA1A,DNAJB1 andHSP90AB1) were also significantly enriched in
this module (Fig. 4h), which has been shown previously to regulate
cancer-mediated fibroblast activation48. Furthermore, genes involved
in oxidative stress responses (e.g.HIF1A,GGT and SERPINE1), which is a
well-described driver of both heat shock response and fibroblast
activation, were also found in this module. To investigate the role of
heat shock/stress responses in myofibroblast activation further, we
used mxIHC to examine HSPA1A/Hsp70 expression. This identified a
significant increase in each of the fibroblast subpopulations when
comparing cells that were located within the tumour to those in
tumour-adjacent control regions (Fig. 4i), confirming that stimuli from
NSCLC tumours induce the heat shock response to a greater extent
than stimuli from control tissues.

The Differentiation module was significantly increased in tumour
tissues compared to control at all stagesof transdifferentiation (Fig. 4g).
This module was enriched with genes involved in collagen formation
and ECM organisation (Fig. 4h), consistent with the myofibroblast
phenotype anddata described above showing thatfibrillar collagens are
upregulated in tumour samples compared to control tissue samples.
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In summary, these results suggest that both control tissue-
enriched fibroblast subpopulations (adventitial and alveolar) could act
as tissue-resident progenitors for myofibroblasts. These data also
suggest that the process of transdifferentiation is comparable

irrespective of the progenitor subpopulation: involving a transient
phase of inflammatory gene upregulation, independent of direct
interaction with the tumour; followed by proto-differentiation invol-
ving heat shock response signalling, which is increased by interaction
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Fig. 4 | Trajectory inference identifies consensus genemodules associatedwith
the transdifferentiation from alveolar or adventitial fibroblasts to myofibro-
blasts. a 2D visualisation (diffusion map dimensionality reduction) of the inte-
grated fibroblast scRNA-seq dataset, highlighting the three subpopulations. b As
per a, highlighting cells assigned to each diffusion pseudotime (DPT) branch. c As
per a, showing the relative position of each cell in DPT. d Heatmap showing genes
differentially expressed as alveolar fibroblasts progress to myofibroblasts in DPT.
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DPT expression profile. Complete differential expression results are provided in
Supplementary Data 12. e As per d, genes differentially expressed as adventitial
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provided in Supplementary Data 12. f Loss curve plots showing the expression
profiles for each consensus DPT module in datasets consisting of control
and tumour samples or only control tissue samples. Consensus modules consist of
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trajectories, ten representative genes for each module are listed (full gene lists can
be found in Supplementary Data 12 and individual dataset plots are shown in
Supplementary Fig. 4b). g Boxplots showing the expression of consensus DPT
modules in cells groupedby tissue type andpseudotimequintiles. Nominalp values
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i Line plots showing the average HSPA1A expression levels between paired tumour
and adjacent normal tissues for each fibroblast subpopulation, measured by
mxIHC.Wilcoxon signed-ranks test (n = 18). All statistical tests carriedoutwere two-
sided and boxplots are displayedusing the Tukeymethod (centre line,median; box
limits, upper and lower quartiles; whiskers, last point within a 1.5x interquartile
range). Source data for panels g, i are provided in the Source Data file.
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with the tumour; finally leading to a fully differentiated myofibroblast
phenotype with increased capacity for ECM organisation and collagen
formation, which is significantly enhanced by tumour-associated
stimuli.

Cross-tissue analysis of fibroblast phenotypes
To examine whether these fibroblast phenotypes were conserved
across cancer types, we analysed publicly available data from PDAC49,
HNSCC29 and colorectal cancer (CRC)50. In each case, fibroblasts were
identified by unsupervised clustering followed bymural cell exclusion,
as described above (Fig. 5a). Then probabilistic machine learning
models were used to classify these cells as one of the three sub-
populations identified in NSCLC (Fig. 5b, c). This showed that the
adventitial and myofibroblast populations were strongly conserved
across all cancer types analysed (adventitial median probability = 0.67
[PDAC], 0.75 [HNSCC], 1 [CRC]; myo median probability = 1 [PDAC], 1
[HNSCC], 1 [CRC]); whereas fibroblasts assigned to the alveolar sub-
population had consistently lower probability scores (median prob-
ability = 0.49 [PDAC], 0.52 [HNSCC] and 0.56 [CRC]), suggesting a
greater degree of phenotypic divergence from the lung.

We then validated these results by applying our multiplex IHC
panel to tissue microarrays consisting of tumour and control tissue
cores from PDAC, HNSCC and CRC. Consistent with the scRNA-seq
findings, this showed that adventitial and myofibroblasts were the
predominant subpopulations identified in each of these cancer types
(Fig. 5d and Supplementary Fig. 5a). Furthermore, as we found in
NSCLC, adventitial fibroblasts were significantly more abundant in
control compared to tumour tissues across all three tumour types
(Fig. 5e) andmyofibroblasts more abundant in tumour tissues (Fig. 5f).

To test whether the alveolar phenotype was specific to lung tis-
sues, we performed a similar analysis on scRNA-seq data generated
from idiopathic lung fibrosis (IPF) samples15 (i.e. a non-cancerous lung
pathology). This showed that all three subpopulations were identified
with high probability scores (median probability = 0.95 [Adventitial],
0.88 [Alveolar], 0.90 [Myo]; Supplementary Fig. 5b–d Notably, this
analysis also showed that probability associated with myofibroblast
classifications was lower for IPF than in the cancer datasets (Supple-
mentary Fig. 5e), suggesting there may be subtle differences between
myofibroblasts found in cancer and fibrosis.

Survival analysis using multiple NSCLC cohorts
To examine the clinical relevance of fibroblast subpopulations in
NSCLC, we leveraged imputed cell abundances from CIBERSORTx-
mediated digital cytometry to interrogate large clinically annotated
NSCLC cohorts (four LUAD cohorts, n = 1669;25,51–53 four LUSC cohorts,
n = 1104;24,54,55 Supplementary Data 14). The relative abundance of each
fibroblast subpopulation was used in Cox proportional hazards
regression modelling. This identified a consistent link between myo-
fibroblasts and poor overall survival in LUAD (p <0.01; Supplementary
Fig. 6a), but no significant correlation was found in LUSC (Supple-
mentary Fig. 6a). Given that myofibroblasts are highly abundant in
both NSCLC subtypes we hypothesised that this difference could be
due to phenotypic changes between subtypes. However, no genes
were identified as significantly differentially expressed through
sample-level analysis, suggesting minimal phenotypic variance at the
transcriptome level between myofibroblasts from these two NSCLC
subtypes (Supplementary Fig. 6b).

To examine the potential for using myofibroblast abundance as a
prognostic biomarker for patient stratification in LUAD, we used
TCGA-LUAD dataset as a test cohort to determine the optimal
threshold for categorising samples as myofibroblast high (>85.2%) and
low (<85.2%; Fig. 6a–c). We then applied this threshold to three vali-
dation cohorts, demonstrating consistently significant patient strati-
fication (log-rank p ≤0.02; Fig. 6d). Multivariate cox regression
analysis also showed that these prognostic correlations were

independent of disease stage and patient age (p <0.0001, HR [95%
CIs] = 1.70 [1.38, 2.09]; Fig. 6i and Supplementary Fig. 6c).

In contrast, alveolar and adventitial fibroblast abundance was
associated with better overall survival rates in multiple LUAD datasets
(Supplementary Fig. 6a). This association was particularly consistent
for alveolar fibroblasts, which were significant across all datasets
analysed (p <0.01 and Supplementary Fig. 6a). Therefore, we applied
the same approach as described above to test the potential for using
alveolar fibroblast abundance as a prognostic marker (Fig. 6e–g).
Similarly, this showed that dichotomising LUAD cohorts as alveolar
fibroblast high (>22.0%) or low (<22.0%) was consistently effective at
stratifying overall survival rates (Log-rank p < =0.02; Fig. 6h); and that
this association was independent of disease stage and patient age
(Fig. 6j and Supplementary Fig. 6d).

Investigating associations with key prognostic features of LUAD
The morphological subtype of LUAD tumours is recognised to be
associated with patient survival rates56. Fibroblast subpopulation
abundance significantly varied between morphological subtypes of
LUAD, as shown by CIBERSORTx (n =623, p<0.0001; Fig. 7b), scRNA-
seq (n = 21; Fig. 7c) and mxIHC (n = 15; Fig. 7a, d). Myofibroblasts were
increased in poorly differentiated (G3; solid ormicropapillary) tumours
compared to moderate/well-differentiated (G1/G2; lepidic, acinar and
papillary). Despite this association,fibroblast subpopulation abundance
remained a significant independent prognostic indicator inmultivariate
Cox regression, including age, stage and grade as covariates (myofi-
broblasts: HR [95% CIs] = 1.44 [1.07, 1.95], adj.P=0.015; alveolar fibro-
blasts: HR [95% CIs] = 0.67 [0.46,0.96], adj.P=0.028; n =601).

LUAD morphology can be heterogeneous within individual
tumours. Therefore, we used our MxIHC dataset to examine the
association between fibroblast subpopulations and specific morpho-
logical patterns (Supplementary Fig. 7b). This identified a significant
correlation betweenmyofibroblasts and the percentage of the tumour
comprised of solid growth patterns (rho = 0.60, p <0.01; Supplemen-
tary Fig. 7c); and myofibroblasts were clearly observed to be the
principal stromal cell type found in solid regions ofmixedmorphology
tumours (Supplementary Data 15). A weaker and non-significant cor-
relation (rho = 0.44, p =0.07) was observed with micropapillary
growth patterns (Supplementary Fig. 7b).

Previous studies have described a link between themorphological
and molecular subtypes (proximal-inflammatory [PI], proximal-
proliferative [PP] and terminal respiratory unit [TRU]) of LUAD25. We
confirmed this in the bulk tissue datasets, finding that 77% of TRU
tumours were moderate/well-differentiated (G1/G2) and 69% of PP
tumours were poorly differentiated (G3). As expected, given this link,
myofibroblast abundance was highest in PP tumours; whereas alveolar
and adventitial fibroblasts were most prominent in TRU tumours
(Fig. 7f and Supplementary Fig. 7d). Furthermore, consistent with
previously described associations between PP tumours and TP53
mutations23, we also found that myofibroblast abundance was
increased in LUAD tumours harbouring TP53 mutations (Fig. 7e and
Supplementary Fig. 7e).

We also used CIBERSORTx to examine the abundance of immune
cell subpopulations (LM2257) and their correlation with fibroblast
subpopulations. This demonstrated an inverse relationship between
the immune cells that correlated with myofibroblasts and alveolar
fibroblasts, which was consistently observed across all the LUAD
transcriptomic datasets analysed (Fig. 7g and Supplementary Fig. 7f).
Showing that alveolar fibroblasts were correlated to multiple resting
immune cell subsets (Fig. 7g and Supplementary Fig. 7f; e.g. mast cells,
CD4 +memory T-cells and dendritic cells), in addition to monocytes
and B cells (both memory and naive subsets). In contrast, myofibro-
blasts correlated with macrophages, neutrophils, activated mast cells
and activated CD4 +memory T-cells (Fig. 7g and Supplementary
Fig. 7f). Indicating thatmyofibroblast differentiationwithin the tumour
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microenvironment is also associated with the activation/differentia-
tion of helper T-cells and myeloid cells.

Discussion
We have performed a comprehensive analysis of the fibroblast land-
scape in human NSCLC, identifying three major subpopulations

present in both control and tumour tissues: adventitial, alveolar and
myofibroblasts. We also show that cancer-associated myofibroblasts
could originate from tissue-resident adventitial or alveolar fibroblasts
through a process involving transient phases of inflammatory and
stress-response signalling. Fibroblast subpopulation abundance varied
between control and tumour tissues and across NSCLC histological
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Fig. 6 | CIBERSORTx-mediated digital cytometry shows that myofibroblasts
and alveolar fibroblasts correlate with overall survival rates in LUAD. a Scatter
plot showing the variation in standardised log-rank survival statistics (correlation
with overall survival rates) using different cut-points for dichotomising TCGA-
LUAD25 samples by myofibroblast abundance. b Density plot showing the dis-
tribution of myofibroblast abundance measurements across TCGA-LUAD25 sam-
ples. c Kaplan–Meier plot showing TCGA-LUAD25 cohort patient survival rates,
stratified by myofibroblast abundance using the optimal cut-point for dichot-
omisation (identified in a). Statistical significancewas assessed using a log-rank test
(n = 503). d Kaplan–Meier plots showing the cutpoint defined on TCGA-LUAD
cohort (identified in panel a) applied to three additional LUAD validation cohorts.
Statistical significance was assessedusing Log-rank tests (n = 398 [GSE7209451], 226
[GSE3121052], 422 [GSE6846553]). e Scatter plot showing the variation in standar-
dised log-rank survival statistic (correlation with overall survival rates) using dif-
ferent cut-points for dichotomising TCGA-LUAD25 samples by alveolar fibroblast
abundance. fDensity plot showing thedistributionof alveolarfibroblast abundance
measurements across TCGA-LUAD25 samples. g Kaplan–Meier plot showing TCGA-

LUAD25 cohort patient survival rates, stratified by alveolar fibroblast abundance
using the optimal cut-point for dichotomisation (identified in e). Statistical sig-
nificance was assessed using a Log-rank test (n = 503). h Kaplan–Meier plots
showing the cutpoint defined on TCGA-LUAD cohort (identified in panel a) applied
to three additional LUAD validation cohorts. Statistical significance was assessed
using Log-rank tests (n = 398 [GSE7209451], 226 [GSE3121052], 422 [GSE6846553]).
i Forest plot showing covariate independent hazard ratios (±95% confidence
intervals) and adjusted p values from multivariate Cox regression analysis of four-
year overall survival rates across all LUAD patient cohorts analysed above, using
myofibroblast abundance, disease stage and patient age as independent variables
(exact p values provided in Source Data file). Results for individual datasets are
shown in Supplementary Fig. 6c. j Forest plot showing covariate independent
hazard ratios (±95% confidence intervals) and adjusted p values from multivariate
Cox regression analysis of 4-year overall survival rates across all LUAD patient
cohorts analysed above, using alveolar abundance, disease stage and patient age as
independent variables (exact p values provided in Source Data file). Results for
individual datasets are shown in Supplementary Fig. 6d.
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Fig. 7 | MxIHC and digital cytometry shows fibroblast subpopulations are
associated with morphological, molecular and immunological features of
LUAD tumours. aRepresentative images fromwhole slidemxIHCanalysis of LUAD
tumours with varying grades (G1 =well differentiated [n = 1], G2 =moderately dif-
ferentiated [n = 6] andG3 = poorly differentiated [n = 8]), showingH&E staining and
point pattern plots representing the spatial distribution of different fibroblast
subpopulations (measured by histo-cytometry analysis of mxIHC data). The scale
bar represents 4mm and the black dotted line demarcates the tumour region in
each tissue section. b Boxplots showing the relative abundance of fibroblast sub-
populations in well/moderately differentiated LUAD tumours compared to poorly
differentiated,measured by CIBERSORTx digital cytometry.Wilcoxon signed-ranks
test (n = 375 [G1/G2], 248 [G3]; from two independent datasets;25,53 data from each
individual dataset is shown in Supplementary Fig. 7a). c As per b, measured by
scRNA-seq.Wilcoxon signed-ranks test (n = 14 [G1/G2], 7 [G3]).dAsperb,measured
by mxIHC. Wilcoxon signed-ranks test (n = 7 [G1/G2], 8 [G3]). e Boxplots showing
the relative abundance of fibroblast subpopulations in LUAD tumours grouped by

TP53 mutation status, measured by CIBERSORTx digital cytometry. Wilcoxon
signed-ranks test (n = 578 [wt], 374 [mut]; from two independent datasets25,51, data
from each individual dataset is shown in Supplementary Fig. 7d). f Boxplots
showing the relative abundance of fibroblast subpopulations in LUAD tumours
grouped by molecular subtype (TRU terminal respiratory unit, PP proximal-
proliferative and PI proximal-inflammatory). Each datapoint represents an indivi-
dual patient, measured by CIBERSORTx digital cytometry (n = 1626, from four
independent datasets;25,51–53 data from each individual dataset is shown in Supple-
mentary Fig. 7c).g Scatter plot showing Spearman’s correlation betweenalveolar or
myofibroblast abundance and immune cell subpopulation (LM22) abundance,
measured by CIBERSORTx digital cytometry (n = 1626; from four independent
datasets;25,51–53 data fromeach individualdataset is shown inSupplementary Fig. 7e).
All statistical tests carried out were two-sided and boxplots are displayed using the
Tukeymethod (centre line,median; box limits, upper and lower quartiles; whiskers,
last point within a 1.5x interquartile range). Source data for panelsb–f are provided
in the Source Data file.
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subtypes, providing significant prognostic value in LUAD, where they
were associated with molecular, morphological and immune features
of these tumours.

Fibroblast heterogeneity is an emerging area of cancer research
with previously described relevance to patient outcomes and treat-
ment response acrossmultiple tumour types7,58. In thisfield, consensus
terminology for different subpopulations is yet to be fully defined.
Here, we demonstrate that understanding both tissue-resident fibro-
blasts and their cancer-associated counterparts provides a framework
for establishing generally applicable terminology. The two fibroblast
subpopulations more commonly found in control tissue samples
(alveolar and adventitial fibroblasts) were associated with improved
survival rates in LUAD, particularly alveolar fibroblasts. These findings
support the rationale for developing therapeutic strategies that revert
CAFs to a ‘normal’ phenotype, as described for vitamin D receptor
agonists59 and NOX4 inhibition1,60. Our cross-tissue analysis showed
that alveolar fibroblasts were relatively specific to lung tissues (com-
pared to the adventitial andmyofibroblast populations). However, this
does not preclude the existence of similarly tumour-suppressive tis-
sue-resident fibroblast populations in other organs. For example, a
broad analysis of murine tissues has previously identified organ-
specific fibroblast subsets in the intestine, as well as bone, lung, lymph
node/spleen and artery/tendon19.

The adventitial fibroblast subpopulation is consistent with multi-
ple previous studies18,19 and may represent 'universal' fibroblasts19. We
identified CD34 as an effective marker of this population, which is
consistent with many studies that have described CD34 + fibroblast/
stromal cell populations across different organs. For example,
PDGFRA+CD34 + cells represent >90% of stromal cells within the
dermis;61 they have been shown to represent a key progenitor cell in
tissue regeneration62 and a prominent source of tumour-reactive
stromal cells63. The adventitial fibroblasts were also the closest 'rela-
tive' to iCAF phenotypes8. However, in contrast to previous studies, we
found that the expression of inflammation-associated cytokines and
iCAFmarkers were predominantly limited to control tissues in NSCLC.
Furthermore, our trajectory analysis suggests this inflammatory phe-
notype may represent an early and transient phase in the transdiffer-
entiation to a myofibroblast phenotype, independent of direct
interaction with the tumour. Indeed, inflammatory fibroblasts have
been identified in infections and inflammatory conditions as well as
cancer;64 supporting the concept that fibroblasts progress through a
spectrum of phenotypes that function to initiate, support and ulti-
mately suppress inflammation.

Previous studies have shown that fibroblastmarkers can indicate
both good and bad prognosis in NSCLC65,66. Our results suggest these
inconsistencies are likely due to both fibroblast heterogeneity and
variation across NSCLC histological subtypes. This may be because
LUSC (compared to LUAD) have a more homogeneous stroma con-
taining consistently high levels of myofibroblasts, which could limit
their utility as a prognostic marker. Alternatively, the functional
impact of myofibroblasts on tumour progression may vary between
tumour subtypes. Multiple mechanisms for how these cells could
promote tumour progression have been identified in pre-clinical
cancer models: including modulating ECM organisation and tumour
cell invasion67; promoting tumour cell proliferation68; regulating
epithelial differentiation69 and promoting immune evasion7,60,70.
However, recent studies have also demonstrated thatmyofibroblasts
can have tumour-suppressive properties in PDAC4–6. The observation
that myofibroblasts are not prognostic in LUSC provides further
evidence that the role played by these cells in cancermay be context-
dependent, and further investigation is required to determine what
mechanisms underlie this difference. Given that we found no sig-
nificant differences in gene expression betweenmyofibroblasts from
LUAD and LUSC tumours, the varied impact these cells have on
tumour progression may be due to intrinsic properties of the

malignant cells, as described in a recent study elucidating a LUAD-
specific role for GREM1-KDR signalling in disease progression68.

In summary, this comprehensive analysis of lung and NSCLC
fibroblast heterogeneity shows how certain subpopulations are organ-
specific, whilst others are consistently found in different tissues, can-
cers and pathologies. Myofibroblasts and alveolar fibroblasts are
associated with different molecular and immunological LUAD sub-
types, and their opposing effects on prognosis accurately identify
high-risk patients. These findings could improve patient stratification
and should refine strategies for therapeutic targeting of fibroblasts in
lung cancer.

Methods
Sample acquisition and processing
The Southampton and South West Hampshire Research Ethics Com-
mittee approved the study, and written informed consent was
obtained from all subjects (Target Lung study: REC number 14/SC/
0186). Newly diagnosed, untreated patients with respiratory malig-
nancies were prospectively recruited once referred. Freshly resected
tumour tissue and, where available, matched control tissue was
obtained from lung cancer patients following surgical resection.
Control tissues were sampled from peripheral regions of the resected
tissue at the furthermost point from the tumour. Tissue samples were
transported (within 1 h) to the laboratory on ice in serum-free Dul-
becco’s Modified Eagle Medium (DMEM; Sigma-Aldrich).

Tissue disaggregation was performed as previously described28.
Briefly, samples were washed, incised and incubated with Collagenase
P (3 U/ml; Sigma) at 37 °C with agitation (200 rpm) for 60min. The
resulting suspension was strained; incubated with red cell lysis buffer
(BioLegend); and re-suspended in PBS supplemented with 9% Opti-
prep (Sigma) and 0.1% bovine serum albumin (BSA). Single-cell tran-
scriptome encapsulation was performed using a custom microfluidic
platform (Drop-seq) as described previously28,71.

Single-cell RNA-seq data processing and analysis
'Target lung drop-seq' (TLDS) dataset processing. ScRNA-seq data
processing and analysis was performed using the Seurat package in R
(v4.0.2)36, unless otherwise stated. Initial quality control was carried
out to remove low-quality events. First, we used a random forest
classifier to exclude empty droplets as described previously28,72. We
then identified outliers for the fraction of reads mapping to mito-
chondrial genes (>2 median absolute deviations; MADs) to exclude
apoptotic cells.

Initial clustering was performed using a subset of genes selected
based on variance and average non-zero expression, excluding
extreme outliers. Raw counts data was log-normalised and scaled
(regressing out nUMI) before performing principal components ana-
lysis (PCA). Clusters were identified with the FindClusters function,
using principal components identified as significant with JackStraw
analysis (p < 1e-5) and a resolution of 0.2. Cluster markers were iden-
tified using the FindAllMarkers function (ROC classifier) and cell types
were assigned based on canonical marker expression or by significant
enrichment (adj. p < 0.0001) in previously described cell type markers
from the Immunological Genome73 and LungGENS74 projects, assessed
using the ToppFun gene set enrichment tool75.

This identified a large cluster of cells predominantly comprised of
lymphocytes. However, due to the relatively low number of genes
detected in lymphocytes (described previously12) and, therefore, high
susceptibility to false negatives in marker detection (due to drop-out),
this cluster had very few genes identified as markers. Therefore, it was
unclear whether these lymphocytes were sufficiently separated from
low-quality droplets. To identify lymphocytes within this cluster the
AddModuleScore functionwasused to calculate the average expression
of previously described T-cell markers (TRBC2, CD3D, CD3E, CD3G,
CD2, IL7R and CD8A) and NK cell markers (FGFBP2, SPON2, KLRF1,
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NKG7, PRF1 and KLRD1). This cluster was then filtered further to
remove cells negative for both gene signatures.

Fibroblast identification in scRNA-seq datasets. Processed scRNA-
seq datasets and associatedmetadata were downloaded frompublicly
available sources (Our data, refs. 16, 32, 18, 34, 31) for use in this study.
For consistency, the cells analysed were restricted to those obtained
from primary tumour tissue or control lung tissue (from NSCLC
patients). Each dataset was processed using the Seurat package in R
(v4.0.2) to perform log-normalisation, find variable features, principal
components analysis (PCA) based dimensionality reduction and
nearest neighbour graph construction36.

Batch effects were assessed by comparing k-nearest neighbour
overlap between potentially confounding sample groups and ran-
domly sampled cells to calculate z-scores (nOverlap – x̄[Random
samples overlap]/ σ[Random samples overlap]). This identified sig-
nificant (median z-score >1.96) patient-dependent batch effects in each
dataset. The previously described reciprocal PCA (rPCA)35 approach
for data integration was then used for intra-dataset batch correction,
as implemented in the Seurat R package.

Dimensionality reduction (PCA and UMAP) and clustering was
performedusing the integrated (batch-corrected) data. The stromal cell
cluster was then identified from canonical marker expression (e.g.DCN,
LUM and DPT) and a subset from the entire dataset. The AddModule-
Score function was then used to calculate per-cell expression levels for
fibroblast and mural cell gene signatures (Fig. 1e) and fibroblasts were
identified as those cells where the fibroblast signature score -mural cell
signature score >0.1 and the fibroblast signature score >0.

A consensus list of fibroblast genes (n = 2805) was then identified
as those expressed in >1% of fibroblasts in each dataset. The Seurat
package IntegrateData function was then used to calculate rPCA cor-
rected expression values for these consensus fibroblast genes within
each dataset.

Fibroblast meta-analysis. The fibroblasts isolated from each scRNA-
seq datasets were integrated using canonical correlation analysis (CCA)
dimensionality reduction to create a shared low-dimensional space
across datasets. 1422 genes (listed in Supplementary Data 16) with the
highest standardised variance across all datasets were identified for this
analysis. Mutual nearest neighbours (anchors) were then calculated
using 30 canonical correlation vectors, filtering out potentially incor-
rect anchor pairs based on gene expression profiles and anchor
weighting. To build the integrated dataset, anchors between all pairs of
datasets were scored and then progressively merged. An integrated
(batch-corrected) expression value for each of the 1422 variable genes
was then calculated and used for dimensionality reduction (PCA and
UMAP), nearest neighbour graph construction and clustering, as
implemented in the Seurat (v4.0.2) R package. Initial clustering identi-
fied small clusters of cells marked by immune cell markers, likely to
represent fibroblast/immune cell doublets or contaminating immune
cells, which were excluded from further analysis.

Marker genes were identified using the FindAllMarkers function to
apply a Wilcoxon signed-ranks test, which was applied both to the
single-cell data and to sample-level data generated using the Aver-
ageExpression function. GSVA was performed using the GSVA (v1.36.3)
package to calculate an enrichment score for each gene set per sample
as the normalised difference in empirical cumulative distribution
functions (CDFs) of ranked gene expression inside andoutside the gene
set. The limma (v3.44.3) R package was then used to assess whether
these enrichment scores were differentially expressed between sub-
populations using linear models.

To infer differentiation trajectories, we used the destiny (v3.2.0) R
package to perform diffusion map dimensionality reduction, cluster
cells by diffusion pseudotime branches and calculate pseudotime
values. A loess regression model was then used to identify genes that

were differentially expressed in and calculate fitted values for each
gene’s expression profile in pseudotime for each dataset, using the
gam (v1.20) R package. Meta-p values were then calculated to deter-
mine those genes that significantly varied across all datasets analysed,
using the meta p (v1.5) R package. To identify pseudotime modules,
themedianwas calculated (acrossdatasets) for eachgene’s loess-fitted
expression profile in pseudotime and the correlation between genes
was calculated as Pearson’s correlation coefficient (r). Gene modules
were then identified through unsupervised clustering using “Ward’s
method”, applied to a distance matrix constructed by calculating 1-r.

To compare fibroblast phenotypes across pathologies we ana-
lysed publicly available data from IPF15, PDAC49, CRC50 and HNSCC29.
These datasets were processed to extract fibroblasts, as described
above. Integration with the NSCLC dataset was then performed by
CCA, as described above. Label transfer was then performed as
described previously35, generating a predicted cluster classification
and associated prediction score for each class.

Multiplex immunohistochemistry (MxIHC)
Staining and image capture. Immunohistochemical staining was
performed using a previously-described multiplexed protocol76. Four-
micrometre sections of formalin-fixed paraffin-embedded (FFPE) sec-
tions were mounted on TOMO slides (Matsunami) and baked for
60min at 60 °C. Deparaffinisation, rehydration, antigen retrieval and
immunohistochemical staining were performed using the PT Link
Autostainer (Dako).

Antigen retrieval for all antibodies was performed using the
EnVision FLEX Target Retrieval Solution (Dako, pH indicated in
Table 1). Sections were then incubated with primary antibody (details
provided in Table 1) for 20min (except for ACTA2 [αSMA], which was
incubated for 10min). Endogenous peroxidase activity was blocked
using the Envision FLEX Peroxidase-Blocking reagent (Dako). EnVision
FLEX HRP detection reagent (Dako) for secondary amplification and
enzymatic conjugation. Chromogenic visualisation was performed
using haematoxylin counterstaining and 2 × 5-min washes in either
diaminobenzidine (DAB, for CD31 staining) or 3-amino-9-
ethylcarbazole (AEC, for all other markers). Initially, sections were
stained for CD31, then sequentially stained for additional markers.
Between each staining iteration, AEC staining was removed using
organic solvents (70% ethanol, 2min; 99% ethanol, 2min; xylene,
2min; 99% ethanol, 2min; 70% ethanol, 2min); and antigen retrieval
was performed in preparation for the next primary antibody and to
denature antibodies from the previous staining iteration. For each
staining iteration, whole slide images (WSIs) were captured at 20xwith
a ZEISS Axio Scan.Z1, using ZEN 2 software (ZEISS).

Multiplex sequence optimisation and validation. The method used
for mxIHC repeatedly exposes tissue sections to organic solvents to
strip the AEC stain and the EnVision FLEX Target Retrieval Solution.
Target epitopes have variable tolerance to this exposure, with some
signals remaining consistent throughout, whilst others are lost after a
small number of iterations.

Each antibody was tested on a control section for signal
attenuation by repeated stain and strip processes (number of repeats ≥
number of stains in mxIHC panel). Whole slide images (WSI) were
captured after each staining cycle, then a conserved region that shows
the target signal in the first stain is selected for all images and the stain
is quantified as a relative area covered across multiple intensity bins. If
the staining intensity was found to decrease after repeat x, the max-
imum position for the antibody in the Mx sequence was x−1.

Multiplex imagegeneration. TheWSI fromeach staining iterationwas
deconvoluted using the hue-saturation-density (HSD) model, imple-
mented in Developer XD 2.7 (Definiens,Munich)77, to create a 'pseudo-
immunofluorescence' (pIF) image showing the blue (nuclear), brown
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(registration) and red (transient marker) signals. This produced three
raster images offloating-point values ranging from0 to ~3. Storage and
processing economy was maximised by converting float values to
integers in the range of 8-bit images (1–256); for each pixel, the float
value was divided by 1.5, then multiplied by 256 and rounded up to a
maximumof 256. Each layerwas thenprocessed to identify topological
maxima above the level of background signal,measured as themoving
average over a 151 × 151-pixel window (Original-Background <5 =0).
For the red signal, an additional condition was applied to account for
the similarity in the colour profile of red and brown (red signal <
(0.43*brown signal) = 0). These pIF images, saved at a resolution
equivalent to x5 magnification in tiff format, were registered using the
MultiStackRegistration plugin78 in Fiji79. The primaryMx image consists
of a nuclear stain from iteration (i)1, registration stain from i1, target
marker from i2 to in and a nuclear marker from in. For quality control
(QC), an additional Mx image was generated consisting of nuclear
marker staining from i1 to in.

Multiplex image analysis. QC analysis was performed on the nuclear
stain, to identify tissue loss or registration errors. A nuclear signal was
identified from i1, then any nucleuswith a signalmissing in i2 to inwere
marked as lost.

Mx analysis proceeded from the import of the result from QC
analysis where the remaining nuclear signal was segmented to gen-
erate individual nuclear objects. These were then grown by 5.5 µm
radius to represent simulated cell regions. For each marker, a thresh-
old of 7 was used to identify significant staining (this threshold is to
exclude blush/bleed/non-specific staining) and the marker coverage
for each cellwasmeasured. This, plusXY coordinates for eachcell were
exported for histo-cytometry analysis.

Stromal cell identification and histo-cytometry. Histo-cytometry
estimates of cellular expression levels were calculated as the fraction
of pixels within simulated cell regions positive for staining once
background levels had been subtracted. Stromal cells were identified
by the absenceof staining for Pan-CK,CD31orMCAMandpositivity for
one of the fibroblast markers (ACTA2 [αSMA], POSTN, AOC3 and
CD34). Then subpopulations were identified by which of the four
markers was most highly expressed.

Spatial analysis. Tissue regions (Tumour, control and solid mor-
phology regions) were annotated by a consultant pathologist (GJT and
ECS) and point pattern data from the histo-cytometry analysis was
used to assess region enrichment.

Bulk transcriptomic data analysis
Whole-tissue transcriptome dataset download. RNA-sequencing
counts data from TCGA NSCLC cohorts was downloaded using the
TCGAbiolinks (v2.16.4) Rpackage80. Clinical data for these patientswas
downloaded using the TCGA clinical data resource81. Mutational status

and additional metadata were downloaded from cBioPortal82. Micro-
array and associated clinical data were downloaded from the NCBI
GEO database (GSE72094, GSE31210, GSE68465, GSE4573, GSE157009,
GSE157010) using the GEOquery (v2.56.0) R package83. For each LUAD
dataset the molecular subtypes were calculated using the previously
described nearest centroid approach23.

Digital cytometry using CIBERSORTx. Digital cytometry was carried
out using the online tool developed by ref. 27. We used SMART-Seq2
single-cell RNA-sequencing data from the Travaglini et al. andMaynard
et al. studies18,34 to generate a single-cell reference sample matrix,
consisting of cells from control and tumour tissues. This consisted of
fibroblast subpopulations; pericytes and SMCs, identified during in
silico fibroblast sorting (described above); endothelial, epithelial and
immune cells, identified from the general annotation provided in the
dataset metadata. To prevent memory errors, we limited the size of
this reference matrix by randomly downsampling each cell-type to a
maximum of 500 cells. This reference samplematrix was then used to
generate a signaturematrixfile, using the default CIBERSORTx settings
(Fig. S5a). Cell fraction imputation was then performed in absolute
mode, using this signaturematrix and ‘S-mode’ batch correction. RNA-
seq mixture datasets (TCGA cohorts) were converted to counts per
million and analysed without quantile normalisation. Microarray mix-
ture datasets were analysed with quantile normalisation performed
prior to deconvolution.

To test the digital cytometry results’ accuracy, we constructed a
pseudobulk dataset from theMaynard et al. scRNA-seq data, excluding
cells used to generate the signature matrix34. Fibroblasts are sig-
nificantly under-represented in scRNA-seq datasets12. Therefore,
reconstructing bulk datasets from sample-specific cells meant that
fibroblasts represented a very small fraction of many pseudobulk
samples. To overcome this issue, we instead created a simulated
pseudobulk dataset of 200 samples. For each sample, 1000 cells were
randomly selected from three patient samples, then additional fibro-
blasts were added so that each sample consisted of between 1–50%
fibroblasts. The pseudobulk dataset was then converted to counts per
million and analysed as described above. Linear regression analysis
was used to determine the accuracy of CIBERSORTx absolute scores as
measures of fibroblast subpopulation abundance (Fig. S5b).

Survival analysis
Survival analysis was performed for each cohort, using the survival
package in R. CIBERSORTx absolute scores were used to calculate the
percentage of each fibroblast subpopulation present in each sample.
These values were then used as continuous independent variables in
Cox proportional hazards (CoxPH) regression modelling of overall
survival rates. For categorical analyses, TCGA-LUADcohortwasused as
the test dataset, and optimal dichotomisation thresholds were deter-
mined using the survival (v3.2-11) survminer (v0.4.9) R packages. Sta-
tistical significance was then assessed using a log-rank test (for

Table 1 | Details of antibodies used for multiplexed Immunohistochemistry

Target Clone Supplier Product code Dilution Ag retrieval pH

CD31 JC70A Agilent/Dako IR61061-2 5x (RTU) High

Pan-CK AE1/AE3 Agilent/Dako IR05361-2 5x (RTU) High

MCAM Polyclonal SIGMA/Merck HPA008848 500x Low

ACTA2 (αSMA) 1A4 Agilent/Dako IR61161-2 1x (RTU) High

POSTN Polyclonal SIGMA/Merck HPA012306 50x Low

CD34 QBEnd 10 Agilent/Dako M716501-2 50x Low

AOC3 #393112 R&D Systems MAB3957 500x Low

HSPA1A 3A3 Santa Cruz sc-32239 250x Low

RTU product purchased at supplier designated “ready to use“ concentration.
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univariate analyses) or by CoxPH regression modelling (for multi-
variate analyses).

Statistical analysis
All statistical tests carried out were two-sided and are described in the
relevant figure legends, including the sample size for each experi-
mental group. Exact p values are shown in the figures unless otherwise
stated in the figure legends. All Boxplots are displayed using the Tukey
method (centre line, median; box limits, upper and lower quartiles;
whiskers, last point within a 1.5x interquartile range).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw scRNA-sequencing data generated in this study are available
using the NCBI Gene Expression Omnibus database: GSE153935.
Additional datasets required to reproduce the analysis and figures
have been published on Zenodo (https://doi.org/10.5281/zenodo.
7400873). These include a Seurat object holding scRNA-sequencing
data and the results of our data integration for fibroblasts isolated
from multiple human lung cancer datasets (used from Fig. 2 onwards
in our paper); a dataframe holding the histo-cytometry results from
our multiplexed immunohistochemistry (mxIHC) analysis performed
on whole human lung cancer tissue sections; and further '.Rdata' files
required for readers to reproduce the paper’s analysis and figures.
Source data are also provided with this paper as indicated in the figure
legends. The publicly available datasets used in this study are available
from the following sources. Bulk tissue RNA-seq (TCGA-LUAD/
LUSC24,25) from the NIH-NCI Genomics Data commons (https://gdc.
cancer.gov/access-data). The publicly available bulk tissue microarray
datasets are available from the NCBI Gene expression omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under the following accession
codes GSE7209451, GSE3121052, GSE6846553, GSE457354, GSE15700955

and GSE15701055. The publicly available NSCLC scRNA-seq datasets are
available from various online repositories: the Kim et al. study data
were available from NCBI GEO under the accession code GSE131907;16

the Qian et al. dataset is available on the ArrayExpress database at
EMBL-EBI under accession codes E-MTAB-6149 and E-MTAB-6653;32

the Travaglini et al. dataset is available on the synapse database under
the accession code syn21041850;18 the Maynard et al. dataset is avail-
able as anNCBI BioProject under the accession code PRJNA591860 and
processed data were accessed at the following link (https://github.
com/czbiohub/scell_lung_adenocarcinoma)34, the Bischoff et al. data-
set is available as a Code Ocean capsule under the following https://
doi.org/10.24433/CO.0121060.v131. The publicly available IPF dataset
used is available fromNCBIGEOunder the accession codeGSE13683115.
The publicly available PDAC dataset is available as an NCBI BioProject
under the accession code PRJCA00106349; the publicly available CRC
dataset is available from NCBI GEO under the accession code
GSE13246550; the publicly available HNSCC dataset is available from
NCBI GEO under the accession code GSE10332229. Source data are
provided with this paper.

Code availability
All coding was performed using the publicly available packages cited,
in R (v4.0.2). For further details, the R scripts used are available on
Github (https://github.com/cjh-lab/NCOMMS_NSCLC_scFibs.git).
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