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Thermodynamic architecture and
conformational plasticity of GPCRs

Sathvik Anantakrishnan1 & Athi N. Naganathan 1

G-protein-coupled receptors (GPCRs) are ubiquitous integral membrane pro-
teins involved in diverse cellular signaling processes. Here, we carry out a
large-scale ensemble thermodynamic study of 45 ligand-free GPCRs employ-
ing a structure-based statistical mechanical framework. We find that multiple
partially structured states co-exist in the GPCR native ensemble, with the TM
helices 1, 6 and 7 displaying varied folding status, and shaping the con-
formational landscape. Strongly coupled residues are anisotropically
distributed, accounting for only 13% of the residues, illustrating that a large
number of residues are inherently dynamic. Active-state GPCRs are char-
acterized by reduced conformational heterogeneity with altered coupling-
patterns distributed throughout the structural scaffold. In silico alanine-
scanning mutagenesis reveals that extra- and intra-cellular faces of GPCRs are
coupled thermodynamically, highlighting an exquisite structural specializa-
tion and the fluid nature of the intramolecular interaction network. The
ensemble-based perturbation methodology presented here lays the founda-
tion for understanding allosteric mechanisms and the effects of disease-
causing mutations in GCPRs.

G protein-coupled receptors (GPCRs) are a large superfamily of inte-
gral membrane proteins found across the eukaryotic tree of life that
are involved in numerous critical signaling processes. The human
genome is known to contain over 800 different GPCRs with roles in
vision, taste, smell, neurotransmission, immunoregulation, home-
ostasis, and growth1. Their physiological importance and the variety of
processes inwhich they are involved arewell illustrated by the fact that
over 30% of clinically approved drugs target GPCRs2. Mutations in
GPCRs have been implicated in a wide variety of diseases, including
retinitis pigmentosa, thyroid disease, epilepsy, fertility disorders, and
carcinomas3,4.

GPCRs are divided into six classes based on their functions and
sequence homology, with the class A (Rhodopsin-like) receptors
comprising the largest group. All GPCRs share a common transmem-
branedomain structure consistingof sevenhelices arranged in a highly
conserved topology (Fig. 1a). This transmembrane domain, also called
the 7TM domain, is involved in ligand binding, allosteric signal trans-
duction, and the binding and subsequent activation of downstream

effector proteins. Ligand binding on the extracellular side of the helix
bundle induces allosteric conformational changes that result in
G-protein binding and activation on the intracellular side5. Signaling
through GPCRs is induced by a wide variety of stimuli, including heat,
mechanical stresses, small molecules, and peptides. Signals are trans-
mitted within the cell through signaling transducers, heterotrimeric G
proteins, and β-arrestins. GPCRs contain several highly conserved
sequence motifs and structural features. The first and second extra-
cellular loops (ECL1 and ECL2) contain conserved cysteine residues
that form a disulfide bridge. On the intracellular side, many GPCRs in
their inactive state contain an “ionic lock,” a network of salt bridges
between residues in TM3 and TM6 (Glu6.30, Arg3.50, and Asp3.49 in
β2-AR using the Ballesteros–Weinstein numbering scheme)5. The heli-
cal bundle contains multiple conserved sequence motifs that act as
“microswitches” which are involved in GPCR activation and stabilize
the conformation of the transmembrane helices in the active state.
These include the D[E]RY sequence in TM3, the NPxxY motif in TM7,
and the PIF motif at the interface of TM3, TM5, and TM66,7.
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Despite the importance of GPCRs and their ubiquitous presence
in eukaryotic species, the extent of native ensemble heterogeneity in
GPCRs is an open question. Their presence in the membrane makes
their purification and reconstitution for biophysical experiments dif-
ficult. Further, the responses of variousGPCRs to inductive stimuli take
place on timescales ranging from milliseconds to hours8. Molecular
dynamics (MD) simulations of the folding of these large receptors (the
TMhelices alone are ~300 residues in length) in their nativemembrane
environment over long timescales are computationally challenging.
Aside from all-atom MD simulations9–15, multiple biophysical techni-
ques have been used to probe GPCR conformational dynamics, ligand
binding, and GPCR–G-protein interactions at timescales of nanose-
conds to seconds. These include Förster resonance energy transfer
(FRET)16–20, hydrogen/deuterium exchange mass spectrometry (HDX-
MS)21–25, electronparamagnetic resonance (EPR) spectroscopy26–30, and
nuclear magnetic resonance (NMR) spectroscopy31–34. Alongside static
structures of GPCRs in unbound, ligand-bound, and transducer-bound

states, these experiments have revealed the helix movements that
occur upon GPCR activation, specific structural features that mediate
these movements, and the possibility of intermediates during the
transition between active and inactive conformations. Over the past
decade, advancements in crystallization techniques and the design of
stable GPCR fusion protein constructs have allowed for the structures
of several GPCRs to be solved35. Structures of the GPCRs, however, do
not provide information on ensemble features, but can serve as an
excellent starting point to be used in conjunctionwith structure-based
methods capable of investigating conformational flexibility.

In this work, we employ an Ising-like statistical mechanical model
termed the Wako–Saitô–Muñoz–Eaton (WSME) model36,37, which has
been quite successful in capturing the folding mechanisms and con-
formational landscapes of water-soluble proteins38–40, to explore the
structural–thermodynamic hallmarks underlying the GPCR archi-
tecture in the ligand-free form. Despite the simplicity of the approach,
we not only predictmany known features of GPCRs, but also provide a
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Fig. 1 | GPCR free energy profiles. a Representative structure of a GPCR with the
seven transmembrane (TM) helices viewed side on (left) and from the extracellular
side (right). b One-dimensional free energy (FE) profiles of the 45 GPCRs as a
functionof the reaction coordinate, the fractionof structuredblocks, at themelting
temperature. The more folded conformations populate to the right of the free
energy profile (high reaction coordinate values), while the partially structured

states and unfolded conformations will be populated to the left (intermediate and
low reaction coordinate values, respectively). The numbers on the top left of every
panel are the GPCR indices. c The number of intermediates determined from the
free energy profiles in panel b assuming a 1RT threshold. Source data are provided
as a Source data file.
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detailed view of their complex conformational landscapes, which can
be used in conjunction with experiments to explore native ensemble
heterogeneity, populated substates and intermediates, activation
mechanisms, and allostery.

Results
Sequence and structural diversity in the GPCR database
Sequences corresponding to eachof the 45GPCR structureswereused
to generate a multiple sequence alignment (MSA) using ClustalW41. A
percentage sequence similarity matrix was computed from pairwise
similarities between the sequences in the MSA. Most GPCR sequences
in our database exhibit low pairwise similarities, yielding a mean
similarity of 9.8% (σ = 2.4%) between non-identical sequences. A high
sequence similarity (59.2%) is observed between the twometabotropic
glutamate receptors (GPCRs 11 and 35). Similarly, several other GPCRs
belonging to the same receptor subfamily display higher than average
pairwise sequence similarities. These include the chemokine receptors
(GPCRs 2, 4, 20, 24, 36, and 44), the β-adrenoceptors (GPCRs 3 and 7),
the proteinase-activated receptors (GPCRs 6 and 21), the opioid
receptors (GPCRs8, 9, 10, and 19), and themelatonin receptors (GPCRs
41 and 42). The structural diversity of the GPCR dataset was also pro-
bed by computing pairwise root-mean-square deviations (RMSD)
between the structures using the Dali protein structure comparison
server42. Although the receptors show a high level of sequence diver-
gence, structural similarity is found to be quite high with a mean
pairwise Cα-RMSD of 3.1 Å (σ =0.6Å). The only standout GPCR being
the β2-adrenergic receptor (β2AR; GPCR7) that displays high pairwise
RMSD values against all other structures used, including the β1-adre-
noceptor with which it shares a subfamily (RMSD 4.8 ± 0.6 Å). The
sequence-structure analysis effectively reveals that the dataset chosen
is diverse enough to explore generic trends in the folding-
conformational behaviors of GPCRs.

Folding free-energy profiles and intermediates
The bWSME model was used to iteratively generate heat capacity
curves at different values of the van derWaals (vdW) interaction energy
per native contact (ξ) while keeping every other parameter constant
(Supplementary Figs. 1 and 2 and Supplementary Table 1). The magni-
tude of ξ that resulted in an apparentmelting temperature (Tm) of 333K
was selected (see Methods). This was done to ensure that the energy
scales match the average melting temperature of mesophilic proteins,
which is ~333K. Note that the melting temperature of GPCRs is gen-
erally lower than 333Kand is expected tobedifferent dependingon the
GPCR identity. The higher Tm value assumed here is to ensure that the
predictions constitute the lower limit of conformational heterogeneity.
The effectivemean of ξ across the 45 proteins is −48.9 ± 2.76 Jmol−1 per
native contact, indicating that none of the structures exhibit unique
differences in packing that could contribute to extreme ξ values. In fact,
themagnitude of ξmatches that of the 6–12 Lennard–Jones interaction
potential between two carbon atoms (−46.1 Jmol−1 at 6 Å) calculated
from atomic-level force-field parameters43.

One-dimensional free-energy profiles (1D FEPs) were then gener-
ated at 333 K as a function of the fraction of structured blocks, which is
a natural coordinate for theWSMEmodel (“Methods”). The complexity
of the profiles is better observed at 333 K as the favorable gradient
towards the folded state at say, 298 or 310 K, obscures the features.
The high sequence diversity observed in our dataset is expected to
contribute to large differences among the free energy profiles and this
is indeed the case. For example, some GPCRs present two-state-like
free energy profiles with a large thermodynamic barrier between the
folded and unfolded states (Fig. 1b). These include Free fatty acid
receptor 1 (GPCR22, Supplementary Table 1) and C-C chemokine
receptor type 5 (GPCR24). Others, like P2Y purinoceptor 1 (GPCR14),
Orexin receptor type 1 (GPCR18), and Prostaglandin E2 receptor
EP3 subtype (GPCR40), exhibit multi-state profiles containing

numerous intermediates. The free energy profile of Free fatty acid
receptor 1 (GPCR22) features a large free energy barrier between the
folded and unfolded minima and a narrow folded-state minimum. On
the other hand, the free energy profile of Adenosine receptor A1
(GPCR23) features a broad folded-state minimum. Type-2 angiotensin
II receptor (GPCR25), Substance-P receptor (GPCR37), and Calcitonin
receptor (GPCR43) display free energy profiles that are largely flat,
suggestive of a loosely coupled structural scaffold. The positions of
major intermediates on the free energy profiles also differ between
different GPCRs. While the free energy profile of Sphingosine
1-phosphate receptor 1 (GPCR5) features intermediates that precede
the major folding barrier, β1 adrenergic receptor (GPCR7) populates
intermediates after themajor folding barrier. Inmany cases, the native
ensemble is not defined by a single state, but by a collection of sub-
states either over a barrier or as a continuum of states, and this can be
seen in Rhodopsin, P2Y purinoceptor, Neurotensin receptor type 1,
Cannabinoid receptor 2, and Thromboxane A2 receptor.

We estimate the number of intermediates via a simple heuristic: a
local minimum on the 1D FEP is considered to be a partially structured
intermediate if it was separated from its neighboring minima by free
energy barriers of at least 1 RT. According to this criterion, the 1D FEPs
of most GPCRs in the dataset are found to contain at least 2–3 inter-
mediates (Fig. 1c and Supplementary Table 2). P2Y purinoceptor 1
(GPCR14) and Orexin receptor type 1 (GPCR18) populate the highest
number of intermediates (6). It is important to note that the observed
heterogeneity in the 1D FEP is only a lower limit. This is because the
reaction coordinate, the number of structured blocks, lumps together
millions of microstates to construct partial partition functions and
hence folding free energy profiles.

Though the reliability of the WSME model predictions has been
validated in numerous water-soluble proteins, it is not clear if they are
equally applicable to membrane-associated systems. The robustness
of the bWSME model energy function is showcased by studying two
bacterialmembraneproteins, GlpG and PagP (SupplementaryTable 3),
whose folding mechanisms have been re-constructed from experi-
ments. GlpG, which consists of six transmembrane α-helices, folds
primarily through a mechanism that involves the folding of the entire
N-terminal region of the protein before the C-terminal region folds
(Supplementary Fig. 3a–d). This is in close agreement with data from
single-molecule unfolding experiments andmutational analysis, which
indicate that the C-terminal region is more unstable and the presence
of an N-terminal biased folding nucleus44. The β-barrel membrane
protein PagP folds via an intermediate inwhichparts ofboth theN- and
C-terminal regions are structured, with a higher probability of
C-terminal structure45. This observation is again in good agreement
with our model, which yields a two-dimensional free energy surface
with a significant local minimum in which both the N- and C-terminal
regions are partially structured with a higher structural disposition
towards the C-terminal strands (Supplementary Fig. 3e–h). The
agreement of the model predictions with experimentally constructed
folding mechanisms thus attests to the robustness of our method and
the uniform dielectric constant employed for studying membrane
proteins. We delve into the thermodynamic architecture of GPCRs in
the sections below.

Helix stabilities and conformational plasticity
To examine how stability determinants are distributed across the
GPCR structures, the folding probability of every residue in the protein
was calculated at 310K by summing up the statistical weights of
microstates with a specific residue folded and their relative contribu-
tion to the total partition function (“Methods” and Eqs. 6–8). These
residue folding probabilities were then used to compute the average
stability of residues within each of the seven transmembrane helices
for all 45 GPCRs (Fig. 2a). Note that this calculation allows for the
estimation of the helix stability in the context of the structure
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considered and not in isolation. We find that TM3 is the most stable of
all the helices, with TM1 being the least stable. Thus, without explicitly
considering the disulfide bridge between the first and second extra-
cellular loops (ECL1 and ECL2), the model is still able to predict the
larger stability of TM3. The stabilities of TM1, 6, and 7 vary substantially
in the dataset studied, and in some GPCRs, these helices are unstruc-
tured even in the native ensemble (positive helix stability values
in Fig. 2a).

As a second step, one-dimensional free energy profiles were
constructed at 310K as a function of the reaction coordinate, the
number of structured blocks (Fig. 2b). Regions of theGPCR that unfold
first or are partially structured in the native ensemble are identified by
choosing two specific regions on the reaction coordinate (RC =0.85
and RC =0.7; vertical lines in Fig. 2b) and plotting the probability of
structure in the N-terminal half (〈pf,N〉) versus C-terminal half of the
structure (〈pf,C〉) (Fig. 2c, d). The former accounts for the first three TM
helices while the latter accounts for the TM helices 4–7. At RC =0.85
that corresponds to the near-fully folded native ensemble, both the N-
andC-terminal halves are already partially structured in themajority of
GPCRs with hpf,Ni of 0.41 compared to hpf,C〉 of 0.44 on average
(Fig. 2c). Importantly, 30of the 45GPCRs exhibitmoreunfolding in the
N-terminal half compared to the C-terminal half. Minor perturbations
can be mimicked by observing the stability patterns at RC =0.7 where
the protein is marginally more destabilized (Fig. 2d). Under these
conditions, both the protein halves are similarly unfolded on average
across all proteins 〈pf,N〉 of 0.34, and hpf,Ci of 0.36), with the distribu-
tion flipped in favor of more unstructured C-terminal halves in 27
GPCRs (Fig. 2d). Given that TM1, 6, and 7 exhibit lower stabilities

compared to other helices, it is likely that these regions sample par-
tially structured states in the native ensemble. Topologically, this
conformational behavior is expected as TM1 is themostweakly packed
of all helices, interacting only with TM2 in most proteins and also with
TM7 in some (Fig. 1a). On the other hand, TM7 is relatively more
packed, directly interacting with all helices except TMs 4 and 5, and
hence it is less likely to sample unstructured states compared to TM1.

To investigate this further, 2D free energy landscapes were gen-
erated for all GPCRs at 310K, with the number of structured blocks at
the N- or C-terminal region as coordinates. Such a 2D landscape has
been particularly successful in capturing functionally relevant sub-
states in multiple large water-soluble proteins40,46,47. For example,
consider the free-energy landscapes of Rhodopsin (GPCR1), the β2AR
(GPCR3) and the Kappa-type opioid receptor (GPCR8) at 310K (Fig. 3).
The native ensembles are broad in the GPCRs considered, but with
differences in the extent and nature of conformations populated. The
Rhodopsin free energy surface (Fig. 3a) is indicative of a continuum of
states in the native basin (states a and b), while the states b and c in the
β2 AR (Fig. 3b) and all labeled states in the Kappa-type opioid receptor
(Fig. 3c) are intermediate-like, and are populated over a marginal
thermodynamic barrier. The partially structured states c and a in
Rhodopsin and the β2AR, respectively, will however not have a large
residence time as they appear as “excited states” along the coordinate
(they do not constitute a minima on the landscape). In these three
GPCRs, it is TM1 that exhibits the largest degree of unfolding.

In Rhodopsin state a (Fig. 3a), one would expect the unfolding of
TM1 tonot affect the adjacent helices, but it is clear that the free energy
of folding (Eq. 7) of almost all the helices are perturbed—they should
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Fig. 2 | Helix stabilities and conformational plasticity at 310K. a Box plot of
individual TM helix stabilities (n = 45). Box plots include the median line (median
value indicated), the boxdenotes the interquartile range (IQR),whiskersdenote the
rest of the data distribution, and outliers are denoted by points greater than
±1.5 × IQR. b One-dimensional free energy profiles of two representative GPCRs.
The vertical dashed lines signal the reaction coordinate (RC) values of 0.85

(continuous red) and0.7 (dashed red), respectively. c,d Protein regions that unfold
first asonemoves from the right to the lefton the free energyprofiles are illustrated
by dividing the GPCR structures into the N-terminal half (TM helices 1–3) and
C-terminal half (TM helices 4–7). c, d plot the means folding probability of the N-
and C-terminal halves of the structure at the indicated reaction coordinate values.
Source data are provided as a Source data file.
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be in the dark blue color range (more folded) but instead fall in the
region between cyan and white (partially unfolded). This is a con-
sequence of the fact that a loss of interactions between TM1 and TMs 2
and 7 in turn destabilizes the TMs adjacent to them but to a lesser
extent, similar to the effect ofmutations on protein structure48. State c
in Rhodopsin is characterized by fully folded TMs 1–4 while TMs 5–7
are partially structured. In the β2AR, unstructured TMs 1-2 are the
predominant substates (states a and b in Fig. 3b), similar to the state a
in the kappa-type opioid receptor (Fig. 3c). Additionally, the substate a
in β2 adrenergic receptor exhibits partial structure in TMs 6 and 7
(white in Fig. 3b), whichmirrors experimental observation of substates
involving significantmobility in the same set of helices49. Furthermore,
partial structure in TMs 1, 2, 6, and 7 of the kappa-type opioid receptor
promote the population of an intermediate c that has only TMs 3, 4,
and 5 folded (Fig. 3c). To summarize, it appears that while partial
unfolding of TM1 is a dominant substate in GPCRs, there can be sub-
stantial variation in the natureof the states populated and their relative
populations.

Anisotropic distribution of coupling free energy magnitudes
GPCR activation mechanisms are dependent not just on the thermo-
dynamic stabilities of individual helices (in the structural context) but

also the extent to which these stabilities are modulated via altered
structural patterns and contacts between helices on ligand binding. A
precise understanding of this could be gleaned by computing the
extent to which the different regions of the protein are thermo-
dynamically coupled to each other50,51. We calculate coupling free
energies between residues from the bWSME model by grouping the
ensemble of microstates into four different sub-ensembles for every
residue i (Fig. 4a):

P
pif jf

sums over the probabilities of all states in
which both residues i and j are folded,

P
pif ju

sums over probabilities
of states in which residue i is folded and j is unfolded, and similarly forP

piujf
and

P
piuju

39. From these groupings, one could calculate posi-
tive (ΔG+), negative (ΔG−) and effective (ΔGc) coupling free energies39,52

between different residues using:

ΔG+ =RT ln
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Positive coupling free energies quantify the extent to which resi-
dues i and j are coupled via direct interactions or through long-range
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Fig. 3 | GPCR conformational landscapes and native ensemble heterogeneity.
Free energy landscapes of Rhodopsin (a),β2AR (b), and Kappa-typeopioid receptor
(c). The free energy values and the color bars are in units of kJmol−1. The structures
are color coded according to the color bars with light blue and dark orange
representing fully folded and fully unfolded conformational status, respectively.

Intermediate free energy values colored in white represent regions of intermediate
stability. Themajor conformational states a, b, and c are shown adjacent to the free
energy landscapes with N representing the folded native ensemble. Source data are
provided as a Source data file.
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interactions in the native ensemble while the negative coupling free
energies quantify the extent to which lack of spatial proximity, unfa-
vorable interactions or large conformational entropy decouples spe-
cific structural regions from others. The balance between the two
terms results in effective coupling free energies—residues that present
lower effective coupling free energies are typically located in func-
tional or dynamic regions of the structure as shown for multiple pro-
teins in a recent work39. Importantly, coupling free energies can be
calculated for every residue with respect to every other residue (and
hence a square matrix can be constructed), revealing insights into the
distribution of stabilization free energies in the structure.

Given the range of GPCR free energy profiles and individual helix
stabilities, the coupling maps are expectedly not uniform across the
GPCR dataset. For instance, in Rhodopsin (GPCR1), the broad native
well in Fig. 4b is a manifestation of minimal coupling between N- and
C-terminal regions (note the cyan scale in Fig. 4c). In the β1AR (GPCR7),
the native ensemble is not composed a single state but a continuumof
conformations (Fig. 4d) which results from weak inter-residue cou-
pling between the majority of residues in the protein (sea of blue in
Fig. 4e). More complex patterns are also evident for Neurotensin
receptor type 1 (Fig. 4f, g) and Adenosine receptor A1 (Fig. 4h, i), with
distinct coupling free energy patterns. 5-hydroxytryptamine receptor
2A (GPCR31),meanwhile, exhibits strong coupling between residues in

its C-terminal region with particularly strong inter-helical coupling
between TM1 and TM7 not seen in the other members discussed here
(circled regions in Fig. 4k).

The diverse patterns in Fig. 4 are better observed bymapping the
residue-averaged coupling free energies hΔGci, i.e., averaging along
the dimensions of the symmetric matrices in Fig. 4) onto the three-
dimensional structure. It can be seen that the coupled residues
(different shades of magenta) are not uniformly distributed through-
out the structure but are localized to specific regions in the protein
(Fig. 5a). The hΔGci values were Z-scored to account for intrinsic dif-
ferences in the range of coupling free energies, and residues that
exhibit a Z-score greater than one were labeled as strongly coupled.
The fraction of strongly coupled residues (fc) thus calculated vary for
the GPCRs, but are constrained within 25% (Fig. 5b). In fact, an analysis
of 25 water-soluble proteins (SPs) found that they exhibit a mean fc of
~16%39, while theGPCRdataset exhibits amarginally lower valueof ~13%
(Fig. 5c). Thus, despite the membrane bound nature of GPCRs, their
thermodynamic architectures do not deviate significantly from those
of water-soluble proteins. The anisotropic distribution patterns of
strongly coupled residues are also consistent with the observations
in SPs39.

To derive more generalized inferences on which regions of the
proteins are more coupled than others, the average pairwise coupling
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Fig. 4 | Thermodynamic architecture of GPCRs. a A flow chart describing the
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c, e, g, i, k The corresponding effective coupling free energy (ΔGc) matrices. The
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blue representing strong and weakly coupled residues, respectively. The cartoons
on top indicate the position of the secondary structure elements along the
sequence. The oval in k highlights that the TM helices 1 and 7 are strongly coupled
in 5-hydroxytryptamine receptor 2A. Source data are provided as a Source data file.
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between helices across all 45 inactive GPCR structures is calculated to
construct the inter-TM coupling matrix (Fig. 5d). Transmembrane
helices located adjacent to one another are strongly coupled due to
the nearest neighbor effects. TM1 and TM7, on the other hand, are
weakly coupled to the rest of the structure (except to TM2 and TM5,
respectively), as they constitute the termini of the protein. In agree-
ment with Fig. 2a, TM3 is the most strongly coupled of the helices,
consistent with TM3’s theorized role as a structural hub thatmaintains
the GPCR scaffold53. Furthermore, in the topological arrangement of
helices, TM3 interacts with all the other helices except TM1, making
this region in particular more stable and crucial to the stability and
functioning of GPCRs. TM4 is strongly coupled to TM helices 2, 3, and
5, while being marginally coupled to the other helices. One standout
message from the inter-TM couplingmatrix is the fact that every TM is
either weakly or strongly coupled to one another thermodynamically.
Anymodulation of the coupling free energies between apair of helices,
say by ligand binding, will necessarily affect the coupling free energies
throughout the structure (vide infra).

Are active state structures more strongly coupled?
GPCR activation is characterized by large-scale movements of trans-
membrane helices5,14,15. In particular, activation causes TM6 to swing
outward while TM5 and TM7 move in towards the helical bundle. This
should affect the coupling free energies and hence the free energy
profiles depending on the extent to which interactions are formed or
broken between residues in TM3, TM5, TM6, and TM7. To understand
this quantitatively, free energy profiles were generated for 8 GPCRs
whose structures are available in both active and inactive states
(Fig. 6a–h and Supplementary Table 4). The number of accessible
states in the active state native ensemble are minimized in Rhodopsin
(GPCR1), β1AR(GPCR7), Kappa-type opioid receptor (GPCR8) and
Adenosine receptor A1 (GPCR23), i.e. the native ensemble is sharper
with a narrow minimum, while no significant modulations are

observed in β2AR (GPCR3) and Neurotensin receptor type 1 (GPCR13).
These results are consistent with the idea that inactive GPCRs are
capable of sampling a variety of conformations and that agonist
binding stabilizes the active-like conformation5. Particularly, the find-
ing that β2AR samples similar set of conformations in the inactive and
active states is in agreement with detailed NMR experiments54. On the
other hand, Mu-type opioid receptor (GPCR9) and Type 1 angiotensin
II receptor (GPCR16) display a broader native ensemble in their active
state, indicating that the connection between the active state and a
narrower ensemble is not generalizable, at least from the perspective
of 1D free energy profiles.

We further computed the effective coupling free energy matrices
for the active and inactive structures and averaged them along one
dimension to plot them as a function of sequence index. Residues tend
to bemore strongly coupled to the rest of the structure in active-state
structures compared to inactive-state structures on average (Fig. 6i, j
and Supplementary Fig. 4). The stronger coupling in the active form is
more evident in the case ofRhodopsin (Fig. 6i), Adenosine receptor A1,
β1AR, and Mu-type opioid receptor (Supplementary Fig. 4) wherein
nearly all helices are stabilized. β2AR, on the other hand, displays little
change in the degree of coupling though differences can be observed
between and including TMs 5 and 6. The inactive structure is, however,
more coupled in the Neurotensin receptor type 1 and Type 1 Angio-
tensin II receptor. The differential wiring of the interaction network in
each of the protein potentially contributes to the differences we
observe from the perspective of the coupling free energies, high-
lighting the intrinsic malleability of the contact-network in GPCRs.

Finally, the difference between the effective pairwise coupling
between transmembrane helices in active and inactive structures was
computed for the 8 GPCRs to generate the differential couplingmatrix
(ΔGc,active � ΔGc,inactive; Fig. 6l). The mean pairwise thermodynamic
coupling between most helices increases upon GPCR activation,
despite the averaging across 8 GPCRs. The standard deviations are
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quite large, however, indicating that no two activated structures con-
tribute to similar changes in the coupling free energies. Despite this,
TM3, the most stable and most strongly coupled of the helices in the
inactive state, exhibits a gradation in the coupling differences between
active and inactive state structures. While it is more strongly coupled
todistant helices (TM6andTM7) in the active state, couplingwithTM1,
TM4, and TM5 decreases upon GPCR activation.

Alanine-scanning reveals long-distance thermodynamic
connectivity in Rhodopsin
The comparison of active-inactive structures shows that the pertur-
bations induced by activation can be pervasive and modulate long-
range structural features. The extent to which the binding of a ligand
influences a distant site could be potentially studied for every GPCR in
the presence of agonists and antagonists. However, the WSME model
does not include the atomic detail necessary for detailed modeling of
subtle effects at the level of chemical interactions between the protein
and the ligand, a feature that likely determines the differential effect of
ligands onGPCR structures.Moreover, themodel cannot be employed
to reproduce the experimental protein–ligand dissociation constant
(as of now), which is a necessary first step towards understanding
ligand binding effects.

An alternative is to explore the extent to which every residue is
coupled to every other residue in the folded conformational ensemble
by performing alanine-scanning mutagenesis. Alanine substitutions at
different positionswill affect the interactionnetwork todifferent levels
depending on the immediate environment of themutated residue, and
in comparison with the WT connectivity matrix, one can extract the
extent of coupling to a distant site. We consider only the positive

coupling free energy (ΔG+) for this calculation, as it carries information
on the states that harbor coupled residues in the native ensemble,
while not considering the decoupled residues or microstates in the
unfolded ensemble. For every mutant, a ΔG+ ,Mut matrix (N ×N matrix
where N is the number of residues in the protein) is generated and
referenced to the WT matrix (ΔG+ ,WT) to arrive at the differential
positive coupling matrix (ΔΔG+) (Supplementary Fig. 5), which is
averaged across all pairwise sites to generate the vector 〈ΔΔG+〉
(dimension N × 1) (Fig. 7a). The latter carries information on the extent
to which every residue is perturbed including the direction of pertur-
bation—positive and negative change are indicative of stronger and
weaker coupling, respectively—for a given alanine mutation. If the
alanine mutation is performed across m sites on the protein, the
resulting 〈ΔΔG+imatrix (dimensionN ×m) is employed to generate the
mean μ and standard deviation σ of the mutational response (MR,
dimension N × 1).

We carried out a large-scale in silico alanine scanningmutagenesis
of Rhodopsin involving 276 sites on the protein excluding the posi-
tions containing alanine, glycine and proline. The process involved
introduction of mutations using PyMol55, construction of ensembles
with parameters identical to that of the WT, and, following this, gen-
eration of 〈ΔΔG+〉 matrices (dimension 348 × 276; Supplementary
Fig. 6). The resulting mean mutational response highlights specific
protein regions whose coupling magnitudes change the most on per-
turbations (Fig. 7b). First, the retinal-binding site residues E113 (which
is a part of EGFF sequence block) and K296 (part of the FFAK block),
both of which line the orthosteric site, stand out as positions that
exhibit large changes upon mutational perturbations. Second, the
G-protein binding pocket involving the D(E)RY motif (E113) and the
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intracellular loop 3 (ICL3)/N-terminal region of TM6 exhibits high
sensitivity to mutations across the structure. The same regions addi-
tionally exhibit larger standard deviations in the mutational response,
indicating that theRhodopsin structureexhibits intrinsicdifferences in
dynamics (and hence thermodynamic coupling) depending on the
location of the perturbation (Fig. 7c).

The residue-level 〈ΔΔG+〉 vector that is generated for every
mutation carries information on the degree to which different resi-
dues are thermodynamically coupled and hence the extent (quanti-
fied in terms of distance) to which such perturbation effects are felt.
As representative examples, we discuss three different residues—
K296, N302, and M317—that play critical roles in the functioning of
Rhodopsin, and GPCRs in general56. Perturbation of K296 in the ret-
inal binding pocket (i.e., a K296A mutation) induces strong destabi-
lization across the structure when compared to the WT. This can be
observed as negative 〈ΔΔG+〉 and thatmodulates the folding status of
residues located as far as 35-40 Å from the mutated site with the
major effect within 25 Å (Fig. 7d and Supplementary Fig. 5). Mapping
these magnitudes on to the structure (Fig. 7e) it is clear that any
perturbation of K296 or residues around it will naturally modulate
the extent of coupling at the G-protein binding site located at the
intracellular side of Rhodopsin (with residues spanning TM helices 3,
5, 6, and 7). This can be seen from the surface representation for

strongly coupled residues in Fig. 7e that spans the entire length of
Rhodopsin. Thus, it appears that the ligand binding pocket is
strongly and thermodynamically connected to the G-protein binding
pocket. Perturbation of N302 in TM7 (from the NPxxY motif) reveals
that this residue is thermodynamically coupled to a majority of
residues at the intracellular side (Fig. 7f, g). Remarkably, this con-
nection, as represented by the surface map in Fig. 7g, extends all the
way to the ligand-binding pocket though the magnitude of this
coupling is ~4 times lower compared to K296. The residues in helix 8
have been proposed to also interact with G-proteins to enable the
formation of functional complexes57. While perturbation of K296
reveals little effect on helix 8, we find that perturbation of M317
(located in helix 8) is sensed at the ligand binding site including K296
and the surrounding residues (Fig. 7h, i). The lack of reciprocity
(K296 versus M317, for example) reveals that conformational mod-
ulations can be fine-tuned to accommodate a ligand with different
distantly located protein regions providing their feedback to the
ligand binding site(s), potentially determining their unbinding rates.

Discussion
The diverse sequence features of the GPCR family are implicitly
accounted for by the WSME model’s energy-entropy function—
sequence-structure-dependent conformational entropy, charge–charge
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Fig. 7 | Alanine-scanning reveals long-range communication in Rhodopsin.
a Protocol employed for in silico alanine-scanning mutagenesis studies from the
perspective of the WSME model. b, c Mean (b) and standard deviation (c) of the
mutational response (MR in kJmol−1). Specific residues and structural regions are
highlighted for discussion in themain text. E113 and K296 are in the retinal binding
pocket while E134 forms a part of the conserved D(E)RY motif that interacts with
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interactions and packing interactions—and the observed native
ensemble heterogeneity is an emergent property of these small
sequence-dependent features. One of the consistent observations is the
presence of kinetic traps or intermediates in the free energy profiles;
these intermediates are likely a manifestation of functional require-
ments as shown recently for several largewater-soluble proteins40. True
to this expectation, the functionally important TMhelices (TMs 1, 6, and
7) are typically only marginally coupled to the rest of the structure,
exhibit low intrinsic stability in the inactive state and are partially
unstructured in the native ensemble. This conformational pre-equili-
brium, defined as the co-existence of both fully folded and partially
structured substates with varying probabilities on the conformational
landscape, either over a broad native ensemble or as a series of inter-
mediates and/or excited states, is potentially one of the reasons for the
difficulty in crystallizing GPCRs. However, the precise extent of pre-
equilibrium is not universally conserved—no two GPCR conformational
landscapes are similar—and is likely evolutionarily selected basedon the
identity of the ligand and the requiredmagnitude of functional readout.
These aspects need to be studied on a case-by-case basis with appro-
priate experimental calibration of the model.

Themagnitude of coupling free energies, which are second-order
measures (unlike residue folding probabilities which are first-order
measures), provides insights into the structural and thermodynamic
architecture of proteins. The degree of coupling of different structural
regions in GPCRs can be dramatically different despite their high
structural similarity, showcasing the exquisite structural evolution
driven by functional requirements. Specifically, such diversity is a
consequenceof the anisotropic distribution of stability patterns across
the structure, with the distribution of strongly coupled residues (most
strongly coupled residues are in TMs 2 and 3) and the fraction of
strongly coupled residues (<30%) mirroring observations in soluble
proteins. The central role of TM3 as a structural hub emerges naturally
from the structural-ensemble-based calculation, in addition to the
precise magnitude of coupling between different TM helices in the
inactive state. Structural analysis of GPCRs based on consensus con-
tacts has revealed extensive insights into GPCR structures, likely acti-
vation mechanisms and regions of proteins that are involved in
activation5,53. We reformulate these implicitly into the WSME model
and find thatmany active structures sample a significantly constrained
conformational space. This can be explicitly observed both in the free-
energy profiles and in the resulting coupling free-energy magnitudes.
While it is not possible to generalize these observations to all GPCRs
given the limited dataset, the mean changes in coupling free energies
follow a specific pattern wherein all TM helices are more strongly
coupled to the rest of the structure in the active state compared to the
inactive conformation. Though TM3 remains rigid during these con-
formational motions, the effective coupling with adjacent helices is
modulated from negative (weaker interactions) to positive (stronger
interactions) in going from TM1 to TM7.

Given the large conformational flexibility in the ligand-free
GPCRs, it is tempting to speculate that the observed helix mobility
and partial unfolding are required for effective binding to various
agonists and antagonists and for precise control of functional out-
comes. In fact, simulations involving alprenolol binding to β2AR point
to two primary pathways involving either the channel between ECL2
and TM4/6/7 helices or between ECL2 and TM2/758, which was also
subsequently observed long time-scale MD simulations59. There is an
overall consistency between simulations and the WSME model pre-
dictions. Specifically, partial structure in TMs 1/2 (state b in Fig. 3b) and
TMs 1/2/3/4 (state c) can open up potential crevices and channels for
ligands to bind. In Rhodopsin, retinal unbinding simulations point to
unbinding from a cleft between TM 4/5 or TM5/660. If one were to
expect unbinding to be the reverse of binding from the principle of
microscopic reversibility, then this requires structural flexibility and
partial unfolding of the TMhelices 4/5/6 and this is observable in states

a and b in Fig. 3a. The large entropic stability of inactive GPCR con-
formations (because of their inherently flexible nature) is therefore
likely compensated by enthalpic effects through the binding of ligands
in the open crevices, cavities between TMhelices or in the extracellular
side (agonists, antagonists, or drugs), and via G-proteins on the
intracellular side.

The mechanistic basis for diseases associated with GPCR dys-
function include inactive or constitutively active receptors, under-
expressed receptors, and misfolded receptors, all of which arise due to
mutations distributed across the structure. It is conceivable that
mutations modulate the number and nature of intermediates or many
of the minor excited states, thus influencing foldability and half-life.
Such modulations could appear as differential coupling patterns in the
communication network and hencemanifest as allosteric effects, subtly
determining the binding of various agonists, antagonists and partial
agonists. This communication network is extracted by performing
large-scale alanine-scanning mutagenesis on Rhodopsin as a repre-
sentative example. The ligand-binding pocket, closer to the extra-
cellular face, is found to be strongly connected to theG-protein binding
site at the intracellular side, as evidencedby largedifferences in positive
coupling free energies when a mutation is introduced at the ligand
binding site (Fig. 7), similar to the results of sequence-based statistical
coupling analysis61. Given the large-scale connectivity map, it appears
that binding of ligands is precisely coordinated by not just the binding
site residues and “microswitches”, but also the folded status of many
residues far from the binding pocket, a feature that likely determines
the differences in affinity to agonists, antagonists and partial agonists.
Wewould like to note that the perturbationmethod does not reveal the
different “communication routes” nor the fluxes through them, but
reports on the extent to which a distant site is perturbed and the
magnitude of perturbation. Importantly, the resulting changes in posi-
tive coupling free energies are a manifestation of the differences in the
underlying distribution of states (as exemplified by Eq. 1) which when
mapped on to a single structure reveal distance-dependent effects. The
nature and the strength of ligand binding (which is effectively a per-
turbation to the binding site) could therefore determine the functional
output by restricting the accessible conformational space as seen in the
energy landscapes of activated receptors. A similar conformational
feature has been recently demonstrated in the diverse class of large
nuclear receptor ligand-binding domains47, indicating that “conforma-
tional selection” and subsequent enthalpic compensation (via
drug–protein contacts or GPCR–G-protein interactions) of entropic
stability could be generic features underlying the energy landscapes of
proteins and, hence, function.

Membranes, which are implicitly treated in the current approach
as a low dielectric continuum, and their specific composition are
known to affect the conformational features of GPCRs7,12. Would lipids
enhance or reduce the observed heterogeneity? Since the interactions
willmembrane components and cholesterol will stabilize specific parts
of the structure, they will likely contribute to the population of addi-
tional states with lifetimes dependent on the strength of interaction.
Naturally, this would enhance the ruggedness of the conformational
landscape. This expectation has already been borne out in simulations
involving water-soluble proteins with non-native interactions62,63.
Thus, the GPCR conformational complexity presented here is likely a
lower estimate, with lipids, cholesterol, ions and pH modulations fur-
ther tuning the equilibrium of states.

Finally, it is important to state that the ability of the phenomen-
ological bWSME model to quantitatively characterize the conforma-
tional landscapes of GPCRs depends on the quality of the input
structure and the kind of experimental data available for calibration.
We provide a critique of our approach below to highlight potential
limitations and advantages. First, the model is conventionally cali-
brated against heat capacity profiles for soluble globular proteins; this
specific data carries information on not just the melting temperature,
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but also heat capacity change, and the cooperativity of the transition
which is related to the overall partition function. However, such DSC
profiles or even temperature-dependent unfolding curves are chal-
lenging to measure for membrane proteins, as the lipids will them-
selves undergo phase transition, confounding the interpretation. The
availability of such data or unfolding curves could pave the way for a
sound calibration of model parameters for wild-type and mutant var-
iants, and thus enabling quantitative predictions. Second, we consider
a single low dielectric constant (value of 4) to simulate membrane
proteins, as it is the simplest possible assumption, similar to the
temperature-independent treatment of the dielectric constant in
coarse-grained simulations; however, the dielectric constant is
expected to vary when moving from the membrane interior to the
exterior64 which can be addressed only by all-atom MD simulations.
Third, and in continuation from the point above, the presence of large
extracellular domains means two or more effective dielectric con-
stants need to be considered, a feature which is not introduced in the
model currently. Despite these limitations, the rapidity of the bWSME
approach (the total partition function can be calculated in a few min-
utes), the physical rigor of the model, and the ability to reproduce
multiple experimental data in a (semi-)quantitativemanner,makes this
thermodynamic framework quite appealing. In addition, the folded
status of select residues or structural elements can be modulated by
the conformational entropy parameter to capture specific or unique
experimental observations not evident from the static structure.
Alanine-scanning mutagenesis using the bWMSE model has the
potential to provide mechanistic insights into the extent to which the
intramolecular network determines allosteric responses and the role
of conformational ensembles in determining the same. Thus, a syner-
gistic use of the bWSME model predictions with experiments can
provide a holistic picture of the unique structure–ensemble–function
relationship prevalent in GPCRs.

Methods
GPCR database
Sixty-seven high-resolution structures were downloaded from the
GPCR-EXP database65 (experimentally solved GPCR structures) out of
which only those structures that consisted primarily of the trans-
membrane domains were selected. In other words, those structures
with large intracellular or extracellular domains were discarded as the
hydrophilic environments in which such domains exist and the
hydrophobic environment within the lipid bilayer cannot be modeled
simultaneously using a single dielectric constant (vide infra). Struc-
tures with large intracellular or extracellular loops that are not amen-
able to modeling using the Robetta server66 were also discarded. The
pruning eventually resulted in a database of 45 GPCRS; 41 from
humans and one each from bovine, mouse, rat, and viral taxa (Sup-
plementary Table 1). Any missing residues or short loops were again
modeled using the Robetta server. The sequences of these missing
segments, including the third intracellular loop (ICL3), which is often
replaced with a fusion protein to facilitate crystallization, were
obtained from UniProtKB. Missing N- and C-terminal segments in
structures obtained from truncated GPCR constructs were not mod-
eled. Sequence modifications already present in the original PDB
structures, including thermostabilizingmutations, were left unaltered.
Of the mammalian GPCRs, 39 belong to class A, the rhodopsin-like
receptor family. Classes B, C, and F are represented by the calcitonin
receptor, two metabotropic glutamate receptors, and Frizzled-4,
respectively. These 45 structures are of the GPCRs in their inactive
states, bound only to a ligand (agonist or antagonist) on the extra-
cellular side. Note that we use the term “inactive” to refer to “non-G-
protein-bound” structures. Rhodopsin is consideredonly in the retinal-
free form. The database additionally contains the structures of 8
GPCRs in their active conformations, with their transmembrane helices
having undergone rearrangements characteristic of the active states

through the binding of both an agonist on the extracellular side and a
transducer protein or an antibody on the intracellular side.

Wako–Saitô–Muñoz–Eaton (WSME) model
The WSME model is a structure-based statistical mechanical model
that employs a Gō-like treatment for its energetics, i.e., only those
contacts or interactions that are present in the native structure are
assumed to influence the folding mechanism, and is therefore entirely
native-centric in its description (non-native interactions are not con-
sidered). While the model is explained in detail in many works
before39,40,67, it is briefly discussed here. In the classic WSME
treatment36,37, every residue is assumed to sample two conformational
substates, folded (represented by the binary variable 1) and unfolded
(0), resulting in 2N microstates or conformations for an N-residue
protein. In the current treatment, we employ a computationally less-
intensive approach wherein only stretches of consecutive residues,
termed blocks, are considered as the folding unit67. For example, for a
300-residue protein assuming a block-size of 3 will reduce the number
of folding units to 100 blocks, instead of 300 units. Furthermore, the
instantaneous ensemble is considered to be constituted from single
stretches of folded blocks (single sequence approximation or SSA),
two stretches of folded blocks (double sequence approximation or
DSA), and DSA allowing for interactions between the folded islands
(DSA with loop, or DSAw/L)67,68. One can imagine each of these
microstates to be an array of stringswith 1s and0s defining the regions
that are structured and hence the extent of structure; the constraint is
that there can be at most only two islands of ones (DSA or DSAw/L)
(Supplementary Fig. 1). The latterDSAw/L approximation is critical as it
allows for two folded islands to interactwith each other if they do so in
the folded structure—the precise stability of such microstates will be
determined by the relative balance between stabilizing interactions
within and between the folded islands and the entropic cost of fixing
residues in the intervening disordered loop. The resulting bWSME
model (b standing for block) has been tested onmultiple proteins and
has provided insights into folding mechanisms and function in an
experimentally consistent manner39,40,67. In the current work, a fixed
block length of 4 (i.e., four consecutive residues and ensuring that the
block definition does not span two different secondary structure ele-
ments) has been employed for all GPCRs. The total number of micro-
states within the model approximation is the sum of the binomial
coefficients CNb + 1

2 + 2CNb + 1
4 where Nb is the total number of blocks

(Supplementary Fig. 1).
The total partition function (Z) for the bWSMEmodel is calculated

as:

Z =
Xn
i = 1

wi =
Xn
i= 1

expð�ΔGi=RTÞ ð2Þ

where n is the total number ofmicrostates (i.e., microstates defined by
SSA, DSA, andDSAw/L),wi is the statistical weight of state i, R is the gas
constant, andT is the temperature. The free energy of everymicrostate
with structure between and involving blocks p and q (p, q) is

ΔGp,q =ΔG
stab
p,q � TΔSconfp,q ð3Þ

The stabilization free energy ΔGstab
p,q includes contributions from

vdW interactions (interaction energy ξ for the vdW contacts identified
from the ligand-free native structure with a 5 Å cut-off including near-
est neighbors), charge–charge interactions at pH7.0without a distance
cut-off via the Debye–Hückel formalism, and a contacts-scaled implicit
heat capacity term (ΔGsolv, calculated as the heat capacity change per
native contact ΔCcont

p that is fixed to −0.36 Jmol−1 K−1 per native
contact)38,39. Charge–charge interactions are calculated with an effec-
tive dielectric constant of 4 to account for the low dielectric environ-
ment of the membrane environment39,64,69, similar to the approach
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employed for studying water-soluble proteins where the solvent is
considered as a uniform high dielectric continuum. The unstructured
loops connecting the transmembrane helices are partially exposed to
the solvent; we account for the disordered nature of the loops by
attributing a higher entropic penalty for ordering (see below) thus
recapitulating expectations from the structure. The role of disulfide
bridges were not explicitly considered and the GPCRswere assumed to
be in the reduced form to be amenable for characterization by the
bWSME model.

The entropic penalty incurred for fixing all blocks in the folded
conformation for the microstate (p, q) is given as,

ΔSconfp,q =
Xq
i=p

X
j = LðiÞ

ΔSconfj ð4Þ

ΔSconfj is the entropic penalty for fixing the residue j in the folded
conformation (fixed at −10 Jmol−1 K−1 per residue) while L(i) includes
the set of residues within block i. An excess entropic penalty (ΔΔS) of
−6.1 Jmol−1 K−1 per residue is additionally assigned to residues identi-
fied as coil by STRIDE70 (mostly the loop regions connecting TM
helices)71. The entropic penalty of fixing a proline residue in the native
conformation is considered to be 0 Jmol−1 K−1, owing to its limited
conformational flexibility. Partial partition functions are calculated by
groupingmicrostateswith a specific number of structuredblocks from
which the one-dimensional free energy profiles are generated. For
example, the effective free energyof stateswith 30 structuredblocks is
calculated from:

ΔG30 = �RT ln Z30=Z
� � ð5Þ

where Z30 is sum of statistical weights of states with 30 structured
blocks. For comparison between proteins of different lengths (N), the
fraction of structured blocks calculated by normalizing the number of
structured blocks by the maximum number of structured blocks (Nb)
in the protein, was employed. A similar calculation was employed to
construct 2D landscapes for specific combination of blocks structured
in the N- and C-terminal halves of the protein. The folding probability
of a specific block/residue i is calculated from:

pi =
X
k

wk=Z ð6Þ

where k runs over all microstates in which residue i is folded. From
Eq. (6), the stability (s) of residue i in the context of the structure is:

ΔGs,i = �RT ln pi=ð1� piÞ
� � ð7Þ

and the mean stability of a secondary structure (ss) element as:

ΔGss

� �
= �RT ln pi

� �
= 1� pi

� �� �� � ð8Þ

where the squarebrackets averageover all residues corresponding to a
specific secondary structure element. The heat capacity profiles were
predicted via the derivative expression:

CP ffi CV = 2RT
dlnZ
dT

� �
+ RT2 d2lnZ

dT2

 !
ð9Þ

For the database of GPCRs in Supplementary Table 1, only the
vdW interaction energy (ξ) was adjusted such that the resulting heat
capacity curve has a peak heat capacity at 333K (the melting tem-
perature, Tm). In specific cases, where two heat capacity peaks were
present, the ξwasadjusted such that the troughbetween the twopeaks
falls at 333 K. For GPCRs that have had structures in both active and
inactive states experimentally determined, different ξ values were

employed such that the free-energy difference between the folded and
unfolded states of a receptor in both its active and inactive states were
equal (i.e., under conditions of iso-stability). Note that ligands are not
considered in the analysis and only the information from the poly-
peptide is employed to generate an ensemble of states and their
relative statistical weights. The PDB structures employed and the
model outputs, including the MATLAB scripts for analyzing them are
available at https://github.com/AthiNaganathan/GPCR-Landscapes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. High-resolution GPCR structures
were downloaded from the GPCR-EXP database. The following are the
original Protein Data Bank accession codes: 1U19, 2LNL, 2RH1, 3ODU,
3V2Y, 3VW7, 4BVN, 4DJH, 4DKL, 4N6H, 4OR2, 4PXZ, 4XES, 4XNV,
4XT1, 4YAY, 4Z35, 4ZJ8, 5DHG, 5LWE, 5NDD, 5TZR, 5UEN, 5UIW, 5UNF,
5VBL, 5VEW, 5ZBQ, 5ZKP, 5ZTY, 6A94, 6BD4, 6C1R, 6D27, 6FFI, 6GPX,
6HLP, 6IGK, 6IIU, 6M9T, 6ME2, 6ME6, 6NIY, 6QZH, 6RZ6, 5W0P, 4LDE,
6H7N, 6B73, 5C1M, 6OS9, 6DO1, 6D9H, 2XOV, 1THQ. All datasets
generated during this study are available in the Github repository
[https://github.com/AthiNaganathan/GPCR-Landscapes]. Source data
are provided with this paper.

Code availability
The data analysis codes and scripts employed in this study used
MATLAB 2020a and PyMol. The basic algorithm, code used for gen-
erating free energy profiles, and coupling free energy matrices are
available at https://github.com/AthiNaganathan/GPCR-Landscapes.
The same has been published at the Zenodo repository [https://doi.
org/10.5281/zenodo.7426052]. Any scripts required for analysis are
freely available on request by contacting the corresponding author.
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