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Toward the design of ultrahigh-entropy
alloys via mining six million texts

Zongrui Pei 1,2,5 , Junqi Yin 2,5, Peter K. Liaw 3 & Dierk Raabe 4

It has long been a norm that researchers extract knowledge from literature to
design materials. However, the avalanche of publications makes the norm
challenging to follow. Text mining (TM) is efficient in extracting information
from corpora. Still, it cannot discover materials not present in the corpora,
hindering its broader applications in exploring novel materials, such as high-
entropy alloys (HEAs). Here we introduce a concept of “context similarity" for
selecting chemical elements for HEAs, based on TM models that analyze the
abstracts of 6.4million papers. Themethod captures the similarity of chemical
elements in the context used by scientists. It overcomes the limitations of TM
and identifies the Cantor and Senkov HEAs. We demonstrate its screening
capability for six- and seven-component lightweight HEAs by finding nearly
500 promising alloys out of 2.6million candidates. Themethod thus brings an
approach to the development of ultrahigh-entropy alloys and multi-
component materials.

Text mining (TM) is an artificial intelligence method to analyze and
discover scientific knowledge in literature. It has been used in several
fields, such as materials science1–5, political science6,7, public
health8–11, etc. TM has the potential for automaticmaterials discovery
given sufficiently large corpora, such as for the material group of
high- and medium-entropy alloys (HEAs, MEAs)12–18, where more than
10,000papers have been published19. Several TMmethods have been
suggested that build on corpora as training data20. One group of TM
algorithms uses vectors to represent words, known as word-
embedding algorithms21–24. Operations on the vectors provide
meaningful information. For example, the difference between vector
“FCC" and vector “Al" is approximately equal to that between vector
“W" and vector “BCC", since the chemical element “Al" is commonly
found with a face-centered-cubic (FCC) crystal structure and “W"
with a body-centered-cubic (BCC) structure. These vectors are
determined by maximizing the co-occurrence probability of an
embedded word and its neighbors within the corpora. The cosine of
two vectors measures the similarity of the words they represent.
When increasing the frequency of the word “CoCrFeNiV" as the
neighbor of “CoCrFeMnNi" by 10 times in a TM (skip-gram)model, its
similarity ranking increases by 13 (Supplementary Fig. 1). TM models

trained on specially selected corpora are predictive, as the presence
of less relevant text items can reduce the relative frequency of
keywords1.

Herewehavedeveloped ahighlyoptimizedTMmodel formetallic
materials focusing on HEAs. Unfortunately, TM methods can only
identify targeted materials that are in principle already present in the
corpora, a fact that does not per se include the discovery of materials.
A key challenge in designing HEAs, however, is searching for similar
elements with highmutual solubility. To this end, we propose a design
concept of “context-similar elements" to overcome this limitation of
existing TM methods in this field. The context-similar elements
approach aims to capture the similarity of chemical elements in the
alloy-design context used by scientists. The similarity in this context is
not a metric calculable from simple elemental properties but a more
comprehensive one that also reflects researchers’ experience in
materials research and design. This approach will enrich the portfolio
of existing alloy-designmethods and canaccelerate the alloy discovery
process by replacing the laborious literature search, review, and
knowledge extractionwith TMmodels.With this approach researchers
with less domain-specific experience can design complex HEAs with
many components assisted by TM models that not only “read” huge
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amounts of publications but also ”analyze” them more context-
sensitive.

Results
Figure 1a shows a schematic for themachine-learningmodel.We adopt
the skip-gram algorithm for our model since the algorithm provides a
good compromise between efficiency and accuracy1,21,22. It has a neural-
network structure with only one hidden layer. Words in the training
corpora are firstly encoded into one-hot vectors wi. This means that
only one component of each vector assumes a value of “1", which
records theword’s location in thewhole vocabulary, and the remaining
components are “0". These vectors are fed into the neural network as
training data. We feed 6.4 million materials-related abstracts plus
abstracts on metallic materials into the machine-learning model
[see Supplementary Note and Methods]. Here we do not take the
weight of the abstracts formetallic materials as a tunable parameter. If
we increase its weight, therewill not be a convergence trend to test the
predictions. Increasing the weight will eventually result in a model
without any benefit from other scientific papers. Instead, we tuned
different hyperparameters to check the reliability of our models.
Constructing a model specifically custom-designed for metallic alloys
would be ideally realized by feeding only abstracts of papers that deal
with metallic materials. However, papers related to metallic materials
represent only a small portion of all scientific papers and thus provide
only an insufficient basis for such data-hungry language models. To
overcome this problem, our model adopts the commonly used
transfer-learningmethod.We feed all available texts into the skip-gram
model, equivalent to constructing a general model, and then feed only
texts related to metallic materials, equal to slightly tuning the model
for metallic materials. Accurate extraction of the named entities is
essential25, and particular attention is needed for HEAs. Researchers
use different orders of constituents for the same alloy that can be
mistaken as different ones. For example, the Cantor alloy, a CoCrFe-
NiMn compound, can be written in 5! = 120 different name variants by

simply rearranging the sequence of the elements, such as CrCo-
FeMnNi, CoCrFeMnNi, etc. Also, one alloy can be written in various
formats like Co-Cr-Fe-Ni-Mn, Co20Cr20Fe20Ni20Mn20, etc. This
problem needs particular attention here due to its critical impact on
identifying novel massive solid solutions. We alphabetize the chemical
elements of one alloy in our skip-gram model [Fig. 1] and knowledge-
graph model [Supplementary Fig. 3]. Once a model is trained, the
corpora information is encoded into the matrixM in the hidden layer.
As a simple demonstration of our algorithm, the word vectors vi for
two words “Fe" and “Ni" are used to calculate their respective cosine
similarity, i.e., Sij = cosðvi,vjÞ= vi � vj=∣vi∣∣vj ∣. Similar words are ranked
and presented in Fig. 1b, c. According to the cosine similarity, the four
words that aremost similar to Fe are the chemical elementsMn, Co, Ni,
and Cr. Likewise, the top four similar words of Ni are Co, Cu, Sn, and
Mo. This trend analysis shows that the model can well capture the
similarity of words in the context of the chemistry of solid solutions.

Chemical elements with context similarity
The distribution of elements is visualized in Fig. 2a, using the color
map defined in Fig. 2b. Elements with similar chemical features are
grouped together. The context-similar version of the Periodic Table of
the Elements (PTE) includes rich information about how they were
used in the enormous amount of literature. Suppose two chemical
elements appear in a similar context. They are close in the vector space
but not necessarily in Mendeleev’s PTE. For example, Al is not the
neighbor of Mn and Cr in Mendeleev’s PTE. However, they are neigh-
bors in the latent space of our word-embedding model. Mendeleev’s
PTE has its physical origin in quantum mechanics, while our machine-
learning model is based on the appearance of the elements in various
research contexts. We take Al and Mn as an example pair to show how
they can be grouped in the two representation forms (in the latent
space of our machine-learning model and Mendeleev’s PTE) [Fig. 2c].
Elements Al and Mn share many similar neighboring words, such as Fe
and Mg, since they are often used as solute atoms in steels and

Fig. 1 | Schematic for the word-embedding model (skip-gram). It has a neural-
network structure but with only one hidden layer between the input and output
layers21,22 (a). The training data fed into the model are the processed corpora
downloaded from an online database41. The corpora are first tokenized into sepa-
rate words or phrases (combinations of two ormore words with unique meanings)
and then translated into vectors. In the one-hot representative of a word vector,
each word is represented by a sparse vector with only one nonzero element. The

word vectors are connected to all neurons in the hidden layer; the latter is also fully
connected with the output layer which represents the appearance probabilities of
words in their context. For a given window size of the words that define their
context, the skip-gram algorithm maximizes the probability of the word that
appeared in that context. Once the neural network is optimized, the key informa-
tion is stored in the hidden layer. As examples of its application, similar words of
“Fe" and “Ni" are shown in b, c, respectively.
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magnesium alloys, albeit with different prevalence. This fact increases
the co-occurrence probability that puts them close in the latent space.
Therefore, the context similarity of elements reflects better how
researchers used them to synthesize actual materials, which is pre-
cisely the experience needed to design alloys.

Design of alloys based on context similarity
Exploration of the vast space for HEA design challenges traditional
alloy-design strategies19 and requires an intelligent choice of elements,
particularlywhen targeting solid solutions. It is important to overcome
this challenge, driven by the need for high-performance materials, for
which HEAs with multiple components are promising candidates. In
this regard, the concept of publication-based context-similar elements
provides unexplored opportunities. We propose two different meth-
ods to use word vectors in the HEA design [see Fig. 2d, e]. One is to
start with a specific element A, which is for some reason preferred to
be included as a chemical component, and identify the most similar
elements according to the cosine similarity {Sij}. For example, for a Fe-
including quaternary HEA, the top three candidates areMn, Co, and Ni
according to Sij [Fig. 1b]. Instead, if our target is a HEA with Ni, the top
three candidates are Co, Cu, and Sn. Sn is not close to Ni in the PTE but
often appears in Ni-Sn alloys, reflecting the difference between our
text similarity and the PTE again. In a secondmethod, we first selectM
promising elements {Ei}Mi= 1 and consider their cosine similarity equally
[Fig. 2e]. For eachN-component HEA, we average over the similarity of
each element pair Sij, i.e.,

�S=
1

NðN � 1Þ=2
XN�1

i=0

XN�1

j = i+ 1

cosðvi,vjÞ: ð1Þ

Here vi and vj are the word vectors of elements i and j in the N-com-
ponent HEA. We rank the alloy candidates according to �S and pick the
top candidates as the most promising ones. This method treats all

elements equally and thus is consistent with the alloy-design spirit of
multi-principal HEAs.

Body-centered-cubic high-entropy alloys
Exploration of refractory BCC HEAs with beneficial properties attracts
high attention currently26–29. We demonstrate the approach of the
“context similar" elements in Fig. 3 by limiting our candidate elements
to common transition-metal elements. As an example and to demon-
strate the predictive strength of our method, the newly defined �S
parameter in Eq. (1) is adopted to design five-component HEAs. We
focus on seven elements, which yield 21 combinations (alloys). Ti, Zr,
Nb, Mo, Hf, Ta, andW are among themost common transition metals,
and someof them appear in the Senkov alloy TiZrNbHfTa28. In order to
critically test thepredictive power of our approach andunderstand the
trend of HEAs, we train individual models for the representative years.
Eachmodel adopts trainingdata of thepublications that appearedonly
in its corresponding year. The only exception is themodel of 2003 that
adopts all abstracts up to that year. The idea behind that is to test if our
modified TM model could have predicted an alloy with only the
knowledge thatwas available up to the year 2003 (i.e., the Senkov alloy
had not yet been discovered, but it was found only 8 years later). The
results predicted by the models are shown in Fig. 3b. Among the 21
candidates, the Senkov alloy is continually ranked among the top three
materials. In 2011 when the alloy was finally discovered and synthe-
sized, and more recently 2016 and 2018, the Senkov alloy is at the
absolute top of the list. This means that our context-sensitive TM
model would have suggested this specific HEA at least eight years
before conventional alloy-design approaches found it.

In order to explore if any physical meaning is connected to our �S
parameter, we adopt our simple, approximatemethod to predict solid
solutions and calculate the so-called γ parameter30. Simply put, the
parameter is a ratio between the approximate Gibbs free energy
(usually a negative number) of the HEA GN and that of its binary

Fig. 2 | The context-similar elements and their applications to design high-
entropy alloys. a Chemical elements in the latent space by the principal compo-
nent analysis (PCA) based on their word vectors. The horizontal and vertical axes
are the first two components of PCA. The elements are colored according to the
scheme shown in the Periodic Table of Elements (b). c We explain the reasons for
the difference between Mendeleev’s PTE and the chemical elements in the latent
space by taking elements Al and Mn as examples. The thicknesses of the sticks

represent the connection strengths of words (similarity).We propose twomethods
to design high-entropy alloys. These methods are illustrated in d, e, taking six-
component alloys as an example. The first method starts with one element that
must be included and select its four most similar elements according to the cosine
similarity. The second method considers all participating elements equally. The
cosine similarity Sij of any two elements are averaged to measure its potency as a
candidate.
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subsystems G2. If an alloy has a γ-value larger than 1, it is likely to be a
solid solution rather than a multi-phase alloy. Furthermore, the para-
meter is found to be linearly and positively correlated with �S [Fig. 3c].
This feature indicates that a larger value of �S offers more promising
candidates as solid solutions. The prediction of solid solutions using
the γ parameter can be improved with the lattice-misfit parameter δ as
an additional physics-based descriptor30, which measures the lattice
distortion due to the different atomic sizes [see Fig. 3d]. The use of
these two additional descriptors reveals that only a tiny fraction of the
ternary, quaternary, and quinternary alloys are solid solutions with the
highest similarity scores. The majority of them are multi-phase alloys.

Face-centered-cubic high-entropy alloys
Similar to the BCCHEAs, the averaged context similarity �S is calculated
for a group of FCC HEAs and shown in Supplementary Figure 2. Again,
we limit the constitutional elements to the transition-metal elements
fromV toCuof the third group. Taking thefive-component alloys as an
example, we show the similarity �S for individual years in Supplemen-
tary Fig. 2a. This test protocol shows that the concept effectively
identifies HEAs long before they were found by conventional alloy-
designmethods. The Cantor alloywas first reported in 2004, but it was
ranked as the second most promising solid-solution HEA by our
method already before 2004. The seminal paper of Cantor et al. did
not receive much attention immediately after its publication, but its
impact has increased exponentially since the last decade19. This trend
is correctly reflected by its ranking in Supplementary Fig. 2a. The
second and third most promising HEAs are MnFeCoNiCu31 and
CrFeCoNiCu13, which were also synthesized. We also calculate their
tendency to form solid solutions by using the γ parameter30. As

presented in Supplementary Fig. 2b, the two quantities are linearly
correlated, similar to the case of the BCC HEAs. This trend further
confirms the significance of the �S parameter in screening for high-
entropy solid solutions.

Combination with Integrated Computational Materials Engi-
neering (ICME) methods to design ultrahigh-entropy alloys
Themethod of “context similarity" picks element candidates for HEAs,
which is the first step for designing high-entropy solid solutions. Then,
various procedures can be developed for further screening, refining,
and filtering the results, assisted by the methods grouped under the
umbrella of ICME (integrated computationalmaterials engineering)32,33

and included in the materials genome initiative34. ICME is an approach
for designing materials and microstructures using mean-field ther-
modynamics and kinetics tools as well as ab-initio and structure-
property simulation methods. A few examples are provided below to
show how to integrate the context-similarity method with ICME to
accelerate the design process.

In the first example, we screen for alloys based on their mechan-
ical properties. Critical mechanical properties include for instance
creep, ductility, and yield stress. Here we focus on one important
mechanism behind these features, i.e., solid-solution strengthening σy,
as it provides an essential contribution to the yield stress35,36. We adopt
a model developed recently by Varvenne et al.35. The full details of the
model are available in the reference and supplementary material.
Supplementary Fig. 2d shows the solid solution strengthening pre-
dicted at 300K for the top six FCC alloy candidates. The CrFeCoNiCu
alloy has the largest strengthening effect σy of ~290MPa, followed by
CrMnFeCoCu with a comparable value. The strengthening effect of

Fig. 3 | The context-similar elements and their applications for BCC high-
entropy alloys. a Taking the transition elements (Ti, Zr, Nb, Mo, Hf, Ta, and W) as
an example, we show that the tendency to form solid solutions is correlated to the
newly defined context similarity. For better visualization, we only consider here
three-, four-, and five-component equiatomic alloys. b The five-component alloys
are ranked by their context similarity for different publication years. The top three

alloys include the Senkov alloy of TiZrNbHfTa, TiZrNbMoHf, and TiZrMoHfTa. The
Senkov alloywas proposed in 2011 by Senkov et al.48. Other promising ones include
ZrNbMoHfTa, TiNbMoHfTa, TiZrNbMoTa. c The context similarity �S is strongly
correlated with the thermodynamics-based γ parameter. d More details on the γ

parameter when using it along with the lattice distortion δ to predict the solid
solutions.
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about 146MPa for the Cantor alloy is fairly consistent with the
experimental measurement of 125MPa35,37. More validations of the
methods can be found elsewhere35,38. These results show that alloys
with optimal mechanical properties can be designed jointly with the
TM-based �S parameter.

In the second example, we aim to use our method and go beyond
the established high entropy systems and design six- and seven-com-
ponent, lightweight, single-phase equiatomic HEAs. This example has
beenpartlymotivatedbyCantor,who calls for a bolder design ofHEAs,
also considering materials beyond five components19. To tackle this
challenge, we design a workflow comprised of multiple steps and
elaborate on the application and its statistical aspects in Fig. 4a, b. The
screening consists of three steps with three adjustable criteria, i.e., (i)
context similarity �S>0:6; (ii) thermodynamics-based solid solution
parameter γ > 1, and (iii) the alloy’s mass density ρ < 7.8 g/cm3 (density
of iron). In the current example, these three criteria havebeen selected
for the sake of demonstration. The high-throughput screening has
been limited to 30 transition-metal elements [see supplementary text
for the list]. The total number of alloy candidates before screening has
been 2.6 million. After each step, we excluded sets with 1–2 orders of
magnitude of alloys. Eventually, only 494 HEAs remained and are
promising for synthesis in experiments.

More specifically, the top-ranked alloys along these three cate-
gories are TiCrFeCoNiMo (six-component), TiCrFeCoNiCuZn (seven-
component), and TiFeCoNiCuZn (six-component) according to the
context similarity �S; six-component VCrMnFeCoNi, VCrMnFeCoCu,
and VCrMnFeNiCu following the thermodynamics-based parameter γ;
and six-component ScTiZnZrAgCd, TiVCrMnFeZn, and TiVCrMnCuZn
regarding the lowest mass density. These results demonstrate con-
crete design suggestions identified directly and autonomously via our
TM modeling approach from the existing wealth of published

literature. The list of the 494 identified alloys can be found in
the supplementary data.

Searching for existing HEAs to avoid redesigning alloys
One of the crucial tasks for materials designers is to check if the tar-
geted alloys have been already proposed and synthesized before. This
task becomes increasingly important in the ever-growing information
avalanche. When studying HEAs, an additional challenge arises from
their non-standardized naming system. Therefore, there is an urgent
need tobuildTMmodels inwhich allHEAs are standardizedwithunique
names, as in chemistry. It would then bemuch easier to check if an alloy
has already been synthesized before or not. The knowledge graph (KG)
approach has demonstrated its usefulness in quickly retrieving the
required information2. KG is a graph-structured data model that links
entities such as alloys and their properties through various relations
(i.e., edge words) [see Supplementary Fig. 3a]. The Google knowledge
graph is for general-purpose applications, yet, it is not specialized for
extracting useful information from research corpora39. So, for example,
it cannot tell if CoCrFeMnNi andNiMnFeCrCo are the samematerials or
not. Here we propose a KG for alloys, focusing on HEAs, i.e., an alloyKG,
as an acronym for the knowledge graph for alloys. Their constituent
elements are ordered alphabetically according to their symbols. We
connect the HEAs with the DOI’s (Digital Object Identifiers) of the
papers in which they appeared. Essential authors in the field and their
specific contributions can also be identified for further processing. In
Supplementary Fig. 3b, we show the results for an exemplary search
using our alloyKG approach with the keyword “CoCrFeMnNi" and the
edge phrase “mentioned by". Since the naming system is standardized
in alloyKG, every arrangement of the 120 possibilities for a five-
component alloy gives the same results. The retrieval yields the papers
(represented by their DOI’s) that mentioned the alloys.

Fig. 4 | An exemplary design of lightweight high-entropy alloyswithmore than
five components. a We show the example study conducted for six- and seven-
component single-phase, equiatomic alloys, limited to 30 transition-metal ele-
ments. The first step is to calculate the average context similarity �S and select alloys
with a �S>0:6. The distributions of �S for all these candidates are shown in Supple-
mentary Fig. 5. The second filtering step is to find in this subset those alloys that are

likely in the form of solid solutions assisted by the thermodynamics-based rule
γ > 130. The third step is to select the alloys with a density smaller than iron, i.e.,
ρ < 7.8 g/cm3. Here we picked all alloys with a mass density below that of iron.
bAlong this filtering workflow, the number of possible alloys decreases from 106 to
102. Alloys in the shortlist are candidate materials for synthesis and testing.
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Discussion
One of the most important directions for the HEA community is to
explore the vast compositional space of HEAs with more components,
such as six or seven components, and not limit the search to five or
fewer components. Irrespective of the success of traditional TM
methods, one of their principal shortcomings is that they cannot
readily design alloys that do not appear in the corpora. This challenge
has been overcome by our current “context similarity element” con-
cept. One unique and characteristic feature of HEAs is that they are
(ideally) solid solutions, which means we can screen for similar ele-
ment candidates and ignore their specific concentrations first. This
strategy is one of the main reasons why the concept works specifically
well for the current alloy-design task. The transferability of ourmethod
has been carefully tested for a wide range of alloys frommedium, high,
and even ultrahigh-entropy alloys, with both BCC and FCC crystal
structures. The method is applicable to the design of different HEAs,
and there isno specific additionalneed tofine-tune themodel. Another
benefit of the approach is that the selected alloy groups can be further
refined, after pre-screening promising composition spaces by our TM
approach, by using further filtering criteria from the established ICME
toolbox„ such as thermodynamic, kinetic, structural, and/or property
databases and simulations. This hybrid alloy-design concept, com-
bining TM-based pre-screening of the practically infinite chemical
composition space and subsequent physics-based filtering, paves a
pathway towards a closed-loop materials design approach that is
characterized by the following specific steps: (i) fully automatically
reading and autonomously analyzing millions of papers, (ii) searching
for a specific set of chemical elements and suited alloy ingredients, (iii)
proposing alloy candidates, (iv) calculating properties of the alloys, (iv)
selecting alloys based on the targeted properties, and (v) identifying
and excluding alloys that were already synthesized and casting all
results into a recommendation list. With this approach, even inex-
perienced userswith less domain knowledge in the field of alloydesign
candevelop complexmaterials withmany components assisted by TM
models and a huge body of scientific publication corpora.

The word vectors of the chemical elements can reflect the rise of
specific HEAs, quantified by changes in the cosine similarity Sij [Sup-
plementary Fig. 4]. The Cantor alloy of CoCrFeMnNi was proposed in
200414. Prior to that year, themost similar elements to Fe, according to
our similarity index, are Cr, Mn, Mg, and Al. Given the increasing
relevance of the Cantor alloy and its subsystems, the top four most
similar elements to Fe, when extracted from context mining, are only
the elements in the Cantor alloy, at least since 2014. In 2014, several
milestone papers appeared about the Cantor alloy. For example, it was
found to have good ductility and toughness even at cryogenic
temperatures40. In a different study of the same year, several compo-
sitional subsystems of the Cantor alloy were explored37. Stable FCC
systems were identified, including the equiatomic CrCoNi solid solu-
tion. These investigations and many others pushed Mn, Co, Ni, and Cr
into the top similarity list for Fe.We traineddifferentmodels to test the
stability of ourmethod.When thewindow size is changed from8 to 10,
and the dimension (number of neurons in the hidden layer) from 200
to 300, the most similar words of “alloy_HEA" remain almost the same
[see Supplementary Fig. 6], but the training time increases sig-
nificantly. We also applied the models to calculate the context simi-
larity, taking BCC HEAs as an example [see Supplementary Fig. 7]. The
representative Senkov alloy TiZrNbHfTa is ranked number one by
these models. All these HEAs follow the same order except for the
TiZrNbMoHf and TiZrNbMoTa to switch their positions. This trend
again showsamodelwith 200-dimensionalwordvectors and awindow
size of 8 is sufficient for designing alloys.

In summary, we proposed a concept for the systematic and
automatic search for “context similarity elements” and demonstrated
its successful application for the design of high-component high-
entropy alloys. The method overcomes the common problem of

traditional text mining methods that can only explore existing mate-
rials and enables us to design alloys that do not appear in the training
corpora. As a demonstration, we show that the approach would have
successfully identified the representative FCC Cantor and BCC Senkov
alloys as themost promising high-entropy alloys, long before they had
been actually discovered and synthesized. We also find that the con-
text similarity is strongly correlated to a thermodynamics-based rule
proposed by us in a previous study30. This trend indicates that this
thermodynamic alloy-design parameter adequately captures the ten-
dency of solid solution formation. We also show that this method can
be integrated with other ICMEmethods deemed vital for the materials
genome initiative. Furthermore, we designed a workflow for high-
throughput screening of lightweight six- and seven-component HEAs.
We show that the method has the potential to realize the ambitious
aim to find high-component HEAs, as recently proposed by Cantor19. It
also equips the research community with a general tool for the effi-
cient discovery of materials.

Methods
Data collection and processing
Scientific texts appear in various formats, such as books, journals,
etc., either in printed or electronic versions. The first step for corpora
collection is to unify all these texts in a single digital format that can
be directly used inmachine-learningmodels (Fig. 1a of themain text).
Here the training corpora of 6.4 million abstracts are downloaded
through the ELSEVIER Scopus API41. The latter can retrieve abstracts
in bulk with the journal ISSN and publishing year as input. We use the
ISSN list generated by Tshitoyan et al.1 as the starting point. The
abstracts are stored in JSON format along with the metadata, such as
authors, years of publication, keywords, journals, etc. In addition,
we also manually add important journals and abstracts for HEAs that
are absent in the first round of abstract collections. The representa-
tive journals for metallic materials of the past two decades include
Acta Mater., Journal of Alloys and Compound, Materials Science and
Engineering: A, and Advanced Engineering Materials. Note that there
is a weekly download quota for regular Scopus developer API. The
entire collection process of 6.4 million abstracts can take several
months.

Machine-learning model
The skip-gram algorithm is adopted in this study. It has a neural-
network structure but only with one hidden layer. Words in the train-
ing corpora are firstly encoded into one-hot vectors wi. One compo-
nent of each vector is “1", which records the word’s location in the
whole vocabulary, and the rest are zeros. These vectors are fed into the
neural network as the training data. The training objective is to max-
imize the probability of each word in their context defined by a win-
dow size n (8), which is also the cost function to be optimized. The left
and right eight words are considered the neighbors of the word in one
basic unit, i.e., one abstract. The skip-gram model is trained for 30
epochs, and more epochs do not significantly improve the model
performance. In the trainedmodel, the key information of the corpora
is encoded into the matrix M in the hidden layer. Multiplying wi by M
we obtain a representative vector vi of 200 dimensions for the word i.
There is no need to revisit the neural network for applications of the
model. Words that are semantically or grammatically similar corre-
spond to vectors that can reflect the similarity. The vector vi has many
interesting properties, such as compositionality and cosine similarity,
as mentioned previously.

Here we feed the 6.4 million abstracts plus abstracts on metallic
materials into the machine-learning model. The list of journals whose
abstracts are duplicated is described in the supplementary material.
The consequence isweplacea doubleweight on themetallicmaterials.
As a result, the specially tailored model is expected to work better for
metallic materials than previous models.
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Thermodynamic rule
Our thermodynamics-based rule was initially derived and published in
ref. 30. It provides a systematic method to calculate the free energies
ΔGN for a given N-component system andΔG2 for all its binaries. If ΔGN

is the lowest, the multicomponent system is a single-phase alloy;
otherwise, it is a multi-phase alloy. For convenience, we define a
parameter γ to describe this criterion, i.e.,

γ : =
ΔGN=minðΔG2Þ if minðΔG2Þ<0;
�ΔGN=minðΔG2Þ if ΔGN <0 and minðΔG2Þ>0:

�
ð2Þ

The criterion now becomes γ ≥ 1.

Density functional theory calculations
Density functional theory42,43 simulations are carried out using Vienna
Ab-initio Simulation Package (version 5.4.4)44 to obtain the optimal
volumes in a designated crystal structure (here FCC). The generalized
gradient approximation parametrized by Perdew-Burke-Ernzerhof45 is
used to calculate the electronic exchange-correlation interaction, and
the Kohn–Sham equation is solved using the projector augmented
wavemethod46, where the Brillouin zone is sampled using Monkhorst-
Pack scheme47. The atomic configurations of elements in the pseudo-
potentials used in our calculations are V [Ne3s2]3p63d34s2, Cr [Ar]
3d54s1,Mn [Ar]3d64s1, Fe [Ar]3d74s1, Co [Ar]3d84s1, Ni [Ar]3d84s2, andCu
[Ar]3d94s1. The relaxation stops when the energy difference between
ionic steps is smaller than 10−5 eV. A plane wave cutoff of 400 eV and
the k-point meshes of 10 × 10 × 10 for the Brillouin zone are used. A
supercell size of four atoms is adopted for pure elements and FCC
structure in this study. In these calculations, only volume relaxation is
needed.

Data availability
The article DOIs used to generate the training corpora in this study
have been deposited in our GitHub repository under the accession link
(https://github.com/peizong/alloy2vec). The raw training corpora data
are protected and not shared due to the data privacy rules of Elsevier.
Users can download it after they open an Elsevier account since all the
papers are stored in their database. Details and guidelines to use the
API and papers provided by Elsevier are here: https://dev.elsevier.com.
Any reader can register there and receive an API account to reproduce
the results. All copyright rules explained by Elsevier on that webpage
must be followed.

Code availability
The alloy2vec code is available in GitHub (see Data Availability), and
can also be downloaded through https://doi.org/10.5281/zenodo.
7337034.
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