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Interaction between dry and hot extremes at
a global scale using a cascade modeling
framework

Sourav Mukherjee 1, Ashok Kumar Mishra 1 , Jakob Zscheischler 2 &
Dara Entekhabi3

Climate change amplifies dry and hot extremes, yet the mechanism, extent,
scope, and temporal scale of causal linkages between dry and hot extremes
remain underexplored. Here using the concept of system dynamics, we
investigate cross-scale interactions within dry-to-hot and hot-to-dry extreme
event networks and quantify the magnitude, temporal-scale, and physical
drivers of cascading effects (CEs) of drying-on-heating and vice-versa, across
the globe.We find that locations exhibiting exceptionally strong CE (hotspots)
for dry-to-hot and hot-to-dry extremes generally coincide. However, the CEs
differ strongly in their timescale of interaction, hydroclimatic drivers, and
sensitivity to changes in the soil-plant-atmosphere continuum and back-
ground aridity. The CE of drying-on-heating in the hotspot locations reaches
its peak immediately driven by the compounding influence of vapor pressure
deficit, potential evapotranspiration, and precipitation. In contrast, the CE of
heating-on-drying peaks gradually dominated by concurrent changes in
potential evapotranspiration, precipitation, and net-radiation with the effect
of vapor pressure deficit being strongly controlled by ecosystem isohydricity
and background aridity. Our results help improve our understanding of the
causal linkages and the predictability of compound extremes and related
impacts.

Compound dry and hot events have received much attention due to
their increasing impacts on agriculture, ecosystem, health, and
energy1–6. For instance, the 2012 summer dry and hot event in the
central U.S. caused enormous economic losses of about $30 billion7.
Among the most hazardous compound events were the dry and heat
extremes that affected Europe and Russia in the summers of 2003 and
20108,9 which led to massive socio-economic impacts, including
around 40,000 deaths10, 25% loss of annual crop yield11, and extensive
forest fires1,12,13. To reduce the associated potential impacts, it is
essential to understand the interaction between dry and hot extreme
events to aid accurate prediction and early warning systems.

Compound extreme events result from complex interactions
between various physical processes across multiple spatial and tem-
poral scales5,6,14,15. These interactions are characterized by the combi-
nation of various drivers, influenced by large-scale climatic processes
and/or local weather systems, the impacts of which are thereby
amplified16,17. In a multi-hazard scenario, these events can pose cas-
cading interactions18. More specifically, these events are correlated
through common drivers (or confounders), by virtue of which, they
pose a cascading effect (CE) on one another. In practice, it is often
challenging to distinguish and quantify the CEs because of model
assumptions, which limit the inclusion of the complete system
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dynamics16. The relationship between hot and dry extremes is parti-
cularly intricate because of land-atmosphere feedbacks that operate at
different temporal scales19. A precipitation deficit translates into soil-
moisture depletion and positive temperature anomalies across a wide
range of spatial and temporal scales. The physical processes that cause
dry and hot extreme events are interrelated6, and, therefore, have a
cascading influence on one another. Although some retrospective20

and empirical approaches6,21,22 have been applied to understand how
these events propagate as cascades across the ecosystem, the extent,
scope, and temporal scale of their causal interactions are not well
understood. Furthermore, studies in the past did not account for the
effect of other dependent variables while measuring the associations
between inter-connected events, which may lead to spurious rela-
tionships and endogeneity23.

We assess the casual interaction between dry and hot extreme
events across the globe using aprobabilistic frameworkmotivatedby a
system dynamics approach24–28. We design two independent cross-
scale (temporal) interaction networks24,27 that represent the event-to-
event (dry-to-hot and hot-to-dry event) cascades. The dry extreme
events are calculated based on daily root-zone-soil-moisture (RZSM),
whereas the hot extreme events are calculated based on daily max-
imum 2m air temperature (Tmax) anomalies for each location across
the globe. Three sets of thresholds, 1%, 5%, and 10% of daily climato-
logical RZSM, and 99%, 95%, and 90% of daily climatological Tmax were
used to identify the dry and hot extreme events, respectively.

The dry and hot extreme events are subsequently considered
temporal nodes of the network. These nodes are cross-linked at
intervals of time lags ranging from 1-day to a week to investigate the
dynamic causal effect of drying onheating and vice versa. TheCEs are
then quantified for each temporal network as (marginal) causal
measures of association within each cascade conditioned on a set
of confounders (hydroclimatic anomalies). This methodology is
implemented by applying a standardized logistic regression
approach29 centered on the concept of counterfactual probabilities
(see Methods), one of the cornerstones in the modern theory of
causal inference25,26,29,30. Themain advantage of thismethodology lies
in its ability to robustly estimate the marginal measures of causation
by isolating the main effect of one event on the other while
accounting for all other dependent variables as confounders29.
Figure 1 illustrates the directed acyclic graphs (DAGs) representing
the dynamic system, and the adopted cross-scale temporal interac-
tion network for the event-to-event cascade.

Here we investigate the cross-scale interactions within dry-to-hot
and hot-to-dry extreme event networks and quantify the magnitude,
temporal-scale, and physical drivers of CEs of drying-on-heating and
vice versa, across the globe. More specifically, using daily RZSM data
derived from the GLEAM dataset, and daily meteorological variables,
maximum 2m air temperature (Tmax), total precipitation (Pr), vapor
pressure deficit (VPD), potential evapotranspiration (PET), and net
surface radiation (Rn) derived from the European Centre for Medium‐

Range Weather Forecasts Reanalysis 5 (ERA5), and vegetation optical
depth (VOD) data from the global land parameter data record (LPDR)
version 331, we aim to answer the following questions: what are the
hotspots of cascading dry and hot extreme events across the globe?
How do the key hydroclimatic variables influence the cascading asso-
ciation between dry and hot extreme events? And what is the role of
the soil–plant–atmosphere continuum and background aridity in
influencing the cascading causal interactions? The results from the
study highlight the global hotspots and characterize the scale of cas-
cading interactions between dry and hot extreme events, which is
likely to aid in the quantification of the risk of crop-yield losses, wild-
fires, and water scarcity across the globe. The underlying mechanisms
are also investigated by exploring the potential influence of hydrocli-
matic anomalies and the role of surface energy partitioning on the
causal linkages between terrestrial drying and heating.

Results
Hotspots of cascading dry and hot extremes
The CE of dry-to-hot and hot-to-dry extreme event occurrence is
quantified based on the magnitude of attributable fraction (AF)32. A
data-driven cascademodel framework is implemented using daily dry-
to-hot and hot-to-dry extreme event networks for the 1980–2018
period considering multiple time-lags, T = 1–7, and multiple con-
founders. Dry and hot extreme events are identified based on three
different daily climatological thresholds of RZSM (1, 5, and 10%) and
Tmax, (99, 95, and 90%), respectively. Based on three different combi-
nations of thresholds, three different dry-to-hot extreme event cas-
cades are derived, referred to as D1pH99p, D5pH95p, and D10pH90p,
where p stands for percentile. Similarly, three different hot-to-dry
extreme event cascades are derived, which are referred to asH99pD1p,
H95pD5p, and H90pD10p.

For each of the event cascades, AF is calculated for all grid cells
based on the dry-to-hot and hot-to-dry event networks by applying
a regression standardization technique30 for each of the selected
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time-lags, T (hereafter referred to as AFT), separately. The regression
standardization is helpful for obtaining robust marginal measures of
association between the exposure and outcome variable by account-
ing for all other variables as confounders. Thus, AFT (%) for the dry-to-
hot (as D1pH99p, D5pH95p, or D10pH90p) extreme event cascade
represents the standardized risk of having a hot extreme event caused
by a dry extreme event that occurred T-days before. Similarly, AFT (%)
for the hot-to-dry (H99pD1p, H95pD5p, or H90pD10p) extreme event
cascade represents the standardized risk of having a dry extremeevent
caused by a hot extreme event that occurred T days before. In other
words, AFT determines the strength of the CE of drying on heating and
vice versa. The cascade model framework, implementation, and asso-
ciation with selected confounders are presented in Fig. 1. A detailed
discussion on how the regression standardization is implemented to
account for the dependence of the exposure-to-outcome (Xt-Yt+T)
relationship on the confounding variables (Zt) is provided in the
“Methods”.

To illustrate the hotspots of CE of both drying on heating and
heating on drying, we calculated the maximum AFT ( =max{AF0, AF1,
AF2, AF3, AF4, AF5, AF6, AF7}) across each (0.5° × 0.5°) pixel of the globe
for all the selected dry-to-hot and hot-to-dry extreme event cascades.
Note that the maximum value of the AF is calculated from the AFT
values that are statistically significant. The statistical significanceof the
AFT values is determined based on their 2.5–97.5% confidence interval
(see Methods). The estimates, lower and upper bounds (at 95% con-
fidence level) of AFT for each of the lag timings (T = 1–7 days) corre-
sponding to the selected cascades are presented in Supplementary
Figs. 1–6. The key statistics of the global distribution of the maximum
(and statistically significant) AFT are illustrated by boxplots in Sup-
plementary Fig. 7 for the selected cascades. Based on these statistics,
themaximum AFTmagnitudes are further classified into four different
categories, moderate (0 ≤AFT < 5%), severe (5 ≤AFT < 10%), extreme
(10 ≤AFT < 15%), and exceptional (AFT ≥ 15%). Thus, a maximum
AFT ≥ 15%, falling in the exceptional category, for any given dry-to-hot
cascade indicates that more than 15% of the extreme hot events are
caused by extreme dry events that occurred at a lag of T days. We
define a given pixel as a hotspot if the corresponding value of max-
imum AFT falls within the extreme (10 ≤AFT < 15%) to exceptional
(AFT ≥ 15%) category range. Figures 2a–c and 3a–c demonstrate the
spatial distribution of themaximumAFT values and the hotspots of CE
for the dry-to-hot and hot-to-dry extreme event cascades over the
globe, respectively. The corresponding number of lags for which the
AFT is found to be maximum is noted for each pixel as presented in
Figs. 2d–f and 3d–f.

Figures 2a–c and 3a–c suggests that extreme to exceptionally
(AFT > 10%) strong CE of both dry-to-hot and hot-to-dry extreme event
are prominent over the lower Mississippi river basin located in the
southern US, major parts of the Amazon River basin located in the
northern South American continent, central and southern Africa,
central and southern Europe, and central, east, and south Asia. These
hotspot regions (delineated by bold lines in Fig. 2a) are consistent
across the three hot-to-dry (D1pH99p, D5pH95p, and D10pH90p) and
hot-to-dry (H99pD1p, H95pD5p, or H90pD10p) extreme event cas-
cades. However, the CE for the dry-to-hot and hot-to-dry extreme
events cascades vary strongly in the timescale of their causal linkages,
especially in the hotspot locations (Figs. 2d–f and 3d–f). This asym-
metry in the timescale of interaction is notable from the bivariate
probability density estimates shown in Figs. 2g–i and 3g–i. While there
is a higher probability that CE for the dry-to-hot extreme event cas-
cades in the hotspot regions is highest for a time-lag of 1 day, that of
the hot-to-dry extreme cascades is highest for the time-lag between 2
and 7 days. Furthermore, the corresponding lags for which the max-
imum AF magnitudes (shown in a-c) are observed are found to be
more spatially heterogeneous in the case of the hot-to-dry
cascade compared to the dry-to-hot cascade. This spatial

heterogeneity may be linked to the underlying effect of confounders
and their interactions.

Overall, the hotspotCE for both dry-to-hot andhot-to-dry cascade
networks closely matches the spatial locations. Nevertheless, the dif-
ferences in the temporal scale of the causal associations observed for
the dry-to-hot and hot-to-dry extreme event cascades may be asso-
ciated with the persistency of SM33,34. A higher soil moisture auto-
correlation reflects that soil moisture anomaly is more persistent35. To
investigate the association between soil moisture memory and the
temporal scale of CEs, we calculated the grid-point average of the one-
month lagged autocorrelation coefficient (ρ) of monthly RZSM
anomalies (1980–2018) specific to each lag day (from 1 day to 7 days)
forwhich themaximumCEs are obtained for the dry-to-hot and hot-to-
dry events, separately (as shown in Supplementary Fig. 8). For
instance, the grid-point average of ρ specific to 1-day lag is calculated
by considering all grid locations that show the strongest CEs for the
cascade with 1-day lag. To remove seasonality, the monthly anomalies
of RZSM are obtained by subtracting the long-term monthly clima-
tology (1980–2018) from the observed series. A higher autocorrelation
is noted for higher lag (7 days) in the case of hot-to-dry events, and for
lower lag (1 day) in the case of dry-to-hot events (Supplementary
Fig. 8). These results indicate that, while dry soils, through surface
energy partitioning, tend to affect air temperatures immediately, hot
air takes a few days to cause soil desiccation due to SM memory,
particularly when considering the deeper soil layers (root-zone)36–38.

Influence of hydroclimatic anomalies
The influence of hydroclimatic anomalies (or confounders) on the CE
of dry-to-hot and hot-to-dry extreme event cascades is investigated
based on odd ratios calculated by fitting a logit model, embedded
within the cascademodel framework (seeMethods). The odd ratios for
the dry-to-hot event cascade are calculated by fitting the logistic
regression using the binary sequence of extreme dry days as the
independent variable (X) and that of extremely hot days as
the dependent variable (Y) with Z as the confounding variable. On the
other hand, the odd ratios for the hot-to-dry event cascade are cal-
culated similarly but using the binary sequence of extremely hot days
as the independent variable (X) and extremely dry days as the
dependent variable (Y). The Odd ratio is given as exp(β), where β is the
regression coefficient of the logit model, such that exp(β) > 1 and
exp(β) < 1 indicate amultiplicative increase and decrease, respectively,
in the daily odds of an outcome for a given exposure and per unit
increase in the hydroclimatic variables or confounders (here, stan-
dardized anomalies of PET, VPD, Pr, and Rn), measured for specific
time lags. For example, an odd ratio of 1.2 for a given dry-to-hot event
cascade with a temporal scale of T days implies that for per unit
increase in the confounder variable, the odds of occurrence of an
extreme hot event are likely to increase by 1.2 times given a dry
extreme event has occurred at a time-lag of T days.

Figures 4 and 5, and Supplementary Figs. 9 and 20 illustrate the
spatial distribution of statistically significant (at 95% confidence level)
odd ratio corresponding to PET, VPD, Pr, and Rn for the dry-to-hot
(D1pH99p, D5pH95p, and D10pH90p) and hot-to-dry (H99pD1p,
H95pD5p, or H90pD10p) extreme event cascades for 1 day, and 2- to
7-day lags, respectively. The spatial distribution of the odd ratios
(exp(β)) for the D1pH99p (dry-to-hot) and H99pD1p (hot-to-dry) event
cascades for each time-lag is further summarized by deriving the non-
parametric kernel density estimates considering the global grid-points
as shown in Figs. 4, 5, respectively. Plants are known to respond dif-
ferently to high VPD, conceptualized as isohydricity39, an important
feature of the soil–plant–atmosphere-continuum. To investigate the
effect of ecosystem-scale plant isohydricity on the odd ratios, the
kernel density estimates are evaluated separately considering the grid
points where the plant species exhibit strong isohydricity (σ <0.1) and
anisohydricity (σ >0.9; see Methods and Supplementary Fig. 21).
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Figures 4 and 5 and Supplementary Figs. 9 and 20 suggest in each
location, the influence of one or more confounding variables shows a
dominant influence of others. This also indicates the effect of inter-
action among the confounding variables. Such interactions vary spa-
tially across the globe. For example, the positive influence of PET on
the odds of the dry-to-hot cascade, with a 1-day lag, is substantially
higher (odd ratio > 3) in the semi-arid and sub-humid regions of central
and east Asia, western North America, northern and central South
America, and south-eastern Africa (Fig. 4a, b). Inmost of these regions,

VPD shows a positive but moderate (1 < odd ratio < 2), Pr show a
negative but weaker (0.5 < odd ratio < 1), and Rn show a negligible
influence. On the other hand, VPD show relatively more dominant
influence (odd ratio > 3) in the majority of the globe, including the
northern, southern, and southeastern North America, part of south-
eastern South America, arid and semi-arid regions of northern and
southwestern Africa, middle east, southern and eastern Europe, Aus-
tralia, northern and eastern Asia, including the majority of Russia,
China, and India. Some of these regions show compounding influence

Dry-to-Hot Event Cascade
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Fig. 2 | Hotspots of dry-to-hot extreme event cascade. Spatial map of
a–cmaximumattributable fraction (AF)magnitudes that are statistically significant
at 95% confidence level for the drought-heatwave cascade derived using (a) 1
percentile of daily root-zone-soil-moisture (RZSM), and 99th percentile of daily
maximum temperature (Tmax) as threshold (D1pH99p), b 5th percentile of RZSM,
and95th percentile ofTmax as threshold (D5pH95p), and c 10th percentile ofRZSM,

and 90th percentile of Tmax as threshold (D10pH90p), calculated for the period,
1980–2018, and d–f corresponding lags for which the maximum AF magnitudes
(shown in a–c) are observed (g, h) bivariate kernel density estimates (probability
density shown by shading) calculated for the grid-point maxima of AFmagnitudes
and corresponding lag-times considering all grids identified as hot-
spots (AFT ≥ 15%).
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of VPD and Pr, such as in Australia, and the southernmost parts of
Africa, where the values of odd ratio indicate that a simultaneous
decrease in Pr and increase in VPD anomalies by one unit can yield 3-4
times increase in the odds of dry-to-hot event cascade in these regions.
The influence of PET is relatively weaker and even shows a negative
impact on the odds of the occurrence of dry-to-hot cascade in some of
these regions, especially in the arid regions of Australia, Southern, and
northern Africa, and some parts of the middle east.

A similar interaction of the influence of confounding variables,
PET, VPD, Pr, and Rn can be observed for the hot-to-dry event cascade
(Fig. 5a–d, and Supplementary Figs. 9 and 20). For example, the rela-
tive dominance of PET over the influence of Pr is noteworthy in the
majority of central and southernNorth America, eastern Australia, and
eastAfrica. In these regions, theodd ratio for PET is found tobegreater
than 2, whereas the odd ratio for Pr is found to be between 0.75 and 1.
Interestingly, in the humid regions of South America, central Africa,

Hot-to-Dry Event Cascade
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Fig. 3 | Hotspots of hot-to-dry extreme event cascade. Spatial map of
a–cmaximumattributable fraction (AF)magnitudes that are statistically significant
at 95% confidence level for the heatwave-drought cascade derived using a 1 per-
centile of RZSM, and 99th percentile of Tmax as threshold (H99pD1p), b 5th per-
centile of RZSM, and 95th percentile of Tmax as threshold (H95pD5p), and c 10th
percentile of RZSM, and 90th percentile of Tmax as threshold (H90pD10p),

calculated for the period, 1980–2018, and d–f corresponding lags for which the
maximumAFmagnitudes (shown ina–c) are observed,g,hbivariate kernel density
estimates (probability density shown by shading) calculated for the grid-point
maxima of AF magnitudes and corresponding lag-times considering all grids
identified as hotspots (AFT ≥ 15%).
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Fig. 4 | Influence of hydroclimatic anomalies for dry-to-hot extreme event
cascade. a–d Spatial maps of statistically significant (at 95% confidence level) odd
ratios (exp(β)) calculated by fitting the logistic regression model for the selected
dry-to-hot (D1pH99p) event cascade for time-lag of 1 day associated with
a potential evapotranspiration (PET), b vapor pressure deficit (VPD),
c precipitation (Pr), and d net radiation (Rn), e, f probability distribution function

of statistically significant odd ratios for PET in theD1pH99p event cascade for time-
lags ranging from 1 to 7 days for the e global, and f strongly isohydric (σ <0.1) and
strongly anisohydric (σ >0.9) region,g,h same as in (e, f) but forVPD, i, j same as in
(e, f) but for Pr, k, l same as in (e, f) but for Rn. Note that these probability
distribution functions are derived based on non-parametric kernel density
estimates.
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Fig. 5 | Influence of hydroclimatic anomalies for hot-to-dry extreme event
cascade. a–d Spatial maps of statistically significant (at 95% confidence level) odd
ratios (exp(β)) calculated by fitting the logistic regression model for the selected
hot-to-dry (H99pD1p) event cascade for time-lagof 1 day associatedwith apotential
evapotranspiration (PET), b vapor pressure deficit (VPD), c precipitation (Pr), and
d net radiation (Rn), e, f probability distribution function of statistically significant

odd ratios for PET in the H99pD1p event cascade for time-lags ranging from 1 to
7 days for the e global, and f strongly isohydric (σ <0.1) and strongly anisohydric
(σ >0.9) region, g, h same as in (e, f) but for VPD, i, j same as in (e, f) but for Pr,
k, l same as in (e, f) but forRn. Note that these probability distribution functions are
derived based on non-parametric kernel density estimates.
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and arid and semi-arid regions of central and eastern Asia, where PET
show dominant influence (odd ratio > 2), Pr shows weak positive
influence (1 < odd ratio < 1.5) on the odds of hot-to-dry event cascade.
This is contrasting with the strong negative influence of Pr and the
weak but negative influence of PET found in the northeastern parts of
Asia, northwestern parts of North America, arid regions of North
Africa, and some parts of the western Amazon basin.

During extreme drought conditions, limited soil moisture avail-
ability progressively reduces land evaporation, after which any
incoming radiation leads to an increase in sensible heating of the near-
surface atmosphere thatoftendevelops into a heatwave19. This justifies
the weak and negative influence of PET on the odds of dry-to-hot and
hot-to-dry cascade in locations where Pr shows a more dominant
negative effect19. The influence of Rn is relatively more spatially het-
erogenous with a stronger negative influence over the majority of
North America and northern Russia, whereas Pr also shows a
strong negative influence on the odds of hot-to-dry events (Fig. 5
and Supplementary Figs. 18–20). This is possible during a
drought–heatwave–drought cascade when a reduction in rainfall
increases the albedo of the exposed surface resulting in a decrease
in Rn40.

The effect of VPD is strongest for a lag of 1 day in case of a dry-to-
hot cascade, and its influence weakens significantly for an increasing
number of lags from 1 to 7 days (Fig. 4e–l). Although the influence of
PET and Pr is also relatively stronger for shorter time lags, their influ-
ence is still weaker compared to VPD. These results suggest that
increases in VPD are more likely associated with a more spatially
dominant and immediate increase in the odds of dry-to-hot extreme
event cascade. Unlike PET, Pr, and Rn, which essentially describe local
water and energy fluxes, VPD informs on the aridity of air and con-
founds ecosystem dryness stress through strong coupling with soil
moisture41,42. As such, increasing VPD implies increasing atmospheric
moisture demand, but is also a testament to the simultaneous failure of
surface evaporation tomeet this demand. The instantaneous response
is thus fully consistent with what is expected from already hot and dry
air masses interacting with desiccating soils, and an ensuing shift
toward even stronger surface sensible heating.

The influence of VPD in the case of hot-to-dry events is relatively
weaker in the isohydric regions. These regions mostly exhibit a
decrease in the CE of heating on drying with the increase in VPD
(Fig. 5). This is possible during heatwaves at instances of elevated VPD
that is responsible for decoupling the sensitivity of the stomatal
functions and leaf water potential (ΨL) to changes in the soil water
potential (ΨS)

39. This type of decoupling is more common in isohydric
species due to a strong reduction in stomatal conductance during heat
waves. This explains why even during substantially high atmospheric
moisture deficits, the soil moisture stress in the isohydric regions may
still remain low39. In addition, the negative effect of PET on the CE of
drying on heating and heating on drying is more pronounced in the
isohydric species and depends on the water use efficiency during
drought. This is because relatively isohydric species strongly resist
stomatal functions duringdrought, therebyprogressively reducing the
relative contribution of transpiration to evaporation43. It should be
noted that an odd ratio = 1 is nonsignificant and thus eliminated from
the estimation of probability densities, which is why the probability
distributions of statistically significant odd ratios show bimodality
(Figs. 4 and 5).

Overall, considerable spatial heterogeneity is noted for the influ-
ence of hydroclimatic variables on the hot-to-dry event cascades. This
explains why relatively more spatial heterogeneity is observed for the
lags corresponding to the strongest CE of the hot-to-dry cascade
(Fig. 3d–f). These results suggest that the confounding influence of
daily climate variables can have a spatially disproportionate effect on
the dry-to-hot and hot-to-dry event cascade across the terrestrial sur-
face. Such spatial heterogeneity may arise from variation in surface

energy partitioning40, which is mainly controlled by the background
aridity of a region5,44.

Role of background aridity
The background aridity of a region plays a critical role in controlling
the water use effciency45, the sensitivity of evaporation to changes in
temperature and precipitation5,46, and causal interactions between
precipitation, evaporation, and soil moisture47. We investigate the
control of background aridity on the CE in dry-to-hot and hot-to-dry
event cascades separately to understand the implication of surface
energy partitioning for each of these cascades.

Background aridity is quantified based on aridity index (AI)48,
calculated as a ratio between annual climatologicalmean precipitation
and annual climatological mean potential evaporation for the 1980-
2018 period obtained from the ERA5 dataset. The global regions are
then subdivided into hyper-arid, arid, semi-arid, sub-humid, and
humid regimes following an AI-based classification system proposed
by United Nations Environment Program48. The five climate regimes
and the corresponding range of AI are illustrated in Fig. 6a. To inves-
tigate the role of background aridity on the CEs and the influence of
confounders in the dry-to-hot and hot-to-dry extreme event cascades,
we considered the AI range (0.05–1) starting from the arid to humid
regimes and divided the globe into 96 sub-regimes at intervals of 0.01.
The corresponding pixels within the sub-regions were extracted, and
themagnitude of AF (%) and odd ratios of PET, VPD, PR, and Rn, which
are statistically significant (at 95% confidence level), were averaged
across those pixels for each cascade. Figure 6b–g demonstrates the
magnitude of mean AF (represented by shading) varying from the arid
(AI < 0.20) to humid (AI > 0.65) regimes for different time lags
(represented in the y-axis) corresponding to the dry-to-hot (D1pH99p,
D5pH95p, and D10pH90p) and hot-to-dry (H99pD1p, H95pD5p, or
H90pD10p) extreme event cascades. Figure 7 shows the variation of
odd ratios of PET, VPD, Pr, and Rnwith AI for the lag of 1–7 days for the
D1pH99p, and H99pD1p event cascades.

Dominant control of background aridity on the CE in both dry-to-
hot and hot-to-dry event cascades is exhibited by the variation of the
mean values of AF across the evaporation regimes for the different
combinations of selected thresholds (of RZSM and Tmax) and temporal
lags. For example, a relatively higher mean CE (with mean AF between
4.5 and 6%) is noted across the semi-arid (0.20≤AI ≤0.50) regions of
the globe for all events. Interestingly, stronger CE is noted for the
D1pH99p and H99pD1p event cascade across the semi-arid regimes. A
similar strong CE is noted across the transitional (semi-arid and sub-
humid) regimes (0.20 ≤AI ≤0.65) for the less severe dry-to-hot cas-
cades (D5pH95p and D10pH90p) and hot-to-dry cascades (H95pD5p
and H90pD10p) for time-lags up to 7 days. These results underscore
the non-linear control of surface energy partitioning on causal inter-
action between drying and heating of the terrestrial surface. Relatively
stronger CE of drying on heating can be noted in the semi-arid, and
sub-humid regimes. Semi-arid and sub-humid regimes that transition
betweenwet todryconditions are suggested as thehotspots for strong
soil moisture–evaporation–temperature as well as soil moisture-
evaporation-precipitation coupling19,49–51. During drought, limited
water availability reduces surface evaporation, thereby limiting latent
heat fluxes, which leads to a systematic increase in sensible heating.
Such feedback between soil moisture-evaporation-temperature is
common in anticyclonic conditions that often provide enough time for
heatwaves to develop. In transition zones, evaporation is high enough
to trigger moist convection from boundary layer moisture but is
dominated by the variation in soil moisture. This leads to stronger
precipitation-soil moisture feedbacks, which are expected to further
enhance the drying leading to the onset of drought-heatwave
cascade19,51. Similarly, increased advection during a heatwave and
mega-heatwave events can reduce land evaporation, often contribut-
ing to soil moisture drought8,52,53. During strong heatwaves governed
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by anticyclones in themidlatitudes, and sufficiently far from the center
of the anticyclone where advection is weak, there can be advection of
hot and dry upwind which will promote (bare-soil) evaporation and
hence enable even faster soil desiccation53. Moreover, in transitional
regimes, sometimes due to limited albedo effect from vegetation
dieback and exposed soil from existing drought, the energy parti-
tioning effect becomes a more dominant factor than net radiation in
influencing drought-heatwave cascade40.

The impact of the confounding variables, PET, VPD, Pr, and Rn, on
the CE of the dry-to-hot and hot-to-dry event, show considerable
sensitivity to changes in background aridity. This is indicated by the
variation in odd ratios of PET, VPD, PR, and Rn for the dry-to-hot and
hot-to-dry cascade events (Fig. 7). In the case of dry-to-hot event cas-
cades, this variation is considerably higher for shorter time lags. For
the 1-day lag, when the CE of dry-to-hot events is generally greatest
(Fig. 3), the odd ratio associated with PET shows a steady increase with
the increase in AI from 0.2 in the semi-arid regime until it peaks in the
sub-humid regime and then decreases with further increase in AI from
0.55 to 1 in the humid regimes. A simultaneous and steady increase
(decrease) in the odd ratio of Pr (VPD) is observed from AI > 0.2 in the
semi-arid regimes up to AI ≤0.75 in the humid regimes, indicating a

weaker influence of Pr (VPD) on the CE of drying on heating in the sub-
humid and humid regime compared to the arid region. In the case of a
hot-to-dry event cascade, the variation of the odd ratio with AI is high
but consistent for all time lags (Fig. 7). The variation of the odd ratio of
PET, VPD, and Pr with background aridity in the case of hot-to-dry
cascade is also simultaneous. However, these variations are notably
different compared to the dry-to-hot cascade. CE of the hot-to-dry
cascade is relatively more sensitive to changes in PET, and VPD in the
semi-arid regimes. On the other hand, Pr and Rn both show a relatively
higher sensitivity in the semi-arid, and humid regions.

The stronger influence of PET in the semi-arid and sub-humid
regimes is likely due to stronger soil moisture-evaporation-
temperature coupling, typically observed in these regions50,54. During
soil moisture drought, precipitation can occur in moderate amounts
reducing the atmospheric moisture demand, yet may have no
immediate effect on existing soil moisture stress in the deeper soil-
levels55. In addition, in shallow levels, a steady rise in surface tem-
perature facilitates the potential for surface evaporation until it leads
towater-stressed conditions, thus limiting the availability of latent heat
flux, after which sensible heating systematically increases. This even-
tually leads to a stronger coupling between soil moisture and surface
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temperature, facilitating a drought-heatwave cascade. Thus, the CE of
both dry-to-hot and hot-to-dry events are relatively more sensitive to
changes in PET in the transitional regime. This suggests that the same
increase in PET may result in a higher increase in the likelihood (indi-
cated by a greater odd ratio) of such events in this regime. This is
possible in arid climates, where scarce vegetation cover during high
atmospheric moisture stress driven by a reduction in precipitation
leads to an increased albedo from the exposed soil surface, thereby
limiting the net radiation during an ongoing drought-heatwave-
drought cascade40. Thus, a similar increase in VPD and Rn and a

decrease in Pr in the arid regime can lead to a relatively higher increase
in the likelihood of a dry-to-hot cascade event compared to that in
other climate regimes.

Discussion
Cascading dry and hot events have a significant impact on
society5,6,15,56. Understanding the causal interactions between these
events is very important to better forecast such events and related
impacts and requires new methods to account for the measures and
scale of such interactions. In this study, we defined a cross-scale
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interaction-based cascade model framework for measuring the causal
effects of global drying on heating and heating on drying. Two sets of
distinct event networks, dry-to-hot extreme and hot-to-dry extreme,
are constructed using daily root-zone soil moisture and maximum air
temperature anomalies. These anomalies are estimated using different
combinations of soil moisture and temperature thresholds and by
embedding time lags ranging from 1 to 7 days. The CE of drying on
heating and vice-versa are subsequently analyzed based onAF29, which
measures the causal effects in the exposure-to-outcome (dry-to-hot or
hot-to-dry) relationship conditioned on multiple confounders
(hydroclimatic anomalies).

The results from the study reveal crucial aspects of the causal
interactions between dry and hot extreme events, including their
global hotspots, hydro-meteorological drivers, and the effect of soil-
plant-atmosphere dynamics and background aridity. Extreme to
exceptionally strong CEs corresponding to the dry-to-hot and hot-to-
dry extreme event cascades occur in a number of hotspot regions,
including the lower Mississippi river basin, major parts of the Amazon
River basin located in the northern South American continent, central
and southernAfrica, central and southern Europe, and central, eastern,
and southern parts of Asia. Although the hotspot locations for both
dry-to-hot and hot-to-dry cascades are similar, the corresponding
causal effects vary significantly in their timescale. While the CE for the
dry-to-hot extreme event cascades in the hotspot regions is maximum
for a time lag of 1 day, that of the hot-to-dry extreme cascades are
maximum for a longer time lag, of 2 to 7 days. The longer time-lags
associated with the CE in hot-to-dry events are linked to a greater 1-
month-lagged autocorrelation of monthly soil moisture anomalies,
reflective of the persistency of soil moisture33,47,57., The spatial dis-
tribution of the odd ratios related to the anomalies of PET, VPD, Pr, and
Rn, reveals that the influence of one or more variables shows a dom-
inance on the influence of others. Such interactions are found to vary
spatially across the globe, exhibiting a compounding influence on the
odds of occurrence of dry-to-hot and hot-to-dry events. VPD and PET
exhibit the strongest positive effect on the CE of dry-to-hot events for
shorter time lags uniformly across the globe. On the other hand, PET
shows a strong positive, and VPD shows a weak positive influence on
the CE of hot-to-dry events. The influence of PET and Rn is dominated
by the influence of Pr in multiple locations. In the strongly isohydric
ecosystem, a negative influence of VPD and PET is observed on the CE
of hot-to-dry and dry-to-hot events, respectively. Background aridity
seems to have a distinctive control on the CE corresponding to both
dry-to-hot and hot-to-dry event cascades across the evaporation
regimes for various combinations of selected thresholds (of RZSM and
Tmax) and temporal lags. A relatively stronger CE for dry-to-hot and
hot-to-dry extreme event cascade is noted across the semi-arid and
sub-humid regimes. Furthermore, the confounding influence of PET,
VPD, Pr, and Rn are found to be highly sensitive to changes in aridity
and are linked to shifts in energy-partitioning, common in a drought-
heatwave-drought cascade.

Soil moisture drying has significant implications on heating58, and
its impact propagates (cascades) across the physical and human sys-
tems affecting agriculture and human health59,60. Our study has a
broader implication in bridging the gap between disaster risk reduc-
tion and climate change adaptation14,16,17,56 with thepotential to provide
a more nuanced framework for assessing interconnected and cascad-
ing risks. The results from the study can be usefully transformed to
determine the changes in risk of exposure to interconnected
hazards61–63 and forecasting skill47,64. More research is necessary to
further extend this framework embedding the influence of large-scale
dynamics of weather systems8,15, and uncertainties associated with the
soil moisture stress in deeper levels in the snow-persistent regions65.
Our findings can be further channelized to provide a more in-depth
understanding of the association of dry and hot cascades with the
length of soil-moisture memory33,47,57, anticyclonic circulations and

blocking66,67, land- and vegetation-atmosphere coupling19,49,50,68,
regional moisture transport15,69, vegetation fluxes70, water use
efficiency41,45,71, compound changes in climate variability72, and large-
scale teleconnections15.

Methods
Data
In this study, global gridded daily root-zone soil moisture (RZSM) is
obtained for the period 1980-2018 from the third version of the Global
Land and Evaporation AmsterdamModel (GLEAM v3.3a;73) available at
https://www.gleam.eu/. Daily total precipitation (Pr), maximum2m air
temperature (Tmax), VPD, and surface net radiation (Rn) is derived for
the period, 1980-2018, from the European Centre for Medium‐Range
Weather Forecasts Reanalysis 5 (ERA5; https://cds.climate.copernicus.
eu/cdsapp#!/home). Monthly total potential evaporation (PE) data is
also obtained for the sameperiod fromERA5 for the calculation of AI48.
Daily PET data is derivedwith the Priestley and Taylor (PT) evaporation
model using surface latent heat flux, surface sensible heat flux, surface
pressure data, and daily average temperature data from the ERA5 (see
Supplementary Text 1). VPD is calculated using daily dew point tem-
perature, daily mean 2m air–temperature, and daily surface pressure
obtained from the ERA5 data archives (see Supplementary Text 2 for
Method). TheGLEAMv3.3a combines various satellite-sensor products
and ERA5 net radiation, and air temperature to provide relativelymore
accurate land surface estimates compared to other satellite- and
model-based evaporationmodels74,75.While theGLEAMv3.3a dataset is
available directly at daily timescale for every 0.25° × 0.25° pixels
worldwide, ERA5 provides data at the same spatial resolution but for
hourly timesteps. Isohydricity for a given ecosystem is estimated using
VOD data obtained from the global LPDR version 331. The LPDR was
generatedusing calibratedmicrowavebrightness temperature records
from theAdvancedMicrowave ScanningRadiometer for EOS (AMSR-E)
on the NASA EOS Aqua satellite, and the Advanced Microwave Scan-
ning Radiometer 2 (AMSR2) sensor on the JAXA GCOM-W1 satellite.
The VOD data are available at daily multi-frequency, ascending, and
descending orbits extending from June 19, 2002, to December 31,
2020. Here, we use the X-band-based VOD data from the ascending
orbits at 1:30AM (referred to asmidnight) and the descending orbits at
1:30 PM (referred to as midday)76 from the year 2003 to 2018, fairly
consistent with our study period, 1980–2018. The methodology used
for estimating the isohydricity is provided in Supplementary Text 3.

Determining cascading dry and hot event network
The cascading hot and dry event network is formalized in two steps, as
discussed below.

Estimation of dry and hot events: Dry events are identified using
daily RZSM by applying a threshold-based approach. In this study, we
use three different thresholds, 1, 5, and 10 percentiles of RZSM, to
identify three types of dry events, separately. Specifically, dry events
are identified when the daily RZSM falls below the daily climatological
(1980–2018 period) threshold of 1, 5, and 10 percentile, which is con-
sidered harmful to crop yield (U.S. Dry Monitor (USDM)77). In the
analysis, we use 99, 95, and 90th percentile thresholds of daily Tmax to
identify three types of hot events, separately. Precisely, hot events are
defined as events during which the daily Tmax exceeds its daily cli-
matological (99, 95, and 90) percentile threshold for the 1980–2018
period78,79. Note that we have used a daily climatological threshold
which inherently considers the influence of different climatology of
each month or season on the dry/hot indicators. Both dry and hot
events were identified for the 1980–2018 period, and the respective
daily climatological thresholds were calculated using the whole 39-
year time series.

Construction of temporal network: Two types of cascade event
networks are constructed in this study to capture the cross-scale
interaction24,27 between dry and hot event days for the 1980–2018
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period. Here, we focus on the dry-to-hot event cascade network to
determine the CE of drying on heating, and the hot-to-dry event cas-
cade network to determine the CE of heating on drying. The dynamical
associations between the dry and hot event days are evaluated based
on lagged time intervals (T) embedded in these two temporal net-
works. Cascading events are generally referred to as the sequential
occurrence of events in a dynamical system with 1 day6 or multiple
time intervals between the occurrences21,22,56,80. CEs associatedwith the
dry-to-hot (hot-to-dry) event cascade is defined as the sequential
occurrenceof a dry (hot) day followedbya hot (dry) day at pre-defined
time intervals of 1–7 days. These time intervals are selected for a
window of up to 7 days because of the potential increases in difficulty
to cope with the socio-ecological impacts of such events as the time
window shrinks to a sub-weekly scale22.

Estimation of CEs
The primary objective of the study is to explore the CE of drying on
heating and vice-versa, associated with the dry-to-hot and hot-to-dry
event networks. For a given network (dry-to-hot or hot-to-dry), the CE
is determined based on the causal interaction between drying and
heating. In this study, the CE is quantified basedon ametric called AF32.
The AF is a population-specific measure of the proportion of pre-
ventable outcomes, e.g., hot (dry) day occurrences, had all days in the
time period been unexposed to dry (hot) events. It is a robust tech-
nique popularly used in modern epidemiology and public health and
can be implemented to measure the exposure-outcome relationship
by taking into account necessary confounding measures81,82.

In the following sections, we discuss the design of the cascade
model, and how it is implemented within a logistic regression frame-
work using a method of regression standardization to measure the
causal interactions between drying and heating measured by AF.

Model framework: In a dynamical system, causal interactions can
occur through direct or indirect propagation of information within a
network consisting of the exposure, outcome, and confounders25. In
most dynamical systems, the confounders have a causal association
with both the outcome and the exposure variable. If confounding (or
independent) effects are not accounted for, it may lead to spurious
relationships and endogeneity23. Consequently, to obtain a robust
measure of the effect of the exposure variable on the outcome, it is
important to isolate the main effect of the exposure variable on the
outcomevariable by accounting for all other variables as confounders29.

The pathway of information propagation in a dynamical system
can be demonstrated by using DAGs. DAGs present a graphical
representation of the problem of confounding25. Let Z denote a set of
confounders that control both the outcomeand the exposure variable.
DAG can describe the confounding by Z of the causal relationship
between the exposure variable, X, and the outcome variable, Y, as
shown in Fig. 1a. In the case of both dry-to-hot and hot-to-dry event
networks, four confounding variables (z⊆ Z) are used, such as pre-
cipitation (Pr), VPD, surface net radiation (Rn), PET, that are known to
have significant control on both dry and hot events83.

Estimation of AF based on logistics regression: We first identify the
dry and hot day occurrences based on the definition of cascading
events discussed above. The occurrences and non-occurrences of dry
andhotdays are subsequently transformed intobinary (0/1) time series,
such that, an occurrence is denoted by 1 and a non-occurrence is
denoted by 0. AF was then calculated by fitting a logistic regression
model to the binary exposure, X, and the binary outcome, Y, withmodel
adjustments specifically made to include the confounders (Z). The logit
regression is implemented for the selected time intervals (T = 1–7)
separately. Hereafter in this study, this framework is referred to as XtYt
+T, denoting the causal effect of X at time-step, t on Y at time-step, t+T,
being measured for X and Z lagged by T days. The event-to-event
temporal network applied to this framework is illustrated in Fig. 1b.

For binary outcomes and exposure, AF can be defined as in Eq.
(1)32,

AF = 1� PðY0 = 1Þ
PðY = 1Þ ð1Þ

where P(Y0 = 1) is the counterfactual probability of outcome if the
exposure X is eliminated (i.e., X set to 0), and P(Y = 1) is the factual
probability of an outcome in the population.

In this case, the formulation of AF can be further expanded as

AF= 1� PðY = 1∣X =0,Z = zÞ
PðY = 1Þ ð2Þ

The AF thusmeasures the proportion of outcome events (e.g., hot
days) that would be prevented if the exposure events (e.g., dry days)
were eliminated from the population for predefined levels of con-
founders, Z.

The estimation of AF is carried out in four steps.
Step 1. A regressionmodel isfitted to theobserveddata.Unlike the

linear, and log-linear models, logistic regression is a standard choice
for estimating AF due to its ability to yield probabilities between 0 and
1. The logistic regression model is defined as

logit Pr Y = 1∣X =0,Zð Þ� �
= g X ,Z ;βð Þ ð3Þ

Here g(.) is an additive function of the variables X and Z and could
be specified as β0 + β1X +β2Z , where β is the parameter vector of the
logit model.

Step 2. The fitted model is used to estimate Pr Y = 1∣X = x,Zð Þ for
the fixed level of X = x (here, x =0) and for each observed level of Z in
the dataset.

Step 3. A regression standardization30 is then implemented to the
fitted model to estimate marginal measures of association. This
methoduses the logistic regressionmodel to estimate the risk ratios of
the outcome (Y), for X =0 at every pre-defined level of the measured
confounders, Z. These estimates are averaged over the sampling dis-
tribution of Z to produce a standardized risk, for X = 0. Thus, if Z is
sufficient for cofounding control, then

P Y0 = 1
� �

= E P Y = 1∣X = x,Zð Þ½ �, ð4Þ

p̂ðY0 = 1Þ=

Pn

i= 1
p̂ðY = 1∣X =0,ZiÞ

n
,

ð5Þ

where Zi is the observed level of Z for the observation, i, i = 1,…., n, and
p̂ðY = 1∣X =0,ZiÞ is the estimate of pðY = 1∣X =0,ZiÞ obtained from the
fitted regression model.

Step 4. Once, P(Y0 = 1) is estimated following steps 1–3, it is directly
implemented in Eq. 1 to calculate AF.

It is important to note that AF is estimated for each model fra-
mework (XYT) separately and denoted by AFT.

Estimation of confidence intervals:We construct a standardWald-
type 95% confidence interval for the desired effect measure based on
the delta method84.

Let p be the vector of counterfactual probabilities with an esti-
mate, p̂, and let g(p) be the desired effect ofmeasurewith an estimated
effect, gðp̂Þ. Therefore, gðp̂Þcan be shown to have an asymptotic nor-
mal distribution, with variance given as,

varfgðp̂Þg= ∂gðpÞ
∂p

varðp̂Þ∂gðpÞ
∂pT : ð6Þ

Article https://doi.org/10.1038/s41467-022-35748-7

Nature Communications |          (2023) 14:277 12



An estimate of the variance, var̂fgðp̂Þgis calculated by replacing p
and varðp̂Þ in Eq. (6) by p̂, and var̂ðp̂Þ.

Finally, the estimated variance is used to construct a standard
Wald-type 95% confidence interval for g(p)given as

CI = gðp̂Þ± 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var̂fgðp̂Þg

p
ð7Þ

Subsequently, the null hypothesis that exposure has no effect on
the outcome is rejected when all values in the confidence interval fall
on the same side of zero (either all positive or all negative).

Data availability
The data sets analyzed during the current study are available at Global
Land and Evaporation AmsterdamModel (GLEAM v3.3a; https://www.
gleam.eu/), European Centre for Medium‐Range Weather Forecasts
Reanalysis 5 (ERA5; https://cds.climate.copernicus.eu/cdsapp#
!/home), and National Snow and Ice Data Center (NSIDC; https://
nsidc.org/data/nsidc-0451/versions/3)

Code availability
Available upon request to the authors.
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