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In vivo clonal tracking reveals evidence of
haemangioblast and haematomesoblast
contribution to yolk sac haematopoiesis

C. Biben 1,2,6, T. S. Weber 1,2,6, K. S. Potts1,2,6, J. Choi 1,2,6, D. C. Miles1,2,
A. Carmagnac1,2, T. Sargeant 1,2, C. A. de Graaf 1,2, K. A. Fennell3, A. Farley1,2,
O. J. Stonehouse1,2, M. A. Dawson 3,4,5, D. J. Hilton1,2, S. H. Naik 1,2,7 &
S. Taoudi 1,2,7

During embryogenesis, haematopoietic and endothelial lineages emerge clo-
sely in time and space. It is thought that the first blood and endotheliumderive
from a common clonal ancestor, the haemangioblast. However, investigation
of candidate haemangioblasts in vitro revealed the capacity for mesenchymal
differentiation, a feature more compatible with an earlier mesodermal pre-
cursor. To date, no evidence for an in vivo haemangioblast has been dis-
covered. Using single cell RNA-Sequencing and in vivo cellular barcoding, we
have unravelled the ancestral relationships that give rise to the haematopoietic
lineages of the yolk sac, the endothelium, and themesenchyme. We show that
the mesodermal derivatives of the yolk sac are produced by three distinct
precursors with dual-lineage outcomes: the haemangioblast, the mesenchy-
moangioblast, and a previously undescribed cell type: the haematomesoblast.
Between E5.5 and E7.5, this trio of precursors seeds haematopoietic, endo-
thelial, and mesenchymal trajectories.

Haematopoiesis first occurs in the embryonic day (E) 7.0–E10.5 mouse
yolk sac to produce the mature haematopoietic lineages (primitive
erythrocytes, megakaryocytes, macrophages)1–4 and erythro-myeloid
progenitors2,5. Our understanding of how this occurs is predominantly
informed by in vitro and ex vivo data that have suggested a differ-
entiation sequence involving mesoderm, the haemangioblast (a pre-
cursor that gives rise to both haematopoietic and endothelial
lineages), and the haemogenic endothelium (a precursor defined by
dual haematopoietic and endothelial marker expression but com-
mitted to the blood lineage)6–12. A long-standing question has been
whether the yolk sac-derived endothelial and haematopoietic lineages
share a common clonal origin independent from local mesenchymal
lineages (smooth muscle, fibroblast, mesothelium). The balance of

in vitro evidence suggests that although cells from the gastrulating
embryo are capable of generating smooth muscle, endothelium, and
haematopoietic lineages in vitro10, dual endothelial-haematopoietic
outcome is a rare occurrence from the extraembryonicmesodermand
haemogenic endothelium7,8,13. Lineage tracking studies suggest that
dual endothelial-haematopoietic outcome may occur at a higher
frequency14 in vivo, although mesenchymal contribution was not
addressed in this study.

Embryonic blood cells are classified with reference to their
ancestry. Cells derived directly from the mesoderm without transiting
through haematopoietic stem cells or multipotent erythro-myeloid
progenitors (EMPs) are termed primitive. Haematopoietic cells that
descend from a bona fide EMP or a stem cell are considered to be pro-
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definitive and definitive, respectively. Haematopoietic stem cells
emerge between embryonic day (E) 10.5–E11.515,16, therefore haemato-
poietic lineages that emerge prior to E11.5 must derive directly from
the mesoderm or from EMPs. Yolk sac primitive erythrocytes and
megakaryocytes can derive from a common precursor3, have features
that distinguish them from their stem cell-derived counterparts4,17,18,
and are generated in the absence of EMPs4,19–21. Accordingly, both
lineages have been proposed to be primitive lineages. In contrast, yolk
sac EMP-derivedmacrophages are largely indistinguishable from those
derived from stem cells22,23. This, combined with the observation that
fetalmacrophages arenot produced in the absenceof EMPs21, suggests
that macrophages are not a primitive lineage. Although the primitive-
definitive classification convention is based on sound deductive rea-
soning, whether it accurately predicts the in vivo ancestral relationship
between the yolk sac haematopoietic lineages remains untested.

To understand the in vivo cellular genealogy of the first meso-
dermal derivatives, we investigated the yolk sac between E7.25–E10.5
using single-cell transcriptomics and between E5.5-E10.5 using single
cell lineage tracking by in vivo barcoding. Herein, we provide in vivo
evidence of the haemangioblast. We also show that haemangioblasts
are not the sole blood and endothelial precursor. Rather, these

lineages arise from a trio of progenitors with distinct patterns of
lineage production: the haemangioblast (that produces haemato-
poietic lineages and conventional endothelium), the mesenchy-
moangioblast (that produces mesenchyme and conventional
endothelium), and the haematomesoblast which is a previously
undescribed class of haematogenic precursor that that produces
haematopoietic lineages and mesenchyme, and so bridges the hae-
matopoietic and mesenchymal elements of the yolk sac.

Results
A putative mesenchymal axis of yolk sac haematopoiesis
The extraembryonicmesodermof the E7.75 yolk sac lines theprimitive
endoderm as a sheet1 (Fig. 1ai). By E8.5, this sheet has become mor-
phologically and immunophenotypically diversified into mesenchy-
mal cells1, the blood band (which contains amix of primitive erythroid
cells, megakaryocyte precursors, EMPs, endothelium, andmesothelial
cells)24–26, and the endothelial zone24 (Fig. 1aii). The E8.5 yolk sac also
contains three immunophenotypically identifiable haematopoietic
lineages (primitive erythrocyte, megakaryocyte, and haematopoietic
progenitor/colony forming cells (HPC) (a population containing all
EMP activity, Supplementary Fig. 1)4 and the endothelium4,24,27,28
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Fig. 1 | Single-cell transcriptomics profiling of the early endothelial-
haematopoietic landscape. a (i) Distribution of Flk1-GFP-expressing extra-
embryonic mesodermal derivatives at E7.75 (n = 7 embryos); (ii) Distribution of
haematopoietic cells (GATA1+, white) and endothelium (GATA1− CDH5+, blue) at
E8.5 (n = 12 embryos). Scale bars, 300μm. b UMAP dimension reduction repre-
sentation of 926 transcriptomes from cells collected from the yolk sac between
E7.25–E10.5. c (i) Heatmap of key mesodermal, haematopoietic, endothelial, and

mesenchymal genes expression in E7.25 to E10.5 yolk sac populations. (i) E7.25, (ii)
E7.75, (iii) E8.5, (iv) E10.5. Endo: endothelium, EP endothelial precursors, Ery ery-
throcyte, EryP primitive erythrocyte, HEP haematoendothelial progenitors, hae-
matopoietic progenitor/colony forming cells (HPC), Mac macrophage, Mk
megakaryocyte, Mes mesenchyme, Meso derivatives mesodermal derivatives, Mes
P mesenchymal precursors.
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(Supplementary Fig. 2a–d). Although macrophage-associated genes
can be detected at E8.529, significant numbers of bona fide macro-
phages are not detected before E10.5 (Supplementary Fig. 2e)4.

To define the transcriptional identity of cellular intermediates
that appear during mesodermal diversification in the yolk sac, we
generated a targeted single-cell RNA-sequencing (scRNA-Seq) dataset
encompassing all known cellular immunophenotypes associated with
endothelial andhaematopoietic differentiation in the yolk sac between
E7.25–E10.5 (Supplementary Data 1 and 2). Using the gating strategies
described in Supplementary Fig. 2a–e and the immunophenotypes
listed in Supplementary Data 2, we collected:

• E7.25 and E7.75 Flk1-expressing extraembryonic mesodermal
derivatives, the source of haematopoietic and endothelial
cells30,31.

• E10.5 endothelium, primitive erythrocyte, megakaryocyte, HPC
(Supplementary Fig. 2e)4,18 and macrophage lineages, which
served as endpoint references.

• To understand developmental transitions: early primitive ery-
throid cells, megakaryocytes (Supplementary Fig. 2c, d)4, and
endothelial cells were collected at E8.5; HPCs were collected at
E8.25, E8.5, and E9.5 (Supplementary Fig. 2c–e).

Collected transcriptomes of 926 cells (out of 1073 captured) were
compiled to generate a 3D Uniform Manifold Approximation and
Projection (UMAP) of the E7.25–E10.5 yolk sac lineages (Fig. 1b, Sup-
plementary Fig. 2f, Supplementary Data 3, and Supplementary Soft-
ware 1 and 2). This revealed that from E8.5, endothelium and blood
lineages were readily identifiable, and that E7.25 and E7.75 populations
had amore ambiguous identity,which is consistentwith cells being in a
state of developmental transition. Of note, a caveat of this approach is
that the same broad cell type (e.g., EryP) could have different tran-
scriptional features at different developmental stages.

To followmesodermdifferentiation into blood, endothelium, and
mesenchyme we investigated the evolution of transcriptional sig-
natures for mesoderm (Foxf1, Pdgfra, Lef1, Mesp1, Mixl, and T), ery-
throid (Gypa and Alas2), macrophage (Csf1r, Cx3cr1, C1qb, and C1qc),
megakaryocyte (Gp1bb, Gp9, Vwf, and Pf4), haematopoietic (Itga2b,
Gata1, Gfi1b, Adgrg1, Klf1, Myb, Runx1, Kit, Gata2, Fli1, Hhex, Lmo2, and
Tal1), endothelial (Pecam1, Cdh5, Tek, Kdr, Aplnr, Pvlap, and Ramp2)
and mesenchymal (Col1a2, Msx1, Msx2, Col1a1, Acta2, Tagln, Hsd11b2,
Dlk1, and Wfdc2) identities between E7.25 and E10.5 (Fig. 1ci–iv).
Transcriptional identities correlated well with immunophenotypically
defined populations4 (Supplementary Data 2) at E10.5 (Fig. 1civ, Sup-
plementary Fig. 3a, b):

• Endothelium (TER119− CD45− CD41− CDH5+ cells) were char-
acterised by Pecam1, Cdh5, Tek, Kdr, Aplnr, Plvap and Ramp2
expression.

• Primitive erythroid cells (TER119+ CD41− CD45− CDH5−)
expressed Gypa and Alas2.

• Megakaryocytes (TER119−CDH5−CD41+ CD45− cells) expressed
Gp1bb, Gp9, Vwf, Pf4, and Itga2b.

• Macrophages (TER119− CD45+ CD41− cells) expressed Cx3cr1,
Csf1r, C1qb, and C1qc.

• HPCs (TER119− CDH5− CD41low CD45+) were characterised by
low/no expression of differentiation markers and robust detec-
tion of Gata1, Gfi1b, Myb, Runx1, Kit, Gata2, Lmo2, Tal1.

Between E7.25 and E8.5, markers that are specific to the endo-
thelium at later developmental stages (Pecam1, Cdh5, Tek, and Kdr)
were also detected in early haematopoietic lineages (Fig. 1ci–iii). At
E7.25, a cluster with dual endothelial-haematopoietic markers was
readily detectable (haematoendothelial precursors, Fig. 1ci). At E7.75,
the Kit+ Gata2+ Fli1+ Hhex+ Lmo2+ Tal1+ haemato-endothelial popula-
tions could be segregated into three clusters: erythroid (Gypa+ Alas2+),
haematopoietic/endothelial (Gypalow/− Alas2low/−), and endothelial

precursor29 (Myb− Gata1− Ramp2+ Pecam1+ Cdh5+ Tek+ cluster). These
findings are consistent with the transcriptional patterns observed by
others8,29,32,33.

Although haemato-endothelial precursors were transcriptionally
distinct from the mesoderm at E7.25, they still exhibited a robust
mesenchymal signature at E7.75 (similar to that of non-haemato-
endothelial populations) that was abruptly downregulated by E8.5
(Fig. 1ci–iii). In the light of the haemangioblast theory, that postulates
an early separation of these lineages6,7,10–12, a transcriptional connec-
tion between the endothelial, haematopoietic, and mesenchymal
lineages was unexpected. Importantly, this suggested that mesenchy-
mal and haemato-endothelial fatesmight segregate later than thought.
Possibly via an as-yet undiscovered common clonal ancestor.

Tracking mesodermal diversification using cellular barcoding
To test the hypothesis that haemato-endothelial development might
occur via mesenchymal as well as endothelial intermediaries, we per-
formed in vivo lineage tracking using inducible cellular barcoding. This
approach enables the fate of large numbers of individual cells to be
tracked via indelible DNA tagging under physiological conditions34–37.
Identification of the same DNA tag (or barcode) in two cells, or cell
populations, demonstrates that they share a clonal ancestry. To enable
the sensitive recovery of barcodes from small numbers of purified
cells, we used a Cre-LoxP-based in situ barcoding mouse line (named
the LoxCode line) that can generate a high diversity of cell-specific
barcodes38 following Cre exposure during unperturbed development
(Fig. 2a, Supplementary Fig. 4a, b, and Methods). The LoxCode con-
struct contains 14 LoxP sites in alternate orientation interspersed with
13 × 8–14 bp unique DNA segments (termed elements) (Fig. 2a and
Supplementary Fig. 4a, b). The theoretical diversity provided by the
recombination of the LoxCode is >30 × 109 unique barcodes (see
Methods). A Sanger-sequence verified LoxCode cassette was intro-
duced in mice at the Gt(ROSA)26Sor locus (Rosa26) using CRISPR
technology. Exposure to Cre recombinase led to recombination
(inversion/deletion) and the expected formation of LoxCode cassettes
composed of 13, 9, 7, 5, 3, or 1 element(s) (Fig. 2b). Construction of the
LoxCode line will be described in greater detail elsewhere39.

To assess the sensitivity and linearity of barcode detection, control
experiments were performed with barcoded LoxCode/Rosa26CreERT2
acute myeloid leukaemia clones. After in vitro exposure to
4-Hydroxytamoxifen (4-OHT), single acute myeloid leukaemia cells
were sorted into individual wells and expanded in vitro yielding clonal
lines that were sequenced for barcode identification and pooled in
known proportions to assess the sensitivity and linearity of barcode
detection in a pool. We found that LoxCode sequences between 5 and 9
elements were detected in a near-linear manner (Fig. 2c), providing the
potential for reliable quantification of the magnitude of clonal con-
tribution to any lineage (biomass).

LoxCode recombination generates a range of barcodes via one
to 15 recombination steps (this is referred to as barcode complexity,
see Methods). High complexity barcodes are detected in few
embryos, suggesting a high likelihood of being clonal (Fig. 2d). In
contrast, low complexity barcodes are frequently detected in
independent embryos, this suggests that they were made inde-
pendently in several cells and therefore could not be used for clonal
tracking. Our filtering steps involved the selection of infrequently
occurring and complex barcodes to ensure clonal tracking (Sup-
plementary Figs. 4c, 5, and Methods). We found that the limit of
sensitivity of barcode detection was approximately 1 in 16,000 cells
(Supplementary Data 4).

To investigate the temporal dynamics of complex barcode gen-
eration after 4-OHT injection, we induced barcoding at E6.5 and col-
lected embryos 1, 6, 12, 24, 48, or 120 h later. Complex barcodes were
detected as early as 1 h after induction and steadily accumulated over
thefirst 24 h (Fig. 2e). After 24h theproportionofquantifiablebarcodes
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reads was stable (Fig. 2e). Thus, when barcodes are generated during
lineage diversification, developmental intermediaries can be labelled.
This enables reconstruction of in vivo cellular genealogies.

Benchmarking the LoxCodemouse for yolk sac lineage tracking
To benchmark the LoxCode mouse line in the yolk sac, we first per-
formed control experiments involving lineages that were known to be
separate (negative control: primitive erythrocytes and non-erythroid
haematopoietic lineages40,41), or known to be connected (positive
control: yolk sac macrophages and brain macrophages
[microglia]23,42,43).

We used inducible Cre lines that would either label all cells
(Rosa26-ERT2-Cre, referred to as RosaiCre) or would label Cdh5-
expressing cells (Cdh5-ERT2-Cre44, referred to as Cdh5iCre). At early
developmental stages (E6.5–E8.5), Cdh5-expressing cells include pre-
cursors to the endothelial and haematopoietic lineages (E6.5–E8.5),
and at E8.5 the conventional endothelium itself (refs. 28, 29, 32, 45, 46
and Fig. 1c and Supplementary Fig. 2f). Barcode labelling was induced
with 4-OHT between E6.5–E8.5 and offspring of barcoded cells were
analysed in the E10.5 yolk sac lineages (Fig. 3a and Supplementary
Fig. 4d). After collection of E10.5 yolk sac lineages by flow cytometry
(Supplementary Data 5), LoxCode libraries were generated, sequenced

and analysed following the pipeline described in Supplementary Fig. 5
and Methods. In the negative control experiment, we found that pri-
mitive erythrocyte and the non-erythroid haematopoietic lineages
(HPC, macrophage, and megakaryocyte lineages, referred to herein as
theHaem group)were on separate trajectories fromE7.5 (Fig. 3b, c and
Supplementary Fig. 6a–c). This was consistent with population-level
lineage tracking (Supplementary Fig. 6d), the early segregation of
primitive erythrocytes inferred by our scRNA-Seq data (Fig. 1b, 1cii and
Supplementary Fig. 2f), the independence of the primitive ery-
throcytes from theHPCs40,41, and the in vivo divergenceofMk and EryP
lineage recently described47. This suggested that the LoxCode mole-
cular protocol and analysis pipeline did not create spurious connec-
tions. In the positive control experiment, we found that >90% of yolk
sac macrophages and cephalic microglia populations shared clonal
ancestors at E7.5 (Fig. 3d). This demonstrated that expected ancestries
were robustly detected using our method.

In addition, we found that the Haem sub-lineages derived from
common clonal ancestors at E6.5 and seeded independent macro-
phage, HPC, and megakaryocyte trajectories between E7.5 and E8.5
(Fig. 4a–c and Supplementary Fig. 7). This again demonstrated the
robustness and specificity of detected connection with this method of
in vivo cellular barcoding.
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presence of multiple independent 1 and 5 element barcode samples in the
experiment. Data shown derive from two independent experiments that were
performed in technical duplicate. All data points are shown. r2 represents Pearson’s
correlation coefficient for each independent experiment. d Complex barcodes
(requiring more recombination steps) are rarer and therefore more likely to be
clonal. Number of embryos in which barcodes of a given complexity (minimal
number of recombination steps) are detected. n = 11 independent embryos. e % of
quantifiable (complex 5–9 element) barcodes after 4-OHT injections. 1 h: 8
embryos; 6 h: 10 embryos, 12 h: 14 embryos, 24 h: 10 embryos, 48h: 8 embryos,
120h: 8 embryos. Data were analysed using One-way ANOVA (using Tukey’s P value
adjustment) was used for multiple comparisons. Exact p values are shown. Bars
represent mean ± SD.
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Endothelial and haematopoietic cells diverge from E7.5
We next investigated the relationship between the Haem group and
the endothelium. To this end, barcode formation was induced in E7.5
and E8.5 Cdh5-expressing cells using LoxCode:Cdh5iCremice, and then
recovered in the E10.5 yolk sac. This revealed that Cdh5-expressing
clones contributed to either Haem cells or endothelium but not to
both lineages (Fig. 4d and Supplementary Fig. 8a, c). We used LoxCo-
de:Rosa26iCre mice to enable unbiased labelling, this largely con-
firmed that the endothelium and Haem group were ancestrally
independent. However, from 116 clones two instances of dual lineage
contribution were observed (Fig. 4e and Supplementary Fig. 8b).
Although rare and only a minor contributor to the E10.5 biomass, this
pattern of contribution was consistent with the haemangioblast
theory.

Discovery of the haematomesoblast
To define all the mesodermal derivatives present in the yolk sac, we
purified E10.5 endothelium, blood lineages, and TER119- CD41- CD45-
CD31- mesodermal derivatives (collectively termed mesenchyme) for
10X Genomics single cell RNA sequencing. From 7316 high quality
single cells, seven transcriptional metaclusters were identified: primi-
tive erythroid, megakaryocyte, HPC, macrophage, endothelium,
mesenchyme and a handful of extraembryonic endodermcells (Fig. 5a,
b, Supplementary Data 6). As we observed with the E7.25–E10.5 yolk
sac scRNA-Seq dataset (Fig. 1c), there was a good correlation between
transcriptional identity and immunophenotype (Fig. 5a–c, Supple-
mentary Data 6, and Supplementary Fig. 3c, d). Within the mesench-
ymal cluster fourmain populations could be recognised (Fig. 5d–e and
Supplementary Fig. 9a, b). Allmesenchymeclustersdisplaying a robust
mesenchymal signature which included: (1) immature smooth muscle
cells (Supplementary Fig. 9c); (2) fibroblasts (Supplementary Fig. 9d);
(3) undifferentiated mesenchyme (Supplementary Fig. 9e); and, (4)

and two small clusters with high Postn expression (Supplementary
Fig. 9f). Additional marker genes for each of these clusters can be
found in Supplementary Data 7.

To investigate the ancestral relationshipbetweenhaematopoietic,
endothelial, and mesenchymal lineages in the yolk sac, we collected
E10.5 endothelium, primitive erythrocyte,mesenchyme, and theHaem
group (Fig. 6a). When LoxCode:Rosa26iCre mice were induced at E7.5
few barcodes were shared between the mesodermal derivatives
(Fig. 6b and Supplementary Fig. 10a) indicating that mesodermal
derivatives in the yolk sac were on separate lineage trajectories
from E7.5.

Induction of barcode formation at E6.5 yielded a striking pattern
of barcode sharing that was consistent with labelling a dynamic
developmental continuum that spannedmesodermwith multi-lineage
contribution and lineage-restricted trajectories (Fig. 6c and Supple-
mentary Fig. 10b). The E6.5 clonal outcomes revealed a clear picture of
how the mesoderm diversifies into its four major outcomes, this
included:
(1) Multi-outcome mesoderm that contributed to mesenchyme,

conventional endothelium, primitive erythrocytes, and/or Haem
lineages (i.e., haematogenic endothelium).

(2) Haemangioblasts that were restricted to the formation of con-
ventional endothelium and primitive erythrocyte/Haem out-
comes. Thus were capable of producing both haematogenic
endothelium and conventional endothelium.

(3) Mesenchymoangioblasts48 that were restricted to the production
of conventional endothelium and mesenchyme.

(4) A previously undescribed class of precursor that we have termed
the haematomesoblast. The haematomesoblast outcome was
restricted to mesenchyme and primitive erythrocyte/Haem
lineages. Thus, were capable of producing haematogenic endo-
thelium but not conventional endothelium.
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Each class of dual-outcome precursor was observed in all of the
nine embryos induced at E6.5 (Fig. 6cii), which demonstrates the bio-
logical reproducibility and robustness of the observations.

Induction of barcode formation at E5.5 identified haemangioblast,
mesenchymoangioblast, and haematomesoblast outcomes as well as a
greater number of multi-lineage clones (Fig. 6d and Supplementary
Fig. 10c). As recombination occurs for at least 24 h in this system, we
cannot pinpoint the exact time of emergence of each type of

ancestors, however, our data clearly demonstrated a progression from
multi > dual > uni-lineage outcome between E5.5 and E7.5.

Discussion
Using scRNA-Seq gene expression, we made the surprise discovery
that mesenchyme-associated genes were co-expressed with hae-
matopoietic and endothelial genes in the E7.25–E7.75 Flk1+ extra-
embryonic mesoderm. This indicated that a mesenchymal axis of
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early haematopoietic and endothelial development existed. Using
the LoxCode mouse to induce cellular barcoding during unper-
turbed embryonic development, we were able to test our hypoth-
esis in vivo. This powerful approach provided evidence that bona
fide haemangioblasts exist in vivo, demonstrated the in vivo rele-
vance of the mesenchymoangioblasts previously identified
in vitro48, and enabled the discovery of a previously undescribed
class of haematogenic precursor, the haematomesoblast which
connects the mesenchymal derivatives of the mesoderm to the
haematopoietic lineages.

It could be possible that the patterns of dual lineage outcomes
observed arose because of lineage bias rather than lack of tripotenti-
ality. Our observed limit of LoxCode barcode detection was 1 in 16,000
cells, which provided a 2–5 fold coverage of the non-erythroid yolk sac
lineages. Thus, if a precursor such as the haematomesoblast con-
tributed to a third lineage (e.g., the endothelium), the magnitude of
this contribution would have been vanishingly small. Additionally,
when investigated at E7.5, more than 90 % of the biomass of E10.5 yolk
sac macrophages and cephalic microglia was shared (Fig. 3d). This
suggested that any possible dropout effect (i.e., causing dual—rather
than tri-lineage outcomes) was unlikely to be an issue by virtue of the
increased time for clonal amplification (4–5 days compared to 3 days).
Indeed, >90% connections were observed for the Haem lineages with
an E6.5 induction (Fig. 4a) and the percentage of shared barcodes
across PCR technical replicates ranged between 96.2 and 99.6% in the
E5.5 induction experiments (Supplementary Fig. 10). A caveat of our
study is that all end-point analysis was performed at E10.5, therefore it
remains possible that clonal outcomes that we observed as dual out-
come could give rise to a third lineage later in embryogenesis (e.g.,

given more time, mesenchymoangioblasts could generate hemogenic
endothelium and so contribute to haematopoiesis).

Whether the haemangioblast, mesenchymoangioblast, and hae-
matomesoblast precursors represent stable and isolatable populations
with only dual lineage outcomes is unclear. A previous study showed
that colonies with endothelial and haematopoietic output also con-
tained mesenchymal derivatives10. Although this could be an outcome
of the complex culture system required to investigate the differ-
entiation potential of these cells, this could also indicate that all cells
with a dual lineage output in vivo are fundamentally tripotential
ancestors that only differentiate along two lineage trajectories due to
local environmental cues. Heterotopic transplantations have shown
that transplanted epiblast cells adopt the fate of their new location
rather than that of their region of origin49,50. This highlighted the
importance of regional cues in lineage differentiation. In the yolk sac,
haematopoietic outcome is largely restricted to the blood band
(Fig. 1aii and ref. 24). This could either be due to inhibition of the
haematopoietic potential of a tripotent mesodermal ancestor at the
level of the endothelial zone or the activity of a specific mesenchy-
moangioblast precursor. Of note, the finding that from E6.5 blood
(particularly EryP) and endothelial lineages are seeded by largely
ancestrally distinct clones is in keeping with previous in situ13 and
ex vivo14 tracking studies.

Although the molecular nature of the intermediates remains
unclear, our findings indicate that haematopoietic and endothelial
lineages are generated via both clonally related and unrelated
ancestries.

The existence of two haematogenic precursors that are broadly
equivalent in their ability to produce haematopoietic lineages suggests
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that there are multiple cellular pathways to blood production in the
yolk sac, one endothelial affiliated (haemangioblast) and one
mesenchymal affiliated (haematomesoblast). The unequivocal role of
transcriptional master regulators such as GATA1, GATA2, RUNX1, and
TAL1 for in vivo blood cell emergence8,19,21,32,33,51–63, and that E10.5 dif-
ferentiated lineages cluster homogeneously, is consistent with the

notion that haemangioblast and haematomesoblast differentiation
routes must converge on the same molecular machinery to induce
haematopoietic commitment. This likely occurs at the level of the
E7.25–E7.75 Cdh5+ haemato-endothelial precursors, which might have
the capacity for Haem group or endothelial lineage production but do
not generally contribute to both outcomes. Molecular mechanisms
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describing how this fate sorting could occur in vivo, involving interplay
between SOX7, FOXF1, and RUNX1, have been proposed using in vitro
embryonic stem cell differentiation models64–68.

Regarding the relationship between the haematopoietic lineages
in the yolk sac, we have demonstrated that despite previous inter-
pretations of yolk sac megakaryocytes being a primitive lineage co-
emergingwith the primitive erythrocytes3,4, these two lineages diverge
between E6.5 and E7.5, prior to the emergence of the haemogenic
endothelium. Furthermore, we found that megakaryocyte, macro-
phage and HPC lineages predominantly derive from a common hae-
matopoietic precursorwhich yields progeny that diverge between E7.5
and E8.5 and continue to develop in parallel in the yolk sac without
substantial trajectory cross over before E10.5.

In summary, these data demonstrate the in vivo existence of the
haemangioblast, the in vivo activity of mesenchymoangioblasts, and
the discovery of a new class of haematogenic precursor—the haema-
tomesoblast. The haemato-endothelial lineages of the yolk sac are
established by the output of this precursor trio (Fig. 7).

Methods
Mice
Flk1-gfp69, Cdh5ERT2Cre44, Rosa26ERT2Cre70, and Rosa26ReYFP71 lines
were maintained on a C57BL/6 background. All animal experiments
were approved by The Walter and Eliza Hall Institute animal ethics
committee.

Confocal imaging
Embryos were fixed in 2% PFA for 20min at room temperature. Sam-
ples were blocked and permeabilized in 0.6% Triton-X/10 % FCS/Ca2+/
Mg2+ DPBS for 30min at room temperature. Staining with primary and
secondary antibodies (Supplementary Data 1) was performed either
overnight at 4 °C or for 6–8 h at room temperature in 0.6% Triton-X/
10%FCS/Ca2+/Mg2+ DPBS.Nuclei were stainedwithDAPI forone hour at
room temperature. Embryos were transferred to 4ml silanized glass
vials (Supelco) and dehydrated in a gradient of tetrahydrofuran (THF,
Sigma) in H2O (50%, 70%, 100%) with 1.5 h washes held at room tem-
perature, and a final overnight incubation in 100% THF held at 4 °C72.
The next morning embryos were transferred to a coverslip mounted
with a silicone Fastwell (Grace BioLabs) and cleared in two changes of
100% dibenzyl ether (DBE, Sigma) before imaging on a Zeiss LSM780
confocal microscope. Data were processed using Imaris Software (v9,
Bitplane).

Flow cytometry
E7 yolk sacs were dissected and dissociated in 0.25% Trypsin/EDTA
(Gibco) at 37 °C for five minutes73. Samples were washed with 1ml of
FACS buffer (7% FCS/ Ca2+/Mg2+-free DPBS) and centrifuged at 500 × g
for 5min. Samples were resuspended in 1ml of FACS buffer and
mechanically disrupted by gentle trituration with a P1000 20 times,
then filtered through a 40 μm nylon mesh filter and centrifuged again

before being placed on ice. Tissues from all older developmental
stages (E8–10.5 yolk sacs)were dissociated in 10%Collagenase-Dispase
solution (5mg/ml stock; Roche) made in Dissection Medium (7% FCS/
Ca2+/Mg2+ DPBS) at 37 °C for 45–60min, washed and mechanically
disrupted as described above. Single cell suspensions weremaintained
on ice. Cells were washed and stained in FACS buffer. Staining of single
cell suspension was performed with primary antibodies for 1 h. Dead
cells were excluded according to uptake of 7-aminoactinomycin D (7-
AAD). Gate placement was determined using appropriate isotype and
fluorescence minus one controls. Cells were analysed on either BD
LSRFortessa or LSRII cytometers. Flow cytometry cell sorting was
performed on BD FACSAria using a 100 μm nozzle with collection in
1.5ml eppendorf tubes containing 700μl FACS Wash to minimise cell
loss with collection tubes and cells maintained at 4 °C throughout the
sorting process. Sorted cells were always reanalysed to determine sort
purity. Data were analysed using FlowJo software.

Fig. 6 | Identification of the in vivo haemangioblast and discovery of the
haematomesoblast. a (i) Experimental design to assess lineage relationships
between all mesodermderivatives of the yolk sac. Createdwith BioRender.com. (ii)
Barcoding window in reference to 4-OHT injection time. Experimental mice
received only one dose of 4-OHT (at either E5.5, E6.5, or E7.5). b Induction of
barcode formation at E7.5 induction using Cdh5iCre (469 barcodes, n = 3 embryos).
(i) Heatmaps of all informative barcodes. (ii) Biological reproducibility of clonal
outcomes. Colours represent the total number of independent embryos with the
stated clonal outcome. Values in parentheses represent the percentage of inde-
pendent embryos in which the clonal outcome was observed. (iii) Summary of
contribution to the biomass of E10.5 yolk sac lineages (based on 5–9 element
barcodes [464 barcodes]). c Induction of barcode formation at E6.5 using
Rosa26iCre (300 barcodes, n = 9 embryos). (i) Heatmaps of all informative bar-
codes. (ii) Biological reproducibility of clonal outcomes. Colours represent the total

number of independent embryos with the stated clonal outcome. Values in par-
entheses represent the percentage of independent embryos in which the clonal
outcome was observed. (iii) Summary of contribution to the biomass of E10.5 yolk
sac lineages (based on 5–9 element barcodes (based on 5–9 element barcodes [280
barcodes]). d Induction of barcode formation at E5.5 using Rosa26iCre (172 bar-
codes, n = 14 embryos). (i) Heatmaps of all informative barcodes. (ii) Biological
reproducibility of clonal outcomes. Colours represent the total number of inde-
pendent embryos with the stated clonal outcome. Values in parentheses represent
the percentage of independent embryos in which the clonal outcome was
observed. (iii) Summary of contribution to the biomass of E10.5 yolk sac lineages
(based on 5–9 element barcodes (based on 5–9 element barcodes [163 barcodes]).
Mes (mesenchyme), Endo (endothelium), EryP (primitive erythroid), Haem (HPC,
megakaryocyte, andmacrophage),HG (haemangioblast), HM (haematomesoblast),
MA (mesenchymoangioblast), and MM (multi-outcome mesoderm).
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Mesoderm

E6.5

E7.5

E8.5

E10.5
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?

Fig. 7 | Model of mesodermal diversification in the yolk sac via dual outcome
precursors.Endothelial,mesenchymal, andhaematopoietic lineages in the yolk sac
are the product of mesenchymoangioblast, haemangioblast, or haematomesoblast
differentiation. Created with BioRender.com. EryP (primitive erythroid), Mk
(megakaryocyte), HPC (haematopoietic progenitor/colony forming cell), Mac
(macrophage), Haem group (Mk+ HPC+Mac), Endo (endothelium), Mes
(mesenchyme).
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Fluidigm C1 single cell dataset
Capture and cDNA generation. Populations of interest were indivi-
dually purified by flow cytometry sorting (Supplementary Data 1). Cell
counts were performed by haemocytometer; 6000 cells were pre-
pared for processing according to the manufacturer’s instructions for
capture on the Fluidigm C1 integrated fluidic circuit (IFC) with the
capacity for 96 individual cells and a 10–17μm capture aperture. All
scripts used were for the 10–17 μm IFC. Briefly, Solutions A–C were
prepared and held on ice, then the IFC was primed before 3000 cells
were loaded in 20μl of 3: 2 FACS Wash: C1 Suspension Reagent for
capture (150 cells/μl). After inspecting and imaging each capture site
to record the presence and quantity of captured cells and their mor-
phology, Solutions A–C were loaded into the IFC according to the
Loading Map, and overnight cDNA and pre-amplification was per-
formed. The following morning ~3μl of cDNA was harvested into 10μl
of C1 DNA Dilution Reagent in a 96 well plate. Four single cell samples
were run on a Tapestation as quality control to assess whether the
overnight cDNA step was successful, before storing the plate at −20 °C
until sequencing library preparation.

Single-cell RNA library preparation and sequencing. cDNA con-
centration was assessed for each cell sample using the Qubit or a
PicoGreen plate reader as per the manufacturer’s instructions.
Libraries were prepared using theNextera XT kit and Illumina 96 index
kits according to the Fluidigm protocol modified from the Illumina
protocol to use ¼ of the kit per 96 well plate. Briefly, cDNA con-
centrations were adjusted to be 0.1–0.3 nm/μl using C1 Harvest
Reagent. Tagmentation adapters were added to the cDNA in the pro-
cess of amplification, then Illumina sequencing primers were adapted
along with P5 and P7 Single Cell Indices during low cycle number (×12
cycle), full-length amplification PCR. 50–90 single cells were pooled to
sequence on a High-Seq lane depending on the single cell capture
efficiency for each population, with sample quality control performed
on theTapeStationafterAMPureXP (Agencourt)magnetic bead clean-
up to confirm fragment size enrichment (200–1000bp). RNA
Sequencing was performed using Illumina HiSeq with Paired-End
100bp reads, and a pool of up to 96 cells occupied each lane.

Bioinformatics analysis of single cell Fluidigm data. Fastq files were
aligned to Ensemblmouse genomeversion 84 usingRsubreadpackage
(doi:10.18129/B9.bioc.Rsubread). The featureCounts function from the
same package was used to generate counts matrix summarised at the
gene level. The data from the 1073 cells captured by Fluidigm tech-
nology was filtered using the scater R package (doi:10.18129/
B9.bioc.scater) producing amatrixwith 926 samples and 15,967 genes.
The scran R package (doi:10.18129/B9.bioc.scran) was used to nor-
malise thematrix using computeSumFactors function, and cpm values
were generated using calculateCPM function. Multiple dimensionality
reduction techniques were applied in order to check that results were
robust—including TSNE, PCA, UMAP and more, across a range of
parameters. The results shown here were obtained using the python
umap package, with n_neighbors=40 and min_dist=0.8. Marker genes
for each sorted population (Supplementary Data 3) were obtained
using Scanpy’s rank_gene_groups method, using “Wilcoxon” as the
method parameter. Heatmaps were generated using Morpheus soft-
ware (https://software.broadinstitute.org/morpheus/).

General statistical analyses (outside scRNA-seq data). Prism 7
(GraphPad) was used for data analysis and graph production. Data
represented as mean ± standard deviation (SD), and analysed using
Student’s t-test (two-way, unpaired). One-way ANOVA (using Tukey’s P
value adjustment) was used for multiple comparisons. Differences
were considered statistically significant when p <0.05, designation of
‘ns’ indicates differences were not significant. * = p <0.05, ** = p <0.01,

*** = p <0.001, **** = p <0.0001. ‘n’ was used to designate the number
of independent experiments.

Construction of the LoxCode mouse. The LoxCode construct was
assembled using degenerated oligonucleotides containing a high
diversity of element sequences that were sequentially clone into
pBlueScriptIISk. Sequencing revealed that all barcode elements dif-
fered from at least 2 nucleotides in either orientation. The LoxCode
mouse was created using CRISPR technology. Cas9-gRNA ribonucleo-
proteins (guide RNA sequence: 5′-CTCCAGTCTTTCTAGAAGAT-3′) and
a circularised vector (pBlueScriptIISk backbone) containing the Lox-
Code cassette were injected into C57BL/6J oocytes before reimplan-
tation into pseudopregnant females. Pups were screened by PCR for
presence of the insertion. Sanger sequencing was performed to con-
firm the LoxCode sequence. The LoxCode line was bred to homo-
zygosity on a C57BL/6 background. For distribution of LoxCode mice,
contact corresponding authors.

LoxCode control experiments. Granulocyte-Macrophage Progenitors
from an adult LoxCode/Rosa26ERT2Cre were transduced with pMSCV-
IRES-YFP construct containing the MLL-AF9 fusion gene (REF: https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC2936245/) and transplanted
into a Ly5.1 mouse to induce Acute Myeloid Leukaemia (AML). When
the leukaemic burden (YFP) in the peripheral blood reached >25%,
mice were culled via cervical dislocation and bone marrow cells were
harvested and subjected to 1 h of 4-hydroxytamoxifen (4-OHT, Sigma-
Aldrich) exposure in vitro (100 nM) followed by three washes. After
48hrs of recovery, single barcoded AML cells were sorted in 96 well
plates and expanded. DNA samples were analysed by PCR to assess
recombination. Twopools containing various numbers of cells from 11
clones were sorted and analysed: Pool 1 (1, 2, 8, 64, 128, 256, 2564,
4096, 8192, 17456, and 32768 cells) and Pool 2 (1, 4, 8, 128, 256, 512,
3106, 4096, 8272, 16384, and 32768 cells). In two independent 65,535
cell pools, we detected four barcoded cells added per pool but not one
or two cells per pool. This means that to detect all barcoded cells in a
sample, the barcode frequency must be ≥ 1 in 16,000 cells (Supple-
mentaryData 4). As these experiments were donewith purified clones,
theywereused to set up detection thresholds and removal of potential
PCR artefacts (Supplementary Fig. 4c). They were also used to screen
barcodes size classes regarding linearity of output (sequenced bar-
codes) versus input (inputed number of cells) (Fig. 2c).

Isolation of barcoded populations. Embryos were generated by
crossing LoxCode/LoxCode mice with Cdh5ERT2Cre/+ or
Rosa26ERT2Cre/Rosa26ERT2Cre mice. Noon of the day a vaginal plug
was found was counted as E0.5. Barcoding was induced by injection of
4-OHT between E6.5 and E8.5 following a protocol optimised for each
line formaximum informative barcode recovery:Cdh5ERT2Cre crosses
—intraperitoneal injection of 300 μg/mouse of 4-OHT (dissolved in
corn oil, Sigma-Aldrich); Rosa26ERT2Cre crosses: intravenous injec-
tion of 100 μg of 4-OHT (dissolved in KolliPhor, Sigma-Aldrich)74.
Induced mice were kept in separate cages to prevent untimely induc-
tion via tamoxifen shedding. Yolk sac or head cell populations were
recovered at E10.5. Concepti were dissected out of the uterus in (37 °C
7% Fetal Calf serum,DPBSwith Ca2+ andMg2+) and rinsed three times in
this buffer. The umbilical cord was pinched and cut beneath the pla-
centa and the embryo and yolk sac transferred to a clean dish of (37 °C
7% Fetal Calf serum, Ca2+/Mg2+-free DPBS, FACS buffer). The yolk sac
was dissected with scissors (avoiding pulling on the tissue to preserve
endothelial cells) and the embryo quickly moved to a fresh plate. The
yolk sac and blood spilled from the umbilical cord were collected.
Embryos were screened for normal development and heartbeat,
staged by general morphology and somites counts and used for gen-
otyping before sorting. For head macrophage (microglia) purification,
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heads were dissected after embryo scoring. Yolk sac and head samples
were rinsed in DPBS and dissociated enzymatically with Liberase (100
μg/ml in Ca2+/Mg2+-free DPBS) for 12min at 37 °C. The reaction was
stopped by adding 2ml of cold FACS buffer and immediate cen-
trifugation. Samples were resuspended in 1ml of FACS buffer with
2.5mM EDTA, incubated for a few minutes on ice to weaken cell
adhesion further, and mechanically dissociated with a P1000 pipet-
man. Samples were filtered through a 40 μMnylon mesh, centrifuged,
and resuspended for antibody labelling. Antibodies were purchased
from Biolegend (PDGFRA (APA5), PECAM (390), CX3CR1 (SA011F11)),
Invitrogen (CD41 (eBioMWReg30)) or made in-house (Ter119) and
CD45 (30-F11). After antibody staining (1 h, 4 °C), cellswerewashed and
counterstained with 7AAD (Invitrogen) for dead cell exclusion. Cells
were sorted on an Aria Cell Sorter (Becton Dickinson) and collected in
FACS buffer. An aliquot of cells was used to assess sample purity with a
95% threshold (Supplementary Data 5), and the remainder was
immediately centrifuged after sort. Cell pellets were lysedwith 100μg/
ml Proteinase K in proteinase K buffer, digested for 2 h at 56 °C,
inactivated for 1 h at 85 °C and 5min at 95 °C. Lysates were maintained
at −20 °C until library preparation.

LoxCode library preparation. LoxCode DNA was amplified by PCR
using primers complementary to LoxCode flanking arms (5′-TCTAGAG
GATCCCCGGGTACCGA−3′ and 5′-TGATCCGCGCCTGGATGAAT−3′)
with the following programme (98 °C 2min, 22× (98 °C 20 s, 65 °C 20 s,
72 °C 30 s)). Illumina sequencing primers, a stagger to increase library
diversity, indexes (96 indexes/sequencing lane), and P5/P7 flow cell
adapters were introduced in 2 subsequent 5-cycle PCR steps (98 °C
2min, 5× (98 °C 20 s, 70 °C 20 s, 72 °C 30 s)), designed following Illu-
mina guidelines. Additional 5-cycles of amplification were performed
using phosphorothioated P5 (5′-A*A*T*GATACGGCGACCACCGAGATC
TA*C*A*C-3′) and P7 (5′-C*A*A*GCAGAAGACGGCATACGA*G*A*T-3′)
primers to ensure long term storage. PCR Primers were removed and
barcodes with more than one element size-selected after each step
using NGS Magnetic-bead clean up (Mackery-Nagel). Libraries were
quantified on a Tapestation (Agilent), pooled, and sequenced using
Illumina MiSeq kits (600 cycles).

Analysis of the LoxCode sequencing data. All analyses were carried
out using customC++ and R scripts (available on request). Raw paired-
end dual-indexed sequencing data was demultiplexed into individual
samples. For each sequence, LoxCode elements (stereotypical in posi-
tion) were extracted and aligned to those of the original cassette. To
compute the minimal number of recombination steps necessary to
make each LoxCode (complexity), a reference table with all possible
combinations was created. For this, a simulation of all possible
recombinations (excisions and inversions) of the original LoxCode
construct was carried out, assuming a 82 bpminimal distance between
loxP sites75. The resulting barcodes were stored and attributed a
complexity of one. In a second step, all entries of this table were
subjected to the same process. Barcodes generated in that way already
present in the table were discarded, while new barcodes were added
and attributed a complexity of two. This process was repeated 15 times
until no new barcodes were generated, establishing the minimum
number of recombination events needed to create any specific bar-
code and an expected theoretical diversity of 30,204,722,030
barcodes38. The usage of paired-end MiSeq2 600 cycles kits only
allowed the sequencing of 12 out of 13 elements. LoxCodes with less
than 13 elements (the vastmajority of barcodes)were sequenced in full
with this protocol. For 13-element LoxCodes, the sequence and orien-
tation of the middle element was inputed from its surrounding ele-
ments, assuming a minimal number of recombination steps.

To exclude barcodes that could be illegitimate or made inde-
pendently in two cells of the same embryo, barcoding data was pro-
cessed following the flowchart on Supplementary Fig. 5: barcodes not

conforming to the expected structure or with limited diversity (1-ele-
ment, 13-element unrecombined barcodes) were removed. Barcodes
potentially resulting from PCR artefacts (Supplementary Fig. 4c) were
filtered out if their reads represented less than 10% of those of all their
potential parents combined (ie any barcode containing all the ele-
ments of the potential offspring barcode). A detection threshold of
100 reads was used to remove sequencing errors and potential con-
tamination. Illegitimate barcode filtering and detection thresholds
were determined using control experiments described above.
Remaining (legitimate) barcodes were normalised for reads per cell
across each dataset. As some barcodes were detected in all or many
embryos, this raised the possibility of repeat barcode generation in
independent cells. We found that barcode classes defined by length
and complexity had various inherent combinatorial diversity (Fig S5
Box 1) and that high diversity (>2000 possible combinations) classes
had a higher chance of being unique to one embryo in our first two
datasets (11 embryos) (Supplementary Fig. 5 Box 2). We used this
information to filter for barcodes with the highest probability of
clonality: belonging to length/complexity classes with the highest
diversity and likelyhood to be detected in one embryo only (coloured
orange in Supplementary Fig. 5) and uniquely detected in each dataset
analysed. Barcodes passing all filtering steps were termed informative
barcodes. Heatmaps were generated using Heatmap.2 (gplots R
package). Barcode behaviour (display of number of barcodes with a
given behaviour per experiment) and biomass (% of cells of a given
lineage deriving from ancestors with a particular fate) analyses were
generated using custom R scripts. For biomass analysis, only 5–9 ele-
ments barcodes were included, as 1–3 and 13 elements barcode fre-
quencieswere affectedbybeads clean-up, PCR, and sequencing biases.
Total numbers of barcodes generated in each experiment as shown in
Supplementary Data 8.

Duration of barcode formation after 4-OHTadministration. Embryos
were generated by crossing LoxCode/LoxCode or LoxCode/+mice with
Rosa26ERT2Cre/Rosa26ERT2Cre mice. Noon of the day, a vaginal plug
was found was counted as E0.5. Barcoding was induced by injection of
100 μg of 4-OHT (dissolved in KolliPhor, Sigma-Aldrich) at E6.5 by
intravenous injection. Whole concepti were collected 1, 6, 12, and 24 h
after induction, and yolk sacs only after 48 and 120 h. 8–14 embryos
were collected for each timepoint. Samples were processed as
described above and sequenced on MiSeq using a 600 cycles kit.
Barcode sequences and complexity were extracted as previously
described. For each embryo, the proportion of reads or barcodes
dedicated to quantifiable (complex) barcodes was determined.

10× Genomics scRNA-Seq dataset. Populations of interest were
individually purified from a pool of 33 C57BL/6 E10.5 embryos by flow
cytometry (Supplementary Data 1), as described on Supplementary
Fig. 4d. To enable the identification of the population of origin, each
population was labelled with a distinct MultiSeq hashtag (76). 17,000
cells were loaded on the 10× Genomics Chromium system. 13,780 cells
were identified using CellRanger. A high quality 7316 cells dataset was
obtained after screening for transcriptomequality (>3000UMI, >1000
features, <5% mitochondrial transcripts) and excluding cells with
inconclusive hashtag calls or multiplets. Transcriptomes were scaled
using ScTransform. Seurat clusters were identified and annotated
using DE gene lists. Good correlation was found between hashtag call
and transcriptional identity. In particular, >97% of cells purified asMes
belonged to the mesenchymal cluster (Fig. 5a–c). Others were most
likely sorter errors or uncalled doublets. Cells belonging to the
mesenchymal cluster were re-scaled and clustered for further identi-
fication. Aside from endothelial, haematopoietic, and mesenchymal
populations, a small number of extraembryonic endodermal cells were
identified (19 cells, cluster 22, Fig. 5a). Themajority of those cells were
labelled with an endothelial hashtag, most likely due to
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autofluorescence in the BV421 channel (CD31). Those cells, known to
diverge from the epiblast lineage at E4.577,78, represent aminimal (<4%)
contamination of the endothelium, with no ancestral relationship to
any of the followedpopulations in the frameof these experiments, and
would therefore appear as endothelium only-barcodes in these
experiments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Fluidigm scRNA-Seq dataset of E7.25 - E10.5 yolk sac lineages have
been deposited in NCBI’s Gene Expression Omnibus under accession
code GSE164336. The 10X scRNA-Seq dataset of E10.5 yolk sac lineages
have been deposited in NCBI’s Gene Expression Omnibus under
accession code GSE204896. Differential expression analysis of scRNA-
Seq has been provided in Supplementary Data 3, 6, and 7. LoxCode
mice and/or rawor processed data presented in thismanuscriptwill be
made available on request.

Code availability
All codes used will be made available upon request.
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