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Benchmarking commonly used software
suites and analysis workflows for DIA
proteomics and phosphoproteomics

Ronghui Lou 1,2,3,7, Ye Cao3,4,7, Shanshan Li1,7, Xiaoyu Lang1,2,6, Yunxia Li 4,
Yaoyang Zhang 4,5 & Wenqing Shui 1,2

A plethora of software suites and multiple classes of spectral libraries have
been developed to enhance the depth and robustness of data-independent
acquisition (DIA) data processing. However, how the combination of a DIA
software tool and a spectral library impacts the outcome of DIA proteomics
and phosphoproteomics data analysis has been rarely investigated using
benchmarkdata thatmimics biological complexity. In this study,we createDIA
benchmark data sets simulating the regulation of thousands of proteins in a
complex background, which are collected on both an Orbitrap and a timsTOF
instruments. We evaluate four commonly used software suites (DIA-NN,
Spectronaut, MaxDIA and Skyline) combined with seven different spectral
libraries in global proteome analysis. Moreover, we assess their performances
in analyzing phosphopeptide standards and TNF-α-induced phosphopro-
teome regulation.Our studyprovides a practical guidanceonhow toconstruct
a robust data analysis pipeline for different proteomics studies implementing
the DIA technique.

Data-independent acquisition (DIA) mass spectrometry (MS) has
emerged as a powerful technology for proteomics research as it pro-
mises both deep proteome coverage and consistent and accurate
protein quantification for large-scale study designs1–4. As opposed to
the traditional data-dependent acquisition (DDA) which selects the
most abundant precursor ions for further analysis, the mass spectro-
meter inDIA experiments cycles through apre-defined set of precursor
isolation windows within which all the precursors are consistently
fragmented. Thus, DIA proteomics establishes a complete and quan-
titative digital map for the proteome to be studied5.

However, co-isolation and co-fragmentation of multiple pre-
cursors in the same selection window produces inherently complex
tandem MS spectra and multiplexed chromatograms, which poses a
significant challenge for DIA data processing6,7. A panel of software

suites such as OpenSWATH, Skyline, DIA-Umpire, and EncyclopeDIA
has been developed to address computational challenges in DIA data
analysis using a peptide-centric or spectrum-centric approach8–11. Up
till now, the commercial package Spectronaut2 has been the most
widely employed in various DIA proteomics studies due to its versatile
options and ready-to-use features for less experiencedusers6,12–15.More
recently, several open-access tools with advanced infrastructure and
unique strengths havebeendeveloped tooffermoreflexibility and less
running costs than commercial software. For example,DIA-NNexploits
deep neural networks and new quantification and signal correction
strategies to improve proteome identification and quantification as
well as enable high-throughput DIA analysis7,16. MaxDIA provides an
end-to-end DIA data analysis workflow embedded into the MaxQuant
environment with new features to achieve deep proteome coverages
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and consistent quantification under a reliable FDR control17. Despite
various DIA software suites available, a consensus is lacking on which
software is most suited to processing which type of proteomics data.

A DIA data analysis workflow will become more versatile if
incorporates different classes of spectral libraries. Routinely, a
project-specific DDA library is built from DDA data acquired on pre-
fractionated samples or repeated injections. This experimental DDA
library built from analysis of the same DDAdata by different software
tools such asMSFragger18 andMaxQuant19 could vary in their size and
composition, which would substantially affect DIA data analysis
results20–22. Alternatively, Spectronaut allows for the construction of
a hybrid library which combines a project-specific DDA library with a
directDIA library built from DIA data alone15,23. Recently, in silico
libraries generated through predictions of fragment ion intensity and
retention time for peptide sequences derived from the entire pro-
teome or a targeted protein family using deep learning tools are
gaining momentum21,24–27.

A seminal work by Schilling et al. suggests that both the selection
of software suites and the design of spectral libraries strongly impact
the outcome of a DIA data analysis workflow22. However, the combi-
nation of DIA software and spectral libraries has been rarely investi-
gated using benchmark data that mimics real biological complexity.
Two recent studies have made significant progress in evaluating DIA
analysis workflows using benchmark data specifically designed to
reflect either the fluctuation of a small set of proteins or the back-
ground heterogeneity of clinical samples22,28. Of note, both studies

acquired data on Orbitrap-series instruments to evaluate different
bioinformatics workflows for global proteome profiling.

In this study, we created DIA benchmark data sets simulating the
regulation of thousands of proteins in a complex background, which
were collected on both an Orbitrap instrument and a timsTOF instru-
ment. With a unique feature of four-dimensional ion detection leading
to superior speed and sensitivity, timsTOF represents a promising
platform for broad proteomics application and merits specific
investigation29–31. We evaluated four commonly used DIA software
suites (DIA-NN7, Spectronaut2, MaxDIA32, and Skyline9) in combination
with different types of spectral libraries through the analysis of not
only global proteomics data but also phosphoproteomics data. Our
benchmark study reveals the distinct advantages of DIA-NN and
Spectronaut in analyzing different types of DIA proteomics data
acquired on state-of-the-art instruments.

Results
Design of the benchmarking experiment
To generate a benchmark sample set simulating systematic regulation
of a large protein population, we prepared mouse brain membrane
proteins spiked into a yeast proteome background in defined pro-
portions (Fig. 1a). Relative to one hybrid proteome sample referred to
as reference, the other six samples with different compositions yield
expectedmousemembrane protein ratios from 1:4 to 2:1.We designed
this sample set with a relatively small magnitude of fold changes to
assess the sensitivity of software suites in selecting differentially
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Fig. 1 | Schematic of the benchmarking experiment and DIA data analysis
workflows. aWorkflow of the benchmarking experiment. Mouse brain membrane
protein digests were spiked into a yeast proteome background in seven defined
proportions, yielding one reference and six mixtures with fixed mouse protein
ratios relative to the reference. For each sample prepared in five replicates, DIA
benchmark data were acquired on QEHF and timsTOF Pro instruments. Meanwhile
DDA data were acquired on two instruments from pre-fractionated samples to

build project-specific DDA libraries using the FragPipe pipeline. b Design of data
analysisworkflows evaluated in this study. The library generated by FragPipe serves
as the universal library used by four software suites. Three software-specific DDA-
dependent libraries were generated by MaxDIA, Skyline, and Spectronaut from
different DDA and DIA data sources. Three DDA-independent libraries (two whole-
proteome in silico libraries and one directDIA library) were generated and pro-
cessed by DIA-NN, MaxDIA, and Spectronaut.

Article https://doi.org/10.1038/s41467-022-35740-1

Nature Communications |           (2023) 14:94 2



expressed proteins (DEPs) above a commonly applied 1.5-fold thresh-
old. Each benchmark sample was prepared in five process replicates
and analyzed on two instrument platforms, QE HF in DIA mode and
timsTOF Pro in diaPASEF mode (Fig. 1a). The resulting two benchmark
data sets (HF data and TIMS data for short, 35 runs in each set) con-
taining thousands of DEPs with defined ratios enabled comprehensive
evaluation of multiple analysis workflows with different software
suites. In the meantime, we performed DDA analysis of fractionated
mouse membrane proteome and yeast proteome samples on QE HF
and timsTOF Pro instruments. TheDDAdatawas used to build project-
specific libraries typically required for DIA data mining (Fig. 1a).

Because the size, quality, and composition of a spectral library
have a profound impact on DIA data analysis, we built three classes of
libraries to be tested with each software tool (Fig. 1b). A universal
library was generated from the raw DDA data using a FragPipe
pipeline33. Data analysis with the universal library by four software
tools established an identical baseline for evaluation. Alternatively,
Spectronaut, MaxDIA, and Skyline allow for processing the DDA data
with an integrated search engine to generate software-specific DDA-
dependent libraries. The universal library comprised 174,115 peptide
precursors mapped to 11,725 proteins based on HF DDA data, and
225,350 precursors mapped to 13,704 proteins based on TIMS DDA
data, which was modestly larger than or similar to different software-
specific libraries (Supplementary Fig. 1a–h). In addition, an in silico
library can be generated and exploited by DIA-NN in library-free mode
or by MaxDIA in discovery mode, which circumvents the need for an
experimental DDA library for DIA data analysis. The in silico library
built from themouse and yeast protein sequence databases comprised
1,529,467 peptide entries mapped to 23,812 proteins (Supplementary
Fig. 1i). Spectronaut also supports library construction in a DDA-
independent manner, through building a directDIA library in a much
smaller size fromDIAdata alone (Supplementary Fig.1a, b, e, f). In total,
we aim to exploit four software suites combined with seven spectral
libraries (one universal library, three software-specific DDA-dependent
libraries, and three DDA-independent libraries), resulting in 10 differ-
ent data analysis workflows (Fig. 1b).

Performance of proteome identification
We first implemented DIA-NN, Spectronaut, MaxDIA, and Skyline
(all in the latest version) to process the HF data set. Although each
softwaremay assemble protein groups in a different way, we found the
number of protein identifications re-assigned based on the razor
protein inference19 was very close to that reported by the software
which was then used directly for comparison (Supplementary Fig. 2).
With the universal library, DIA-NN, Skyline and Spectronaut yielded
comparable coverages of the mousemembrane proteome (4919–5173
proteins) yet the FDR control by Skyline was insufficient (see the FDR
assessment session for details). With a software-specific DDA-depen-
dent library, Spectronaut attained the highest coverage by reporting
5354 mouse proteins and 67,310 peptides (Fig. 2a, Supplementary
Fig. 3a). When utilizing an in silico library, DIA-NN achieved the best
identification performance by reporting 5186 mouse proteins and
51,313 peptides (Fig. 2a, Supplementary Fig. 3a). Overlaps of mouse
protein identifications by four software suites equipped with different
libraries are summarized in Supplementary Figure 3. Notably, DIA-NN
with the in silico library covered 94.3% proteins identified by itself with
the universal library (Supplementary Fig. 3c). Similar numbers of
peptides per protein were obtained by DIA-NN, Spectronaut, and
MaxDIA, yet the density plot was skewed to the lower end for Skyline
which reported the least peptide identifications (Fig. 2b).

Analysis of the TIMS benchmark data set with all four software
suites gave rise to substantially expanded proteome coverages, due to
the enhanced sensitivity of the instrument implementing a novel
PASEF scan mode29,30,34. Both DIA-NN and Spectronaut gave a high
performance by reporting 7128 and 7116 mouse proteins respectively

using the universal library (Fig. 2d, Supplementary Fig. 3d–f). Although
DIA-NN combined with the in silico library marginally reduced the
mouse proteome coverage compared to the universal library, this
workflow still considerably exceeded the coverages attained by most
other workflows (Fig. 2d, Supplementary Fig. 3d). We further analyzed
the sub-proteome coverage of G protein-coupled receptors which are
under-represented in most global proteomic surveys (e.g., 63 and 71
GPCR proteins reported from mouse and human brain tissues,
respectively35,36). Remarkably, 127 and 123 GPCR identifications were
yielded from TIMS data analysis by DIA-NN and Spectronaut, respec-
tively, with the universal library, and 112 GPCR identifications by DIA-
NN with the in silico library (Supplementary Fig. 4). Given that mouse
proteins accounted for only 5–40% of total protein mass in the hybrid
proteome samples with GPCRs even in a much smaller subpopulation,
DIA-NN and Spectronaut both demonstrated superior capability
to detect low-abundance proteins in a highly complex proteomic
background.

The proteome coverage is commonly determined by the total
number of identified proteins concatenated from all replicates yet not
all proteins are identified in each replicate, thus leading to an issue of
data incompleteness. DIA MS acquisition is renowned for enhanced
data completeness by reducingmissing values of protein intensities in
the data matrix1–3,16,37. Not surprisingly, there is a negative correlation
between the cumulative percentage of missing values for mouse pro-
teins and the protein intensity rank for all analysis workflows (Fig. 2c,
f). Among them, Spectronaut with a directDIA library yielded the
highest data completeness (7.2% and 4.5% missing values across 35
runs for two data sets). MaxDIA with the universal library or DDA-
dependent library also achieved high completeness for HF data (17.0%
and 12.7% missing values) yet less completeness for TIMS data (21.4%
and 20.2% missing values). DIA-NN with different types of libraries
yielded similar and acceptable data completeness (16.6–18.7% missing
values for two data sets). Data analysis by Skyline with the universal
library or DDA-dependent library resulted in the lowest data com-
pleteness (36.9–40.7% missing values for two data sets) (Fig. 2c, f).
Consistently, Skyline-based workflows reported the fewest mouse
proteins with intensity measured in all five replicates compared to the
other three tools (Supplementary Fig. 5).

False positive and false negative rate assessment
A challenge in proteomic benchmark studies is that each software
scores identifications and controls the false discovery rate (FDR) in
different manners. Specifically, DIA-NN implements a fully connected
neural network as the scoring model to discriminate targets and
decoys7. Spectronaut develops Avalon based on a gradient boosting
machine and exploits deep learning for scoring peptide-XIC
matches2,38. MaxDIA employs XGBoost as its scoring function32. Sky-
line integratesmProphet to score peptide identifications using a linear
model9,39. Additionally, DIA-NN and Spectronaut allow for FDR con-
trols on both precursor and protein levels2,7. MaxDIA scores and filters
library-to-sample matches prior to the protein-level FDR control32,
whereas Skyline controls FDR based on a mProphet-calculated
detection Z score9. For an objective assessment of FDR control, we
employed a two-species library approach to estimate FDRs indepen-
dent of the software. Leveraging a deep neutral network that was
refinedwith our DDAdata sets, we generated a predicted decoy library
based on previously identified peptide precursors from the Arabi-
dopsis proteome40,41. Appending incremental fractions of this decoy
library (10%, 20%, 50%, and 100%) to the universal library to create a
series of target-decoy libraries allowed us to assess not only FDRs but
also false negative rates (FNRs) in proteomic identification (Supple-
mentary Fig. 6a).

We calculated the percentage of Arabidopsis proteins or pre-
cursors out of all those identified with the target-decoy library as a
proxy for FDR, which is termed the false ID percentage. Skyline, which
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does not control a protein-level FDR, gave rise to abnormally high false
ID percentages (6.9% and 9.5% for HF and TIMS data) when 10% decoy
library was appended (Supplementary Fig. 6b). Estimated FDR control
by MaxDIAwas less stringent in processing TIMS data (3.3% and 0.92%
false ID on protein and precursor levels) than HF data (2.4% and 0.54%
false ID on protein and precursor levels) (Fig. 2g, i). DIA-NN and
Spectronaut exerted equally adequate FDR control (<1.5% and 0.32%

false ID on protein and precursor levels) in processing both data sets,
with DIA-NN modestly outperforming Spectronaut (Fig. 2g, i). When
the search space was inflated by adding proportions of the decoy
library, DIA-NN consistently recovered >98.1% mouse and yeast pro-
teins and more than 96.4% peptide precursors initially identified with
the universal library alone fromHF data (Fig. 2h). It indicates that a low
FNR is maintained by DIA-NN when a project-specific library contains
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varying fractions of interference precursors that are not present in the
sample. By contrast, data analysis using Spectronaut was less resistant
to search space expansion, with 88.2% total proteins and 80.7% pre-
cursors retained when the full decoy library was appended (Fig. 2h).

Analysis of TIMS data by DIA-NN also showed strong stability by
recovering more than 97.6% total proteins and 95.3% precursors dur-
ing search space expansion, whereas analysis by Spectronaut reduced
the proteome recovery rate, suggesting a higher FNR (Fig. 2j).

Fig. 2 | Evaluation of proteome identification and FDR/FNR assessment.
a Number of mouse protein identifications with different analysis workflows from
HF data. The star symbol indicates the lack of protein-level FDR control by Skyline.
b Kernel density estimate of the number of identified peptides per mouse protein
from HF data. c Percentage of cumulative missing values as a function of mouse
protein intensity rank (normalized to a scale of 1-100) for HF data. By ranking the
protein intensity in a descending order, the number of missing values is cumulated
and transformed into a percentage. d–f Same as a–c but for TIMS data. Results are
summarized for each software equipped with a specific library as defined in Fig. 1b.
g Percentage of false Arabidopsis precursor identifications (upper panel) and pro-
tein identifications (lower panel) from HF data analysis by different software with a

series of target-decoy libraries. The percentage of false identifications (false ID)
yielded by each software was used as a proxy for FDRs. h Percentage of recovered
mouse and yeast precursors (upper panel) and proteins (lower panel) fromHFdata
analysis by different software with a series of target-decoy libraries. Libraries are
constructed by appending incremental fractions of the Arabidopsis decoy library
(indicated in the x axis) to the universal library. The percentage of precursor and
protein identifications yielded with a target-decoy library over that with the uni-
versal library alone is referred to as the recovery rate. The higher recovery rate
indicates a lower FNR. i, j Same as g, h but for TIMS data. Source data are provided
at https://doi.org/10.5281/zenodo.7409391.

Fig. 3 | Evaluation of quantification performance. a Number of quantifiable
mouse proteins (quantified in at least three of five replicates) yielded by different
analysisworkflows under each conditionwith the expectedprotein ratio from 1:2 to
2:1 for HF data. Results are summarized for each software equipped with a specific
library as defined in Fig. 1b. b Distribution of absolute relative errors between
expected and measured protein ratios by different analysis workflows under each

condition for HF data. Boxplot center line, median; box limits, upper and lower
quartiles; whiskers, 1.5× interquartile range. cDistributionof coefficient of variation
(CV) for mouse proteins quantified by different analysis workflows under each
condition for HF data. Boxplot center line, median; box limits, upper and lower
quartiles; whiskers, 1.5× interquartile range. d–f Same as a–c but for TIMS data.
Source data are provided at https://doi.org/10.5281/zenodo.7409391.
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Given that DIA-NN analysis with the in silico library achieved a
deeper or equivalent proteome coverage compared to the universal
library, we performed FDR and FNR assessment by creating a target-
decoy library that incorporated an in silico library generated from
the Arabidopsis protein sequence database. Estimated FDRs and

FNRs for the in silico library were as strictly restricted as for the
universal library (<1.77% false ID, >98.65% proteome recovery)
(Supplementary Fig. 6c). Taken together, DIA-NN enables the best
control of both false positive and negative rates in processing
benchmark data sets with either the universal library or the in silico

Fig. 4 | Evaluation of phosphopeptide identification and phosphosite locali-
zation. a A phosphopeptide benchmark data set was obtained from synthetic
human phosphopeptides spiked into a yeast proteome background at five dilution
concentrations. b Design of spectral libraries for three tests. See text andmethods
for details. c Number of identified synthetic phosphopeptides and phosphosites
(true hits) in the sensitivity test. d Quantification linearity of identified synthetic
phosphopeptides across the dilution series. The valid numbers of quantified pro-
teins are shown in the upper panel. e Number of phosphopeptides and phospho-
sites as a function of the phosphosite confidence score cutoff. For peptides with
multi-phosphosites, all sites need to pass the score cutoff. fQuantification linearity

of phosphopeptides as a function of the phosphosite confidence score cutoff. The
solid line indicates median values, with the interquartile range filled in light color.
g Number of identified synthetic phosphopeptides and phosphosites (true hits)
and isomers (false hits) in the global FDR test. h Same as e but for the global FDR
test. i Estimated FDR on the peptide level (left) and site level (right) as a function of
the phosphosite confidence score cutoff in the global FDR test. j–l Same as g–i but
for the local FDR test. e, f, h, i, k, l The red and blue lines indicate results from
Spectronaut and DIA-NN, respectively, on peptide (solid lines) and site (dashed
lines) levels. Source data are provided at https://doi.org/10.5281/zenodo.7409391.
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library, while three other software suites diminished their perfor-
mance in at least one aspect of error rate assessment.

Performance of proteome quantification and detection of dif-
ferentially expressed proteins
To evaluate quantification performance based on original data, we
analyzed search reports of precursor intensities generated by dif-
ferent analysis workflows without performing normalization, data
imputation, or sparsity reduction. Previous studies demonstrated
that data post-processing such as normalization and missing value
imputation had minor or even negative impacts on quantification
results when dealing with originally high-quality DIA data22,28. As for
deriving protein intensities from precursor intensities, we tested
three widely used methods (Top3, software built-in algorithm, and
package iq42 re-implementing algorithmMaxLFQ43) to select the best
one for each software suite based on quantification precision and
robustness (Supplementary Figs. 7, 8). Proteins with valid intensity
values in at least three out of five replicates for each sample were
considered quantifiable proteins and retained for further analysis. In
line with the proteome identification coverage, DIA-NN and Spec-
tronaut equipped with three classes of libraries all gave rise to more
quantifiable mouse proteins than MaxDIA and Skyline (Fig. 3a, d).

The benchmark study design allowed us to precisely assess the
quantification accuracy for mouse membrane proteins serially spiked
into a complex yeast proteome background. Because themost diluted
sample only comprised 5%mouse proteins and showed unusually high
quantification variance (Supplementary Figs. 9a and 10a), we ignored
this condition and compared results from the remaining five hybrid
proteome samples with an expected mouse protein ratio from 1:2 to
2:1. In HF data analysis, DIA-NN achieved the best accuracy in ratio
determination with three classes of libraries (median absolute relative
errors of 8.1–21.9%) compared to the other suites (9.6–25.2% for Sky-
line, 10.2–27.5% for Spectronaut, and 8.3–27.5% for MaxDIA). A nar-
rower distribution of relative errorswas also observed for DIA-NN than
the other suites atmost conditions (Fig. 3b). Concordantly, the highest
reproducibility of mouse protein quantification was achieved by DIA-
NN with different libraries (median CVs of 4.9-11.8% and maximum
interquartile range (IQR) of 13.5%), yet MaxDIA and Spectronaut suf-
fered from a lower quantification reproducibility with a wider spread
of CVs (median CVs of 6.9–14.2%, maximum IQR of 22.4% for MaxDIA;
median CVs of 6.1–20.2%, maximum IQR of 29.4% for Spectronaut)
(Fig. 3c). In TIMSdata analysis, the best accuracy and reproducibility of
protein quantification was also obtained by DIA-NN with different
libraries (median absolute relative errors of 8.2–24.5%, median CVs of
4.4–7.2%). In contrast, protein ratios determined by MaxDIA and
Spectronaut showed significantly larger variations among proteins
or replicates at most conditions (Fig. 3e, f). Similar results were
obtained in the assessment of peptide quantification by different
workflows (Supplementary Figs. 9b, 10b). In addition, we compared
the Pearson correlation of protein intensities between replicates.
Protein quantification by DIA-NN showed the highest correlation
(median correlation coefficients of 0.997-0.999) for all comparisons,
confirming its strongest performance in quantification consistency
(Supplementary Figs. 9c, 10c).

As the ultimate goal of the most proteomic analysis is to detect
DEPs between two or multiple conditions, we assessed the sensitivity
and specificity of different workflows in DEP detection using our
benchmark data sets. In the pairwise comparison of any hybrid pro-
teome sample with the reference, DEPs were extracted using the
widely applied criteria of a fold change >1.5 and an adjusted p-value
<0.05 (Limma reported). For the comparisonwith an expected protein
ratio of 2:1, analysis using DIA-NN and Spectronaut with the universal
library, in silico library or directDIA library achieved similarly high
sensitivity of DEP detection from both HF data (87.5–90.2% quantified
proteins as DEPs) and TIMS data (91.5–95.2% quantified proteins as

DEPs) (Supplementary Fig. 11). In TIMS data analysis, Skyline achieved
an equally high sensitivity in DEP detection with different libraries
(91.0–92.4% quantified proteins as DEPs) (Supplementary Fig. 11b). For
another comparison with an expected protein ratio of 3:2, HF data
analysis using Spectronaut resulted in a more sensitive detection of
DEPs than the other suites whereas TIMS data analysis using all four
suites demonstrated a comparable sensitivity of DEP detection
(58.2–69.5% quantified proteins) (Supplementary Fig. 11). It implies
more than half of proteins with an expected 1.5-fold change were
selected when applying the exact fold-change threshold together with
p value restriction. On the other side, in the pairwise comparison with
an expected ratio of 1:1, HF data analysis using DIA-NN, Spectronaut,
and Skyline resulted in detection of false DEPs at comparable rates
(18.1–22.2%). However, in TIMS data analysis, DIA-NN yielded much
smaller fractions of falsely detected DEPs (10.1–11.0%) than the other
three suites (16.2–21.6%), indicating their lower specificity thanDIA-NN
(Supplementary Fig. 11).

Furthermore, we assessed the robustness of DEP detection using
another approach based on the receiver operating characteristic
(ROC) curve analysis22,28, which led to the same conclusion (Supple-
mentary Fig. 12). In summary, workflows based on DIA-NN enable DEP
detection from our benchmark data sets with the best combination of
sensitivity and specificity.

Phosphopeptide identification, site localization, and stoichio-
metry measurement
To evaluate the performance of different workflows in phosphopro-
teomicsdata analysis,wefirst used aDIAdata set acquiredon synthetic
human phosphopeptides spiked into a yeast proteome background at
five different doses14. This data set comprised 157 detectable phos-
phopeptides containing 167 defined phosphosites (Fig. 4a). We per-
formed three tests with different libraries to assess the sensitivity,
error rates of phosphopeptide identification and site localization,
and linearity of phosphopeptide quantification by different software
suites.

In thefirst sensitivity test, we built a pure target library bymerging
the synthetic peptide library containing spectra of 157 phosphopep-
tides with a yeast tryptic peptide DDA library (Fig. 4b). Analysis of the
DIA data with the pure target library by Skyline yielded the highest
identification rate (156 phosphopeptides with 166 phosphosites
detected) followed by Spectronaut while DIN-NN reported the lowest
identification number without restricting any site localization con-
fidence (Fig. 4c). Moreover, a similarly high linearity of phosphopep-
tide quantification over a dilution series was achieved by DIA-NN
(median R2 = 0.964) and Spectronaut (median R2 = 0.963) (Fig. 4d). As
both DIA-NN and Spectronaut report confidence scores for localized
phosphosites, we plotted the number of phosphopeptide identifica-
tion and linearity of quantification as a function of the score cutoff
(Fig. 4e, f). Unlike Spectronaut which yielded smooth curves of the
identification number and quantification linearity over a wide range of
score cutoffs, DIA-NN sharply altered its performance in both aspects
at several inflections (Fig. 4e, f).

Next, we performed global and local FDR tests with two decoy
libraries consisting of false phosphopeptides to estimate FDRs of
peptide identification and site localization by each tool. One decoy
library comprised 134 isomeric phosphopeptides containing 86
phosphosites which shared the same sequences as the synthetic
phosphopeptides yet with different phosphosite positions. The
sequences, modification sites, and charge states of decoy phospho-
peptides were retrieved from a public human phosphoproteome
database44, and their MSMS spectra and iRT were predicted by the
DeepPhosphomodel21. Data analysis using this decoy library appended
to the pure target library allowed us to estimate FDRs for phospho-
peptide and phosphosite identification on a global level. Although
Skyline yielded the most phosphopeptide identifications, it reported
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the highest number of false isomers, leading to an FDR of 36.3% and
28.1% on peptide and site levels, suggesting the least reliability of its
intrinsic error rate control without site confidence restriction (Fig. 4g).
Intrinsic site-level FDRs were 13.5% for DIA-NN, 22.3% for MaxDIA and
26.9% for Spectronaut, respectively (Fig. 4g). Importantly, by adjusting
the site confidence score cutoff, global FDRs on phosphopeptide and
site levels dropped to 5.7% and 6.1% respectively for DIA-NN with a
score cutoff as low as 0.01, and 10.8% and 11.5% for Spectronaut with a
score cutoff of 0.75 (Fig. 4i).

Another decoy library comprised 86 isomeric phosphopeptides
containing 74 phosphosites which shared the same sequences, charge
states, and the exact numbers of phosphosites as the synthetic phos-
phopeptides yet only differed in the site position (Fig. 4b). Data ana-
lysis using this decoy library appended to the pure target library
allowed us to estimate the local FDRs for phosphopeptide and phos-
phosite identification. Although this type of positional isomers repre-
sents the most challenging decoys to be distinguished from true
targets, the sensitivity of detecting synthetic phosphopeptides by DIA-
NN and Spectronaut was not compromised as the peptide identifica-
tion curves displayed the same patterns as those obtained with the
previous two libraries (Fig. 4e, h, k). Surprisingly, local site-level FDRof
data analysis with DIA-NN abruptly dropped to 2.7% and even to 0%
when the site score confidence was set to 0.01 and 0.51, respectively.
By contrast, a smoother FDR curve was observed for Spectronaut with
the site-level local FDR reaching 8.7% and 3.5% under a score cutoff of
0.75 and 0.99, respectively (Fig. 4l). We also performed the sensitivity
and global FDR tests on Spectronaut and DIA-NN using DDA-
independent libraries, and observed a very similar trend (Supple-
mentary Fig. 13). In summary, compared to Spectronaut which affords
higher sensitivity in phosphopeptide detection with a less acceptable
FDR, DIA-NN exerts a more stringent FDR control at an expense of the
authentic phosphopeptide identification rate.

Analysis of phosphorylation site stoichiometry can provide
unique insights into cell signaling regulation and facilitate the iden-
tification of functional phosphosites45,46. Accurate stoichiometry
measurement depends on both the accuracy and precision of phos-
phoproteomic quantification. To further benchmark the quantifica-
tion performance, we analyzed a hybrid proteome data set with fixed
phosphopeptide stoichiometries from 1% to 99%46. After extracting
the quantification data of phosphopeptides, non-phosphopeptides,
and corresponding proteins, we implemented a 3D multiple
regression model-based approach for site-specific stoichiometry
calculation46. Stoichiometry measurement based on the quantifica-
tion results by DIA-NN and Spectronaut using a project-specific DDA
library yielded equally high accuracy and similar precision for all
stoichiometry levels and across a wide range of phosphosite score
cut-offs (Supplementary Fig. 14).

DIA phosphoproteomics data analysis in a biological setting
To evaluate DIA-NN and Spectronaut in a cellular signaling study, we
performed a TNF-α-induced phosphoproteomics experiment in which
MCF-7 cells were stimulated with TNF-α in the absence or presence of
an I-kappa-B kinase inhibitor TPCA-1 (Fig. 5a). Then we acquired DIA
and DDA data for each replicate on both QE HF-X and timsTOF Pro
instruments. The DIA data sets were processed by two software tools
using either a project-specific DDA library or DDA-independent
libraries (Fig. 5a).

For each software, we tested a regular and a stringent phosphosite
localization score cut-offs as inferred from the synthetic phospho-
peptide analysis (0.01 and 0.51 for DIA-NN, 0.75 and 0.99 for Spec-
tronaut). Contrary to the synthetic phosphopeptide analysis, DIA-NN
reported more phosphosites than Spectronaut for most comparisons
under the regular or stringent score cutoff, except for the in silico
library in HF-X data analysis (Supplementary Fig. 15a, b). Analogous
to the proteomics benchmark data analysis, smaller variations of

phosphosite quantification were observed for HF data analysis by DIA-
NN than Spectronaut. The difference in quantification consistency
between two software became unappreciable for TIMS data analysis
(Supplementary Fig. 15c, d).

Given the context of TNF-α-induced signaling, we then selected
up-regulated phosphosites (>1.5-fold change and Limma reported
p <0.05) to assess how much biological insight can be gained into the
signaling network. In HF-X data analysis, DIA-NN with the project-
specific DDA library under the regular cutoff yielded the largest
number of up-regulated sites (183 sites) whereas in TIMS data analysis,
Spectronautwith the directDIA library under the regular cutoff yielded
the highest number (254 sites) (Fig. 5b). In accordance with the pre-
vious study47, the combined treatment with TNF-a and TPCA-1 resulted
in a predominant inhibition of TNF-α-dependent phosphorylation
(>84% for HF-X data and >90% for TIMS data) by different analysis
workflows (Fig. 5b). More importantly, signaling pathway analysis
based on TNF-α-induced sites revealed the capability of each analysis
workflow to recapitulate the known TNF-α signaling network. In HF-X
data analysis, three well-characterized pathways in response to TNF-α
stimulation were most significantly enriched by DIA-NN with the in
silico library under the regular cutoff. However, in TIMS data analysis,
Spectronaut gave the best performance in the enrichment of five
known pathways when equipped with the directDIA library under the
regular cutoff (Fig. 5c). Consistently, DIA-NN analysis of HF-X data
reported more known TNF-α-induced phosphosites within the TNF-α
signaling pathway while Spectronaut analysis of TIMS data revealed
more known phosphosites (Fig. 5d).

In summary, the bioinformatics analysis based on TNF-α-
regulated sites indicated the preference of DIA-NN in processing
HF-X phosphoproteomics data and Spectronaut in processing TIMS
data. Furthermore, the use of a DDA-independent library by both
software exhibited comparable or even slightly better performance
than the project-specific DDA library in the identification of known
TNF-α-dependent phosphosites and signaling pathways, probably
due to the relatively small size of the DDA library generated in this
study (Supplementary Fig. 15e). As the above results were obtained
based on phosphosite quantification data with missing value impu-
tation, we assessed the completeness of detected phosphosites and
recovery of the signaling network from the original data without
imputation (Supplementary Figs. 16, 17). More known TNF-α signal-
ing pathways in line with a higher number of TNF-α-responding
phosphosites can be recovered from the imputed data, suggesting
imputation using an appropriate algorithm could facilitate DIA
phosphoproteomics analysis.

Discussion
Compared to the two recent elegant studies that have provided a
comprehensive comparison of DIA software tools and workflows22,28,
our study design has several distinct features. First, our benchmark
samples contain a large number of DEPs (e.g., 5168 and 6553 mouse
proteins quantified in at least three replicates by DIA-NN with the in
silico library from HF and TIMS data sets), allowing for more in-depth
evaluation of quantification performance. Second, we additionally
investigated the performance and robustness of DIA bioinformatic
workflows in phosphoproteomics data analysis. Third, our result
would provide a rich resource for the use and optimization of software
tools specific for DIA proteomics on a timsTOF instrument which is
gaining wider popularity31,48–51. Fourth, the software panel evaluated in
our study includes MaxDIA, which was most recently developed and
regarded as a landmark platform for DIA data mining32. Fifth, our
resultswere obtainedusing all software in their latest versions (Fig. 1b),
which are evidently different from earlier versions used in published
studies, especially for Spectronaut (Supplementary Note 1).

Collectively, our study reveals which combination of software
and spectral library is preferred for analyzing global proteomics or
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phosphoproteomics data. In our proteomics benchmark data analysis,
while Spectronaut reported slightly more protein identifications with
the universal or DDA-dependent libraries, DIA-NN yielded a higher
proteome coveragewith aDDA-independent library (Fig. 2).Moreover,
DIA-NN gave better performance than Spectronaut in the FDR/FNR
control, quantification accuracy and precision, as well as sensitivity

and specificity of DEP detection for most comparisons (Figs. 2, and 3,
Supplementary Figs. 11, 12). Given the overall superior performance
and the open-access feature, we would recommend DIA-NN for global
DIA proteomics data analysis. Of note, previous studies have demon-
strated that in silico libraries built onproteome-scale protein sequence
databases face a key challenge of extensive query space, which would
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cause reduced detection sensitivity and increased false positives for
DIA data analysis with Spectronaut21,52. However, our study proved the
ability of DIA-NN and MaxDIA to attain a comparable or even higher
proteome coveragewith an adequate FDR control when using awhole-
proteome in silico library versus an extensive experimental DDA
library. Thus, an in silico library-based DIA analysis workflow is
recommended for global proteomic studies of various organisms,
which gives excellent performance in a most economic fashion.

The superior performance of DIA-NN for in-depth proteomic
profiling could be attributed to its improved peak selection algorithm
and a scoring model exploiting a fully connected neural network that
involves 73 subscores7. Spectronaut v16 substantially improves the
sensitivity and specificity of protein identification by introducing a
new machine learning framework Avalon based on gradient boosting.
Notably, analysis of HF and TIMS data with Spectronaut and MaxDIA
using different classes of libraries gave rise to higher protein/peptide
quantification variation than DIA-NN and Skyline, which compromised
their sensitivity in true DEP detection. Nevertheless, MaxDIA allows for
data analysis with diverse experimental and in silico libraries, and
provides convenience to users familiar with the MaxQuant platform.
Although Skyline lacks an FDR control at the protein level, it excels in
peptide peak extraction and quantification from DIA data. We per-
formed extensive parameter optimization and tests for each software
with our benchmark data to highlight critical settings (Supplementary
Notes 1–4).

Apart from the global DIA proteomics, our study conducted a
systematic evaluation of DIA software suites and workflows for phos-
phoproteomics data analysis, which unveiled the complementary
performance of DIA-NN and Spectronaut. In the synthetic phospho-
peptide data analysis, while Spectronaut showed higher sensitivity in
phosphopeptide and phosphosite detection, DIA-NN excelled in the
FDR control on both peptide and site levels. Importantly, unlike most
previous studies defining class-I sites based on a non-discriminant
confidence score cutoff of 0.7553,54, we proposed regular and stringent
phosphosite confidence thresholds that are optimized for specific
software (0.01/0.51 for DIA-NN, 0.75/0.99 for Spectronaut) to balance
the identification rate and the error rate. Interestingly, a much smaller
difference in the proteome coverage was observed between DIA-NN
and Spectronaut in the analysis of a real-case phosphosignaling data
set. Comparison of two software in the TNF-α-induced phosphopro-
teomics analysis further revealed their differential behaviors in the
enrichment of signaling pathways and discovery of regulated phos-
phosites fromHF-Xdata versusTIMSdata. Therefore, users can select a
combination of software, library and score cutoff to analyze their own
DIA phosphoproteomics data, depending on the data type, the library
completeness, and their preference of coverage or error rate control.

In conclusion, we envision this study would provide practical
guidance on the analysis of different types of DIA proteomics data
acquired on state-of-the-art instruments. Nevertheless, we recognized
the four software suites are undergoing intensive and continuous
development, and their respective stronger or weaker performances
may change in the future. Thus, we hope our study would also offer
software developers useful data and information to benchmark new
algorithms or improve existing ones. Bioinformatics advances are
expected to constantly drive DIA-based proteomics research.

Methods
Mouse brain membrane protein preparation and digestion
The C57BL/6 mice (Shanghai Jiesijie, Laboratory Animal Technology
Company, China) were housed under a 12-hour light-dark cycle with
free access to water and food. All experimental mice were male adults
(9–10 weeks of age) and habituated for 1 week at least before the
experiments. The mice were euthanized with 2% chloral hydrate and
rapidly dissected to obtain the brain tissue. All experimental proce-
dures were approved by the Institutional Animal Care and Use Com-
mittee at ShanghaiTech University and performed in accordance with
National Institutes of Health guidelines. Membrane fraction was iso-
lated from mouse brain tissue according to our previous work12.
Briefly, brain tissue was homogenized in the isolation buffer of 30mM
Tris-HCl (pH 7.4), 0.1mM EDTA, 0.5% BSA, 300mM sucrose with a
protease inhibitor cocktail (Roche). The homogenate was cen-
trifugated for 15min at 3000× g at 4 °C. Cell pellet was collected and
resuspended in isolation buffer and homogenized again and cen-
trifugated at 10,000× g at 4 °C for 20min. Supernatant was ultra-
centrifugated at 160,000 × g at 4 °C for 1 h. The membrane pellet was
washed with 100mM Na2CO3, 1M KCl, and 100mM Tris-HCl (pH 7.4)
separately and ultra-centrifugated for 1 h at 160,000× g at 4 °C. The
membrane pellet was resuspended in lysis buffer of 5% SDC, 50mM
NH4HCO3 and protein concentration was determined by BCA assay
(TIANGEN, Beijing, China).

Mouse membrane proteins were reduced with 15mM dithio-
threitol (DTT) for 30min at 56 °C, and alkylated with 40mM iodoa-
cetamide for 30min at room temperature in darkness, additional
25mMDTT was added to consume the excess iodoacetamide. Protein
samples were diluted with 50mM NH4HCO3 to 1% SDC. Sequencing-
grade trypsin (Promega, Madison, USA) was added at an enzyme-to-
protein ratio of 1:50 (w/w) and incubated for 3 h at 37 °C, and addi-
tional trypsin at a 1:100 (w/w) ratio was added for digestion overnight
at 37 °C. Digestion was quenched with 1% FA. Peptides were desalted
with Oasis HLB cartridge (Waters) and lyophilized under vacuum and
stored at −80 °C. Five replicates were prepared, each starting with
20μg mouse membrane protein extracts.

Yeast total cell protein preparation and digestion
Saccharomyces cerevisiaeBY4742 strain was grown at 30 °C tomid-log-
phase in YPD medium (OXOID, UK). Cells were harvested by cen-
trifugation at 4000 × g for 5min and washed twice with ice cold PBS.
Cell pellets were resuspended in a lysis buffer of 5% SDC and 50mM
NH4HCO3 with a protease inhibitor cocktail (Roche). After adding an
equal amount of glass beads, the cells were lysed by glass beadbeating
and lysates were centrifugated at 13,000× g for 10min. The super-
natants were collected, and protein concentration was determined
usingBCAassay (TIANGEN, Beijing, China). Yeast proteindigestion and
desalting were performed in the same way as mouse protein samples.
Five replicates were prepared, each starting with 60μg yeast protein
lysates.

Peptide mixing and pre-fractionation
After re-dissolving in 0.1% FA, each replicate of mouse membrane
protein digest was spiked into one replicate of yeast protein digest to
generate one reference (containing 20%mouse membrane proteome)

Fig. 5 | Comparison of DIA-NN and Spectronaut in TNF-α-induced phospho-
proteomedata analysis. a Experimental scheme.MCF-7 cells were stimulatedwith
TNF-α in the absence or presence of an I-kappa-B kinase inhibitor TPCA-1 (each
condition in biological triplicate). For each replicate, DDA and DIA data were
acquired on QE HF-X and timsTOF Pro instruments. The DIA data sets were pro-
cessed by two software tools using either a project-specific DDA library or a DDA-
independent library. b Number of TNF-α-regulated phosphosites from the analysis
of HF-X data (left) and TIMS data (right) with different workflows. Phosphosites in
response to TPCA-1 are those up-regulated by TNF-α and suppressed by TPCA-1

treatment, and their percentages over all up-regulated sites by TNF-α are indicated.
c Enriched KEGG pathways based on the analysis of HF-X data (left) and TIMS data
(right) with different workflows. Significantly enriched pathways (adjusted
p <0.05) are annotated in a color gradient. d Phophosites upregulated by TNF-α
and included in the TNF-α pathway. They were identified in the analysis of HF-X
data (left) and TIMS data (right) with different workflows. Significantly regulated
sites (FC> 1.5, adjusted p <0.05) are annotated in a color gradient. Results in
b–d are based on phosphosite quantification data with missing value imputation.
Source data are provided at https://doi.org/10.5281/zenodo.7409391.
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and six samples for comparison (containing 5%, 10%, 13%, 20%, 30%and
40% mouse membrane proteome). Pairwise comparison of each sam-
plewith the reference yields theoreticalmouseprotein ratios of 1:4, 1:2,
2:3, 1:1, 3:2, and 2:1. All hybrid proteome sampleswere spiked inwith an
iRT reference kit (Biognosys, Zurich, Switzerland) and prepared in five
replicates.

For experimental DDA library generation, protein digests from
mousemembrane fractions or yeast cells were separately loaded onto
a high-pH RP fractionation spin column (Pierce) according to the
manual instruction. Peptides bound to the column were washed once
with water. A step gradient of acetonitrile (5–50%) in a volatile high-pH
elution solution was applied to elute peptides into eight fractions
sequentially. All fractions were dried under vacuum and stored
at −80 °C.

Sample preparation for TNF-α-induced phosphoproteomics
MCF-7 cells (Cobioer Biosciences Co., Ltd., Nanjing, China) were trea-
tedwithDMSO, or 10 ng/ml of TNF-α for 10min, or 10μMofTPCA-1 for
20min followed by TNF-α for 10min. After washing cells with PBS
three times, cells were lysed in RIPA buffer containing 1% Triton X-100
(v/v), 0.5% (w/v) SDS, 50mM Tris-HCl (pH 7.4), 150mM sodium
chloride, 2mM sodium orthovanadate, 5mM sodium fluoride and
protease inhibitors cocktail (Roche). Lysates were sonicated for 2min
and centrifuged at 13,000 × g for 10min at 4 °C. Proteins were pre-
cipitated by adding 4× volumes of cold acetone. The resulting protein
pellets were washed with acetone, dissolved in 8M urea, 100mM Tris-
HCl (pH 8.5), and subjected to a standard in-solution digestion with
trypsin (Promega). The digests were acidified with formic acid and
desalted using a C18 column.

Phosphorylated peptides were enriched using TiO2 resin (GL Sci-
ences Inc.). 2mg of peptides for each condition was dissolved in 8mL
loading buffer containing 1M glycolic acid, 5% TFA, and 80% acetoni-
trile. 6mg of TiO2 beads suspended in 800μL acetonitrile was loaded
to C8 tips. Peptide solutions were loaded to TiO2 tips and washed with
200μL loading buffer for five times. Tips were washed by 200μL
washing buffer I containing 5% TFA and 80% acetonitrile, and washing
buffer II containing 1% TFA and 80% acetonitrile for three times,
respectively. Tipswere subsequently washedwith 200μLMilli-Qwater
twice. The bound phosphorylated peptides were eluted with 200μL
elution buffer I containing 1.8% ammonia hydroxide inwater twice, and
200μL elution buffer II containing 6% ammonia hydroxide in acet-
onitrile. Elution was collected for vacuum centrifuge to dryness. Each
sample was prepared in three biological replicates.

MS data acquisition on QE HF and HF-X
DDA data acquisition. The fractionated peptide samples were dis-
solved in 0.1% FA and analyzed using an EASY-nLC 1200 system
(Thermo Fisher Scientific) coupled to a Q-Exactive HF mass spectro-
meter (Thermo Fisher Scientific). The fractions were separated on an
analytical column (200mm× 75μm) in-house packed with C18-AQ
1.9μmC18 resin (Dr. Maisch GmbH, Germany) with a gradient of 3–8%
solvent B (0.1% FA/80%ACN) in 25min, 8–20%B in 70min, 20–42%B in
25min, 42–100% B in 4min and 100% B for 6min at a flow rate of
300nl/min. MS acquisition parameters were set as follows: the full
scan range, 300–1650m/z; MS1 resolution, 60,000; AGC, 3e6; max-
imum injection time, 20ms; top 15 precursors selected for subsequent
MS2 scans;MS2 resolution, 15,000; AGC, 1e5;maximum injection time,
25ms; isolation window, 1.4m/z; normalized collision energy (NCE),
27%; dynamic exclusion time, 30 s.

Phosphopeptide samples were analyzed using an EASY-nLC
1200 system (Thermo Fisher Scientific) coupled to a Q-Exactive HF-X
mass spectrometer (Thermo Fisher Scientific). The fractions were
separated on an analytical column (180mm× 100μm) in-house
packed with C18-AQ 1.9μm C18 resin (Dr. Maisch GmbH, Germany)
with a gradient of 5–10% solvent B (0.1% FA/80%ACN) in 4min, 10–27%

B in 88min, 27–37% B in 21min, 37–100% B in 4min and 100% B for
3min at a flow rate of 300nL/min. MS acquisition parameters were set
as follows: the full scan range, 350–1500m/z; MS1 resolution, 60,000;
AGC, 3e6; maximum injection time, 20ms; top 20 precursors selected
for subsequent MS2 scans; MS2 resolution, 30,000; AGC, 1e5; max-
imum injection time, 45ms; isolation window, 1.6m/z; NCE, 27%;
dynamic exclusion time, 30 s.

DIA data acquisition. The mouse-yeast hybrid proteome samples
were separated using an EASY-nLC 1200 system with the same gra-
dient as described above. MS data acquisition in DIA mode was
performed on Q-Exactive HF using 22 variable windows covering a
mass range of 300–1300m/z. The resolution was set to 120,000 for
MS1 and 30,000 forMS2. TheAGCwas 3e6 in bothMS1 andMS2,with
a maximum injection time of 60ms in MS1 and auto in MS2. NCE was
set to 28%.

Phosphopeptide samples were separated using an EASY-nLC
1200 system with the same gradient as described above. MS data
acquisition in DIA mode was performed on Q-Exactive HF-X using 30
variable windows covering a mass range of 350–1500m/z. The reso-
lutionwas set to 60,000 forMS1 and 15,000 forMS2. The AGCwas 3e6
inMS1 and 5e5 inMS2,with amaximum injection timeof 100ms inMS1
and auto in MS2. NCE was set to 28%.

MS data acquisition on timsTOF Pro
DDA data acquisition. The same fractionated peptide samples were
analyzed using nanoElute LC system coupled to a timsTOF Pro mass
spectrometer (Bruker, Bremen, Germany). The peptides were sepa-
rated on an analytical column (250mm×75μm 1.6μm C18 resin,
IonOpticks) with a gradient of 2–22% solvent B (0.1% FA in ACN) in
90min, 22–37% B in 10min, 37–80% B in 10min and 80% B for 10min
at a flow rate of 300nl/min. The dual TIMS analyzer was operated at a
fixed duty cycle with a ramp time of 100ms, and the total cycle time
was 1.16 s. DDAwas performed in PASEFmodewith 10 PASEF scans per
topN acquisition cycle in a mass range from 100m/z to 1700 m/z with
charge states from 0 (unassigned) to 5+. The ionmobility was scanned
from 0.6 to 1.6 Vs/cm2. Precursors that reached a target intensity of
20,000were selected for fragmentation and dynamically excluded for
0.4min (mass width 0.015m/z, 1/K0 width 0.015 Vs/cm2). The quad-
rupole isolation width was set to 2m/z for m/z < 700 and to 3m/z for
m/z > 700, and the collision energy was linearly interpolated between
1/K0 values, from 20eV at 1.6 Vs/cm2 to 59 eV at 1.6 Vs/cm2, keeping
constant above or below. The TIMS elution voltage was calibrated
linearly to obtain reduced ion mobility coefficients (1/K0) using three
selected ions of the Agilent ESI-L Tuning Mix (m/z 622, 922, 1222).

Phosphopeptide samples were analyzed using nanoElute LC sys-
tem coupled to a timsTOF Pro mass spectrometer (Bruker, Bremen,
Germany). The peptides were separated on an analytical column
(250mm×75μm 1.6μm C18 resin, IonOpticks) with a gradient of
2–22% solvent B (0.1% FA in ACN) in 90min, 22–37% B in 10min,
37–80% B in 10min and 80% B for 10min at a flow rate of 300 nL/min.
The dual TIMS analyzer was operated at a fixed duty cycle with a ramp
time of 100ms, and the total cycle timewas 1.16 s. DDAwas performed
in PASEF mode with 10 PASEF scans per topN acquisition cycle in a
mass range from 100m/z to 1700 m/z with charge states from 0
(unassigned) to 5+. The ion mobility was scanned from 0.6 to 1.5 Vs/
cm2. Precursors that reached a target intensity of 5000 were selected
for fragmentation and dynamically excluded for 0.4min (mass width
0.015m/z, 1/K0 width 0.015 Vs/cm2). The quadrupole isolation width
was set to 2m/z for m/z < 700 and to 3m/z for m/z > 700, and the
collision energy was linearly interpolated between 1/K0 values, from
20 eV at 0.6Vs/cm2 to 59 eV at 1.6 Vs/cm2, keeping constant above or
below. The TIMS elution voltage was calibrated linearly to obtain
reduced ionmobility coefficients (1/K0) using three selected ions of the
Agilent ESI-L Tuning Mix (m/z 622, 922, 1222).
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DIAdata acquisition. Themouse-yeast hybrid proteomesampleswere
separated using a nanoElute LC system with the same gradient as
described above. The MS data were acquired using the diaPASEF
method. The capillary voltage was set to 1400V. The MS and MS/MS
spectra were acquired from 100 to 1700 m/z. The ion mobility was
scanned from 0.6 to 1.6 Vs/cm2. The ramp time was set to 100ms. The
collision energy was ramped linearly as a function of themobility from
59 eV at 1/K0 = 1.6 Vs/cm2 to 20 eV at 1/K0 = 0.6 Vs/cm2. Collisionenergy
was set to 10 eV to prevent fragmentation to visualize the isolation of
precursor ions and analyze the ion current from multiply charged
precursors. Isolation windows of a 25m/z width were set to cover the
mass range of 400 to 1200m/z in diaPASEF.

Phosphopeptide samples were separated using a nanoElute LC
system with the same gradient as described above. The MS data were
acquired using the diaPASEF method. The capillary voltage was set to
1400V. TheMSandMS/MS spectrawere acquired from100 to 1700m/
z. The ion mobility was scanned from 0.75 to 1.3 Vs/cm2. Precursors
that reached a target intensity of 10,000 were selected for fragmen-
tation and dynamically excluded for 0.5min. The ramp time was set to
100ms. The collision energy was ramped linearly as a function of the
mobility from 59eV at 1/K0 = 1.6 Vs/cm2 to 20 eV at 1/K0 = 0.6 Vs/cm2.
Isolationwindowsof a 25m/zwidthwere set to cover themass rangeof
452 to 1177m/z in diaPASEF.

Synthetic phosphopeptide benchmark data set
The synthetic phosphopeptide data set was downloaded from JPOST
with identifier JPST000859 (ProteomeXchange code PXD019797). It
was acquired from fivemixtures of synthetic human phosphopeptides
spiked into tryptic peptides from yeast whole-cell lysates14. Specifi-
cally, 166 human phosphopeptides were synthesized and mixed with
the yeast proteomebackground atdilution ratios of 1×, 2×, 4×, 10×, and
20×. These mixed samples were analyzed in injection triplicate on
Orbitrap Fusion Lumos instrument in DIA mode. The spectral library
for all synthetic phosphopeptides was also downloaded from JPOST.
Of the 166 synthesized phosphopeptides, 157 peptides matching MS1
acquisitionwindows in theDIAexperimentwere retained in the library,
which contains 167 unique phosphosites.

Protein FASTAs
Mouse (organism ID 10090, 17082 reviewed entries), yeast (organism
ID 559292, 6730 entries), and human (organism ID 9606, 20386
reviewed entries) protein sequences were all downloaded from Uni-
ProtKB version 2021_0355. Arabidopsis protein sequences were down-
loaded from UniProtKB version 2022_01 (organism ID 3702, 16202
reviewed entries)55. Species-specific protein FASTAs were used in all
DDA/DIA data analysis.

Library generation for DIA proteomics benchmark data analysis
Universal spectral library. DDAdata acquired onQEHF andddaPASEF
data acquired on timsTOF Pro were used to generate two universal
libraries by FragPipe33 (version 17.1) using a pre-defined workflow
DIA_SpecLib_Quant. Specifically, decoys were first added to the FASTA
which contains both mouse and yeast protein sequences. Then,
MSFragger18,56,57 (version 3.4) was used to searchDDA raw data, with the
following settings: precursor and fragment mass tolerance 20ppm;
strict trypsin with no more than two missed cleavages; peptide length
7–52; peptide mass 500–5000; C + 57.021464 as fixed modification;
M+ 15.9949 and N-term +42.0106 as variable modifications; min mat-
ched fragments 4; max fragment charge 2. In the validation step,
MSBooster was implemented on both spectra and RT levels, and
then Percolator58 and ProteinProphet59 integrated in Philosopher60

(version 4.1.0) were used for PSM validation and protein inference.
Library generation was conducted using EasyPQP (version 0.1.26) with
RT calibration based on iRTs and Lowess fraction set to 0. Only frag-
ment types b and y were included with a tolerance of 15 ppm.

MaxQuant library for MaxDIA. DDA or ddaPASEF data search results
with MaxQuant19 (version 2.1.3.0) were used to build the MaxQuant
library which comprised three files (msms.txt, evidence.txt, and pep-
tides.txt). MaxQuant parameters were set as follows: search type,
Standard for DDA data or TIMS DDA for ddaPASEF data; TIMS half-
width, TIMS step, and TIMS resolution set as default for ddaPASEF
data; Carbamidomethyl on C as fixed modification; Oxidation on M
and Acetyl at protein N-terminus as variable modifications; Trypsin/P
and number ofmaxmissed cleavages 2; peptidemass tolerance in first
search, 20 ppm; peptide mass tolerance in the main search, 4.5 ppm
for HF data and 10ppm for TIMS data; PSM and protein FDRs were
both set to 0.01.

Blib library for Skyline by BiblioSpec. BiblioSpec processes an
intermediate result file pep.xml from a common DDA data processing
pipeline to generate the Blib library to be used by Skyline9. Here we
built the Blib library based on the iteract.pep.xml files generated in
the FragPipe pipeline. A detailed procedure is available on FragPipe
GitHub page (https://github.com/Nesvilab/FragPipe/blob/gh-pages/
docs/tutorial_skyline.md). In brief, the following files were extracted
from the FragPipe working folder: 16 raw DDA or ddaPASEF data files;
16 uncalibrated mgf files; 16 interact.pep.xml files; the protein.fas file
generated by Philosopher. Then, Import DDA Peptide Search wizard
was used on the Skyline start page. After the iteract.pep.xml files were
uploaded, a cutoff score was specified according to the FragPipe log
file. iRT standard peptides were set to Biognosys-11 and all compatible
variable modifications were selected. For Full-Scan settings, precursor
charges were 2–6 for HF DDA data and 1–5 for TIMS DDA data, which
was consistent with the charge state distribution in the universal
library. Mass accuracy was 10 ppm and 15 ppm for HF DDA data and
TIMS DDA data, respectively, and ion mobility resolving power was
kept as default 30 for TIMS data. When importing FASTA, we used the
optimized protein.fas from Philosopher, and set Trypsin [KR|P] as
specific enzyme with no more than 2 missed cleavages.

DirectDIA library and hybrid library for Spectronaut by Pulsar.
Pulsar embedded in Spectronaut2 (version 16.1) was used to generate a
directDIA library from DIA or diaPASEF data and a hybrid library by
further merging the directDIA library and DDA library built from DDA
or ddaPASEF data. In brief, both the directDIA library and DDA library
were generated with the same settings and the hybrid library was
generated by using the search archives of these two libraries. The
settings for Pulsar and library generation were as followings: Trypsin/P
as specific enzyme; peptide length from 7 to 52; maxmissed cleavages
2; toggle N-terminal M turned on; Carbamidomethyl on C as fixed
modification; Oxidation on M and Acetyl at protein N-terminus as
variablemodifications; FDRs at PSM, peptide andprotein level all set to
0.01; minimum fragment relative intensity 1%; 3–6 fragments kept for
each precursor.

In silico library forMaxDIA in discoverymode. We generated in silico
libraries using DIAtools32 (commit 57f3977 on 25 Mar 2021, https://
github.com/cox-labs/DIAtools) for data analysis by MaxDIA. MS spec-
tral prediction was performed using Prosit24 (commit dd16c47, https://
github.com/kusterlab/prosit) on a local machine, with model weights
downloaded from https://figshare.com/projects/Prosit/35582 (identi-
fiers Prosit - Model – Fragmentation and Prosit - Model – iRT). At a pre-
processing step, mouse and yeast protein sequences were digested to
yield an input file for Prosit with default settings: CE 28; peptide length
7–30; precursor charge 2–3; missed cleavages 0–1. As CE varies in
different acquisition windows for diaPASEF data, the CE value for each
precursorwas re-assignedbasedonprecursorm/z. TheProsit inputfile
was submitted by curl and output was set to a generic format. At a
post-processing step, to prepare an RT file required by DIAtools for RT
prediction, we downloaded the public discovery libraries pre-released
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by MaxDIA for mouse and yeast proteomes from https://datashare.
biochem.mpg.de/s/qe1IqcKbz2j2Ruf?path=%2FDiscoveryLibraries to
be used in our DIA benchmark data analysis. The search results pro-
vided the RT input for DIAtools and specific hyper-parameters of the
RTmodel were set as follows: percentage of training data 70%; random
seed 0; batch size 512; learning rate 0.0005; learning rate decay for
Adam1e-8; epochs 50. The output files from the post-processing script
were msms.txt, evidence.txt, and peptides.txt.

Target-decoy library for FDR/FNR assessment
Arabidopsis peptide sequences. To collect Arabidopsis peptide
sequences that areMSdetectable, wedownloadedArabidopsispeptide
precursors from ProteomicsDB40 (identifier PRDB004266 for project
Mergner_Nature_202041). All identified peptides from each tissue in
this data set covering 12 total experiments were retrieved. These
peptide sequences were filtered based on the following criteria:
sequences included in the used version of Arabidopsis FASTA, peptide
length 7–52; maximummissed cleavages 2 by Trypsin/P; both excised
or un-excised protein N-terminal M were retained; peptides of the
same sequences as forward or reversed sequences from in silico
digestion of mouse or yeast proteome were removed.

Target-decoy library generation. We first generated two predicted
Arabidopsis spectral libraries as decoy libraries for the FDR/FNR
assessment using two benchmark data sets. Predicted libraries were
built on Arabidopsis peptide precursors usingDeepPhospho21 (commit
a779fd9 on 5 March 2022, https://github.com/weizhenFrank/
DeepPhospho), which contained predicted MSMS spectra and iRT
for HF data analysis and additional predicted ion mobility (1/K0) for
TIMS data analysis. In brief, the ion intensity and iRT models in
DeepPhospho were fine-tuned based on pre-trained model weights
(https://download.iprox.cn/IPX0003513000/IPX0003513001/
DeepPhosphoModels-PretrainParams.zip) with the universal library as
the training data. Main parameters for DeepPhospho runner were set
as follows: data split ratio 70:18:12; epoch 20; batch size for ion
intensity model and RT model, 128 and 256, respectively; initial
learning rate 1e-4; retention time scale from −90 to 160; ensemble
for RT model was used. We also built an ion mobility model by
performing transfer learning on the fine-tuned ion intensity model
for TIMS data. In brief, all modules in the ion intensity model
were loaded except the final FC layers which would output the tensor
with a shape of peplen× ion type, and a new FC layer to aggregate
the output from the transformer module to a single value was initi-
alized. A demo script for ion mobility model training was released
in the commit a779fd9 of DeepPhospho. We trained the model
by fixing parameters in all modules except the newly initialized
FC layer (10 epochs) followed by fine-tuning all parameters (another
10 epochs).

After the two predicted Arabidopsis spectral libraries were
obtained, target-decoy libraries with expanding search spaces were
generated bymerging the universal library and a definedproportion of
theArabidopsis library (10%, 20%, 50%, and 100%). Sub-sampling of the
entire predicted Arabidopsis library was performed on the precursor
level, and precursors with m/z out of the MS1 acquisition windows of
HF or TIMS data sets were excluded.

Library generation for synthetic phosphopeptide benchmark
data analysis
Library for the sensitivity test. The synthetic human phosphopeptide
library, the yeast tryptic peptide library, and raw DIA data were
downloaded from JPOST with identifier JPST00085914. These two
libraries were then merged by Spectronaut to create a pure target
library, and exported in a plain text format. In the synthetic human
phosphopeptide library, 80 peptide precursors were removed as their
m/zexceeded theMS2 isolationwindowsofDIAdata,which resulted in

a total of 157 synthetic phosphopeptides (222 precursors) in the final
target library.

Library containing isomeric phosphopeptides for global and local
FDR tests. To build decoy libraries for FDR tests, we extracted two sets
of isomeric phosphopeptide sequences from a published human
phosphoproteme database44 according to different criteria. For the
global FDR test, phosphopeptide isomers need to share the same
peptide sequences as the synthetic humanphosphopeptides but differ
in phosphosite number and/or localization, with phosphosite Ascore
>13 and phosphorylation as the only variable modification. The most
frequently detected charge state in the database was assigned to the
phosphopeptide isomer precursor. As a result, 134 isomeric phos-
phopeptide precursors containing 86 phosphosites were selected as
decoy hits for the global FDR test.

As for the local FDR test, phosphopeptide isomers need to share
the same peptide sequences and total phosphosite numbers as
the synthetic human phosphopeptides yet only differ in phosphosite
localization. In this case, each pair of a synthetic phosphopeptide
precursor and its positional isomer precursor should have identicalm/
z, charge state, and RT, with only difference existing in their MSMS
spectra. A total of 86 isomeric phosphopeptide precursors containing
74 phosphosites were obtained as decoy hits for the local FDR test.

We fine-tuned DeepPhospho models using the yeast proteome
library (20 epochs with an initial learning rate 1e-4 and batch size 128
for both ion intensity and RT models) followed by the synthetic
phosphopeptide library (15 epochswith an initial learning rate 5e-5 and
batch size 16 for both models). Other hyper-parameters were set as
defaults in configfiles (commit a779fd9). Thenwegeneratedpredicted
libraries based on the two sets of isomeric phosphopeptide precursors
described above using DeepPhospho models. 4–20 fragments with
minimum 5% relative intensity were retained for each precursor in the
library. The predicted libraries were appended to the pure target
library and used in two different FDR tests.

Library generation for TNF-α-induced phosphoproteome data
analysis
Project-specific DDA library. DDA data acquired on QE HF-X and
ddaPASEF data acquired on timsTOF Pro were used to generate two
project-specific libraries by FragPipe33 (version 18.0, combined with
MSFragger 3.4, Philosopher 4.4.0, and EasyPQP 0.1.30) with the same
settings as the two benchmark data sets, except for these parameters:
STY + 79.96633 as an additional variable modification; max 5 variable
modifications on peptide; min matched fragments 5; specific losses
allowed in EasyPQP.

DirectDIA library for Spectronaut by Pulsar. Pulsar embedded in
Spectronaut2 (version 16.1) was used to generate a directDIA library
from DIA or diaPASEF data with the same settings as the two bench-
mark data sets, except for these parameters: Phospho on STY as
additional variable modification; 4–12 fragments for each precursor.

DIA data processing
The raw HF and HF-X data (.raw files) and TIMS data (.d folders) were
directly imported into four software tools (DIA-NN, Spectronaut,
MaxDIA, and Skyline) without any format transformation.

DIA-NN. In the analysis of HF and TIMS data, search parameters of
DIA-NN7 (version 1.8.1) were set as follows: precursor FDR 1%;
mass accuracy at MS1 and MS2 set to 5 ppm and 15 ppm for HF
data and both 0 for TIMS data; scan window set to 0; iso-
topologues and MBR turned on; protein inference at gene level;
heuristic protein inference enabled; quantification strategy set to
Robust LC (high precision); neural network classifier double-pass
mode; cross-run normalization off. The universal library was used
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and protein re-annotation was performed. In the library-free
mode, the main search settings were the same with additional
settings for in silico library generation as follows: Trypsin/P with
maximum 1 missed cleavage; protein N-terminal M excision on;
Carbamidomethyl on C as fixed modification; no variable mod-
ification; peptide length from 7 to 30; precursor charge 1–4;
precursor m/z from 300 to 1300 for HF data and 400 to 1200 for
TIMS data; fragment m/z from 300 to 1800 for HF data 300 to
1700 for TIMS data. The search results were further filtered with q
value <0.01 for protein groups at the library level. In the analysis
of synthetic phosphopeptide and TNF-α-induced phosphopro-
teome data, most search settings were the same except for these
changes: neural network classifier set to single-pass mode; mass
accuracy at MS1 and MS2 set to both 0 for synthetic phospho-
peptide data, and 7.2 ppm and 25 ppm for HF-X and 15 ppm
and 13.5 ppm for TIMS for TNF-α-induced phosphoproteome
data; phosphorylation monitored; max 2 variable modifications
on peptide in the library-free mode.

MaxDIA. In the analysis of HF and TIMS data, search parameters of
MaxDIA32 (version 2.1.3.0) were set as follows: Oxidation on M and
Acetyl at protein N-terminus as variable modifications; Carbami-
domethyl on C as fixed modification; digestion by Trypsin/P, with
maximum two missed cleavages; protein quantification based on
both unique and razor peptides; decoy generated by revert; FDR
at any level kept at 0.01; DIA quantification method Mixed, LFQ
split; ML for DIA on a global level; LFQ turned on and min ratio
count of 2 without normalization; split protein groups by tax-
onomy ID turned on at species level. In the synthetic phospho-
peptide data analysis, the search settings were the same except
Carbamidomethyl on C and Phospho on STY set as variable
modifications.

We further tested many parameter combinations in DIA bench-
mark data analysis, and foundmost of them hadminor or no influence
except transfer q value which is the most sensitive parameter that can
affect proteomic identification and quantification. In addition to the
default value of 0.3 in MaxDIA, we tested four transfer q values (0.05,
0.1, 0.15, 0.2) in HF data analysis with the MaxQuant library (Supple-
mentary Note 4.1). Considering the proteome coverage and quantifi-
cation robustness, we kept transfer q of 0.3 when comparing MaxDIA
with other software tools.

Spectronaut. In the analysis ofHF andTIMSdata, searchparametersof
Spectronaut2 (version 16.1.220730.53000) were set as follows: muta-
tionwithNNpredicted fragments to generate decoy;machine learning
performed per run; precursor PEP cutoff 0.2; precursor q value cutoff
0.01; protein q value cutoff 0.01 at experiment level and 0.05 at run
level; data filtering set to Q value; cross-run normalization off. In the
synthetic phosphopeptide and TNF-α-induced phosphoproteome
data analysis, the search settings were the same except for single hit
definition andminorgroupingonmodified sequences but not stripped
sequences, cross-run normalization on, PTM localization on, and PTM
probability cutoff set to 0.

Skyline. In the analysis of HF and TIMS data, search parameters of
Skyline9 (version 22.2.0.255) were set as follows: Trypsin [KR|P] as
enzyme and maximum missed cleavages 2; peptide length 7–52;
Carbamidomethyl on C as fixed modification; Acetyl at protein N-
terminus, Oxidation on M, Ammonia Loss on K, N, Q, and R, and
Water Loss on D, E, S, and T as variable modifications; precursor
charge 2–6 for HF data and 1–5 for TIMS data to matches those in
libraries; ion charge 1, 2; ion types y, b; product ion selection
from ion 3 to last ion −1; ion match tolerance 0.05m/z; 3–6
fragments picked from library; DIA as MS2 acquisition method,
centroided with 8.6 ppm mass accuracy for HF data and 15 ppm

for TIMS data; isolation window directly extracted by importing
the raw data; retention time filtering within 12 min and 10min
predicted RT for HF data and TIMS data, respectively. Search
parameters for synthetic phosphopeptide data analysis are as
follows: Carbamidomethyl on C and Phospho on ST and Y as
variable modifications; precursor charge 2–5; ion charge 1–5; 4–15
fragments picked from library; mass accuracy 5.4 ppm; retention
time filtering within 10min predicted RT. Decoys were added
using a shuffle method and reintegration was performed with
mProphet after search was completed. The final result was
reported after filtering peptide detections with a q value cut-
off of 0.01.

Reassignment of proteins reported by each software
Protein groups reported by each software were re-assigned based on
razor protein inference proposed by Jürgen et al 19. Specifically, the
shared peptides between mouse and yeast proteins were removed,
and the remaining peptides were linked to all matching proteins. For
each peptide, its linked proteins were sorted by the number of
assigned peptides and the one with the largest number of assigned
peptides were selected. These selected proteins were regarded as
non-redundant re-assigned proteins reported by specific software.
Protein reassignment was only performed for the comparison of
protein identification numbers and not for the evaluation of any
other metrics.

Protein intensity determination
Threemethodswere compared in this study, including Top3 average,
iq42 (an R package re-implementingMaxLFQ43), and software built-in.
Top3 derived protein intensity from intensities of the three
most intense precursors. Package iq (version 1.9.1) was implemented
in R 4.1.2, with protein groups as the primary ID and precursors as
the secondary ID, to estimate protein intensity for each run. Through
the comparison of quantification accuracy and consistency for HF
and TIMS data (Supplementary Figs. 7, 8), we selected the built-in
method for DIA-NN andMaxDIA, and package iq for Spectronaut and
Skyline.

Quantification normalization for synthetic phosphopeptide
data analysis
We compared the normalization methods for phosphopeptide
quantification. By comparing the quantification linearity of identified
phosphopeptides, we chose software-reported quantification for
data analysis by DIA-NN and Spectronaut, and AlphaPept61 imple-
mented normalization function with BFGS for analysis by MaxDIA
and Skyline.

Detection of DEPs and regulated phosphosites
The search result for a benchmark data set was converted to a quan-
tification data matrix which comprised log2 transformed protein
intensities from 6 samples and 1 reference, each in five replicates. Any
protein with intensity measured in less than three replicates was
masked to avoid further processing. Limma62 (version 3.50.1, with R
version 4.1.2) was used to calculate the p value for a protein intensity
change in each pairwise comparison, based on linearmodel fitting and
errormoderationwith anempirical Bayesmodel (proportion in eBayes
at 0.5). Proteins with a fold change (any sample vs reference) >1.5 and
BH-adjusted p <0.05 are defined as DEPs. In the TNF-α-induced phos-
phoproteome data analysis, sequential imputation (ImpSeq) was
selected to fill in the NANs as recommended by previous work on DIA
phosphoproteome data imputation63, and phosphosites with inten-
sities in fewer than 3 runswere removed. Then, linearmodelfittingwas
performed on the imputed quantificationmatrix, followed by contrast
fitting with the contrast matrix constructed for three experimental
groups. Empirical Bayes model was performed with proportion 0.01.
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Phosphosites with a fold change >1.5 (TNF-α vs DMSO) and BH-
adjusted p <0.05 (Limma reported) are defined as TNF-α up-regulated
sites. Any TNF-α up-regulated sites with a fold change >1.5 (TNF-α vs
TPCA-1) and BH-adjusted p <0.05 (Limma reported) are considered
TPCA-1-responding sites.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw MS data generated in this work, spectral libraries, and MS data
search reports have been deposited to the ProteomeXchange Con-
sortium65 via the iProX66,67 partner repository with the data set identi-
fier PXD034709 (in ProteomeXchange) and IPX0004576000 (in
iProX). The human synthetic phosphopeptide data set14 was down-
loaded from JPOST with identifier JPST000859; the ProteomeXchange
accession code is PXD019797. All raw data, library files, and search
results used in this study are summarized in Supplementary Data 1.
Source data formain and supplementary figures are provided through
Zenodo at https://doi.org/10.5281/zenodo.7409391.
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