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High-order tensor flow processing using
integrated photonic circuits

Shaofu Xu1,2, Jing Wang1,2, Sicheng Yi1 & Weiwen Zou 1

Tensor analytics lays the mathematical basis for the prosperous promotion of
multiway signal processing. To increase computing throughput, mainstream
processors transform tensor convolutions into matrix multiplications to
enhance the parallelism of computing. However, such order-reducing trans-
formation produces data duplicates and consumes additional memory. Here,
we propose an integrated photonic tensor flow processor (PTFP) without
digitally duplicating the input data. It outputs the convolved tensor as the
input tensor ‘flows’ through the processor. The hybridmanipulation of optical
wavelengths, space dimensions, and time delay steps, enables the direct
representation and processing of high-order tensors in the optical domain. In
the proof-of-concept experiment, an integrated processor manipulating
wavelengths and delay steps is implemented for demonstrating the key
functionalities of PTFP. The multi-channel images and videos are processed at
the modulation rate of 20 Gbaud. A convolutional neural network for video
action recognition is demonstrated on the processor, which achieves an
accuracy of 97.9%.

Stacking data of multiple dimensions to form a tensor provides us the
opportunity to discover the intrinsic structural features hidden in the
data1, which are invisible from two-way (matrix) data analysis. For
example, multiway representation of electroencephalogram (EEG)
data is the natural and effective way of neuroscience data processing2.
The tensor stacked across time, space, and spectrum is beneficial to
detect features in electromagnetic waveforms3. Since tensor matches
the high-dimensional nature of the world, the concept of multiway
analytics gives rise to extensive signal processing approaches in fields
including life science2,4, radar5,6, data mining7,8, and machine
learning9–11. Among the basic operations for tensors, convolution
effectively extracts structural features fromdata. Targeted features are
filtered out as the convolutional kernel traverses the tensor. As an
epitome, a convolutional neural network, which plays a fundamental
role in modern artificial intelligence (AI), is designed under the con-
cept of multi-channel tensor processing12,13.

Given the fact that tensor convolution, especially in the AI field,
is consuming an increasing portion of computing resources, high-

throughput and energy-efficient processors are desired14. Digital
methods including generalized matrix multiplication (GeMM)15,
domain transformation16, and input/weight reusing17 are investigated
to achieve high-performance computing (HPC) of tensor convolu-
tion. These methods pursue a balanced and optimized performance
under limited hardware resources (e.g. memory, bandwidth, and
power). Among these methods, GeMM is widely adopted for its high
throughput and high flexibility for AI. For example, in the Tensor
Core of Nvidia Ampere architecture18, the CUBE core of Huawei
Davinci architecture19, the systolic array of Google TPU
architecture20, and the cross-bar array of memristor architecture21,
high-order tensor convolutions are transformed to two-dimensional
matrix multiplications so that paralleled computational cores can
work simultaneously to enhance throughput. However, during the
GeMM transformation, the input tensor should be duplicated and
shifted multiple times (related to the kernel size) to form an input
matrix, which significantly increases memory use and additional
memory access.
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Besides electronic HPC processors, photonics is recently
demonstrated as a promising candidate to build high-performance
matrix processors. By designing the photonic circuit as linear trans-
formation functions, matrix multiplications can be accomplished as
the light flies through the circuit22–24. The broadband spectrum of
photonic circuits boosts the clock frequency to tens of Gigahertz
(109 Hz)25–27. Consequently, photonic circuits are demonstrated as
superior GeMM processors with high throughput and energy
efficiency28,29. Another advantage of photonics compared with elec-
tronics is that the available degrees of freedom (DoF) of light are rich.
For example, wavelengths23,26,29, guiding modes30, time31, and
space22,24,32 are successfully investigated to carry out linear transfor-
mations. Although in theory33,34, we can take a hybrid use of multiple
DoF of light to expand the representation dimensionality of photonics
so that high-order tensors can be directly processed instead of using
the GeMM, such a photonic processer has not been demonstrated.

Here, we propose an integrated photonic tensor flow processer
(PTFP) that processes high-order tensors without digital data dupli-
cation and shifting; therefore, excess memory is saved for input data
preparation. The serially input data directly enter the PTFP and the
output result is yielded serially. Namely, tensor convolution is com-
pleted as the input tensor ‘flows’ through the photonic circuit. This is
achieved by the hybrid manipulation of optical wavelengths, time
delays, and space dimensions. Kernel weights are implemented inside
the microring resonators (MRRs) of the PTFP and data registering is
accomplished by the embedded optical delay structure. In a proof-of-
concept experiment, we implement a silicon-based integrated photo-
nic chip to conduct the key functionalities of the PTFP, i.e. the hybrid
manipulation of wavelengths and time delays. It demonstrates two-
order tensor flow processing and reduces memory use 3 times.
Improving the integration scale will upgrade it as a four-order tensor
processor and promote memory use reduction. Empowered by the
broadband capability of light, the photonic chip works at the mod-
ulation rate of 20Gbaud and is capable to achieve a compute density
surpassing trillions of operations per second per squaremillimeter. By
reconfiguring the weights of MRRs and reusing the PTFP chip, tensor
(including multi-channel images and video) processing is experimen-
tally demonstrated. A CNN for action recognition is trained to validate
thePTFP chip. An accuracyof 97.9%on theKTHdataset35 is achieved at
the inference phase.

Basic principles of the GeMM and the PTFP are compared in
Fig. 1a. The dimensionality of the input tensor is denoted as [Cin,Ddata],
whereCin denotes the number of input channels andDdata is the size of
data in a single input channel (e.g. Ddata is [L, L] when the input is an
image with a lateral size of L). Different from the conventional con-
volution, tensor convolution withmultiple input channels should yield
multiple output channels. [Cout, Ddata] denotes the dimensionality of
the output tensor. Each output channel is obtained by summing all
convolved results from every input channel. Therefore, the dimen-
sionality of a complete kernel of tensor convolution is denoted as
[Dkernel, Cin, Cout], where Dkernel is the size of a single convolution. In
order to compute tensor convolution with the stride of ‘1’, shown by
the ‘GeMM’ part of Fig. 1a, GeMM firstly transforms the input tensor to
an input matrix with the dimensionality of [Cin ×Dkernel, Ddata], where
data volume is augmented by Dkernel times. The additional data is
generated by duplicating and shifting the original data, occupying
more memories and taking more memory access. The kernel tensor is
reshaped to a two-dimensional matrix [Cout, Cin ×Dkernel]. Then, the
output tensor is obtained by matrix multiplication. In the process of
the PTFP (shown in the ‘Flow’ part), the input tensor is not duplicated.
Different input channels are carried by different optical wavelengths.
Serial pixels in a single channel are temporally modulated onto the
time steps of an optical signal. Inside the PTFP, each input channel is
connected with each output channel through a convolutional opera-
tion (a line in the figure). A convolutional operation is essentially a

finite impulse response (FIR) filter; therefore, we can implement such
FIR filters by imposing delaying, weighting, and summation to the
input temporal sequence. The number of delay steps is equal to the
size of kernel, Dkernel. The additional memory required by GeMM is
equivalently accomplished with the optical delay structure. In other
words, the PTFP approach saves Dkernel times of digital memory for
input tensor transformation. The size of memory for weights is the
same as conventional GeMM. Given that the input sequences are car-
ried on different wavelengths, the convolved sequences are combined
to yield an output channel with wavelength division multiplexing
(WDM). Other output channels (depicted with gray lines) are similarly
yielded by spatially duplicating the same structure but configuring
different kernel weights.

Following the PTFP concept, the schematic of an integrated chip
is illustrated in Fig. 1b. Input optical sequences of different wave-
lengths are first combined with a WDM. Then, directional couplers
and ODLs are deployed to provide the time delay steps Dt (=Dkernel).
In each delay step, optical sequences are further split to provide the
dimension of space, Ds. In a specific delay step and space dimension,
a weighting bank with Dw (=Cin) copies MRRs is exploited. A single
MRR in a weighting bank controls the transmission rate of a specific
wavelength. By shifting the resonance wavelength of MRRs, weights
of input wavelengths can be reconfigured. Via these Dw ×Dt ×Ds

copies ofMRRs,multiplications involved in a complete convolutional
kernel are accomplished. After weighting, photodetectors (PDs)
convert the total optical power of all wavelengths to electrical sig-
nals, performing summation across different input channels. And the
electrical power combiners (EPCs) perform electrical summations of
signals across different delay steps. Since operations on the chip are
linear, two steps of summations are commutative. Every output
sequence of the EPC corresponds to an output channel in Fig. 1a.

Results
The fabricated PTFP chip
Figure 2a shows the photograph of the PTFP chip, which is fabricated
with a standard Silicon-on-Insulator (SOI) integration process. As
proof-of-concept, we implement the key components of the PTFP onto
the chip, including WDM, optical delays, and weighting banks. The
fabricated chip conducts four-channel convolution with three para-
meters in each channel, namely a two-order tensor convolution kernel
written as [Dkernel = height ×width = 1 × 3, Cin = 4, Cout = 1]. Given the
fact that duplicating the same structure can expand space dimension
(Cout) and cascading more ODLs will expand ‘height’ and ‘width’
dimensions33,34, successful validation of this chip constructs a strong
basis for a complete four-order tensor convolution processor. Optical
signals enter and leave the chip through the waveguide-fiber edge
coupler array. Figure 2b depicts the layout of the fabricated PTFP chip,
comprising a four-wayWDM, two cascaded ODLs, and three weighting
banks with four MRRs inside each. The WDM shown in Fig. 2c is
designed with the asymmetric Mach–Zehnder interferometer struc-
ture. Figure 2d presents the transmission rate measurement of the
WDM, showing 2-nm channel spacing and <1.2 dB channel flatness
within a free spectral range (FSR). In the experiment, we choose four
wavelengths located at 1550.8, 1552.8, 1554.8, and 1556.8 nm to ensure
that all operating wavelengths are within the flat band of the WDM.
Figure 2e, f illustrates the photograph and characterization result of a
weighting bank. By increasing the voltage on the MRR, the resonating
wavelength is red-shifted. Since the operating wavelengths are fixed,
the variation of the MRR transmission rate performs as a weighting
factor to the specific wavelength. Figure 2g provides the normalized
weights (transmission rate) of every MRR with the variation of applied
voltages. This weight–voltage mapping is measured once under static
temperature and is used for translating kernel weights to the applied
voltages. Detailed information on photonic device design and char-
acterization can be found in Supplementary notes 1–5.
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Tensor convolution
To validate the tensor processing capability of the PTFP chip, we carry
out an experiment with multi-channel images as the input tensor.
Figure 3a illustrates the conceptual experimental setup (see the
“Methods” section for details of the experimental setup). The PTFP
chip accepts four input signals with different wavelengths. Each signal
represents an input channel, i.e. an image of themulti-channel images.
These images are loaded onto optical intensities via temporal mod-
ulation row by row. Four-way signals are generated with the symbol
rate of 20Gbaud, also known as the clock frequency of 20GHz. Since
the optical intensities of different wavelengths are summed up in the
PD, it is necessary to carry out input synchronization to avoid symbol
misalignment. Similarly, the output signals with different optical
delays should be also synchronized since they are summed up in the
EPC.Wedeploy tunable delay lines before and after the optical ports of
the PTFP chip for synchronization. Figure 3b shows the result of output
synchronization. In this measurement, only one input channel is
adopted, so the output waveform should be identical except for delay.
We observe that, after synchronization, the delay difference of every
output waveform is 50 ps, corresponding to the symbol rate of

20Gbaud. Using one input channel, we can conduct 1 × 3 convolutions
by applying weights to the MRRs. Figure 3c is an example of the con-
volved waveform. The applied weights are [−1, 0, 1]. From the zoom-in
plot, we observe that the experimental results are close to the theo-
retically calculated samples, verifying the correctness of conducting
one-dimensional convolution. The deviation between the experi-
mental result and the calculated one is mainly caused by experimental
noise and waveform distortion.

As we have multiple channels for input, we validate the multi-
channel convolution in this part. Three different images from a ‘traffic
camera’ dataset36 are chosen as the input channels and a vertical edge
detection kernel [−1, 0, 1] is adopted for each of them. Therefore, the
output of the multi-channel convolution should be the superposition
of the vertical edges of these images. Because 3 delay steps are
implemented on the chip, these 1 × 3 convolutions are performed
without input data duplication. Figure 3d depicts the result. Three
images including a car in each are processed by three wavelength
channels and the output shows all vertical edges of these cars. The
‘leaves’ on the ground are static for three images. The vertical edges of
themaccumulate three times so that they are verybright in the output.
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Fig. 1 | Basic principles of thePTFP. a Principles of the conventional GeMMand the
PTFP. Before matrix multiplication, the GeMM reshapes and duplicates the input
tensor ([Cin, L, L]) to the transformed data ([Cin ×Dkernel, L× L]). Input data is dupli-
cated Dkernel times. After the matrix multiplier, outputs are yielded and can be
reconstructed to convolved feature maps. In the PTFP approach (marked with
‘Flow’), the input tensor is reshaped and enters the PTFP in serial. Each input channel
is temporallymodulated onto an individual wavelength. A line in the PTFP schematic
represents a convolutional operation between an input channel and an output

channel. Inside each line, signals are delayed, weighted, and summed so that a
temporal convolution (a.k.a. FIR filter) is completed. An output channel is yielded by
combining convolved signals from different input channels. Other output channels
can be realized by spatially duplicating the same structure. b Conceptual schematic
of the PTFP chip. EOM electro-optic modulator, MUX wavelength multiplexer, ODL
optical delay line. The directional couplers and delay lines perform data duplication
and shifting in the optical domain. Multiple wavelengths are split and delayed in
parallel. Crossing waveguides are virtually broken for the succinctness of the graph.
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If we configure three input channels with an identical image with row
shifting, the multi-channel convolution can equivalently perform a
3 × 3 convolution on a single image. We should note that in this con-
figuration, the input image is digitally duplicated three times since the
on-chipdelay structure only reduces digitalmemory use from9 copies
to 3 copies. The equivalent 3 × 3 convolution is a good way to bench-
mark themulti-channel convolution of this chip and several results are
shown in Fig. 3e–i. The horizontal Sobel kernel extracts grayscale
variations along the horizontal direction, so the convolved image is
composed of vertical edges. Similarly, the vertical Sobel kernel can
extract the horizontal edges of the image. A kernel with nine same
weights can blur the image.When a Sobel kernel is superposed with an
identical kernel, the image can be sharpened and the edge contrast is
increased. The experimental results verify the capability of the PTFP
chip to conduct multi-channel convolution.

Human action recognition using the PTFP chip
Based on the successful validation of multi-channel image convolu-
tion, we move forward to implement a CNN to recognize human
actions in the KTH dataset. Figure 4a gives the structure of the built
CNN with two convolutional layers, a recurrent layer, and a fully con-
nected layer. We generate 4998 video segments from the KTH dataset
(see the “Methods” section for video preprocessing). 3998 segments
out of them are randomly picked as trainset and the left 1000 seg-
ments are used as testset. The parameters of CNN are trained firstly on
a computer and the PTFP chip is used for computing the ‘Conv. 1’ and
‘Conv. 2’ layers in the inference phase (details of the training are pro-
vided in the “Methods” section). Five frames of video are input into the
neural network as the input tensor. Similar to the experiment of image
convolution, each input frame is reshaped to a rowvector for temporal

modulation. For the first convolutional layer, the adopted kernel size is
[1 × 3 × 3, 1, 4]. Given that the fabricated chip is smaller than the kernel
size, the kernel is decomposed into small parts and calculated by
recalling the PTFP chip multiple times. The PTFP chip calculates a
kernel of [1 × 3, 3, 1] for each time of recalling and accomplishes the
complete kernel for 4 times of recalling. The same decomposition
method is used for calculating the second convolutional layer with a
kernel size of [1 × 3 × 3, 4, 8]. Figure 4b and c display several experi-
mental results of the first convolutional layer and the second con-
volutional layer, respectively. We observe that the convolved frames
output by the PTFP chip is consistent with that of a digital computer,
except for some experimental noise. These two convolutional layers
extract frame features that contribute to action recognition. By fin-
ishing the following nonlinear layer, the recurrent layer, and the fully
connected layer in an auxiliary computing device, a recognition
result is obtained. The diffusion matrix with five categories of human
actions (‘boxing’, ‘handwaving’, ‘handclapping’, ‘walking’, and ‘run-
ning’) is shown in Fig. 4d and a reference is offered in Fig. 4e. Ninety-
six video segments randomly selected from the testset are recog-
nized. Numbers on the diagonal line count correct recognition. It is
shown that the recognition accuracy of the PTFP chip is 94/
96 = 97.9% and that of a digital computer is 95/96 = 98.9%. The
recognition result confirms that the PTFP chip accomplishes tensor
convolution successfully. In Fig. 4f, we carry out simulations to reveal
how the noise in the output signals affects the recognition accuracy
(see the “Methods” section). Consistent with intuition, the accuracy
tends to decrease with large noise amplitude. The standard deviation
of the experimental error is around 0.1 and the achieved accuracy is
slightly higher than the situation with pure Gaussian noise at the
same level (σnoise = 0.1).
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Fig. 2 | Chip fabrication and characterization. a Photograph of the packaged
PTFP chip. Optical signals enter and leave the chip via an edge-coupled fiber array.
b Layout of the PTFP chip. Fourwavelengths are combined in theWDM.Twooptical
delay lines (ODLs) are deployed to provide three delay steps. Before and after each
ODL, weighting banks with four MRRs in each are implemented. c Photograph of
the WDM. d Transmission spectra of the WDM. e Regional photograph of the MRR

array. f Transmission spectrum of the MRR array. Different voltages (0–1400mV
with 200mV/step) are applied on the secondMRR. A similar result can be obtained
when voltage is applied to other MRRs. g Transmission rate of all 12 MRRs on the
chip under voltage tuning. These curves represent weight–voltage mappings after
normalization. The original resonance points of MRRs are different because of
fabrication deviation.
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Discussion
In our experiment, the PTFP chip is operated at the speed of
20Gbaud, corresponding to a throughput of 480GOP/s. The com-
puting density of the core part on-chip (electronics excluded) is
588 GOP/s/mm2.With a larger scale, the computing density is capable
to surpass 1 TOP/s/mm2 (discussed in Supplementary note 7). Since
the ODLs play a key role in the tensor processing, their insertion loss

and footprint of them are determinants of the signal-to-noise ratio,
throughput and computing density of the PTFP chip. The length of
ODLs is inversely proportional to the clock frequency. Advanced
electrooptic modulators37,38 and PDs39 with large bandwidths allow
higher clock frequency: the length of ODLs is thus shortened. Recent
progress on ultra-low-loss silicon nitride waveguides40 enables
complicated optical delay manipulations. Based on the validation of
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b Output synchronization. In synchronization, only one waveform is used to input
one signal. The waveforms of different output ports are identical with different
delays. We highlight an identical segment of these waveforms with thicker line-
width. c Output samples of the 1 × 3 convolutions. The original input is given for
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channel convolution. A patch is zoomed-in for better observation. f–i Convolu-
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the bar charts. h and i are zoomed-in for better observation.
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the key functionalities of the PTFP concept, it is feasible to improve
the performance of integrated photonic devices and the complete-
ness of high-order tensor convolution. Refining the insertion loss of
the chip will contribute to a better signal-to-noise ratio. Increasing
the integration scale with extra ODLs and weighting banks will
upgrade the current chip to a complete four-order tensor processor
(discussed in Supplementary notes 5 and 6). The upper limit of
weighting bank duplication is discussed in ref. 33 and Supplementary
note 6. The difference for a PTFP chip to achieve a larger kernel size
is the additional introduction of waveguide crossing (virtual breaking
points in Fig. 1b). Recent works show that insertion loss below
0.04 dB/crossing is obtainable41,42, implying that the influence of
waveguide crossing can be minor.

In conclusion, we propose an integrated photonic tensor flow
processor which is, compared with mainstream GeMM processors,
capable to process high-order tensor convolutions without extra
input data transformation and memory use. The wavelength
dimension carries different channels of the input tensor and the
space dimension represents different channels of the output tensor.
Between the input and the output, optical time delays, weighting,

and summation perform convolutional operations. The hybrid
manipulation of optical wavelengths, space dimensions, and time
delays offers us the opportunity to process tensors in a ‘flow’ fashion.
The PTFP occupies less memory than the mainstream GeMM pro-
cessors when the stride is smaller than the kernel width. In the proof-
of-concept experiment, a silicon-based photonic chip is fabricated. It
performs a two-order tensor convolution kernel shaped [1 × 3, 4, 1],
demonstrating the key functionalities of the PTFP. Enlarging the
integration scale will complete a four-order tensor convolution
processor with currently available photonic integration technolo-
gies. A CNN is built and the video action recognition task is per-
formed with high accuracy of 97.9%. Given the fact that a major
performance bottleneck of state-of-the-art GeMM processors is the
limit of memory volume, the concept of PTFP may become an
effective way for high-performance processors. Enabled by photonic
ultrafast clock frequency, the proposed PTFP is advantageous in
parallel processing with large-batch data and is promising to pro-
mote advances in compute-intense applications such asmulti-stream
video processing, high-resolution surveillance, autonomous driving,
and the Internet of Things.
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Methods
Experimental setup
The experimental setup is illustrated in Supplementary Fig. 1. The
input signals for the PTFP chip are generated by an arbitrary waveform
generator (AWG, Keysight M8194A) with four independent output
ports. Every output port works at a sampling rate of 120GSa/s. The
amplitude of the generated signals is firstly managed for proper
modulation depth using RF attenuators (Rebes RBS-69-26.5-7) and
amplifiers (Connphy CLN-1G18G-3025-S, bandwidth 1–18 GHz), and
then modulated onto the optical carriers via electro-optic modulators
(EOSPACEAX-0S5-10-PFA-PFA). Optical carriers are providedby a four-
channel laser source (Alnair labs TLG-200). Erbium-doped fiber
amplifiers (Ashow ASHPFA-C-23-FA-B) are used to compensate for the
insertion loss of the PTFP chip. Before the optical signals enter the
PTFP chip, tunable delay lines (General Photonics VDL-002-15-10-S-PP-
FC/APC) are adopted to compensate for the difference in optical paths
from the modulators to the chip input ports. After the output of the
chip, additional tunable delay lines are used to compensate for the
difference in optical paths from the chip output via PD (Lab Buddy
DSC-R412) to the EPC. A real-time oscilloscope (Keysight UXR0134A) is
employed for testing and recording results. The sampling rate of the
oscilloscope is configured at 128GSa/s and the obtained data is down-
sampled to 20GSa/s to reconstruct the results. Note that a high sam-
pling rate allows us to perform input and output synchronizationmore
precisely but a sampling rate of 20GSa/s is enough to carry out con-
volutions after synchronization is done. The AWG is synchronizedwith
the trigger of the oscilloscope for steady waveform acquisition. A
computer is adopted in the experiment for controlling the AWG by
sending waveform files. It also performs the recurrent layer, fully
connected layer, and the nonlinear process (ReLU, max pooling, and
softmax) in the CNN experiment. The voltages on the chip (including
WDMtuning andMRR tuning) are suppliedby a homemade45-channel
voltage source, which is controlled by the computer as well. The
absolute values of weights are applied via two steps: measuring the
modulation curves of MRRs (shown in Fig. 2g); translating trained
weights to applied voltages. In the experiment, the negative sign is
applied manually by reconfiguring the experimental setup. For the
multi-channel image convolution experiment, the negative sign is
applied by connecting the optical signal to the negative input port of
the balanced PD (Lab Buddy DSC-R412). For the CNN experiment, the
chip works twice to perform positive and negative weights, respec-
tively. Results are obtained by adding these two parts. We note that, in
the final version of the PTFP system, the manual operations for nega-
tive weights should be eliminated by using both the through and drop
ports of the MRRs with balanced PDs, as demonstrated in refs. 23, 33.

The heat sink inside the packaging module is controlled by a
thermal controller (Thorlabs ITC4001), maintaining the chip tem-
perature at 28 °C. At this temperature, the standard deviation of MRR
weight control is 0.035 out of range 1, corresponding to 4.83 bits of
resolution. The resolution is majorly limited by the MRR crosstalk.
Without temperature maintenance, the resonance of MRR will sig-
nificantly deviate, degrading the bit resolution. Recent approaches to
accurate MRR weight controlling43 are beneficial for the PTFP.

From a developing perspective, we present a system schematic
comprising the photonic chip and the electronic periphery circuitry
(shown in Supplementary Fig. 2). Compared with conventional elec-
tronic GeMM circuitry, the PTFP cancels data duplications inside the
buffer. Its memory use is identical to that of the original data. Given
that high-speed digital-to-analog converters (DACs) apply time multi-
plexing technology, their input clock rate is compatible with a con-
ventional static random-accessmemory (SRAM) and their output clock
rate is compatible with the photonic chip. Therefore, the high-speed
DACs do not introduce obvious latency to the system. The photonic
chip can operate at its peak throughput given enough memory inter-
face width for data feeding. At the output, the analog-to-digital

converters (ADCs) apply time demultiplexing so that the output clock
is compatible with the electronic memory. Overall, the speed
advancement of the photonic chip can be realized provided the usage
of multiplexing DACs and demultiplexing ADCs. With the detailed
calculation in Supplementary note 7, we show that the high-speed
DACs and ADCs will introduce an energy overhead of around 6.28 pJ/
symbol. With the expansion of the integration scale, it is promising to
dilute the energy overhead of DACs and ADCs down to 0.011 pJ per
operation.

Although the adopted EPC is now bulky, there are two routes to
enable on-chip miniaturization of the electrical signal combination.
One is packaging wideband EPC dies (over 40-GHz bandwidth is
commercially available) with the photonic chip using wire bonding or
similar technologies. Another is to place the PDs compactly and con-
nect their output wires directly. As long as the PDs are close enough
(sub-millimeter distance), the photocurrent obeys Kirchhoff’s current
lawso that theoutputs are addedwithout anEPC32. Note that the direct
PD connection will accumulate their parasite capacitance and lower
the final bandwidth. Therefore, this approach is feasible with high-
speed PDs whose bandwidth is multiple times higher than required.

Waveform encoding and decoding
The grayscale pixels are firstly reshaped to a row vector and the
grayscale values are converted to analog waveforms by the AWG.
Under the symbol rate of 20Gbaud, the generated signal should cover
the bandwidth from direct current (DC) to 10GHz. The majority of
power distributes at a low-frequency range (see Supplementary
Fig. 14). However, due to the inferior loss performance of the fabri-
cated chip (see Supplementary note 5 for details), we adopt electrical
power amplifiers in our experimental setup to enhance modulation
depth so that the output signal is detectable. The adopted electrical
power amplifiers (nominal bandwidth: 1–18 GHz) filter out low fre-
quencies, leaving obvious and unrecoverable distortions to the analog
waveforms. To avoid such distortions, we shift the center frequency of
the input waveforms from DC to the 10-GHz carrier by introducing an
encoding method. Original input waveforms are multiplied by a
sequence with alternating ±1:

Y i = �1ð Þi + 1 � Xi ð1Þ

where Y denotes the encoded waveform and X is the original wave-
form. A waveform of a constant value becomes a sine waveform of
10GHz. After such encoding, the majority of signal power distributes
at 10GHz, located in the bandwidth of the electrical power amplifier.
Since the sampling rate of the AWG is configured at 120GSa/s, the
waveform is interpolated six times with the ‘spline’ method provided
by the MATLAB code.

After the input waveform encoding, the convolutional kernels
should be also encoded. Supplementary Fig. 15a shows the convolved
result with an encoded input waveform and a non-encoded kernel ([1,
0.5]). Because of the input encoding, originally positive values are
converted to negative values. As a consequence, the negative value of
delayed waveform x(t + τ) is at the same position as the positive values
of original waveform x(t). Summing up these waveforms directly
results in an error. Supplementary Fig. 15b shows a result of an enco-
ded kernel ([1, −0.5]). In this case, the waveforms are summed up
correctly. The method of kernel encoding is multiplying a mask. Each
rowof themask contains alternating 1 and −1. If the length of the input
image (L) is even, the starting sign of every row is always positive
(Supplementary Fig. 15c). If L is odd, the starting sign of each row
alternates relevantly (Supplementary Fig. 15d).

Through the above encoding method, the center frequency of
convolved results is shifted to 10GHz, so they are decoded (multi-
plying the encoding sequence again) to obtain the final results.
Although the majority of the signal power is preserved via encoding,
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the low-frequency block property of the system still introduces some
distortions to the result. Supplementary Fig. 16 illustrates an example
of the result of the kernel [1, 0, −1]. It is obvious that the temporal
waveform is distorted: there are many relaxation oscillations com-
pared with the ideal result. The reason is that the low-frequency
component of thewaveform is filtered out. It indicates that the error of
the convolved results not only comes from the experimental noise but
also thewaveformdistortion originating from the frequency response.
In other words, the error power in the experiment is the combination
of noise power anddistortionpower. Figure4f shows that although the
standard deviation of combined error is 0.1, the recognition accuracy
is a little bit higher than that of pure noise at the standard deviation of
0.1. This gives anempirical observation thatwaveformdistortion is less
impactful than noise on recognition accuracy.

Given that the encoding and decoding processes introduce data
transformation overhead and undesirable signal distortion, we pursue
removing the encoding and decoding in future works. Using low-drive
modulators (such as the lithium niobate film (LNOI) modulators37) will
significantly refine the modulation depth, so the electrical amplifiers
and encoding/decoding process can be removed. Also, refining the
loss performance of the chip benefits the output signal power. Sup-
plementary Fig. 17 shows the effect of insertion loss and modulation
depth on the output signal quality. It is found that low-drive mod-
ulators and low-loss photonic chips promise good signal quality
without data transformation overheads. Although integrating LNOI
modulators with silicon photonic circuits is challenging and may
introduce extra loss, complexity, and optical nonlinearity, recent
breakthroughs in LNOI modulators and heterogeneous integration
technologies are quite inspiring for the performance refinement of the
PTFP concept.

Input and output synchronizations
In our experiment, signals are summed up in the analog domain. A
symbol only lasts for 50ps under the clock frequency of 20GHz, so the
misalignment of analog symbols gives wrong convolution results.
Moreover, the adopted sampling rate is 20GSa/s (down-sampled from
128GSa/s), equal to the modulation rate. Only if the sampling clock
and the signal generator are synchronized, correct results can be
sampled. Therefore, it is necessary to conduct synchronization. The
adoption of off-chip fiber devices introduces unknownoptical lengths;
thus, we compensate for such length variations. Tunable delays are
used both for input ports and output ports, as illustrated in Supple-
mentary Fig. 1. Before synchronization, all MRRs are set to the weight
of 1. For input synchronization, two input ports and one output port
are used. Two 10-GHz sine waveforms with opposite initial phases are
loaded onto these ports. With a proper delay, the summed amplitude
is zero. By reading the waveform of the output port, the synchroni-
zation status of the input channels can bemeasured. The chip has four
input ports, so the input synchronization is repeated until all input
ports are synchronized. Similarly, for output synchronization, one
input port, and two output ports are used. 10-GHz sine waveform is
input via the input port. Output synchronization is accomplished if the
output waveform of the EPC reaches the highest amplitude.

Preprocessing of the KTH dataset
The KTH dataset35 is composed of video clips of six categories of
human action (‘Boxing’, ‘Handwaving’, ‘Handclapping’, ‘Walking’, ‘Jog-
ging’, and ‘Running’). Each action is repeated by 25 people in four
scenes. Because the recurrent layer and the fully connected layer are
sensitive to image shifting, a smallmovement of the action subject (i.e.
the person) may lead to severe overfitting. Therefore, for the static
actions (boxing, handwaving, and handclapping), the video clips are
cropped to put action subjects in the center of the image. This is
accomplished by the following steps: (1) find the moving object (the
person); (2) locate the center of the moving object; and (3) shift and

crop the image. To find the moving object, we accumulate motions of
different frames of the video:

M x,yð Þ=
XN

i= 1

∣I x,y,t = ið Þ � Iðx,y,t = i+ 1Þ∣ ð2Þ

whereM(x, y) is the accumulatedmotion and I(x, y, t = i) is the image at
the ith frame. Supplementary Fig. 18a–c show three examples of
motion accumulation. Find the center of the accumulated motion and
the object is shifted to the image center.

For moving actions (walking, jogging, and running), if the subject
moves out of the image, the CNN will also overfit the datasets. The
purpose of preprocessing is to pick up frames with subjects inside the
image. This is achieved by following steps: (1) checkmotion inside the
image and (2) confirm the cause of themotion. By subtracting adjacent
frames, we can find themoving part of the image. When the amplitude
of motion surpasses a threshold, it is regarded as a valid motion.
However, the movement of the camera (background) instead of the
subject will result in valid motions, so we should confirm the cause of
the motion. Observe the Fourier spectrum of the valid motion (Sup-
plementary Fig. 18d–f). If the motion is caused by camera movement,
its spectrum is white-noise-alike. Therefore, we can pick up those
frames with moving subjects.

After the preprocessing of video clips, every five frames are
grouped as a video segment. The Original frame rate of the KTH
dataset is 25 frames per second. To enhance contrast among frames,
the frame rate of the video segments is set at 12.5 frames per second.
Generally speaking, recognition against ‘Jogging’ and ‘Running’ ismore
difficult than other categories.We usefive action categories except for
‘Running’ for recognition. Becauseonlywhen the recognition accuracy
of the baseline CNN itself is high enough, we can determine whether
the accuracy degradation comes from the CNN model or the PTFP
chip. From the five categories, we generate 2499 video segments.
These segments are flipped left to right for data augmentation. So,
there are 4998 data examples for training and testing.

CNN structure and training
The CNN for human action recognition comprises four layers: con-
volutional layer 1 (Conv. 1), convolutional layer 2 (Conv. 2), recurrent
layer (RL), and a fully connected layer (FC)44. The size of convolutional
kernels for Conv. 1 and Conv. 2 is 1 × 3 × 3. It is a three-dimensional
kernel,with thefirst dimensionbeing 1. So, it canbe accomplishedwith
our experimental setup. Take the channel numbers into account. The
shape of the kernel tensor of Conv. 1 and Conv. 2 is [1 × 3 × 3, 1, 4] and
[1 × 3 × 3, 4, 8], respectively. ReLU activation function is applied after
each convolutional layer. Max pooling layer is adopted to shrink the
size of images with a stride of 2. The output of the secondmax pooling
layer is a tensor of 5 frames. Each frame comprises 8 convolved feature
maps. These featuremaps are reshaped to five vectors as the input for
the recurrent layer. Every vector is a time step in the recurrent layer.
The adopted recurrent cell is the basic long–short-term memory cell
provided by the TensorFlow framework. The activation function of RL
is ReLU. The number of hidden neurons in a recurrent cell is 256.
Finally, the FC layer transforms all hidden neurons into a recognition
vector with softmax activation. The largest value in the recognition
vector indicates the predicted category. To train the CNN, the dataset
is separated into two parts: 3998 video segments for training and
1000 segments for testing. The loss function is defined as the cross
entropy between the recognition vector and the label vector:

LossðΘÞ = �
X5

i = 1

yi � log ŷ Θð Þ
� �

+ γ
X

j

zðΘÞ
conv2,j

� �2
ð3Þ

where y(Θ) is the output recognition vector under the parameter of Θ.
Additional L-2 regularization is adopted with a penalty coefficient of
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γ = 0.005. z(Θ)conv2 is the output of the second convolutional layer.
The gradient descent optimizer is used with a learning rate of 0.01
and the network is trained for 125 epochs. The stochastic gradient
descent method45 is adopted with a mini-batch size of 50. CNN
training is carried out by a computing platform with an Intel i5-
9500CPU and Nvidia RTX-2080GPU. Supplementary Fig. 19 shows
the loss functions and recognition accuracy during training. The
training loss decreases consistently, indicating a successful fitting.
The validation loss reaches the lowest at around 60 epochs and
increases a little bit, indicating that minor overfitting occurs. It is
observed that the recognition accuracy is not obviously affected by
this minor overfitting, so we adopt the trained parameters at 125
epochs as the final parameters for inference.

CNN simulation under Gaussian noise
The PTFP chip is essentially an analog processor, thus involving
experimental noise and signal distortions during processing. Rich lit-
erature reveals that deep neural networks, including CNN, are partly
robust to noise, especially in classification tasks46,47. Such empirical
study indicates thatwe are able to achieve accurate classificationwith a
relatively noisy analog processing system. However, the noise
robustnessmusthavea limit.We simulate theCNNwithdifferent levels
of noise to find the limit of our experiment. Since the PTFP chip con-
ducts convolutional layers, we introduceadditiveGaussiannoise to the
output of the convolutional layers. In our experiment, 96 segments are
selected for testing. So, for every noise level (standard deviation from
0 to 0.24), we randomly pick up 96 segments in the 1000 testing
segments to calculate the recognition accuracy. The above procedure
is repeated for 100 times to obtain the stochastics of the accuracy.
Finally, themean value and90% confidence interval of the accuracy are
shown in Fig. 4f.

Data availability
TheKTHdataset used in this study is available at https://www.csc.kth.se/
cvap/actions/. The ‘traffic camera’ dataset used in this study is available
at https://aimagelab.ing.unimore.it/visor/video_categories.asp.

Code availability
The code for convolutional neural network training is provided by the
authors in the repository: https://github.com/xsf19950411/PTFP,
https://doi.org/10.5281/zenodo.7340586. Cite the current article for
using the code.
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