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BMI-adjusted adipose tissue volumes exhibit
depot-specific and divergent associations
with cardiometabolic diseases

Saaket Agrawal 1,2,3,10, Marcus D. R. Klarqvist 4,10, Nathaniel Diamant 4,
Takara L. Stanley5, Patrick T. Ellinor1,3, Nehal N.Mehta6, Anthony Philippakis 4,7,
Kenney Ng8, Melina Claussnitzer1,2,3, Steven K. Grinspoon5, Puneet Batra 4 &
Amit V. Khera1,2,3,9

For any given body mass index (BMI), individuals vary substantially in fat
distribution, and this variation may have important implications for cardio-
metabolic risk. Here, we study disease associations with BMI-independent
variation in visceral (VAT), abdominal subcutaneous (ASAT), and gluteofe-
moral (GFAT) fat depots in 40,032 individuals of the UK Biobank with body
MRI. We apply deep learning models based on two-dimensional body MRI
projections to enable near-perfect estimation of fat depot volumes (R2 in
heldout dataset = 0.978-0.991 for VAT, ASAT, and GFAT). Next, we derive BMI-
adjusted metrics for each fat depot (e.g. VAT adjusted for BMI, VATadjBMI) to
quantify local adiposity burden. VATadjBMI is associatedwith increased risk of
type 2diabetes and coronary artery disease, ASATadjBMI is largely neutral, and
GFATadjBMI is associated with reduced risk. These results – describing three
metabolically distinct fat depots at scale – clarify the cardiometabolic impact
of BMI-independent differences in body fat distribution.

Obesity is a leading threat to global public health, with afflicted indivi-
duals at increased risk of cardiovascular events, type 2 diabetes, cancer,
and severe COVID-19 infection1–3. Recent projections suggest that obe-
sity – defined by bodymass index (BMI) of at least 30 kg/m2 –will affect
more than half of the U.S. adult population as early as 20304,5.

Although individuals with increased BMI tend to have higher risk
of adverse outcomes on average, previous studies have suggested
considerable heterogeneity6–9. These studies have sought to define
markers of “metabolic health” – such asmeasures of insulin resistance
or waist circumference – as drivers of “within BMI-group variation” in
cardiometabolic risk9–11.

Variation in fat distribution is a potential unifying explanation for
cardiometabolic risk differences between two individuals with the
same BMI12,13. Prior studies have suggested that various fat depots have
differing metabolic programs, with visceral adipose tissue (VAT) most
strongly associated with cardiometabolic risk – but have potential
limitations14–16. First, most imaging studies to date have been cross-
sectional and relatively small – especially those utilizing the gold-
standard MRI modality – limiting ability to assess for depot-specific
effects across age, sex, and BMI subgroups12,17–21. Deep learningmodels
trained on a small set of labeled images and subsequently applied to a
larger set of unlabeled images may be one strategy to increase sample
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size if models were sufficiently predictive. Second, gluteofemoral
adipose tissue (GFAT)–whichmay serve as an adaptive energy storage
depot and a possible modifier of insulin resistance – has not
been quantified in most previous imaging studies18–22. Third, fat
depot volumes tend to be highly correlated with both BMI and one
another, making it challenging to isolate depot-specific associations
with disease23.

In this study, we downloaded raw MRI imaging data from
40,032 participants of the UK Biobank and tested the hypothesis
that deep learningmodels can be used to precisely quantify three fat
depot volumes: VAT, abdominal subcutaneous adipose tissue
(ASAT), and GFAT. We derived measures of local adiposity burden,
each fully independent of BMI, and note significant heterogeneity in
risk conferred: VAT adjusted for BMI (VATadjBMI) associated with
increased risk of type 2 diabetes and coronary artery disease, ASA-
TadjBMI largely risk-neutral, and GFATadjBMI associated with
protection.

Results
Among 40,032 participants of the UK Biobank with MRI data avail-
able, the median age was 65 years, 51% were female, and 97% were
white (Table 1). Median BMI was 26.6 kg/m2 among males and
25.2 kg/m2 among females, and the median waist-hip ratio (WHR)
was 0.93 among males, and 0.81 among females. 1,901 individuals
had been diagnosed with type 2 diabetes (4.7%) and 1956 with
coronary artery disease (4.9%) at the time of imaging assessment.
VAT, ASAT, and GFAT volumes were previously quantified in 9040,
9041, and 7754 participants, respectively (Supplementary Data 1
and 2)20,21,24,25.

Machine learning facilitates near-perfect estimation of fat depot
volumes
We set out to test whether convolutional neural networkmodels could
be adequately predictive of VAT, ASAT, and GFAT volumes to enable
prediction at scale. We noted that three-dimensional MRI data for
40,032 individuals represented a substantial data burden with almost
58 million axial slices across all participants, corresponding to >18
terabytes of imaging data – a level of complexity that limits compu-
tational feasibility for training deep learning models.

To simplify the imaging input into the convolutional neural net-
works, we transformed three-dimensional MRI images for each parti-
cipant into two-dimensional coronal and sagittal projections,
hypothesizing that this input would prove adequate for highly accu-
rate fat depot volume prediction despite an 830-fold reduction in data
input size (Fig. 1)26. Convolutional neural networks – trained on 80% of
the participants with fat depots previously quantified – demonstrated
near-perfect estimation of each fat depot volume in the 20% of held
out individuals (R2 = 0.991, 0.991, and 0.978 for VAT, ASAT, and GFAT,
respectively) (Methods, Supplementary Data 3). Similar predictive
accuracy was noted across age, sex, BMI, and self-reported ethnicity
subgroups, although the sample size was limited in the latter sub-
groups (Supplementary Data 4). These convolutional neural network
models were subsequently applied to the unlabeled remainder of the
40,032 participants to estimate fat depot volumes.

Next, we applied Gradient-weighted Class Activation Mapping
(Grad-CAM) to better understand regions of a given MRI projection
contributing to predictions of VAT, ASAT, and GFAT volumes27.
Briefly, Grad-CAM uses gradients entering the final convolutional
layer to generate a low-resolution heat map signifying how much a
given region contributes to a model’s prediction. Separately in
males and females, we selected participants from each held out
dataset at the 75th, 95th, and 99th percentiles of absolute error and
applied Grad-CAM to generate saliencymaps.We also selected three
participants who were present in all three held out datasets to
compare Grad-CAM results for VAT, ASAT, and GFAT. In all cases,
Grad-CAM revealed prioritized regions of the MRI projection that
were anatomically consistent with the known distribution of VAT,
ASAT, and GFAT, even in cases with higher absolute error (Supple-
mentary Figs. 1–4).

Variation in adipose volumes and association with cardiometa-
bolic diseases
We confirm and extend prior evidence for marked differences in fat
depot volume in male versus female participants (Fig. 2a)28,29. Median
visceral adipose tissue volume was substantially higher in males as
compared to females – 4.8 versus 2.3 liters, respectively – while sub-
cutaneous and gluteofemoral depots tended to predominate in
females (Table 1). A significant correlation between BMI and all three
fat depots was noted – Pearson r ranging from 0.77 to 0.91 – but
considerable variation was observed within any clinical BMI category
(Fig. 2a, b). Modest variation in the correlation between BMI and each
fat depot was noted across self-reported ethnicity groups (Supple-
mentary Data 5).

Adipose tissue volumes were each associated with increased
prevalence of type 2 diabetes and coronary artery disease (Supple-
mentary Data 6–7) – as might be expected based on the strength of
correlation with BMI –with risk gradient somewhatmore pronounced
for VAT (Supplementary Data 8). Taking type 2 diabetes as an example,
odds ratios per standard deviation increment (OR/SD) were 2.14 (95%
CI: 2.05-2.23), 1.69 (95% CI: 1.63-1.75), and 1.48 (95% CI: 1.42-1.54) for
VAT, ASAT, and GFAT, respectively.

BMI-adjusted local fat depots and cardiometabolic disease
To disentangle the unique impact of each fat depot from overall
BMI, we next generated measurements of VATadjBMI, ASATadjBMI,

Table 1 | Baseline characteristics of UKBiobankparticipants at
the time of MRI imaging

Male (N = 19,435) Female
(N = 20,597)

Age (years) 66.0 [59.3, 71.3] 64.1 [58.0, 69.7]

Self-reported ethnicity

White 18,773 (96.6) 19,936 (96.8)

Black 137 (0.7) 192 (0.9)

East asian 112 (0.6) 137 (0.7)

South asian 238 (1.2) 133 (0.6)

Other 175 (0.9) 199 (1.0)

Systolic blood pressure(mmHg) 140.5 [130.0, 152.5] 134.0 [122.0, 147.5]

Diastolic blood pressure(mmHg) 80.5 [74.0, 87.0] 76.5 [70.0, 83.5]

Current smoker 785 (4.1) 583 (2.9)

Weight (lbs) 181.3 [164.8, 201.3] 147.4 [132.2, 166.3]

Height (in) 69.3 [67.8, 71.1] 64.2 [62.6, 65.8]

Body-mass index (kg/m2) 26.6 [24.4, 29.1] 25.2 [22.8, 28.5]

Waist circumference (cm) 94.0 [87.0, 101.0] 81.0 [74.0, 90.0]

Hip circumference (cm) 100.0 [96.0, 105.0] 100.0 [94.0, 106.0]

Waist-to-hip ratio 0.93 [0.89, 0.98] 0.81 [0.77, 0.87]

Fat depot volumes

Visceral adipose tissue (L) 4.8 [3.2, 6.4] 2.3 [1.5, 3.5]

Abdominal subcutaneous adipose
tissue (L)

5.4 [4.2, 7.0] 7.4 [5.6, 9.7]

Gluteofemoral adipose tissue (L) 8.9 [7.5, 10.7] 10.8 [9.0, 13.1]

Cardiometabolic diseases

Type 2 diabetes 1,264 (6.5%) 637 (3.1%)

Coronary artery disease 1,542 (7.9%) 414 (2.0%)

Continuous variables are reported as medians with interquartile range.
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and GFATadjBMI for each participant by computing sex-specific BMI
residuals in 38,680 (97%) of the study population with BMI mea-
surement on the day of MRI imaging available (Supplementary
Fig. 5). These residuals reflect the difference in an individual’s fat
depot volume as compared with that expected based on BMI. These

metrics were fully independent of BMI and largely independent of
anthropometric measures and each other (Supplementary Fig. 6).
Flexibly modeling BMI with a B-spline basis when computing these
residuals yielded similar results (Supplementary Fig. 7, Supple-
mentary Data 9).

Fat phase

Coronal

projection

Sagittal
projection

Water phase

a

b

c

VAT: 8.1 L (99th percentile)
ASAT: 8.3 L (41st percentile)
GFAT: 10.6 L (27th percentile)

VAT: 4.3 L (88th percentile)
ASAT: 16.1 L (99th percentile)
GFAT: 14.8 L (91st percentile)

VAT: 2.2 L (25th percentile)
ASAT: 9.2 L (64th percentile)
GFAT: 19.7 L (99th percentile)

Fig. 1 | Convolutional neural networks to quantify adipose tissue depots from
body MRI images. a Two-dimensional projections are created by computing the
mean pixel intensity along the coronal and sagittal axes. Two images for each
participant were used as inputs into the convolutional neural network: one con-
sisting of the coronal and sagittal two-dimensional projections in the fat phase, and
another consisting of the same projections in the water phase. b Convolutional
neural networks trainedon two-dimensionalMRI projections achievednear-perfect
prediction of each fat depot volume in the holdout set (Supplementary Table 3).

c Three female participants with similar BMI (ranging from 29.1 to 29.6 kg/m2) but
highly discordant fat depot volumes quantified by convolutional neural networks.
Fat depot volume percentiles are computed relative to a subgroup of female par-
ticipants with overweight BMI (25 ≤ BMI < 30). Note that outlines for each fat depot
are drawn as a visual aid for each fat depot and do not reflect segmentation.
Abbreviations: VAT, visceral adipose tissue; ASAT, abdominal subcutaneous adi-
pose tissue; GFAT, gluteofemoral adipose tissue.
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In contrast to analysis of raw tissue volumes – where each depot
was associated with increased risk – significant heterogeneity was
noted for BMI-adjusted values. In a mutually adjusted logistic regres-
sion model including covariates of age, sex, BMI, and MRI assessment
center, we observe that VATadjBMI was associated with increased
prevalence of type 2 diabetes – OR/SD 1.49 (95% CI: 1.43–1.55,
P = 9.9 × 10−76). By contrast, a largely neutral effect estimate was noted
for ASATadjBMI (OR/SD 1.08; 95% CI: 1.03-1.14, P =0.002) and GFA-
TadjBMI volumes were associated with decreased risk (OR/SD 0.75;
95% CI: 0.71-0.79, P = 6.4 × 10−28) (Fig. 3). Effect estimates were largely
consistent in subgroups binned by age or sex, with a somewhat more
pronounced magnitude of association in participants with BMI less
than 25 (Supplementary Figs. 8–9, Supplementary Data 10–12). Within
the limits of statistical power owing to small numbers of Black, East
Asian, and South Asian participants, we did not detect significant
heterogeneity for these associations (p-value for heterogeneity
range =0.83−0.96; Supplementary Data 10–11). A similar pattern was
observed for coronary artery disease, where associations for
VATadjBMI, ASATadjBMI, and GFATadjBMI were OR/SD 1.17 (95% CI:
1.11–1.22, P = 3.0 × 10−11), 1.00 (95% CI: 0.94–1.05, P =0.92), and 0.89
(95%CI: 0.84–0.94, P = 3.5 × 10−5), respectively. In a sensitivity analysis,
we additionally adjusted for weight, height, smoking status, and self-
reported ethnicity, finding similar results (Supplementary Data 13).
Adjustment for type 2 diabetes status in the coronary artery disease
analysis led to comparable results as well.

To better understand the gradients in absolute prevalence rates
according to BMI-adjusted fat depots, we calculated standardized
estimates for the lowest quintile, quintiles 2–4, and the highest quintile
within clinical BMI categories of normal, overweight, and obesity.

Using this approach, we note substantial gradients in the pre-
valence of cardiometabolic diseases according to local adipose tissue
burden, even within clinical BMI categories (Fig. 4, Supplementary
Data 14–15). As a representative example, males with normal BMI but
VATadjBMI in the highest quintile had a predicted probability of type 2
diabetes of 6.6% (95%CI 5.5–7.9), higher than males with overweight
BMI with VATadjBMI in the lowest quintile, in whom probability was
2.7% (95% CI: 2.2–3.4). Among females with obesity, estimates of dia-
betes ranged from 3.5 to 9.2% across quintiles of VATadjBMI but 7.6 to
3.6% for GFATadjBMI. A similar pattern – with less pronounced gra-
dients – was observed for coronary artery disease.

BMI-adjusted fat depots and risk of incident cardiometabolic
diseases
Over a median follow-up of 2.8 years, 227 (0.6%) and 588 (1.6%) par-
ticipants with local adiposity metrics available had a new diagnosis of
type 2 diabetes or coronary artery disease, respectively. BMI-adjusted
fat depots were similarly associated with risk of future disease events
in mutually adjusted models. For incident type 2 diabetes, hazard
ratios per SD increase (HR/SD) were 1.45 (95% CI: 1.30–1.61,
P = 1.3 × 10−11), 0.96 (95% CI: 0.84–1.08, P =0.49), and 0.84 (95% CI:
0.74–0.95, P =0.005) for VATadjBMI, ASATadjBMI, and GFATadjBMI
respectively (Table 2). For incident coronary artery disease, HR/SD
were 1.17 (95% CI: 1.08-1.26, P = 8.1 × 10−5), 1.04 (95% CI: 0.95–1.14,
P =0.41), and 0.91 (95% CI: 0.83–1.00, P =0.05) for VATadjBMI, ASA-
TadjBMI, and GFATadjBMI respectively.

Association of lifestyle habits with fat depots
Of the 40,032 studied participants, 39,530 had self-reported data
regarding diet and physical activity available at the time of imaging
(Supplementary Data 16). Participants were categorized as following
either an ideal or poor diet and either ideal, intermediate, or poor
physical activity on the basis of previously defined criteria30. We stu-
died associations between diet and physical activity categories with
each BMI-adjusted fat depot in linear regressions adjusted for age, sex,
smoking status, and MRI assessment center. Ideal diet was associated
with reduced VATadjBMI (beta = −0.15 SDs; 95% CI −0.18 - −0.13,
P = 6.8 × 10−39), with weaker associations noted with ASATadjBMI
(beta = −0.04 SDs; 95% CI: −0.06 - −0.02, P = 0.001) and GFATadjBMI
(beta = −0.03 SDs; 95% CI: −0.05−0.00, P = 0.03) (Supplementary
Data 17). Intermediate versus poor physical activity revealed a more
symmetric pattern with reduced VATadjBMI (beta = −0.13 SDs; 95% CI:
−0.17–(−0.09), P = 5.3 × 10−11), ASATadjBMI (beta = −0.07 SDs; 95% CI:
−0.11–(−0.03), and GFATadjBMI (beta = −0.08 SDs; 95% CI:
−0.12–(−0.04)). Ideal versus poor physical activity showed a similar
pattern with an amplified effect. Similar patterns were observed in
models examining associations with BMI-unadjusted VAT, ASAT,
and GFAT.

Discussion
In this study,we demonstrated that a deep learning approach based on
two-dimensional MRI projections is adequately predictive to quantify
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Fig. 2 | Sex-stratified density plots and correlation plots of visceral, abdominal
subcutaneous, andgluteofemoral adipose tissue volumes. a Sex- andBMI-group
specific density plots for visceral adipose tissue (VAT), abdominal subcutaneous
adipose tissue (ASAT), and gluteofemoral adipose tissue (GFAT) with dotted lines
denotingmedians. b Sex-stratified correlation plots between VAT, ASAT, GFAT and

three anthropometric measures: body mass index (BMI), waist circumference
(Waist), and hip circumference (Hip). Analogous plots for BMI-adjusted fat depots
are shown in Supplementary Figs. 5–6. Abbreviations: VAT, visceral adipose tissue;
ASAT, abdominal subcutaneous adipose tissue; GFAT, gluteofemoral adipose tis-
sue; BMI, body mass index; Waist, waist circumference; Hip, hip circumference.
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VAT, ASAT, and GFAT volumes at scale. By thenmoving away from raw
fat depot volumes – which are driven largely by BMI and overall
adiposity – to BMI-adjusted measurements, we demonstrated a con-
sistent trend of VATadjBMI associated with increased risk of type 2
diabetes and coronary artery disease, ASATadjBMI largely risk-neutral,
and GFATadjBMI conferring protection. These results have at least
four implications.

First, machine learning can enable insights from large-scale data
repositories of difficult-to-measure phenotypes. In this study, con-
volutional neural network models were used to precisely measure
fat depot measurements from MRI images, considered the gold
standard modality for the volumetric measurement of adipose
tissue16,31. Hypothesis-informed simplification of the input data – in
this study moving from three-dimensional MRI images to two-
dimensional MRI projections – was necessary to ensure computa-
tional feasibility. This work adds to several recent studies ofmachine
learning-derived phenotypes, including aortic size, liver fat, and
cardiac trabecular structure32–34. Although population-based
assessment of fat distribution using MRI is unlikely to be practical,
these results lay the scientific foundation for efforts to quantify such
measures using other data – such as DEXA images or abdominal CT
scans already embedded in the electronic medical record for some
patients – or even static images of body silhouette, as might con-
ceivably be obtained with a smartphone camera35,36. Abdominal

imaging may also be useful for learning hidden variables of biolo-
gical significance, such as age37.

Second, these results support a growing appreciation that various
fat depots – rather than serving as an agnostic sink for energy storage –
have distinct metabolic profiles. Previous work has noted significant
functional differences in adipocytes according to specific fat depot,
ascribed in part to site-specific expression of developmental genes
associated with adipogenesis38,39. While VAT tends to be the primary
site for immediate storage of dietary-derived fat via adipocyte hyper-
trophy and has a higher rate of lipid turnover, GFAT is amore stable fat
depot that primarily expands via adipocyte hyperplasia andmay spare
expansion of harmful visceral or ectopic fat depots. These and other
studies support a natural order of fat deposition, whereby a primary
driver of high VAT in specific individuals may reflect an inability to
adequately expand ASAT or GFAT depots13,40. In rare Mendelian lipo-
dystrophies – as occurs in individuals who harbor pathogenic LMNA
mutations – an extreme example of this paradigm leads to marked
reduction of ASAT and GFAT but increased VAT and increased rates of
severe insulin resistance41. Whether individuals in the extreme tails of
low GFATadjBMI and ASATadjBMI or high VATadjBMI might be enri-
ched for genetic perturbations in lipodystrophy genes or the inherited
component to these metrics is largely ‘polygenic’ – due to the aggre-
gate effects ofmany commonDNA variants, each ofmodest effect size
– warrants further study42–44. Sex differences will also be important to

Fig. 3 | Associationofbody-mass indexadjusted fat depotswith type 2 diabetes
and coronary artery disease. Odds ratios per standard deviation with 95% con-
fidence intervals are shown for prevalent type 2 diabetes and coronary artery dis-
ease. Sample sizes for each model are shown as the denominator in the second
column. P-values correspond to two-sided tests for the indicated independent
variable in an adjusted logistic regression. Logistic regression models were

adjusted for age, sex (except in sex subgroup analyses), BMI, the other two fat
depots (e.g. ASATadjBMI and GFATadjBMI for VATadjBMI), and MRI imaging cen-
ter. Source data are provided as a Source Data file. Abbreviations: VATadjBMI,
visceral adipose tissue adjusted for body mass index (BMI); ASATadjBMI, abdom-
inal subcutaneous adipose tissue adjusted for BMI; GFATadjBMI, gluteofemoral
adipose tissue adjusted for BMI.
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consider in future studies on local adiposity – for example, here we
demonstrate thatASATadjBMI andGFATadjBMI aremore correlated in
male participants than in female participants, which may point to sex-
dependent fat depot specificity.

Third, changes in measures of local adiposity – independent of
weight and body-mass index – may serve as reliable proxies of cardi-
ometabolic benefits of a given intervention, andwarrant consideration
as additional endpoints for future clinical trials.Most studies to date of
obesity interventions have focused on reduction in overall weight or
BMI as the primary outcome, consistent with FDA regulatory
guidance45. However, at least two classes of drugs appear to have a
selective VAT reduction effect in clinical trials: thiazolidinediones and

a synthetic form of growth hormone-releasing hormone46,47. Whether
these therapies might be repurposed from their original indications –
type 2 diabetes and HIV-associated lipodystrophy – or new agents
might prove useful in a subset of individuals with VAT-driven increases
in cardiometabolic risk warrants further study. In such studies,
“adjBMI” or similar measures of local adiposity may prove useful for
quantifying BMI-independent changes in fat distribution. Considering
measures of local adiposity may be particularly important for indivi-
duals with normal or low BMI – in this study, we observed a trend of
amplified associations with type 2 diabetes in participants with BMI
less than 25 kg/m2, consistent with a prior study examining the asso-
ciation of waist circumference and waist-hip ratio with mortality48.
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Fig. 4 | Standardizedprevalence of type 2diabetes and coronary artery disease,
according to quintiles of body-mass index adjusted fat depot and body-mass
index strata. Standardized prevalence with 95% confidence intervals are repor-
ted from sex-stratified logistic regressions including age, BMI, MRI imaging
center, sex-specific quintiles of three local adiposity metrics (VATadjBMI, ASA-
TadjBMI, GFATadjBMI), and interaction terms between BMI and each of the local
adiposity metrics. 18,810 male participants and 19,870 female participants were
used for each logistic regression model, respectively. For each fat depot, the

three bars from lightest to darkest represent the bottom quintile, quintiles 2–4,
and the top quintile of the BMI-adjusted fat depot in question, respectively.
Median body-mass index was 25.9 kg/m2 with 15,446 (39.9%) individuals with
BMI < 25, 16,179 (41.8%) with 25 ≤ BMI < 30, and 7055 (18.2%) with BMI ≥ 30.
Source data are provided as a Source Data file. Abbreviations: BMI, body mass
index; VATadjBMI, visceral adipose tissue adjusted for BMI; ASATadjBMI,
abdominal subcutaneous adipose tissue adjusted for BMI; GFATadjBMI,
gluteofemoral adipose tissue adjusted for BMI.
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Fourth, although our data suggests similar performance of our
deep learning models across self-reported ethnicity subgroups, we
were underpowered to study disease associations in non-White sub-
groups. Additional validation across ancestrally and geographically
diverse populations would be of considerable value, especially given
prior evidence of significant variability in fatdistribution indices across
ethnicity groups49,50. An important example relates to the South Asian
population, where abnormal fat distribution has been postulated as a
key driver of the markedly increased rates of cardiovascular disease
and diabetes observed, often in the context of a relatively normal
BMI51,52.

Our study has several limitations. First, this study was a cross-
sectional analysis of individualswith amedianageof65 years at timeof
imaging. Future studies of individuals across the lifespan – especially
those that include repeat imaging assessments – are warranted. Sec-
ond, althoughwe note striking associations of BMI-adjusted fat depots
with cardiometabolic disease, these observational data do not defi-
nitely prove causation or that modification of fat distribution will lead
to therapeutic gain. Third, while two-dimensional MRI projections are
a useful simplification of three-dimensional MRI images for the task of
predicting adipose tissue compartment volumes, they are unlikely to
be appropriate for predicting “density-like quantities” such as liver fat
percentage, where a single axial cross-section performs well33. This
highlights the importance of choosing an appropriate simplification
for the desired task. Fourth, while we were able to achieve good per-
formance using CNN-based regression models and saliency mapping
results were anatomically reasonable, we were unable to directly
compare our approach to segmentation-based models.

In conclusion, we used a machine learning approach based on
two-dimensional projections of bodyMRI data to compute VAT, ASAT,
and GFAT volumes at scale in 40,032 individuals of the UK Biobank.
BMI-adjusted fat depot measurements displayed divergent associa-
tionswith cardiometabolicdiseases andwere shown to alter riskwithin
BMI subgroups. These BMI-adjusted metrics may serve as useful
additional endpoints for obesity interventions to more completely
capture metabolic health associated with body composition.

Methods
Study population
The UK Biobank is an observational study that enrolled over
500,000 individuals between the ages of 40 and 69 years between
2006 and 2010, of whom 43,531 underwent body MRI imaging
between 2014 and 2020 as part of an imaging substudy53,54. Images
were acquired using the Dixonmethod, anMRI sequence that can be
used to isolate fat signals from water signal55. Each participant’s MRI
data consisted of 244 axial slices acquired from the neck to the
knees in four sequences: in-phase, out-of-phase, fat-only, and water-
only. After the exclusion of 3489 (8.0%) imaging scans based on
technical problems or artifacts, 40,032 participants remained for
analysis, 19,435 males and 20,597 females (Supplementary Meth-
ods). This analysis of data from the UK Biobank was approved by the

Mass General Brigham institutional review board andwas performed
under UK Biobank application #7089.

Machine learning to measure fat depot volumes
Among the 40,032 individuals with MRI imaging data available, a
subset had visceral adipose tissue (VAT) volume, abdominal sub-
cutaneous adipose tissue (ASAT) volume, and total adipose tissue
(TAT) volume between the top of vertebrae T9 and the bottom of the
thigh muscles, quantified and made available as previously described
(N = 9040, 9041, 7754 participants, respectively)20,21,24,25. Gluteofe-
moral adipose tissue (GFAT) volume was derived by computing the
difference between TAT and the sum of VAT and ASAT (Supplemen-
tary Methods). For each participant, we transformed three-
dimensional MRI images into two-dimensional coronal and sagittal
projections by computing the mean intensity projection in each
orientation. For example, a given pixel on a coronal two-dimensional
projection represents the mean intensity across all pixels making up a
line oriented in the anterior-posterior direction perpendicular to the
coronal plane (SupplementaryMethods). This procedure was done for
the fat-only and water-only MRI sequences, and the resulting images
were jointly used as the imaging input for a given participant.

Individuals with previously quantified fat depot volumes were
randomly split into 80% for training and a 20% holdout sample for
testing. For each of VAT, ASAT, and GFAT, a CNNwas trained on a pair
of fat phase and water phase MRI images to predict each fat depot
volume, where each image was composed of (a) a coronal two-
dimensional projection and (b) a sagittal two-dimensional projection
of the body MRI. Each CNN was developed with the DenseNet-121
architecture pre-trained on ImageNet as the base model56,57. The last
dense block output was flattened using a global average pooling layer
and then fed into three fully connected layers of size 64, 256, and 1,
with the last layer having no activation function (linear mapping). All
other activation functions use the ReLU non-linearity. All models were
trained using the Adam optimizer with a learning rate set to a cosine
decay policy decaying from 0.001 to 0 over 100 epochs, a shrinkage
loss function using the hyperparameters a = 10.0 and c =0.2, and a
batch size of 3258,59. For all training data, the following augmentations
(random permutations of the training images) were applied: random
shifts in the XY-plane by up to ±16 pixels, rotations by up to ±5 degrees
around its center axis, and the coronal view horizontally flipped with a
probability of 50%. Each view (coronal and sagittal) were separately
pre-normalized by its z-score (0 mean, standard deviation of 1), fol-
lowed by joint normalization following concatenation side-by-side.

A five-fold cross-validation scheme was used within the 80%
training data set. Performance was determined in a 20% holdout
sample that was unseen to themodel prior to evaluation. The five folds
were used to determine the mean and standard deviation of perfor-
mance metrics, then a single fold was randomly selected to take for-
ward for predicting fat depot volumes in the remaining participants
with raw MRI imaging data but without labels. Additional information
can be found in the Supplementary Methods.

Table 2 | Association of BMI-adjusted fat depot volumes with incident disease

Disease No. events / Total no. at risk (%) BMI-adjusted fat depot HR (95% CI) P-value

Type 2 Diabetes 227/36,837 (0.6) VATadjBMI 1.45 (1.30–1.61) 1.3 × 10−11

ASATadjBMI 0.96 (0.84–1.08) 0.49

GFATadjBMI 0.84 (0.74–0.95) 0.005

Coronary artery disease 588/36,786 (1.6) VATadjBMI 1.17 (1.08–1.26) 8.1 × 10−5

ASATadjBMI 1.04 (0.95–1.14) 0.41

GFATadjBMI 0.91 (0.83–1.00) 0.05

Hazard ratios with 95% CI in parentheses are shown for VATadjBMI, ASATadjBMI, and GFATadjBMI in Cox proportional-hazard models adjusted for age, sex, BMI, the other two fat depots, and MRI
imaging center. P-values correspond to two-sided tests for the indicated independent variable in the adjusted models. Median follow-up time for both incident type 2 diabetes and coronary artery
diseasewas 2.8years from thedateof imaging.Note that twoparticipants in theprevalentdisease analyses arenot included in incidentdiseaseanalysesbecause theywithdrewconsent in the interim
period.

Article https://doi.org/10.1038/s41467-022-35704-5

Nature Communications |          (2023) 14:266 7



Saliency maps
We used Gradient-weighted Class ActivationMapping (Grad-CAM)27 to
generate saliency maps for selected participants to obtain “visual
explanations” for decisions from our CNN-based regression models
used for estimating fat depot volumes. Briefly, Grad-CAM uses the
gradients flowing into the final convolutional layer to produce a low-
resolution localization heat map highlighting important regions (red)
and less important regions (blue). In other words, the importance
signifies howmucha specific area contributes to theoverall prediction.

Cardiometabolic disease definitions
Type 2 diabetes was defined on the basis of ICD-10 codes, self-report
during a verbal interview with a trained nurse, use of diabetes medi-
cation, or a glycated hemoglobin greater than or equal to 6.5% before
thedate of imaging. Coronary arterydiseasewasdefined asmyocardial
infarction, angina, coronary revascularization, or death from coronary
causes as determined on the basis of ICD-10 codes, ICD-9 codes,OPCS-
4 surgical codes, nurse interview, and national death registries.

Statistical analysis
We generated BMI-adjusted fat depot measurements by computing
residuals from sex-specific linear regression models using BMI to
predict each fat depot volume, analogous to prior studies of waist-hip
ratio adjusted for BMI60,61. Logistic regressionmodelswere used to test
the association of BMI-adjusted fat depot measurements with pre-
valent disease in models adjusted for age, sex (except in sex subgroup
analyses), BMI, the other two fat depots (e.g. ASATadjBMI and GFA-
TadjBMI for VATadjBMI), and MRI imaging center. Cox proportional-
hazardmodels with the same covariates were used to test associations
of BMI-adjusted fat depots with incident type 2 diabetes and coronary
artery disease. To predict the gradient of prevalent disease across
clinical categories, we used logistic regression models separately in
males and females including age, BMI, sex-specific quintiles of
VATadjBMI, ASATadjBMI, GFATadjBMI, MRI imaging center,
and interaction terms between the local adiposity quintiles and BMI.
Models were standardized to the median of all predictor variables
(except for the MRI imaging center variable, where the mean was
used). Effect sizes are reported per sex-specific standard deviation.

All analyses were performed with the use of R software, version
3.6.0 (R Project for Statistical Computing).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This research has been conducted using the UK Biobank Resource
under Application Number #7089. The raw UK Biobank data - includ-
ing the anthropometric data reported here - are made available to
researchers from universities and other research institutions with
research inquiries following IRB and UK Biobank approval (https://
www.ukbiobank.ac.uk/enable-your-research/apply-for-access). Visc-
eral, abdominal subcutaneous, and gluteofemoral adipose tissue
volumepredictions havebeen submitted to theUKBiobank andwill be
available for download by researchers (https://www.ukbiobank.ac.uk/
enable-your-research/research-analysis-platform). All other data gen-
erated in the study are available in the Supplementary Data. Source
data for Figs. 3 and 4, Supplementary Fig. 8 and Supplementary Fig. 9
are provided as a Source Data files. Source data are provided with
this paper.

Code availability
Representative code for this work is made available at the following
Github repository: https://github.com/broadinstitute/ml4h/tree/
master/model_zoo/adiposity_mlandepi.
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