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Lipid-induced transcriptomic changes in
blood link to lipid metabolism and allergic
response

Koen F. Dekkers1, Roderick C. Slieker 2,3, Andreea Ioan-Facsinay4,
Maarten van Iterson1, BIOS consortium*, M. Arfan Ikram 5,
Marleen M. J. van Greevenbroek 6, Jan H. Veldink 7, Lude Franke 8,
Dorret I. Boomsma 9, P. Eline Slagboom 1, J. Wouter Jukema 10,11 &
Bastiaan T. Heijmans 1

Immune cell function can be altered by lipids in circulation, a process poten-
tially relevant to lipid-associated inflammatory diseases including athero-
sclerosis and rheumatoid arthritis. To gain further insight in the molecular
changes involved, we here perform a transcriptome-wide association analysis
of blood triglycerides, HDL cholesterol, and LDL cholesterol in 3229 indivi-
duals, followed by a systematic bidirectional Mendelian randomization ana-
lysis to assess the direction of effects and control for pleiotropy. Triglycerides
are found to induce transcriptional changes in 55 genes andHDL cholesterol in
5 genes. The function and cell-specific expression pattern of these genes
implies that triglycerides downregulate both cellular lipid metabolism and,
unexpectedly, allergic response. Indeed, aMendelian randomization approach
based on GWAS summary statistics indicates that several of these genes,
including interleukin-4 (IL4) and IgE receptors (FCER1A, MS4A2), affect the
incidence of allergic diseases. Our findings highlight the interplay between
triglycerides and immune cells in allergic disease.

Immune cells are continuously exposed to external stimuli that can
lead to phenotypic1 and molecular2 changes. Recent studies have
shown that blood lipids, including cholesterol3 and triglycerides4, can
affect circulating immune cells. This processmay be relevant for lipid-
associated inflammatory diseases such as atherosclerosis5 and rheu-
matoid arthritis6. However, the effectofblood lipids on transcription, a

process particularly informative of the molecular state of a circulating
immune cell7, is largely unknown.

Several studies have investigated the relationship between lipids
and immune cells. Tissue culture experiments, for example, indicated
that exposure to lipids can affect the transcription of genes in immune
cells in vitro3,8,9. An increasingly recognized and powerful alternative
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approach to infer such relationships in vivo is the use of population
genomics data in combination with Mendelian randomization analysis
(MR). MR uses genetic variants as causal anchors to infer directed
relationships10,11. Using this approach, we4 and others12 observed an
effect of lipids on DNA methylation, an epigenetic mark, which was
linked to end-product feedback control of lipid metabolism. Similarly,
blood lipid levels have been reported to be associatedwith differential
expression in blood. Although the smaller scale of the latter studies
rendered an MR analysis to infer the direction of effects unsuccessful,
they did suggest that lipid-associated differential expression is more
widespread than differential DNA methylation13,14.

Therefore, we adopted a two-step approach to determine whether
lipids influence transcription in circulating immune cells. First, we per-
formed a large-scale transcriptome-wide analysis of blood triglycerides
(TG), HDL cholesterol (HDL-C), and LDL cholesterol (LDL-C) in whole
blood samples of 3229 individuals. Next, building on our previous work4,
we implemented a comprehensive MR analysis to infer causal effects of
lipid levels on transcription using multiple genetic variants as causal
anchors that allowed us to systematically investigate potential pleiotropy
using state-of-the-art methods15,16. Our analysis revealed that particularly
TG affects the blood transcriptome by downregulating genes involved in
cellular lipid metabolism and the allergic response.

Results
Transcriptome-wide analysis reveals genes associated with
lipid levels
To evaluate the association of blood lipids with transcription in circu-
lating immune cells, we performed a transcriptome-wide analysis in 3229
individuals with whole blood RNA-seq data from 6 cohorts participating
in the BIOS consortium (Table 1). We identified 496 differentially
expressed genes for TG, 384 for HDL-C, and 26 for LDL-C (P-value <2.8 ×
10−6; Supplementary Data 1). The associations observed for TG not only
stood out in number but also in strength in terms of effect size and
P-value (Fig. 1a). In line with correlations between lipid levels (in our
study: RTG–HDL-C =−0.48, RTG–LDL-C =0.45, and RHDL-C–LDL-C =−0.12), there
was substantial overlap in genes. We observed 194, 195, and 23 genes for
TG-C, HDL-C, and LDL-C, respectively, that were associated with at least
one additional other lipid level (Fig. 1b). Evidence for the associationswas
generally consistent across cohorts: for 757 of 906 associations the
direction was consistent for all 6 cohorts, for 143 associations the
direction was consistent for 5 of 6 cohorts, for 5 associations the direc-
tion was consistent for 4 of 6 cohorts, and for 1 association the direction
was consistent for 3 of 6 cohorts (Supplementary Data 1). Effect sizes
were not sensitive to additional adjustments for smoking behavior or
lipid-lowering medication (Supplementary Fig. 1).

Constructed genetic instruments are valid instruments for
Mendelian randomization
To infer causal relationships using MR, we first constructed weighted
genetic instrumental variables (GIVs) for blood lipids from genetic
variants reported in a genome-wide association study of lipid levels
among 188,577 individuals17 (TG: 40 variants, HDL-C: 69 variants, LDL-
C: 57 variants; all variants were available in the current study; Supple-
mentary Data 2). The GIVs were strongly associated with their
respective lipid levels in our own study (F-stat > 134, P-value < 10−31;
SupplementaryData 3), although they explained aminorproportion of
the total variance (R2 = 4.0–6.4%). There was an overlap between the
variants of the lipid GIVs. Of the variants, 18/40, 49/69, and 44/57
variants were unique for TG, HDL-C, and LDL-C, respectively. The GIVs
were not associated with measured potential confounders' age, sex,
and cell counts, a necessity for accurate effect estimation, except for
the LDL-CGIV, whichwas nominally associatedwithmonocyte fraction
in whole blood (P-value = 0.011; Supplementary Data 4). This associa-
tionwasweak, however,when comparedwith the strong associationof
the LDL-C GIV and LDL-C levels (P-value = 2.6 × 10−31). Together, this
indicates that our GIVs are valid instruments for MR.

Mendelian randomization reveals genes affected by lipid levels
To infer a causal effect of lipids on transcription using theGIVs as proxies
for lipid levels, we performed an MR analysis for the 906 associations
found in the transcriptome-wide analysis. We used a modified Cochran’s
Q-test15 to account for pleiotropy by iteratively removing genetic variants
from the GIVs until no pleiotropy was detected (PQ>0.05). We found
evidenceof an effect of TGon 56genes, ofHDL-Con6genes, andof LDL-
C on 0 genes after adjustment for multiple testing using the
Benjamini–Hochberg method at 5% false discovery rate (PFDR <0.05,
Supplementary Data 5). Pleiotropic variants were removed from the GIVs
for 11 of the TG effects and 5 of the HDL-C effects (Supplementary
Data 5). MR effect size estimates were concordant with those previously
observed in the transcriptome-wide analysis (Fig. 2a). Most of the effects
for TG and LDL-Cwere negatively correlatedwith transcription (TG: 52 of
56), while most of the effects for HDL-C were positively correlated (5 of
6). A post-hoc power analysis indicated that our MR analysis was able to
identify only ~6% of effects with 80% power; we detected ~7% (62 of 906
associations; Supplementary Data 5, Supplementary Fig. 2). In line with
the observed overlap between genes associated with different lipid
levels, all 6 genes for which we found evidence for an effect of HDL-C on
transcription were also observed for TG (Fig. 2b).

We also extended the MR analysis to evaluate the opposite
direction of effect, i.e. whether transcription of the 62 genes observed
in the MR analysis can affect lipid levels, a procedure known as

Table 1 | Characteristics of the six cohorts in the BIOS consortium

CODAM LL LLS NTR PAN RS

N 183 741 642 797 169 697

Sex (% Male) 56 42 47 35 63 42

Age (years, SD) 65.33 (7.05) 45.33 (13.15) 58.83 (6.61) 38.18 (15.21) 62.55 (9.55) 67.61 (5.93)

TG (mmol/L, SD) 1.58 (0.8) 1.14 (0.88) 1.93 (1.22) 1.3 (0.74) 1.85 (1.07) 1.48 (0.86)

LDL-C (mmol/L, SD) 3.93 (1) 3.3 (0.97) 3.82 (0.98) 3.2 (0.96) 3.83 (0.97) 3.71 (0.94)

HDL-C (mmol/L, SD) 1.34 (0.33) 1.55 (0.41) 1.42 (0.44) 1.43 (0.38) 1.44 (0.37) 1.51 (0.44)

Monocytes (%, SD) 7.13 (2.11) 7.47 (2.42) 7.35 (2.43) 7.96 (2.8) 7.28 (2.46) 7.46 (2.41)

Lymphocytes (%, SD) 32.48 (10.23) 31.87 (8.56) 32.69 (8.16) 34.59 (8.68) 32.58 (8.6) 33.93 (7.9)

Neutrophils (%, SD) 57.12 (10.99) 56.81 (9.39) 55.98 (8.72) 53.8 (9.39) 56.44 (8.88) 54.65 (8.6)

Eosinophils (%, SD) 2.75 (2.03) 2.89 (1.85) 2.79 (1.63) 3.04 (1.99) 2.82 (1.73) 2.91 (1.82)

WBC (×109 cells/L, SD) 6.76 (1.52) 6.52 (1.41) 6.61 (1.63) 6.41 (1.57) 6.95 (2.06) 6.44 (1.7)

RBC (×1012 cells/L, SD) 4.77 (0.37) 4.71 (0.34) 4.72 (0.35) 4.71 (0.39) 4.66 (0.34) 4.68 (0.36)

CODAMCohort onDiabetes andAtherosclerosisMaastricht, LL LifeLines, LLS Leiden Longevity Study,NTRNetherlands Twin Register, PAN Prospective ALS StudyNetherlands, RSRotterdamStudy,
SD standard deviation.
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bidirectional MR11. Using the strongest associating expression quanti-
tative trait locus (QTL) for each gene previously identified18 as a proxy
for transcription, we found no evidence of reverse causation
(PFDR ≥0.15; Supplementary Data 6).

Systematic sensitivity analysis of pleiotropy
We investigatedwhetherCochran’smethodmissed residual pleiotropy,
which would violate the MR assumption that the effect is mediated by
lipid levels. An important source of pleiotropy is the case where GIV
variants are located near genes identified in the transcriptome-wide

analysis and directly influence the expression through an expression
QTL effect in cis. As we previously showed, correction for this source of
direct pleiotropy canbe achievedby including the variant as a covariate
in the MR model4. This adjustment corroborated the results of
Cochran’s method for all identified effects and both adjustments
negated the caseofpleiotropy inwhich the variant rs174546has adirect
effect on LPL expression not mediated by TG level (P-value < 0.05;
Supplementary Fig. 3).

Egger regression, a previous alternative to Cochran’s Q-test to
test for pleiotropy19, indicated the presence of residual directional
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pleiotropy for 3 out of 62 genes (SLC27A2 (TG), LYBD6B (TG) and
AC004381.6 (TG); Supplementary Fig. 4) but only for LYBD6Bdid Egger
regression appreciably alter the effect size (P-value < 0.05).

Finally, effect sizes were generally not sensitive to further
adjustment for GIVs for the other lipids using a multivariable MR
analysis20. This is important because there was an overlap between
genetic variants in the lipid GIVs. After adjustment for the effect of the
lipid of interest for the GIVs of the other lipids, all associations were
confirmed except for CCNA1, which was no longer affected by HDL-C
after adjustment for the TG GIV (Supplementary Fig. 4). Similarly, we
constructed GIVs for other potential pleiotropic factors, namely sys-
tolic blood pressure, diastolic blood pressure, and BMI, using public
GWAS data21,22 and subsequently applied the same procedure as
implemented for the lipid GIVs (Supplementary Fig. 4). This analysis
did not detect any further pleiotropic associations.

In summary, our systematic analysis of pleiotropy indicates that
Cochran’s method was generally successful in detecting and correct-
ing for pleiotropy with the exception of 2 out of 62 effects (LYBD6B for
TG and CCNA1 for HDL-C). This resulted in a final set of 55 genes whose
expression was influenced by TG and 5 genes whose expression was
influenced by HDL-C (Supplementary Data 5). As noted previously,
HDL-C-influenced genes were also identified as TG-influenced genes.
Our extensive analysis did not indicate pleiotropy and thus favors the
interpretation that the effects on TG and HDL-C were independent.

The majority of the genes we identified constitute novel findings,
but there also was considerable overlap with earlier findings thus
corroborating the results. A recent study implementing a two-sample
MR method reported 29 genes putatively affected by TG and/or HDL-
C23 and our set of 55 genes included 17 of those genes (P-value < 10−10)
(Supplementary Data 7). Similarly, part of the genes identified in our
MR analysis were reported in previous transcriptome-wide association
analyses13,14, namely 20 of the 55 genes affected by TG and 3 of the
5 genes affected by HDL-C (Supplementary Data 7). Notably, for a
previously reported ‘lipid-leukocyte’ co-expression module14, we now
show that the differential transcription observed was induced by TG
for 9 out of the 11 genes in that module.

Genes affected by lipids are enriched for lipid metabolism
and allergy
To gain insight into the biological processes that are differentially
regulated in immune cells byTG,weperformed anenrichment analysis
for the 55 genes whose expression was affected by TG using 10 human
pathway databases. We detected 27 enriched processes primarily
defined by two subsets of TG-affected genes (PFDR < 0.05; Fig. 3a,
Supplementary Data 8).

Seven processes were related to lipid metabolism and included
central regulators of this overarching process (ABCA1, SQLE, HPGDS,
CYP11A1, ACSL6, SLC27A2, SREBF2, ABCG1, and PLD3). The TG-affected
genes also included two additional genes known to be involved in lipid
metabolism, but not reported in the pathway databases: CAV2, a
component of lipid rafts; MYLIP, a sterol-dependent inhibitor of cel-
lular cholesterol uptake that mediates ubiquitination and subsequent
degradationof LDLR. The expression of 6 of the 9 lipid-related genes in
blood cells was down-regulated in the presence of high plasma TG
(Fig. 2a; Supplementary Data 5). Notably, all genes affected by HDL-C
are part of this lipid metabolism subset.

However, 12 processes, including the top-9 enriched processes,
were related to allergy. They encompassed 10 TG-affected genes and
included factors in the signal transduction mediating the allergic
response, like interleukin-4 (IL4), IgE receptors (FCER1A, MS4A2), var-
ious other receptors (IL1RL1, HRH4, CCR3, and PTGER3), and enzymes
(HDC, HPGDS, and CYP11A1). The genes HPGDS and CYP11A1 were part
of both lipidmetabolism and allergy subsets, in linewith their function
in prostaglandin metabolism. A role in allergy extended beyond the
TG-affected genes reported in the pathway databases, namely RP11-

13A1.1 (a lncRNA implicated in fungal immune response) and CPA3 (a
protease released by mast cells and basophils, whose expression is
elevated in asthma patients). Elevated TG levels were indicated to
uniformly downregulate the expression of these genes (Fig. 2a; Sup-
plementary Data 5).

The TG-affected genes showed a cell-specific gene expression
pattern that was concordant with gene function. An analysis of public
RNA-seq data24 indicated that TG-affected genes involved in lipid
metabolism were ubiquitously expressed across all cell types. In con-
trast, the genes involved in allergy were expressed at low levels in all
cell types except in PBMCs, progenitor cells, and, most prominently,
in basophils, a cell type that is intimately involved in allergic reac-
tions (Fig. 3b).

To evaluate the relevance of these findings, we investigatedwhether
the TG-affected genes were also linked to allergy-related phenotypes
through a two-sample MR analysis. We retrieved summary statistics for
genome-wide association studies of 4 allergic phenotypes25–27 and cis-
expression QTLs18 for TG-affected genes as proxies for transcription. We
observed an effect of IL4 (P-value= 2.7 × 10−7), IL1RL1 (P-value = 1.3 × 10−3),
RUNX1 (P-value =6.3 × 10−5), FCER1A (P-value= 3.1 × 10−4), and RP11-13A1.1
(P-value= 2.9× 10−3) on the incidence of a combined allergic disease
phenotype (asthma and/or hay fever and/or eczema)26, an effect of IL4 (P-
value = 1.0 × 10−13), IL1RL1 (P-value =4.7 × 10−4), RUNX1 (P-value = 1.2 × 10−4)
and RP11-13A1.1 (P-value = 1.5 × 10−3) on the incidence of childhood-onset
asthma25, an effect of IL4 (P-value =2.6× 10−4), FCER1A (P-value = 1.4 ×
10−5), RUNX1 (P-value =3.4 × 10−6), ACSL6 (P-value= 2.4 × 10−3), andMS4A2
(P-value= 5.8 × 10−4) on the incidence of adult-onset asthma25 and an
effect of FCER1A (P-value= 3.9× 10−11) on IgE levels27. Notably, the direc-
tionality of the effects was consistent across phenotypic outcomes
(Supplementary Data 9).

Finally, we performed the same two-sample MR analysis for
atherosclerosis-related outcomes and rheumatoid arthritis, two
lipid-associated inflammatory diseases for which we a priori hypo-
thesized that lipid-induced changes in the transcriptome of immune
cells could be relevant. Based on summary statistics from GWASs of
coronary artery disease28, myocardial infarction28, and rheumatoid
arthritis29, only for CCR3 (P-value = 6.0 × 10−5), an effect on rheuma-
toid arthritis was indicated (Supplementary Data 9). Several other
TG-affected genes showed weaker associations with atherosclerosis-
related outcomes (ABCG1, AC004791.2, CPA3, CYP11A1, SLC12A3) or
rheumatoid arthritis (GATA2, SMPDL3A) but were no longer statisti-
cally significant after correction for multiple testing (PFDR > 0.05;
Supplementary Data 9).

Discussion
Weperformed a transcriptome-wide analysis in the blood cells of 3229
individuals and identified 496 differentially expressed genes for TG,
384 for HDL-C, and 26 for LDL-C. We then performed an MR analysis
and identified 55 genes affected by TG (of which 35 have not been
identified in previous transcriptome-wide analyses) and 5 genes
affected by HDL-C (of which 2 have not been identified in previous
transcriptome-wide analyses). The genes affected byTGwere enriched
for lipid metabolism and allergy pathways. Moreover, the TG-affected
genes involved in allergy pathways were specifically expressed in
basophils and were linked to allergy-related outcomes using a two-
sample MR analysis.

All of the five genes affected by HDL-C were also affected by TG
and are central players in lipid metabolism. In line with the negative
correlation between blood HDL-C and TG levels, all the affected genes
had the opposite direction of effect for TG and HDL-C. Our systematic
analysis of pleiotropy indicated that the TG and HDL-C effects are
independent. Although such analyses are unable to definitely prove
whether this is the actual mechanistic route in vivo, there is evidence
for 2 of the 5 overlapping genes that both effects do occur simulta-
neously. Mutations in ABCA1 lead to increased plasma TG levels and
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decreased HDL-C levels in patients30, while ABCG1, in addition to its
role in cholesterol efflux, also promotes lipid accumulation in the
presence of triglyceride-rich lipoproteins31. According to our analysis,
higher TG leads to decreased transcription of both genes, while higher
HDL-C leads to increased transcription, which is consistent with end-
product feedback control. This process, where the end product inhi-
bits its own synthesis and which has been observed for cholesterol32, is
what we proposed as an explanation for the results of our previous
study, in which we showed that lipids affect DNAmethylation of genes
involved in lipid metabolism4.

Multiple genes that were affected by TG have a well-established
role in allergy. An allergic response is initiated by T-helper 2 cells that
secrete IL4 in response to anallergen,which in turn promotes B cells to
produce IgE. IgE binds to the IgE receptor on basophils and mast cells

which start secreting inflammatory mediators, such as cytokines, his-
tamine, proteases, andprostaglandins, a groupof lipidswith hormone-
like effects. The TG-affected genes included two IgE receptor genes,
FCER1A and MS4A2, the allergic response initiating cytokine IL4, two
genes involved in histamine metabolism, HDC and HRH4, a protease
releasedbymast cells and basophils,CPA3, and three genes involved in
prostaglandinmetabolism,HPGDS, CYP11A1, and PTGER3. All the genes
were indicated to be downregulated in blood cells by elevated TG
levels. Although someof the genes are specific to the allergic response,
most of themhavemultiple immune functions and it is not certain that
TG affects this pathway specifically.

Our MR analysis had sufficient statistical power to find putatively
causal relationships between lipid levels and the subset of genes
that we first identified in a transcriptome-wide association analysis.
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Fig. 3 | TG-affected genes are enriched for lipid metabolism and allergy path-
ways and show cell-specific expression patterns in line with gene function.
a Pathway enrichments generated using a one-sided Fisher’s exact test with
clusterProfiler56 using the 10 human pathway databases BioPlanet 2019, WikiPath-
ways 2019 Human, KEGG 2019 Human, Elsevier Pathway Collection, BioCarta 2015,
Reactome 2016, HumanCyc 2016, NCI-Nature 2016, Panther 2016, and MSigDB
Hallmark 2020. The top 15 enrichments are shown. b Lipid metabolism genes are
expressed in all blood cell types, but genes involved in allergy are expressed
especially in basophils. Depicted are medians and interquartile range. Based on
public RNA-seq data24 of T follicular helper (TFH), T regulatory cells (Treg), T helper

1 (Th1), T helper 1/T helper 17 (Th1.Th17), T helper 17 (Th17), T helper 2 (Th2), T CD4
terminal effector (CD4_TE), T CD4 Naive (CD4_naive), ϒ/δ Vd2+ (VD2.), ϒ/δ Vd2-
(VD2..1), MAIT, T CD8 Naive (CD8_naive), T CD8 central memory (CD8_CM), T CD8
effector memory (CD8_EM), T CD8 terminal effector (CD8_TE), Progenitor cells,
Naive B cells (B_naive), Non-switchedmemory (NSM)B cells (B_NSM), Exausted (Ex)
B cells (B_Ex), Switched memory (SM) B cells (B_SM), Plasmablasts, Low-density
(LD) neutrophils, NK cells (NK), Classical (C) monocytes (C_mono), Intermediate (I)
monocytes (I_mono), Non-classical (NC) monocytes (NC_mono), Myeloid Dendritic
Cells (mDC), Plasmacytoid Dendritic Cells (pDC), low-density (LD) basophils, and
peripheral blood mononuclear cells (PBMC).
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WeusedCochran’smethod15 whichwas recently adapted for use inMR
to account for pleiotropy and subsequently performed a series of
sensitivity analyses that supported the validity of our results. Despite
detecting causal relationships between lipid levels and transcription in
blood, a post-hoc power analysis also revealed thatourMRanalysiswill
have missed a substantial proportion of effects; for example, a study
size larger than a million individuals is required to have sufficient
statistical power to detect 90% of the effects. While post-hoc power
calculations are not a valid method to estimate the statistical power of
a study33, it does provide a reasonable estimate of the order of mag-
nitude of the sample sizes that MR studies require.

Limitations of our analysis include that it was based on whole
blood and that information about allergy was unavailable in our own
data. However, an analysis of public data24, showed that lipid meta-
bolism genes were expressed in all cell types, whereas genes involved
in allergy were strongly expressed specifically in basophils. Basophils
play an important role in immune responses, including allergic
response34. Furthermore, a two-sample MR approach leveraging large
GWAS and eQTL databases suggested a potential causal role for IL4,
IL1RL1, RP11-13A1.1, FCER1A and MS4A2, RUNX1, and ACLS6 expression
in various allergic diseases and serum IgE levels. However, since this
analysis was based on a single genetic variant (the SNP responsible for
the strongest eQTL per gene of interest), we could not perform the
sensitivity analyses that we used for the previous MR analysis to rule
out pleiotropy. Also, eQTL effects were not specific for basophils but
reported for whole blood and, although detected in whole blood,
effectsmay extend to cell types outside the circulation. Further studies
are needed to elucidate whether lipids can actually affect cells in a cell
type-specific way and how they might affect the allergic response.

Our findings highlight the interplay between blood TG and cir-
culating immune cells in the allergy response, a largely unappreciated
phenomenon. Our original hypothesis, however, was that the interac-
tion between blood lipids and immune cells was particularly relevant
for lipid-associated inflammatory diseases including atherosclerosis5

and rheumatoid arthritis6. With the exception of the CCR3 gene for
rheumatoid arthritis, none of the TG-affected genes were associated
with these diseases on the basis of the two-sample MR approach. This
negative result should be interpreted with caution in view of the lim-
itations of the approach, including a low statistical power, and the
observation that some genes did show an association before the
necessary correction for multiple testing. While any contribution is
less apparent than for the allergic response, other study designswill be
required to obtain a definite answer.

In conclusion, our two-step analysis approach showcases the
potential of transcriptome-wide analyses followed by MR when com-
bined with rigorous testing of assumptions regarding pleiotropy.
Application of this approach to large-scale multiple omics studies
resulted in many genes previously unknown to be affected by lipid
levels in blood and suggested a novel, causal role for triglycerides in
the downregulation of the allergic response.

Methods
Cohorts
The Biobank-based Integrative Omics Study (BIOS) Consortium35,36

comprises six Dutch cohorts: Cohort on Diabetes and Atherosclerosis
Maastricht (CODAM)37, LifeLines (LL, https://www.lifelines.nl/)38, Lei-
den Longevity Study (LLS, https://leidenlangleven.nl/)39, the Nether-
lands Twin Register (NTR, https://tweelingenregister.vu.nl/)40,
Rotterdam Study (RS, https://www.ergo-onderzoek.nl/)41, and Pro-
spective ALS Study Netherlands (PAN, https://www.als-centrum.nl/
kennisplatform/biobank-neuromusculaire-ziekten-nmz/)42. The study
was approved by the institutional review boards of the participating
centers and all participants have given written informed consent and
the experimental methods comply with the Helsinki Declaration.
Genotype, RNA-seq, and blood profiles (including lipid levels and cell

counts) were available in whole blood, which was collected simulta-
neously for all measurements. The measurements of the samples for
the genetics, lipids and cell counts data were performed individually
by the cohorts. All RNA-seq data were generated centrally within the
BIOS consortium by the Human Genotyping facility (HugeF) of Eras-
musMC, theNetherlands (http://www.glimdna.org/). Characteristics of
the cohorts can be found in Table 1.

Lipids
Triglyceride (TG), HDL cholesterol (HDL-C), and total cholesterol
levels (TC)weremeasured after a fasting period of 12 h for CODAM, LL,
NTR, RS, and PAN; for LLS non-fasted lipids were measured. LDL
cholesterol (LDL-C) was calculated using Friedewald’s method43.
To address the non-normality of the distributions of lipid levels and to
be consistent with the GWAS of lipid levels on the basis of which we
constructed genetic instrumental variables17, rank-based inverse nor-
mal transformed data were used in all analyses.

Cell counts
White blood cell counts (WBC), i.e. neutrophils, lymphocytes, mono-
cytes, eosinophils, and basophils, weremeasuredby the standardWBC
differential as part of the complete blood count (CBC). However, a
minority of samples were lacking CBCmeasurements (15%) or did not
differentiate between granulocyte subtypes (neutrophils, eosinophils,
and basophils; 37%). Therefore, WBC and red blood cell counts were
imputed for these samples from the RNA-seq data using the workflow
found at: https://molepi.github.io/DNAmArray_workflow/05_Predict.
html. The correlation between predicted and measured cell types
was 0.91 for lymphocytes, 0.89 for neutrophils, 0.73 for monocytes,
and 0.73 for eosinophils.

Genotypes
Genotypesweremeasured individually per cohort (for data generation
details see Tigchelaar et al.38 for LL, Deelen et al. for LLS44, Willemsen
et al. for NTR40, and Hofman et al. for RS45), but imputed centrally. In
brief, the genotypes were harmonized (Genotype Harmonizer46), and
imputed (Impute247) using GoNL548 as a reference. Genotypes with an
imputation info-score <0.5, Hardy–Weinberg equilibrium P-value <
10−4, call rate <95%, or minor allele frequency <0.05 were removed. In
total, 5.2 million genotypes were available in all cohorts.

Transcription
Total RNA libraries were generated using the TruSeq v2 library protocol
and 2 × 50-bp paired-end sequencing was performed on the Illumina
Hiseq2000. Reads passing Illumina’s Chastity filter were produced
using CASAVA and quality control was donewith FastQC v0.10.1 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), cutadapt v1.1
(adapter trimming49), and Sickle v1.2 (removal of low-quality read ends,
https://github.com/najoshi/sickle). Reads were aligned to the human
genome (build NCBI37, https://www.ncbi.nlm.nih.gov/assembly/GCF_
000001405.13/) using STAR v2.3.0e50. Gene quantifications were
obtainedas the total numberof reads that aligned to theexonsof a gene
as annotated by Ensembl v.71 (https://www.ensembl.info/2013/04/11/
ensembl-71-has-been-released/). Subsequently, genes with zero reads in
at least 20% of the samples were removed, gene counts were normal-
ized with the TMM method using edgeR v3.28.151 and a rank-based
inverse normal transformation was used to counteract deviations from
normality and limit outliers. The final data set consists of 17,740 genes.

Statistics
All analyses were performed in R v4.0.3, except for the clusterProfiler
analysis, which was done in R v4.2.0.

For each cohort, we performed a transcriptome-wide analysis on
lipid levels using cate v1.1.1 (https://cran.r-project.org/web/packages/
cate/index.html) to estimate hidden confounders independent of the
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other variables in themodel. Test statistics were corrected for bias and
inflation using bacon v1.14.052. The following linear regression model
was used for each gene:

Transcription=β0 +β1*lipid level +β2*age+β3*sex+β4*WBC

+β5*RBC+β6*%monocytes+β7*%lymphocytes +β8

*%neutrophils +β9*%eosinophils +β10*hidden1 +β11

*hidden2 +β12*hidden3 +β13*hidden4 +β14*hidden5 + ε

ð1Þ

Since the sum of all cell type fractions was 100%, one of the cell
types (basophils) was not included as a covariate toprevent collinearity;
the effect of the excluded cell type is captured in the intercept and thus
corrected for implicitly. Nota bene, omitting eosinophils instead of
basophils did not meaningfully alter the results (Supplementary Fig. 5).
The results of each cohort were combined using a fixed-effect meta-
analysis, and P-values were adjusted for 17,740 tests, i.e. the number of
genes, using the Bonferroni method. Sensitivity analyses were per-
formed with the potential confounder, i.e. either smoking behavior or
lipid-loweringmedication use, as extra covariate in themodel. Smoking
behavior and lipid-lowering medication traits were based on ques-
tionnaire data. Smoking behavior (N = 3058) was defined as never
smoker, former smoker, and current smoker, and lipid-lowering medi-
cation use (N = 3004) was defined as user and non-user.

GIVswere created for TG,HDL-C, andLDL-Cusing genetic variants
reported in GWAS that were >1Mb apart and nearly independent
(r2 < 0.10)17. LL, NTR, and RS were part of this effort, with a maximum
potential overlap of 2235 of 188,577 individuals. The following equa-
tion was used:

GI = β1*dosage1 + β2*dosage2 + � � � + βn*dosagen ð2Þ

In this equation β is the GWAS regression estimate. The GIVs were
scaled to mean 0 and standard deviation 1.

For each cohort, MR was performed to estimate the effect of lipid
levels on transcription using the Wald method53 with the GIVs as
proxies for lipid levels. The association between GIV and transcription,
which is required for this method, was calculated using a
transcriptome-wide analysis as described previously, but with the fol-
lowing model for each gene:

Transcription =β0 +β1*GI +β2*age +β3*sex+β4*WBC+β5*RBC+β6

*%monocytes +β7*%lymphocytes +β8*%neutrophils +β9

*%eosinophils +β10*hidden1 +β11*hidden2 + β12*hidden3

+β13*hidden4 +β14*hidden5 + ε

ð3Þ

Robust standard errors were calculated using Fieller’s theorem54

and P-values were adjusted for multiple testing, i.e. the number of
TWAS associations per lipid, using the Benjamini–Hochberg method
at 5% FDR.

Pleiotropic genetic variants were detected using a Cochran’s Q-
test, which was adapted for use inMR15, and iteratively removed from
the GIVs until no evidence of pleiotropy remained (PQ > 0.5). The
association between genetic variation and transcription for each
variant in the GIV, which is required for this method and for the
method based on Egger regression used to identify residual direc-
tional pleiotropy19, was calculated using a transcriptome-wide ana-
lysis as described previously, but with the following linear regression
model for each gene:

Transcription= β0 +β1*variant +β2*age+β3*sex +β4*WBC+β5*RBC

+β6*%monocytes +β7*%lymphocytes +β8*%neutrophils

+β9*%eosinophils + ε

ð4Þ

Sensitivity analyses were performed using multivariable MR20

with either (1) the dosage of the cis-expression QTLs in the GIVs as an

extra covariate in theMRmodel to adjust for direct pleiotropy, or (2)
the potential pleiotropic GIV as an extra covariate in the MR model
to adjust for pleiotropy through a parallel path. GIVs for BMI,
systolic blood pressure, and diastolic blood pressure were con-
structed using public GWAS data21,22 with the same procedure as for
the lipid GIVs.

Power calculations55 were performed using code obtained from
https://github.com/kn3in/mRnd.

To evaluate the opposite direction of effect, i.e. whether tran-
scription affects lipid levels, we used for each gene the strongest
associating cis-expression QTL18 as a proxy for gene expression and
used the same Wald method-based MR approach as described pre-
viously. All BIOS cohorts were part of the expressionQTLGWAS,with a
maximum potential overlap of 3229 of 31,684 participants.

Pathway enrichment using a one-sided Fisher’s exact test was
performed using clusterProfiler v4.4.056 with a background set of
17,740 genes that were expressed in our data. The 10 human pathway
databases BioPlanet 2019, WikiPathways 2019 Human, KEGG 2019
Human, Elsevier Pathway Collection, BioCarta 2015, Reactome 2016,
HumanCyc 2016, NCI-Nature 2016, Panther 2016 andMSigDBHallmark
2020 were downloaded from https://maayanlab.cloud/Enrichr/#
libraries and queried using gene symbols, with 39 of 55 queried
genes present in at least 1 database. Multiple testing using the
Benjamini–Hochberg method at 5% FDR was performed over the
combined results from the 10 databases.

Finally, we assessed the effects of genes affected by TG on
allergy phenotypes and the incidence of several chronic diseases
using two-sample MR57. We selected several large allergy GWAS stu-
dies for their precise estimates, i.e. a combined allergic disease
phenotype (asthma and/or hay fever and/or eczema)26, incidence of
childhood-onset eczema25 and incidence of adult-onset eczema25,
and a smaller butmore specific GWAS of IgE levels27. We also selected
several large chronic disease incidence GWAS studies for their link
with lipids and/or inflammation, namely coronary artery disease28,
myocardial infarction28, and rheumatoid arthritis29. We used for each
gene the strongest associating cis-expression QTL18 as a proxy for
gene expression and used the same Wald method-based MR
approach as described previously.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA sequencing data generated in this study and phenotypes age,
sex, and cell types have been deposited in the EGA database under
accession code EGAS00001001077, and data access procedures are
available at https://www.bbmri.nl/acquisition-use-analyze/bios. The
genotype and other phenotypes, data are governed by the respective
biobanks. Access can be requested according to the procedures
established by the biobanks, with restrictions imposed by the respec-
tive institutional review boards and Dutch law. The Supplementary
figures generated in this study are provided in the Supplementary
Information file and the Supplementary Tables are provided as sepa-
rate Supplementary Data files. Public databases used in this study
include the human genome (build NCBI37, https://www.ncbi.nlm.nih.
gov/assembly/GCF_000001405.13/), Ensembl v.71 (https://www.
ensembl.info/2013/04/11/ensembl-71-has-been-released/), and path-
way databases BioPlanet 2019, WikiPathways 2019 Human, KEGG 2019
Human, Elsevier Pathway Collection, BioCarta 2015, Reactome 2016,
HumanCyc 2016, NCI-Nature 2016, Panther 2016 andMSigDBHallmark
2020 downloaded from https://maayanlab.cloud/Enrichr/#libraries.
Public datasets used in this study include those fromWiller et al.17, Võsa
et al.18, Locke et al.21, Warren et al.22, Monaco et al.24, Ferreira et al.25,26,
Nikpay et al.28 and Okada et al.29.
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Code availability
R-code used to preprocess the data is available at https://github.com/
bbmri-nl/BBMRIomics and R-code used to perform the analyses is
available at www.github.com/kfdekkers/twasmr58.
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