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Adaptive coding across visual features
during free-viewing and fixation conditions

Sunny Nigam 1 , Russell Milton 1, Sorin Pojoga 1 & Valentin Dragoi 1,2

Theoretical studies have long proposed that adaptation allows the brain to
effectively use the limited response rangeof sensory neurons to encodewidely
varying natural inputs. However, despite this influential view, experimental
studies have exclusively focused on how the neural code adapts to a range of
stimuli lying along a single feature axis, such as orientation or contrast. Here,
we performed electrical recordings in macaque visual cortex (area V4) to
reveal significant adaptive changes in the neural code of single cells and
populations acrossmultiple feature axes. Both during free viewing and passive
fixation, populations of cells improved their ability to encode image features
after rapid exposure to stimuli lying on orthogonal feature axes even in the
absence of initial tuning to these stimuli. These results reveal a remarkable
adaptive capacity of visual cortical populations to improve network compu-
tations relevant for natural viewing despite the modularity of the functional
cortical architecture.

One influential view in neuroscience is that sensory cortical neurons
are adapted to the statistics of natural stimuli1–3. According to this view,
adaptation allows sensory neurons tomake effective use of the limited
range of neural responses to encode stimuli that vary widely in struc-
ture, such as those encountered in natural environments4. During
visual perception, for instance, the exploration of natural scenes
consists of successive visual fixations accompanied by changes in
image statistics5,6. However, natural images, despite their complexity,
have certain common statistical properties. That is, neighboring image
patches are highly correlated in local attributes, such as orientation,
contrast, or color, whereas distant image patches are only poorly
correlated7,8. Therefore, successive fixations during natural viewing
will often land on image patches of largely different structure. Orien-
tation and color signals, two of the elementary features ubiquitously
present in natural scenes, are considered to be orthogonal to each
other as they are represented in distinct modules in primate mid-level
visual cortex9,10. It is conceivable that during a typical visual fixation,
neurons can be exposed to image patches dominated by oriented
signals, while subsequent fixations could land on distant image pat-
ches where color is the primary feature (Fig. 1a, Supplementary Fig. 1).
However, although successive fixations to orthogonal image features
are ubiquitous during natural viewing (Fig. 1a), whether and howcross-

feature adaptation influences neuronal responses and stimulus coding
remains unknown.

Previous adaptation studies have shown that rapid exposure to
spatially correlated image patches induces short-term changes in the
responses of visual cortical neurons and changes the tuning of
individual cells and their stimulus discriminability6,11. At the popula-
tion level, rapid adaptation was shown to reduce neuronal correla-
tions and improve coding accuracy12,13. However, while these results
were instrumental for our current understanding of the properties of
the adaptive code, they originated from studies investigating how
the neural code adapts to a relatively narrow set of stimuli along a
single feature axis, such as orientation14,15, contrast16,17, motion18,19 or
color20. Equally important, previous adaptation studies have exclu-
sively focused on experimental paradigms involving restricted
viewing in which stimuli are presented during passive fixation,
thereby lacking the naturalistic conditions encountered during free-
viewing.

Here, we addressed two of the major limitations of previous
adaptation studies by simultaneously recording the spiking activity of
multiple neurons from superficial layers of visual cortical area V4 of
awake macaque using chronically implanted Utah arrays (Fig. 1c, d).
While monkeys freely viewed or fixated on stimuli of largely dissimilar
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structure, we examined whether successive fixations to image patches
across orthogonal feature axes induce adaptive changes in the prop-
erties of the neural code.

Results
The efficient coding hypothesis1 predicates that visual cortical
responses are adapted to the statistics of natural stimuli during
vision. That is, the higher the frequency of particular stimuli
encountered during viewing, the more efficient the neural mechan-
isms responsible for processing those stimuli. In light of this
hypothesis, we examined how likely successive fixations occurring
during natural viewing could land on cross-feature stimuli (con-
sidering that each fixation episode would act as rapid adaptation6).

To this end, we built a statistical model of visual exploration of
natural scenes to examine the features encountered in consecutive
fixations. We focused on quantifying the distribution of visual fixa-
tions on two elementary features that are ubiquitously present in
natural scenes: color and orientation. Based on the distribution of
saccade amplitude and direction while monkeys are freely viewing a
visual display across 16 sessions (Fig. 1e and Supplementary Fig. 2,
see Methods), we simulated consecutive pseudo-saccades by using a
natural image battery (n = 940) from the McGill calibrated color
image database (McGill Vision research). For each image we ran-
domly assigned a fixation starting point, and then generated 300
consecutive saccades (we analyzed a total of 282,000 saccades
across the images from this database). The size of image patches was
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Fig. 1 | Rapid adaptation during free-viewing improves coding accuracy in
neural populations. a Sequence of simulated saccades (arrows) with pseudo
receptive field (RF) positions (circles) overlaid on natural image49 (Olmos, A.,
Kingdom, F. A. A. (2004). A biologically inspired algorithm for the recovery of
shading and reflectance images, Perception, 33, 1463 - 1473. http://tabby.vision.
mcgill.ca/). Bottom: Heatmap of orientation selectivity index for the same image.
b Percentage of simulated saccades connecting iso-feature (blue) and cross-feature
(orangedots) patches for eachnatural image.Black circles andbars representmean
and s.e.m. c Top: Schematic of a chronically implanted 96 channel Utah array in
macaque V4. Bottom: RF locations (orange circles) of single units with respect to
fixation point (white dot).d Snippet of voltagewaveforms recorded simultaneously
from all 96 channels. e Stimulus configuration for free-viewing experiments. Red
and blue traces show saccades connecting RF centers during ‘adapt’ and ‘unadapt’
conditions. f Exampleof fixation detection (shaded regions) fromeye velocity trace
during free-viewing. g Firing rates for individual neurons (N = 159) during una-
dapted and adapted conditions (FRmean

adapt = 11.8 Hz, FRmean
unadapt = 12.1 Hz; two-sided

Wilcoxon signed rank test, P > 0.05). h Schematic description of decoder perfor-
mance under unadapt (blue) and adapt conditions (red). i Decoder performance
(chance level subtracted) in unadapted and adapted conditions for orientation
adapter and color test stimuli (orange) and vice versa (purple). Filled and open
circles represent individual sessions from monkey T and R respectively. Vertical
and horizontal bars represent s.e.m. j Ratio of the population variance captured in
trial-by-trial responses by principal components (PCs) in unadapt and adapt con-
ditions for an example session (seeMethods). Filled gray circles represent the ratio
along each PC axis. Shaded region and solid black line represent PCs capturing 90%
of the population variance and an exponential fit (for visualization purposes).
kMeanvalue of PC ratio for each individual session inmonkeyR (solid black circles,
N = 8 sessions) and monkey T (open black circles, N = 8 sessions). Horizontal bars
represent s.e.m which were evaluated by performing PCA analysis multiple times
(n = 100) on sub-sampled trials in each condition. Lighter shaded circles represent
sessions where the ratio is not significantly greater than 1 (one-sided Wilcoxon
signed rank test, P >0.05).
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chosen based on themean receptive field size of our V4 neurons. For
every pseudo saccade connecting two patches of a natural image, we
quantified the strength of orientation and color signals in each patch
(see Methods). Strikingly, we found that a significant percentage of
saccades (23%) involving successively fixated image patches char-
acterized by dissimilar features (color → orientation or orientation →
color) as start and end points (Fig. 1b). This analysis indicates that
during the exploration of natural images, visual cortical neurons are
highly likely to be exposed to successive image patches containing
dissimilar visual features (orientation and color).

Given the ubiquity of exposures to largely different features
during viewing natural stimuli, we designed a naturalistic task
(Fig. 1e), where monkeys freely viewed four stimuli placed on dif-
ferent quadrants of a visual display. The top right quadrant con-
tained a uniform gray patch (control stimulus), whereas the top left
quadrant contained an adapting stimulus (achromatic grating or
color patch). The bottom two quadrants contained two test stimuli
separated by 22.5° in u.v. color space (when grating adapters were
used; see Methods) or by 11.25° in orientation space (when color
adapters were used). The receptive fields of multiple neurons
recorded simultaneously were mapped at the beginning of each
recording session (Fig. 1c bottom, see Methods). The adapter and
test stimuli were chosen tomaximize the number of responsive units
in a given session. Control trials were defined as fixations on the gray
patch followed by fixations on a test stimulus in either quadrant,
whereas adaptation trials consisted of fixations on the adapter patch
(grating or color) followed by fixations on either of the test stimuli
(Fig. 1e). Fixations were detected during free viewing by thresholding
eye velocity (Fig. 1f; see Methods). Only fixations whereby neurons’
aggregate receptive fields were confined within the monitor borders
and within a single quadrant were considered for further analysis. We
analyzed the responses of 159 single units (mean firing
rate >5 spks/s for both unadapted and adapted conditions) in 2
monkeys (T and R) during 9,835 fixations recorded for 21.2 hours of
free viewing across 16 sessions (8 sessions from each animal).

Improved population coding accuracy during free-viewing
We examined the extent to which the neural population can distin-
guish between pairs of test stimuli in control and adaptation trials
during free viewing given that therewas no significant difference in the
mean responses of single neurons (Fig. 1g, Wilcoxon signed rank test,
P >0.05). To this end, we pooled neurons’ responses during fixations
to each test stimulus when they were preceded by the gray (control)
patch or the oriented grating adapter. To examine whether cross-
feature adaptation influences stimulus coding (Fig. 1h), we calculated
spike counts during fixations on each test stimuli in either condition
(unadapt/adapt), and then implemented a linear decoder (Linear Dis-
criminant Analysis; see Methods). Notably, we observed an increase in
decoder performance (DP) for color stimuli when cellswere adapted to
a different feature, i.e., orientation, and vice-versa when color was the
adapter and orientation was used for the test stimuli (Fig. 1i;
ΔDPadapt_ori = 19 ± 2%; ΔDPadapt_color = 30 ± 4%, mean ± s.e.m). These
results are surprising as orientation and color are assumed to be
encoded independently in visual cortex given theirmodular functional
organization.

To understand how cross-feature adaptation leads to improved
stimulus discriminability, we analyzed the structure of trial-by-trial
responses of the entire neural population in the unadapted and
adapted conditions (see Supplementary Fig. 3a for a pairwise corre-
lation analysis). We hypothesized that decoder performance in the
adapted condition is improved because the population response is
more decorrelated, i.e., the shared variability between neurons is
reduced. To examine this, we performed a principal component
analysis on the responses of neurons across trials21,22 in the una-
dapted condition. Next, we projected the activity of the same

neurons in the adapted condition onto the principal component axis
obtained in the unadapted condition. To quantify the changes in the
overall structure of shared population wide variability, we calculated
the ratio of the variance explained along each principal component
axis in unadapted and adapted conditions (Fig. 1j, example session 5).
Finally, we calculated the mean value of the ratios for the principal
components that explained 90% of the variance in the control con-
dition. Interestingly, we found a significant reduction in explained
variance (along the same PC axis) post adaptation in the vastmajority
of sessions in both animals (Fig. 1k, Wilcoxon signed rank test,
P < 0.01). A similar decrease in explained variance across conditions
is found even if we considered only the first PC axis (Supplementary
Fig. 3b) indicating that our analysis is robust to the number of
principal components chosen. Thus, in the higher dimensional space
of neural responses, there is a transition from an ellipsoid to a more
spherical clustering of neuronal responses post adaptation indicat-
ing an overall decorrelation of the population response, which may
be the likely mechanism for the improvement in decoder accuracy.

One possible confound is the duration of fixations on the adapter
preceding each test stimulus. A mean duration of fixations on the
adapter preceding test1 that is different from that of fixations pre-
ceding test2 is equivalent to different strengths of adaptation that
could conflate the interpretation of the decoder results in Fig. 1i.
However, we found no significant difference between the fixation
durations preceding each test stimulus (P > 0.01; Wilcoxon’s rank-sum
test; Supplementary Fig. 4a). We further analyzed other factors that
could possibly account for the changes in decoder performance not
directly linked to rapid adaptation. However, there were no significant
differences in the distribution of fixation durations on the post-
adaptation test stimuli, mean pupil size, subthreshold eye velocity of
microsaccades during fixations, number and direction of micro-
saccades between unadapted and adapted conditions (P >0.05 for all
comparisons, Wilcoxon rank sum test, Supplementary Fig. 4b–e). We
also observed no systematic changes in the mean firing rates of neu-
rons associated with direction of saccades to different test stimuli
(Wilcoxon signed rank test, P >0.1). Additionally, the average distance
between the neurons’ receptive field centers and the boundary
between the two test stimuli did not differ significantly between
adapted and unadapted conditions (P >0.05, Wilcoxon rank sum test;
Supplementary Fig. 4f). Altogether, these analyses indicate that the
changes in decoder performance after rapid adaptation during natural
viewing cannot be attributed to confounding factors related to eye
movements or our experimental design.

Emergence of feature tuning after adaptation to the orthogonal
feature
While the free viewing task allowed us to investigate cross-feature
adaptation effects under naturalistic conditions, the experimental
design limited us to studying stimulus coding using only one pair of
test stimuli. Therefore, to examine how cross-feature adaptation
impacts overall tuning properties, such as strength of tuning and sti-
mulus preference, we performed additional experiments involving
passive visual fixation. Stimulus tuning was measured using an exten-
ded set of oriented gratings and color patches while recording the
visually driven spiking activity of hundreds of neurons (n = 523) from
the superficial layers of V4 (10 sessions in monkey T; 7 sessions in
monkey M). Stimuli consisted of color patches and oriented gratings
used either as adapters or test stimuli. Responses to color stimuli were
quantified using a set of 16 equiluminant colors (9.35 ± 0.01 cd/m2)
uniformly spaced in Luv color space (steps of 22.5º) with respect to a
neutral gray point20 (Fig. 2a, Supplementary table 1; see Methods),
while those to oriented stimuli were examined using 16 sinusoidal
gratings uniformly spanning the 0°–180° range in steps of 11.25° (same
mean luminance as the color patches and gray background). Using
these stimuli, we characterized the tuning preference of neurons to
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find that 63.7% of the neurons were only tuned to color, 13.2% were
only tuned to orientation, 8.8% were tuned to both color and orien-
tation, and 13.2% were not significantly tuned to either color or
orientation. Each recording session consisted of randomly interleaved
unadapted and adapted trials (n = 450 ± 30 trials/condition). During
adaptation trials, a 400-ms adapting stimulus belonging to one feature
set (e.g., orientation) was followed by a 200-ms stimulus randomly

selected from the orthogonal feature set (color) with an inter-stimulus
interval of 50 ms. Control (unadapted) trials did not contain an
adapting stimulus; instead, a gray screen was presented for the same
duration as that of the adapter (Fig. 2b, c).

Strikingly, many cells in our population either acquired color
tuning or significantly sharpened it after orientation adaptation
(Fig. 2d–e, see Supplementary Fig. 5 for additional examples). This is
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surprising since color and orientation were shown to be processed
independently in anatomically non-overlappingmodules in V4. Across
sessions, we observed a small but significant decrease in peak firing
rates (FR) after adaptation (Fig. 3a,Wilcoxon signed tank test, P < 0.05,
ΔFRadapt-unadapt = −3.3 ± 1.4%, Fig. 3a inset). A significant proportion of
color untuned neurons (18%) became significantly tuned (P < 0.05;

Rayleigh’s test; Holm-Bonferroni correction for multiple comparisons;
Fig. 3b) after exposure to a fixed oriented grating (see Supplementary
Fig. 6 for results in each animal). In addition, adaptation increased the
strength of color tuning (Fig. 3b) in roughly 45% of V4 neurons (sta-
tistical significance and strength of color tuning were examined using
Rayleigh’s test and Color Selectivity Index, CSI, see Methods). Across

Fig. 2 | Emergence and enhancement of color tuning after adaptation to
oriented stimuli. a Equiluminant color stimulus set plotted in u,v space. Angular
plot of same color stimulus with respect to the u,v coordinates of an equiluminant
neutral gray background on which adapter and test stimuli are presented.
b Schematic description of the cross-feature adaptation task. Adapter and test
stimuli are flashed across the receptive fields of recorded neurons. c Raster plot of
an example neuron across multiple trials consisting of unadapted (blue) and
adapted (red) conditions. Gray shaded regions represent the duration of the
adapter (400 ms) and test stimulus (200 ms) presentation. d Tuning curves of

example neurons showing emergence of color tuning in color untuned neurons
(cell 1, monkey T, CSIadapt = 0.26, Rayleigh’s test, pval < 0.01, CSIunadapt = 0.05
Rayleigh’s test, pval >0.05; cell 2,monkeyM,CSIadapt =0.24, pval <0.01, CSIunadapt =
0.05; pval > 0.05) after adaptation with an oriented grating. e Tuning curves for
color stimuli in two other example neurons (cell 3, monkey T, CSIadapt = 0.21, pval
<0.01, CSIunadapt = 0.15, pval <0.01; cell 4, monkey M, CSIadapt = 0.30, pval <0.01,
CSIunadapt = 0.13, pval <0.01) exhibiting sharpening of color tuning after orientation
adaptation. Solid lines and error bars represent themean and s.e.m of responses to
color stimuli (see also Supplementary Fig. 4).
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Fig. 3 | Cross feature adaptationmodulates stimulus coding. aNeural responses
(n = 388) to color stimuli for adapted and unadapted trials. Inset: Distribution of
percent differences in responses (adapt – unadapt). b Color selectivity index (CSI)
of neurons in adapted and unadapted conditions. Red circles represent color
untuned neurons in the unadapted condition that gained significant color tuning
after orientation adaptation. Inset: distribution ΔCSI values (adapt – unadapt,
ΔCSImean = 0.04). c Post stimulus time histogram (PSTH) averaged over adapted
(red) and unadapted trials (blue) of an example neuron (left) strongly activated by
aneffective oriented adapter and its associated tuning curve underboth conditions
(right). Red bar and gray shaded region represent presentation of adapter and test
stimuli. d A different example cell showing weak activation by an ineffective
adapter (left) and associated tuning curves under both conditions (right). Solid
lines and shaded regions represent mean values and s.e.m respectively.
e Percentage change in CSI for neurons (n = 283) that were significantly tuned
under both adapted and unadapted conditions as a function of the baseline

corrected response to the adapter. Black and red circles represent individual
neurons andmean of binned values. Vertical bars and solid red line represent s.e.m
and a linear fit to the binned values. fMean decoder accuracy (%) above chance for
classifying neighboring color stimuli (gray filled circle, N = 10 sessions monkey T;
black open circles, N = 7 sessions monkey M) in both conditions. Vertical and
horizontal bars represent s.e.m. g Ratio of the population variance captured in the
trial-by-trial responses by PCs in unadapt and adapt conditions for an example
session. Shaded region denotes the number of PCs that capture 90% of the
population variance. Filled gray circles and solid black represent the ratio along
each PC axis and an exponential fit. hMean value of the ratio of variance explained
by principal components for each individual session in monkey T (black filled
circles, N = 10 sessions) and monkey M (black open circles, N = 7 sessions). Error
bars (s.e.m) were evaluated by performing PCA on sub-sampled trials in each
condition.
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the population of cells, we observed a net increase in the strength of
color tuning strength after adaptation (Fig. 3b inset; ΔCSIadapt-unadapt =
60 ± 7%, P < 0.001, Wilcoxon signed rank test).

In general, we noticed that adapters that strongly activated
neurons had a tendency to induce or enhance color tuning in
neurons that were either untuned or weakly color tuned before
adaptation (Fig. 3c, effective adapter). In contrast, adapters that
only weakly activated neurons had a minimal impact on color
tuning (Fig. 3d, ineffective adapter). Across the population, we
found a significant correlation between how strongly an adapter
activates the cell and the post-adaptation change in CSI (Fig. 3e;
Spearman’s correlation coefficient r = 0.19, P = 0.0004). Changes
in tuning strength were also associated with changes in the
temporal dynamics of color tuning. We calculated CSI as a func-
tion of time using a 200-ms window sliding by 5 ms, and defined
tuning latency (TL) as the first time point when the neuron’s
tuning achieved statistical significance (Rayleigh’s test). Tuning
latency was significantly higher in the adapted compared to
unadapted condition (Supplementary Fig. 7; Wilcoxon’s signed-
rank test, P < 0.0001, ΔTLadapt-unadapt = 21.6 ± 0.3 ms). We
found only modest changes in preferred color after adaptation
(Δθmean = 1.4º, Supplementary Fig. 8).

Cross-feature adaptation improves population coding
Does cross-feature adaptation improve the ability of neuronal popu-
lations to discriminate between neighboring stimuli as observed in our
free-viewing experiments? A classifier (linear discriminant analysis; see
Methods) was trained to decode information from the responses of
neural populations for neighboring color stimuli (separated by 22.5°
on the color circle, Fig. 2a). Confirming our results in Fig. 1i, there was a

significant increase inmean decoder accuracy after adaptation (Fig. 3f;
mean changeadapt-unadapt = 5 ± 1%; n = 17 sessions, N = 500 iterations).
This improved performance in decoding is surprising given the small,
but significant decrease in overall firing rates post adaptation (Fig. 3a).
This indicates that rapid adaptation to one visual feature improves
population coding accuracy to distinguish between stimuli lying on an
orthogonal feature axis.

To verify whether a similar mechanism to that occurring during
free-viewing could explain the post-adaptation improved decoder
performance during passive fixation, we repeated the principal com-
ponent analysis on neurons’ responses during the unadapted and
adapted conditions (Fig. 3g, example session). We observed a sig-
nificant reduction in variance of neural activity along principal com-
ponent axes in adapted compared to unadapted conditions (Fig. 3h),
i.e., population level activity was more decorrelated after adaptation,
similar to the effects observed during free-viewing. Thiswas surprising
given that both the mean and the variance of the distribution of pair-
wise correlations were not significantly altered after adaptation (Sup-
plementary Fig. 9). These results are robustwith respect to the number
of PC axes used, as we observed similar trends by considering only the
first principal component axis (Supplementary Fig. 10a). This suggests
that the decorrelation of neural responses across the population could
be a general mechanism by which cross feature adaptation improves
stimulus discriminability in both free-viewing and passively fixating
animals.

Cross-feature color adaptation
We further examined whether our results still hold when the adapting
and test stimuli used in the experiments in Figs. 2–3, are swapped.
Specifically, we analyzed neurons’ responses to orientation after they
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were adapted to color while leaving all other task parameters
unchanged (Fig. 4a; N = 7 sessions in monkey T). When using this new
stimulus set, we found a small but significant decrease in peak
responses to color stimuli after orientation adaptation (Fig. 4b;
ΔFRadapt-unadapt = ‒3.3 ± 2.9%; P = 0.02, Wilcoxon signed-rank test).
Similar to our original experiments, cross-feature color adaptation
rendered a significant proportion of cells (18%) orientation-tuned
despite an initial, pre-adaptation, lack of tuning (Fig. 4c). Furthermore,
28% of the orientation-tuned neurons exhibited a significant shar-
pening post adaptation (n = 123 neurons; P < 0.05, Wilcoxon sign rank
test, Fig. 4c inset). Cross-feature adaptation yielded an increase in
decoder performance to distinguish between pairs of neighboring
orientations (separated by 11.25°, Fig. 4d; mean increase: 7.7 ± 0.5%;
n = 8 sessions). Similar to the previous effects, we observed a sig-
nificant reduction in the population variance along principal compo-
nent axis in adapted compared to unadapted conditions (Fig. 4e,
Supplementary Fig. 10b). Taken together, these results strengthen our
initial findings that cross-feature adaptation during free viewing
improves the ability of neuronal populations to distinguish between
nearby stimuli lying on an orthogonal feature axis.

Discussion
Natural scenes are characterized by a wide range of features, among
which color and orientation represent two major components. While
exploring natural scenes, during successive visual fixations, neurons
are often exposed to image patches dominated by oriented signals,
while subsequent fixations could land on distant image patches where
color is the primary feature. It is widely believed that rapid adaptation
during natural viewing could play a role in the efficient coding of
diverse features (orientation, color, etc.) present in natural scenes6.
However, this views has emerged from passive fixation experiments in
which stimuli varied along a single feature axis. Therefore, whether

adaptation to a single feature influences neurons’ response to a widely
different feature (cross-feature adaptation) so as to influence the
accuracy of stimulus encoding has remained unknown.

To our knowledge, our study is the first investigation system-
atically examining the effects of cross-feature adaptation using a novel
free-viewing paradigm whereby animals voluntarily explored stimuli
consisting ofmultiple features (color and orientation) to show that the
accuracy of visual cortical populations to discriminate stimuli is
improved after cross feature adaptation. In addition, we used more
controlled fixation conditions to characterize in greater detail the
effect of cross-feature adaptation on neuronal tuning curves and
population discrimination performance. Ourmost surprising finding is
that a substantial fraction of visually-responsive neurons that were
either untuned or poorly tuned for color or orientation became tuned
after adapting to stimuli lying on an orthogonal feature axis, which
may lead to a major revision of sensory adaptation and its neural
underpinnings. Indeed, untuned neurons are usually ignored in most
studies of cortical function, yet we demonstrate that they could play a
significant role in the adaptive coding of sensory inputs. Furthermore,
the remaining neurons, tuned to color or orientation, significantly
improved their tuning after cross-feature adaptation.

What type of mechanism could possibly explain these adaptive
cross-feature effects unreported in previous studies? Our results
indicate complex feedforward and intracortical connectivity between
cross-feature tuned V4 neurons. While orientation and color modules
are believed to lie in separate functional domains, some V4 neurons
could receive feedforward and intracortical inputs from a population
of cells jointly encoding orientation and color signals21–23. Although
these inputs may be insufficient to warrant a sharp tuning to cross-
feature stimuli, neurons can nonetheless acquire orientation or color
selectivity after adaptation provided that the cross-feature inputs are
differentially weakened after the brief exposure to the adapting
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stimulus. This indicates a higher degree of specialization of inputs to
neurons in mid-level visual cortical areas than currently assumed.

More specifically, the prevalent feedforward model of feature
encoding in V4 predicates that signals corresponding to orthogonal
features, such as color and orientation, are transmitted via anatomi-
cally separate channels (independent feature encoding model, Fig. 5a,
top). However, thismodelwouldpredict that adaptation toone feature
(e.g., orientation) will not alter the strength of inputs carrying infor-
mation about the other feature (e.g., color). As a result, while orien-
tation tuning of the target neuron is likely to change, the color tuning
properties will remain unaffected (Fig. 5a, bottom). Alternately, the
inputs toV4neurons could simultaneously carry a broad rangeof color
and orientation signals (mixed feature encoding model). For instance,
Fig. 5b, top, illustrates a V4 neuron receivingmixedweakly tuned color
and orientation signals. However, adaptation to a vertically oriented
grating will specifically weaken synapses associated with the adapting
orientation, which in turn will modify responses to the set of color
signals (orthogonal feature) transmitted via the same set of synapses
(Fig. 5b, bottom). The emergence of tuning to a specific color/orien-
tation in untuned neurons depends on the heterogeneity of input
signals for the adapted feature. For example, if feedforward orienta-
tion signals are similar across multiple inputs, adapting to that orien-
tation will lead to a uniform reduction of neuronal responses across all
colors instead of a selective decrease. Such an input structure would
not lead to the post-adaptation emergence of tuning reported in our
study. However, in realistic neural networks, the structure of feedfor-
ward inputs to cortical neurons is likely to be diverse, which is prob-
ably the main reason why the adaptation effects reported here are
heterogeneous, ranging from emergence of tuning to loss of, or
unchanged, tuning. Notably, despite this diversity, therewas an overall
significant increase in orientation and color tuning strength after
adaptation and an improvement in stimulus discriminability through
the decorrelation of population responses. Thus, specificity of rapid
plasticity in neurons coupled with mixed feature selectivity could
provide amechanism for the observed changes in tuning. Our findings
indicate a higher degree of specialization in the structure of inputs to
mid-level visual cortical neurons beyond that proposed by the inde-
pendent encoding models reported in previous studies. In fact, neu-
rons with mixed feature selectivity (joint encoding of both color and
orientation signals) have been found in macaque V123 which could be
the source of mixed feature inputs to downstream areas.

Free-viewing a multi-stimulus patch presents a distinct set of
challenges as saccades are voluntary (without a fixed trial structure)
and the locations of neurons’ receptive fields change along with the
gaze of the animal. We addressed these challenges by calibrating eye
movements and thresholding eye velocity to extract pseudo trials in
theunadapted and adapted conditions, and eliminated trials where the
receptive fields of neurons covered more than a single stimulus or
were close to the stimulus boundaries or the edge of the monitor.
While free-viewing allowed us to examine rapid adaptation across
features under more naturalistic conditions, we complemented the
free-viewing approach with passive fixation experiments for a more
detailed characterization of changes in tuning properties. Together,
this complementary approach revealed that cross-feature adaptation
is a general feature of visual cortical circuits that manifests both in
naturalistic and fixed gaze viewing conditions.

A key result in our study is that rapid cross-feature adaptation
improves population coding accuracy. We propose that the primary
mechanism responsible for this adaptive increase inpopulation coding
relies on a reduction in shared variability among neurons. Indeed,
theoretical work has shown that changes in correlated activity in
neurons influence stimulus encoding in sensory areas24–27. Further-
more, using principal component analysis, recent work21,22 has shown
that learning and decision making are associated with changes in
shared variability at the population level. Employing a similar

approach, we found that cross-feature adaptation leads to a significant
decrease in shared variability along principal component axes that
explain most of the response variance (around 90%). This finding was
consistent across free-viewing and passive fixation experiments using
color and orientation adapters. Our population analysis indicates that
rapid cross feature adaptation causes an overall decorrelation in the
structure of trial-by-trial population activity. From a functional stand-
point, this implies that exposure to an oriented stimulus prepares the
color encoding system by decreasing variance across the neural
population, thereby enabling a rapid emergence of color tuned
responses during successive fixations (hence increasing coding accu-
racy). Interestingly, rapid adaptation decorrelates neuronal responses
to different features (color and orientation) in qualitatively similar
ways. Additionally, analysis of iso-feature adaptation data (adapter and
test stimuli belonging to the same feature), revealed similar qualitative
changes in tuning strength, discriminability and population response
variance (Supplementary Fig. 11). This indicates that decorrelation
could be a general mechanism at the population level to efficiently
encode a wide variety of sensory stimuli after adaptation28.

Surprisingly, there is a complete lack of studies on either rapid or
prolonged adaptation in the cross-feature domain with respect to
changes in stimulus discriminability. Previous studies have revealed
cross-orientation29 and cross-sensory interactions30,31, however the
role of such interactions on stimulus discriminability has not been
explored. Psychophysical evidence of cross-feature adaptation,
although of a very different kind than that presented in our study, has
been observed in the form of the McCullough effect32. Although this
color aftereffect due to long-term adaptation (2–4 minutes) implies
interaction between features, it is not associatedwith an improvement
(at any time scale) in the discriminability of features, as reported in our
study. Furthermore, a more recent study33 has examined the effects of
adaptation (~5 s) to contrast and luminosity on the encoding of
oriented stimuli to report an improvement in discrimination thresh-
olds post adaptation. However, unlike color/orientation encoding
which are believed to be represented by anatomically distinct mod-
ules, features such as contrast and luminance are typically represented
by the same population of neurons as that encoding for orientation
stimuli. Our findings in single neurons and populations are likely to
motivate future psychophysics experiments using both synthetic and
natural stimuli to directly test the perceptual effects of cross-feature
adaptation. Additionally, although we characterized the cross-feature
adaptive interactions using well parametrized synthetic stimuli
(orientation and color), ourwork sets the stage for future endeavors to
explore rapid adaptation using more complex stimuli found in natural
scenes. Adaptive changes in population coding accuracy similar to
those shown heremay exist in other brain areas. Therefore, examining
the adaptive properties of the neural code across the visual system, or
other systems, will likely provide important clues about the link
between neural population activity and perception during naturalistic
viewing.

Methods
All experiments were performed in accordance with protocols
approved by the U.S. National Institutes of Health Guidelines for the
Care andUse for Experimental Procedures and the Institutional Animal
Care and Use Committee (IACUC) at the University of Texas Health
Science Center at Houston. Data presented in this study was collected
from three adult male rhesus monkeys (Macaca mulatta; T: 14 years
old, 13 kg; M: 10 years old, 10 kg and R: 11 years old, 12 kg). A titanium
head post was surgically implanted in the medial frontal region with
the help ofmultiple anchor screws. After a recovery period of 4 weeks,
both animals were trained for a month on visual fixation tasks (to be
used later for the recordings) involving at least 1000 trials per session.
After the monkeys learned to complete multiple sessions in a single
day, we implanted a 96-channel Utah array in monkey T and R and a
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64-channel Utah array in monkey M in area V4 (left hemisphere in all
animals). Coordinates for craniotomies were estimated based on
locating the superior temporal sulcus (STS) and the lunate sulcus by
comparing MRI images from the animals to brain atlases. During sur-
gery, the grooves corresponding to the STS and the lunate sulcus were
used to guide the implantation of the array. Arrays were roughly
implanted at the crown of the pre-lunate gyrus. Post-surgery, animals
went through a 2-3week recoveryperiod and additional training for re-
acclimatization with previously learned fixation tasks before we star-
ted recording.

Visual stimuli for single unit recordings
Visual stimuli were presented on a gamma corrected CRTmonitor (HP
p1230). To measure color tuning we used a set of 16 equiluminant
colors (9.35 ± 0.01 cd/m2) spanning the full color gamut of themonitor
and presented at the maximum saturation allowed by the monitor20.
These 16 colors were uniformly spaced (in steps of 22.5º) when plotted
in the CIELUV color space34,35 (Fig. 2a) which is designed to be per-
ceptually uniform. L represents the luminosity, and u, v represent the
chromaticity coordinates in a two dimensional perceptually uniform
color space. Luv coordinates were measured for each color and the
graybackgroundusing aTektronixphotometer (J17 Lumacolor) before
the start of each recording session. These colors were presented on a
neutral gray background designed to have the same luminosity as the
color stimuli (see Supplementary Table 1). Grating stimuli consisted of
16 orientations spanning 0° to 180° in steps of 11.25°. The mean
luminosity of the gratingswasmatched to thatof the color patches and
the gray background. Visual stimuli were presented binocularly; eye
tracking was performed for only one of the eyes.

Behavioral task
Two monkeys were trained to fixate on a small point (0.2 deg)
within a small rectangular 1-deg window at the center of a cath-
ode ray tube (CRT) monitor while remaining head fixed. If at any
point during the trial, eye position exceeded 0.25 deg outside the
boundaries of the rectangular box, then the trial was auto-
matically aborted. Animals were rewarded with juice at the end of
each trial in which fixation was successfully maintained for the
entire duration of stimulus presentation. Eye movements were
monitored throughout the recording session using an infrared
eye tracking system (EyeLink II, SR Research) at a 1-kHz sampling
rate. Stimulus presentation was recorded and synchronized with
the neural data using a programmable Experiment Control Mod-
ule device (FHC Inc.).

Electrophysiological recordings
We recorded extracellular activity as action potentials and local field
potentials simultaneously from all 96 channels (monkey T, R) and 64
channels (monkey M) of three chronically implanted Utah arrays
(Blackrock Microsystems) while animals performed passive fixation
tasks. The interelectrode spacing in these arrays was 400 µm. Data was
recorded at a sampling rate of 30 kHz using a Cerebus Neural Signal
Processor (Blackrock Microsystems, LLC). Spike waveforms above
threshold (~4 sd above the amplitude of the noise signal) were saved
and sorted post data acquisition using Plexon’s Offline Sorter. Spike
waveforms were manually sorted with Plexon’s offline sorter program
using waveform clustering parameters such as spike amplitude, spike
width, timing of the valley and peak. Units that formed well separated
clusters in principal component spacewere identified as single ormulti
units.Units thathadmore than2%of theirpost sorted spikeswithin the
refractory period (2ms) were classified as multi units and were elimi-
nated from the analysis36. The remaining single units were subse-
quently analyzed using custom scripts in MATLAB. We treated each
recording session performed on a particular day as an independent
session, which is a common approach adopted bymultiple labs20,21,37–39

as it is difficult to determine whether the same units were recorded on
subsequent days over the course of several months.

RF mapping
To map the RFs of the single units we divided the right visual field
into a 3 × 3 grid consisting of 9 squares with each square covering
8 × 8 degrees of visual space. The entire grid covered 24 × 24
degrees of visual space. Each of the 9 squares was further sub-
divided into a 6 × 6 grid. In each trial, 1 out of the 9 squares was
randomly chosen and RF mapping stimuli was presented at each
of the 36 locations in a random order. The RF mapping stimuli
consisted of a reverse correlation movie with red, blue, green and
white patches (~1.33 degrees each). A complete RF session com-
prised of 10 presentations of the RF mapping stimuli in each of
the 9 squares forming the 3 × 3 grid. We averaged the responses
over multiple presentations to generate the RF heat maps. RF
mapping was done at the beginning of each recording session as
it was impossible to track the same neurons over the course of
the recordings which lasted several months. The position and size
of the target stimulus for examining tuning was chosen each day
so that it roughly covered the overlapping RFs of only a subset of
neurons. Neurons whose RFs could not be covered completely by
the chosen target were not included in the analysis. This ensured
that the size of the target could be kept small so as to minimize
surround stimulation.

Free-viewing adaptation task
A four-panel static stimuli (Fig. 1e) was designed to evaluate cross-
feature adaptation in a free-viewing paradigm. The upper right quad-
rant was a grey isoluminant control, the upper left quadrant was the
adapter stimulus, and the lower quadrants were test stimuli. To assess
responses to color after adaptation to an oriented grating, we used a
grating adapter stimulus oriented at 135o with a spatial frequency of
~2.8 cycles/deg. Grating parameters were chosen to elicit responses
from as many neurons recorded by the array. The hue angle corre-
sponding to the 2 test stimuli were 45 and 67.5o (neighboring stimuli)
and were placed in the lower left and right quadrants respectively. To
assess response to oriented gratings following adaptation to color, we
used a color adapter stimulus of 0 degrees of hue angle. The oriented
gratings were 112.5 and 135o for the bottom left and right quadrants
respectively. Before presenting the static task stimulus, eye position
was first calibrated with respect to the monitor. The task stimulus was
presented on the monitor for a total duration of roughly 1 hr in each
session. A drop of juicewas automatically given to the animal at regular
intervals provided its point of gaze was on the stimulus monitor. Sac-
cades and fixations were analyzed offline, and separated by a velocity
threshold of 100 deg/s40. We extracted ‘pseudo-trials’ from the free-
viewing recordings based on the sequence and location of fixations
with respect to the task stimulus. Unadapted trials were defined as
those inwhich the animalfirst fixated on the isoluminant grey quadrant
(upper right), and then fixated on one of the two lower test stimulus
quadrants. Adapted trials were defined as those when the animal first
fixated on the adapter quadrant (upper left) and then fixated on one of
the two lower stimulus quadrants. Fixation-related variables such as
durationoffixationson test or adapter stimuli, velocity anddirectionof
microsaccades, pupil size during fixations were analyzed to show that
these variables are not significantly different in the adapted and una-
dapted trials. Additionally, only fixations for which the full RFs of
neuronswere confined to onequadrant anddid not include the edgeof
the monitor boundaries or the boundaries separating the different
stimuli were included in the analysis (Supplementary Fig. 4).

Sobel filter analysis
We computed the orientation content of images by applying a Sobel
filter41–43 to each image. For each pixel we determined both the
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orientation and the orientation magnitude by calculating the partial
derivative of brightness in a 3 × 3 kernel. The orientation was obtained
by calculating the arc tangent of the vertical component divided by the
horizontal one. The orientation magnitude of the local gradient was
calculated from the square root of the sums of the squares of the
partial derivatives of the brightness in the vertical and horizontal
directions. We then determined the orientation magnitude histogram
of an image patch as the number of pixels at each particular orienta-
tion (collapsed to a 0º–180º in 5º bins) weighted by the magnitude of
the gradient at that pixel. We subsequently calculated the mean
orientation and orientation selectivity index (OSI; Fig. 1b) of image
patches by extracting the Fourier components from the orientation
magnitude histogram for each patch. The Sobel filter analysis was
performed on sub-patches of the natural images in a 50 × 50 pixel
window that was moved horizontally and vertically by 10 pixels to
cover the entire image.

Statistical model of visual exploration of natural scenes
We generated a distribution of saccade amplitude and direction
(Supplementary Fig. 2) from the free-viewing experiments described
above. Based on these statistics, we generated pseudo-saccades from
randomly chosen starting points on a natural image battery (n = 940)
from the McGill calibrated color image data base (McGill Vision
research; http://tabby.vision.mcgill.ca/) to simulate unrestrained
visual exploration. We analyzed a total of 282,000 saccades across all
images (300 saccades per image). The size of image patches was
chosen based onmean receptive field size of our V4 neurons. For every
pseudo-saccade connecting two patches of a natural image, we
quantified the strength of orientation and color signals. Orientation
signals were calculated by computing an orientation selectivity index
(OSI) using a Sobel filter (see Methods). Color signals were quantified
by analyzing thedistributionsof the red, green andblue channel values
across all pixels within a patch (values lying between 0 to 255). A patch
was considered to be ‘colored’ if it met the following requirements: (a)
each of the peaks of the R, G and B channel distributions were not
located within a threshold Δ (set at 30) to either 0 or 255 (black or
white patches). (b) The difference in the peak locations for each
channel were not closer than ±Δ (to rule out gray patches). (c) The
patch did not have significant orientation signals based on the Sobel
filter analysis. Patches were considered ‘oriented’ if there was sig-
nificant tuning (Rayleigh’s test, pval <0.05) based on Sobel filter ana-
lysis and did not have color information based on the criteria
presented above. To ensure that patches with no significant orienta-
tion tuning did not simply contain multiple orientations (multiple
peaks in their OSI distribution), we eliminated from the analysis those
patches containingmore thanonepeak in theirOSI distribution,where
peaks were defined as local maxima in the OSI distribution (>3 s.d.
above the mean). For each image we analyzed 300 saccades to cal-
culate how often saccades connected two patches with dissimilar/
similar features.

Color and orientation tuning
To determine the color/orientation tuning of V4 neurons we calcu-
lated the tuning curve from multiple presentations (N ~ 30/per sti-
muli) of the chosen stimulus feature (color patches/gratings). For
each such tuning curve, we calculated the color/orientation selec-

tivity index (CSI/OSI) in the following way: CSI =
∣
P

rie
θi ∣P

i

ri
where ri is

the response to a particular color/orientation with angular position
θi on the color/orientation space. Responses ri were vectorially
summed and then normalized by the sum of the responses for all
colors. To control for the effect of noise on estimation of tuning
curves, neurons with peak firing rates <10 spks/s were removed from
the analysis. CSI lies between 0 and 1, where a value of 0 represents

no tuning and a value of 1 indicates that the neuron is highly tuned
for a specific color. To evaluate whether the neuron’s tuning was
statistically significant, we used the Rayleigh test for non-uniformity
in circular data9,20,44. Rayleigh’s test is a statistical test used to
determine whether a circular distribution (which in our case is the
circular tuning curve with firing rates) has a preferred direction, i.e., a
preferred color the neuron is tuned to (P < 0.05). The null hypothesis
is that the circular tuning curve represents a uniform circular dis-
tribution and no preferred direction exists (P > 0.05). We evaluated
CSI and the p-values of the tuning curves in sliding windows (size
200ms, sliding by 5 ms) from the stimulus responses measured
separately for unadapted and adapted trials. We performed Holm-
Bonferroni correction for multiple comparisons on the p-values. To
evaluate the preferred color/orientation (PC/PO) we selected the
tuning curve with the highest CSI/OSI which passed the Rayleigh test
for non-uniformity (P < 0.05). This tuning curve was then used to

calculate PC/PO in the following way: PC = tan�1 Imð
P

rie
θi Þ

Reð
P

rie
θi Þ

� �

where

Im and Re stands for the imaginary and real parts of the complex
sum. We evaluated tuning latency (Fig. 3f) as the first time point
where the neuron exhibited significant tuning to a feature (p < 0.05,
Rayleigh test). To eliminate the effect of noise in evaluating tuning
strength and preferred stimulus we eliminated neurons with peak
firing rates <10 Hz. Circular statistics was computed using the Circ-
Stat Toolbox45 for MATLAB.

Adaptation task (passive fixation)
In adaptation trials an adapter of a particular feature (color or orien-
tation) preceded the presentation of a tuning test stimulus of another
feature. The adapter was presented for 400ms and after a 50ms delay
(gray screen), a randomly chosen tuning stimulus was presented
briefly for 200 ms. In unadapted trials the presentation of the tuning
stimuli was not proceeded by an adapter. A complete session involved
randomly interleaved adapted and unadapted trials (no adapter). The
adapting stimulus was chosen so that it activated a majority of the
recorded neurons in a session. We recorded close to 1000 trials in
these sessions split roughly equally between unadapted and adapted
conditions. The duration between the last frame of the tuning stimulus
and the first frameof the adapting stimulus in the next trial was at least
4.6 s which allowed sufficient time for the responses to return to
baseline.

Noise correlation analysis
Spike count correlations betweenpairs of neuronswas evaluated using
the Pearson’s correlation coefficient defined as follows:

rsc =

PN
k = 1ðrik � rjÞðrjk � rjÞ

Nσiσj
=

PN
k = 1 rikrjk � rirj

Nσiσj

Where N is the number of trials, rik is the firing rate of neuron i in trial
k, ri is the mean firing rate (averaged over trials) evaluated in a 200
ms window aligned with test stimulus onset and matching the
duration of test stimuli presentation, and σi is the standard deviation
of the responses of the neuron i. Neurons with peak firing rates <
5 spks/s were not included in the noise correlation analysis. Addi-
tionally, trials in which the absolute values of the z-scored firing rates
of either neuron exceeded three times the mean were eliminated
from the analysis. Finally, we averaged the noise correlation across all
stimuli for a particular feature to report mean correlated activity in
neuronal pairs. Noise correlations were calculated for all pairs both
before and after adaptation. In case of the free-viewing recordings,
spike counts were evaluated for the duration of each fixation on the
test stimuli.
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Principal component analysis of population activity
We performed principal component analysis (PCA) on a trial-by-trial
basis for the entire population of neurons21,22, in both unadapted and
adapted conditions for each experimental paradigm. Principal Com-
ponent analysis was performed on responses in each trial (e.g., firing
rates during fixations) of all recorded neurons in the unadapted con-
dition, i.e., PCA was performed on a M x N matrix where M denotes
trials and N the number of neurons. To control for the effect of high
variance in single neuron responses (outliers) dominating the PCA, we
removed neurons whose variance exceeded 2 std above the mean
variance of all the neurons in a session. We then projected the trial-by-
trial activity of the same neurons during the adaptation condition onto
the PC axis obtained for the control condition and examined the ratio
of the variance explained by each principal component in the control
and adaptation condition by focusing on the mean ratio for those PCs
that captured 90% of the variance of the population response in the
control condition. To obtain error estimates for ratio values, PCA
analysis was repeated 100 times with a different set of sub-sampled
trials (same number) in unadapted and adapted conditions.

Decoder analysis
We used linear discriminant analysis46–48 to examine whether cross-
feature adaptation enhanced the ability of neural populations to dis-
criminate between nearby stimuli. We analyzed decoder accuracy for
pairs of nearest neighbor stimuli in feature space, i.e., separated by
11.25° in the case of gratings and 22.5° in the case of color stimuli. The
decoder was trained on spike counts evaluated in 200 ms (0–200 ms
post tuning stimulus onset) for a subset of the trials. In the case of free-
viewing recordings, spike counts calculated for the fixation window
wereused as inputs to thedecoder.The classifierwas trainedon70%of
the trials and performance was tested on the remaining 30%. We
repeated this classification process 500 times with different training
and testing sets drawn randomly from the trials from a session.
Decoder performance was averaged over the number of iterations and
evaluated for both unadapted and adapted conditions. We subtracted
chance values of decoder performance for a pair of stimuli (50%) from
the actual values and thus reported decoder accuracy values above
chance for both free-viewing and passive fixation experiments.

Statistical analysis
Quantification and statistical test for tuning was performed using the
Rayleigh test implemented with the CircStat Toolbox45. Correlations
were quantified using either Pearson’s correlation or Spearman’s rank
correlation to account for linear/non-linear trends as applicable. We
used the non-parametric Wilcoxon’s signed rank test (two tailed) to
quantify whether distributions had medians significantly greater than
or less than zero. In case of two distributions with unequal sample size
we used the Wilcoxon rank sum test to examine the statistical sig-
nificance of the difference in their medians.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data used to generate the main and Supplementary figures are
provided as a Source Data file and can be accessed here https://
zenodo.org/record/7411296. The raw data that was analyzed to gen-
erate the findings in this study are available from the corresponding
author upon request. Source data are provided with this paper.

Code availability
The custom written software used for analysis are available from the
corresponding author upon reasonable request. The CircStat toolbox
used to perform circular statistical analysis is open source software

and is available for download from https://www.mathworks.com/
matlabcentral/fileexchange/10676-circular-statistics-toolbox-
directional-statistics.
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